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Abstract: Background and objectives: Acute myeloid leukemia (AML) is a hematological malignancy
characterized by uncontrolled proliferation of immature myeloid cells. Immune checkpoint molecules
such as programmed cell death protein 1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are
essential for controlling anti-tumor immune responses. This study aims to explore the correlation
between specific genetic variations (SNPs) in the PDCD1 (rs2227981) and LAG3 (rs12313899) genes
and the likelihood of developing AML in the Saudi population. Material and methods: total of
98 Saudi AML patients and 131 healthy controls were genotyped for the PDCD1 rs2227981 and LAG3
rs12313899 polymorphisms using TaqMan genotyping assays. A logistic regression analysis was
conducted to evaluate the relationship between the SNPs and AML risk using several genetic models.
Results: The results revealed a significant association between the PDCD1 rs2227981 polymorphism
and increased AML risk. In AML patients, the frequency of the G allele was considerably greater
than in healthy controls (OR = 1.93, 95% CI: 1.31–2.81, p = 0.00080). The GG and AG genotypes were
associated with a very high risk of developing AML (p < 0.0001). In contrast, no significant association
was observed between the LAG3 rs12313899 polymorphism and AML risk in the studied population.
In silico analysis of gene expression profiles from public databases suggested the potential impact of
PDCD1 expression levels on the overall survival of AML patients. Conclusions: This study provides
evidence for the association of the PDCD1 rs2227981 polymorphism with an increased risk for AML
in the Saudi population.

Keywords: immune checkpoint molecules; PDCD-1; LAG-3; SNP polymorphisms; acute myeloid
leukemia; middle east

1. Introduction

Leukemia is a type of hematological cancer defined by the abnormal growth and ac-
cumulation of immature white blood cells, called blasts, which displace normal blood cell
production. Leukemias are categorized into myeloid or lymphoid subtypes based on cellular
lineage and disease development, and can manifest as acute or chronic [1]. They start in the
bone marrow from hematopoietic stem cells and progenitor cells. In 2020, leukemia was the
fifteenth most commonly diagnosed cancer globally, with 474,519 cases and 311,594 deaths,
making it the eleventh leading cause of death from malignant diseases [2]. Leukemia rates
in Saudi Arabia have risen in recent years. The number of cases in 2018 reached roughly
437,033. In 2020, there were 27,885 new cases reported [3]. The cause of acute leukemia,
including acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), is yet
unidentified. Genome-wide association studies pinpointed two chromosomal regions, 7p12.2
and 10q21.2, containing risky single nucleotide polymorphisms (SNPs) in study participants
of Caucasian, Asian, and African descent [4–7]. AML primarily affects adults and is fre-
quently found in the older population [8,9]. Shallis, et al. [10] states that patients exhibit
chromosomal abnormalities at the time of diagnosis. Despite advancements in diagnosis
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and treatment, poor outcomes are still common in people with AML [11]. Conventional
treatments for leukemia include chemotherapy, radiation therapy, and stem cell transplanta-
tion. Emerging therapies such as targeted therapies and immunotherapies are demonstrating
potential [12,13]. Monoclonal antibodies that target leukemic cell surface antigens or regulate
immune checkpoints like PD-1 are producing favorable outcomes against different types of
leukemia [14]. These innovative treatments function by accurately eliminating cancer cells
or stimulating the body’s innate anti-tumor defenses. AML is linked to several levels of
risk, ranging from favorable to unfavorable, according to comprehensive national cancer
networks [15]. Genetic alterations play a crucial role in acute myeloid leukemia (AML) [4].
The latest classifications from the World Health Organization (WHO) identify AML with
biallelic mutations of CEBPA as a separate group with a positive outlook [16]. The immune
system plays a vital role in surveilling tumors and inhibiting the advancement of leukemia.
Several vital immunological molecules either boost or suppress anti-leukemia immune re-
sponses [17]. Antigen-presenting cells display tumor antigens to stimulate tumor-specific
T cells via the T cell receptor and co-stimulatory molecules such as CD28 [18]. Activated
T cells release cytokines to target and eliminate leukemia cells. Leukemic cells can evade
immunological elimination by upregulating the production of inhibitory ligands that bind to
immune checkpoint receptors on T cells. Increased expression of programmed death ligand 1
(PD-L1) inhibits T cell proliferation by binding to the programmed cell death protein 1 (PD-1)
receptor [19,20]. Leukemia causes an increase in MHC class II molecules, which triggers the
LAG-3 receptor on T cells, resulting in the suppression of lymphocyte activation [21]. PD-1
and LAG-3 are immune checkpoint receptors that are essential for regulating peripheral T
cell tolerance and influencing anticancer immunological responses [22]. Single-nucleotide
polymorphisms (SNPs) in PD-1 and LAG-3 genes are linked to vulnerability and medical
results in different types of cancer [23–25]. In hematological malignancies, PD-1 and LAG-3
genetic variations have been associated with a risk and the prognosis of leukemia [23,26].
Their actions are believed to occur via modifying the structure, expression levels, or signaling
activity of immune checkpoint proteins, therefore influencing the equilibrium between tumor
immune evasion and immunological-mediated disease control [26]. Delving deeper into
these genetic connections could offer valuable insights into the processes of immune evasion
in hematological malignancies. This study aimed to investigate the correlation between SNPs
of two inhibitory immune checkpoint receptors PDCD1 rs2227981 and LAG3 rs12313899 and
the susceptibility to acute myeloid leukemia in the Saudi population.

2. Materials and Methods
2.1. Patients and Healthy Individuals

The study involved 98 Saudi patients diagnosed with de novo acute myeloid leukemia
(AML), comprising 44 females (44.90%) and 54 males (55.10%) recruited from King Khaled
Hospital in Riyadh. AML patients were diagnosed following WHO 2017 criteria with a
thorough investigation involving a complete blood count, bone marrow examination, and
flow cytometry. Chromosomal and fluorescent in situ hybridization (FISH) testing was
conducted to confirm the existence of AML, in addition to other procedures. None of
these patients started treatment before sampling. Blood samples were collected from AML
patients between April 2018 and February 2020. To ensure the analysis only included cases
of AML, patients with diagnoses of other malignancies or chronic conditions were excluded
from the study. Almost 30% of patients were recruited from the pediatric department.

The control group comprised 131 healthy volunteers, with 49 females (37.40%) and
82 males (62.60%), who were matched for age and sex. The average age of the study
participants was 27.56 ± 18.59 for those with AML and 29.35 ± 18.91 for the healthy control
group. No control subjects had a personal or family history of AML or any other chronic or
immunological disorders.

The study methods involving human volunteers were conducted in conformity with the
Ethics Committee of the Faculty of Medicine at King Khaled Hospital (Ref. No. 20/0800/IRB).
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The procedures were conducted in accordance with the 1964 Helsinki statement, and all
participants gave written informed consent.

2.2. DNA Extraction

Three milliliters of blood were collected under sterile conditions from each participant
and preserved at −20 ◦C in tubes containing ethylenediaminetetraacetic acid (EDTA) for
analysis. Peripheral blood DNA from AML patients and healthy controls was isolated
using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) following the manufac-
turer’s guidelines. The DNA concentration was determined using a Nanodrop ND-2000c
spectrophotometer (Thermo Scientific in Wilmington, DE, USA).

2.3. SNP Selection and Genotyping Method

Two single-nucleotide polymorphisms (SNPs) in the immune checkpoint genes PDCD1
(rs2227981) and LAG3 (rs12313899),were selected using the dbSNP databases available at
https://www.ncbi.nlm.nih.gov/snp/, accessed on 13 February 2023. SNPs were chosen
based on having a minor allele frequency (MAF) of at least 5%. The Hardy–Weinberg
equilibrium (HWE) p-value threshold was set at greater than 0.005, as shown in Table 1.
Genotyping was conducted using the allelic discrimination method using VIC and FAM
labels. TaqMan assays were ordered from Applied Biosystems and used as per the man-
ufacturer’s instructions on an ABI Prism 7500 real-time PCR system. Real-time PCR was
conducted in a 10 µL reaction system comprising 0.26 µL 2× SNP Genotyping Assay,
5.5 µL 2× Power Taq MasterMix Mix, 2.24 µL Nuclease-Free Water, and 2 µL DNA template
(100 ng/µL). The PCR protocol for rs2227981 and rs12313899 involved an initial denat-
uration step at 95 ◦C for 10 min, followed by 40 cycles of denaturation at 95 ◦C for 15 s,
annealing at 55 ◦C for 30 s, extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 5
min. For genotype confirmation and quality control, the genotyping was repeated for 5%
of randomly chosen samples.

Table 1. Characteristics of specific genetic variations related to the PDCD1 rs2227981 and LAG3
rs12313899 SNPs.

Gene SNP ID/Assay
ID

Chromosome
Position

Nucleotide
Change

Region
MAF in Human Populations

Global European East Asian American Qatari

PDCD1 rs2227981 Chr2/241851121 A>G Exon5 0.35 0.40 0.27 0.44 0.33

LAG3 rs12313899 Chr 12/6768692 A>G Intro 0.47 0.39 0.43 0.42 0.40

MAF: minor allele frequency.

2.4. In Silico Analysis of Gene Expression Profiles and Their Correlation with Survival Prognosis

Gene expression profiles and patient survival data were analyzed using the Gene
Expression Profiling Interactive Analysis (GEPIA) website, which is based on the TCGA
transcription database created by Peking University. A total of 173 cases were compared to
70 controls from TCGA and GTEx datasets [27]. An analysis was conducted to examine the
impact of gene expression levels (high vs. low) of PDCD1 and LAG3 on the overall survival
rate of acute myeloid leukemia (AML) patients. The analysis was carried out using the
Kaplan–Meier plot tool in the UALCAN database (http://ualcan.path.uab.edu/, accessed
on 30 January 2024). Co-expression analysis of PDCD1 and LAG3 was predicted using the
cBio portal cancer genomic online platform (https://www.cbioportal.org/, accessed on
16 February 2024) with Pearson and Spearman correlation coefficients.

2.5. Statistical Analysis

Alleles and genotypes’ relative risk was assessed through odds ratios (ORs) with a
95% confidence interval (CI) using five inheritance models: co-dominant, dominant, reces-
sive, over-dominant, and log-additive. The analysis was conducted with the web-based
SNPStats software program by Solé, et al. [28] accessed on 25 January 2024. SNPs were
assessed for divergence from the Hardy–Weinberg equilibrium using the Chi-square test.

https://www.ncbi.nlm.nih.gov/snp/
http://ualcan.path.uab.edu/
https://www.cbioportal.org/
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The significance criterion for association was set at p < 0.05. The p value was corrected for
multiple comparisons using Bonferroni correction to Pc 0.003. A total of 98 eligible patients
and 131 controls were genotyped for four specific target SNPs: PD1–5 A>G (rs2227981) and
LAG3 A>G (rs12313899). All genotypes adhered to a Hardy–Weinberg equilibrium.

3. Results
3.1. Association of PDCD1 (rs2227981A>G) Polymorphisms with AML

Comparative distributions of the PD1-5 A>G genotypes for the five examined inher-
itance models and alleles are reported in Table 2. Our results indicated that the PD1-5
polymorphism in exon5 was associated with a very high risk for AML. The frequency of the
G allele was significantly higher in patients compared to healthy group (OR: 1.93; 95% CI:
1.31–2.81 and p = 0.0008). Very strong associations were found in codominant, dominant,
overdominant and additive models (p < 0.0001), which show an overall association of the
G allele and GG and AG genotypes with AML. In the codominant model, the risk of AML
is 15.76 times higher (95% CI: 5.43–45.78) for people with the AG genotype and 7.29 times
higher (95% CI: 1.83–29.00) for people with the GG genotype. The AA genotype could be
considered as highly protective against AML. Based on the AIC parameter, the codominant
model could be the most appropriate one.

Table 2. Association between PD1–5 rs2227981 allele and genotype frequencies and AML.

Locus Model Genotype Control (%)
n = 132

AML
n = 98 OR (95% CI) p-Value AIC

PDCD1

Allele
A 0.65 0.48 1

0.0008
G 0.35 0.52 1.93 (1.31–2.81)

Codominant

AA 50 (38.2%) 4 (4.1%) 1

<0.0001 274.2AG 69 (52.7%)) 87 (88.8%) 15.76 (5.43–45.78)

GG 12 (9.2%) 7 (7.1%) 7.29 (1.83–29.00)

Dominant
AA 50 (38.2%) 4 (4.1%) 1

<0.0001 284
AG + GG 81 (61.8%) 94 (95.9%) 14.51 (5.02–41.91)

Recessive
AA + AG 119 (90.8%) 91 (92.9%) 1

0.58 316.4
GG 12 (9.2%) 7 (7.1%) 0.76 (0.29–2.01)

Overdominant
G/G + A/A 62 (47.3%) 11 (11.2%) 1

<0.0001 280.1
A/G 69 (52.7%) 87 (88.8%) 7.11 (3.48–14.52)

Log-Additive 3.35 (1.90–5.91) <0.0001 296.1

AML: acute myeloid leukemia, OR: odds ratio, CI: 95% confidence interval, AIC: Akaike information criterion, all
p < 0.0031 were considered significant.

3.2. Association of LAG3 (rs12313899A>G) Polymorphisms with AML

The comparative distribution of the rs12313899A>G polymorphism in the intron posi-
tion of LAG3 gene between patient and control groups for all examined models is reported
in Table 3. Our results indicate that this examined polymorphism was not associated with
risk for AML (p > 0.05).

Table 3. Association between LAG3 rs12313899 alleles and genotype frequencies and AML.

Locus Model Genotype Control (%)
n = 132

AML
n = 98 OR (95% CI) p-Value AIC

LAG3 Allele
A 0.54 0.63 1

0.23
G 0.46 0.37 1.163 (0.907–1.492)
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Table 3. Cont.

Locus Model Genotype Control (%)
n = 132

AML
n = 98 OR (95% CI) p-Value AIC

LAG3

Codominant

AA 44 (34.1%) 41 (41.8%) 1

0.2 323.5AG 52 (40.3%) 41 (41.8%) 0.85 (0.47–1.53)

GG 33 (25.6%) 16 (16.3%) 0.52 (0.25–1.08)

Dominant
AA 44 (34.1%) 41 (41.8%) 1

0.23 319.9
AG + GG 85 (65.9%) 57 (58.2%) 0.72 (0.42–1.24)

Recessive
AA + AG 96 (74.4%) 82 (83.7%) 1

0.09 318.4
GG 33 (25.6%) 16 (16.3%) 0.57 (0.29–1.10)

Overdominant
AA + GG 77 (59.7%) 57 (58.2%) 1

0.82 321.2
AG 52 (40.3%) 41 (41.8%) 1.07 (0.62–1.82)

Log-Additive --- --- 0.74 (0.52–1.05) 0.091 311.6

AML: acute myeloid leukemia, OR: odds ratio, CI: 95% confidence interval, AIC: Akaike information criterion, all
p < 0.0031 were considered significant.

3.3. Stratification Analysis by Gender and Age

The potential association between the PDCD1 rs2227981 and LAG3 rs12313899 poly-
morphisms and risk of acute myeloid leukemia (AML) was studied through stratified
analyses based on gender and age. A stratified analysis by gender showed no correlations
between genotype at these polymorphic sites and risk of AML among males or females
(Table 4). Similarly, a stratified analysis by age failed to identify any associations between
genotype and AML risk (Table 5). Both polymorphisms did not show differential risk
associations according to gender or age subgroups for AML.

Table 4. Correlation between PDCD1 rs2227981 and LAG3 rs12313899 polymorphisms and AML
susceptibility after gender stratification.

Locus Model Genotype AML Female
n = 44

AML
Male
n = 54

OR (95% CI) p-Value AIC

PDCD1
rs2227981A>G

Allele
A 0.5 0.57

0.77
G 0.5 0.47 0.89 (0.50–1.57)

Codominant

AA 2 (4.5%) 5 (9.3%) 1

AG 40 (90.9%) 47 (87%) 0.47 (0.09–2.56) 0.352 139.9

GG 2 (4.5%) 2 (3.7%) 0.40 (0.03–5.15)

Dominant
AA 2 (4.5%) 5 (9.3%) 1

0.36 138.1
AG + GG 42 (95.5%) 49 (90.7%) 0.47 (0.09–2.53)

AA + AG 42 (95.5%) 52 (96.3%) 1
0.83 138.8

Recessive GG 2 (4.5%) 2 (3.7%) 0.81 (0.11–5.98)

Overdominant
AA + GG 4 (9.1%) 7 (13%) 1

0.54 138.5AG 40 (90.9%) 47 (87%) 0.67 (0.18–2.46)

Log-Additive 40 (90.9%) 47 (87%) 0.67 (0.18–2.46) 0.51 138.4

LAG3
rs12313899A>G

A 0.63 0.62
1

Alleles G 0.37 0.38 1.02 (0.56–182)

AA 17 (38.6%) 24 (44.4%) 1

Codominant AG 21 (47.7%) 20 (37%) 0.67 (0.28–1.61) 0.55 139.6

GG 6 (13.6%) 10 (18.5%) 1.18 (0.36–3.87)
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Table 4. Cont.

Locus Model Genotype AML Female
n = 44

AML
Male
n = 54

OR (95% CI) p-Value AIC

AA 17 (38.6%) 24 (44.4%) 1
0.56 138.5

LAG3
rs12313899A>G

Dominant AG + GG 27 (61.4%) 30 (55.6%) 0.79 (0.35–1.77)

AA + AG 38 (86.4%) 44 (81.5%) 1
0.51 138.4

Recessive GG 6 (13.6%) 10 (18.5%) 1.44 (0.48–4.33)

Overdominant
AA + GG 23 (52.3%) 34 (63%) 1 0.29 137.7

AG 21 (47.7%) 20 (37%) 0.64 (0.29–1.45)

Log-Additive 0.98 (0.56–1.71) 0.95 138.8

AML: acute myeloid leukemia, OR: odds ratio, 95% CI: 95% confidence interval, AIC: Akaike information criterion,
all p < 0.0031 were considered significant.

Table 5. Correlation between PDCD1 rs2227981 and LAG3 rs12313899 polymorphisms and AML
susceptibility after age stratification.

Locus Model Genotype
AML

Age < 29
n = 52

AML
Age ≥ 29

n = 42
OR (95% CI) p-Value AIC

PDCD1
rs2227981A>G

Allele
A 54 (52%) 47 (51%) 1

1
G 50 (48%) 45 (49%) 0.96 (0.55–1.69)

Codominant

AA 2 (4.5%) 5 (9.3%) 1

AG 40 (90.9%) 47 (87%) 0.47 (0.09–2.56) 0.352 139.9

GG 2 (4.5%) 2 (3.7%) 0.40 (0.03–5.15)

Dominant
AA 2 (4.5%) 5 (9.3%) 1

0.36 138.1
AG + GG 42 (95.5%) 49 (90.7%) 0.47 (0.09–2.53)

Recessive
AA + AG 42 (95.5%) 52 (96.3%) 1

0.83 138.8
GG 2 (4.5%) 2 (3.7%) 0.81 (0.11–5.98)

Overdominant
AA + GG 4 (9.1%) 7 (13%) 1

0.54 138.5
AG 40 (90.9%) 47 (87%) 0.67 (0.18–2.46)

Log-Additive 40 (90.9%) 47 (87%) 0.67 (0.18–2.46) 0.51 138.4

LAG3
rs12313899A>G

A 0.66 (69) 0.59 (54) 1
0.30

Alleles G 0.34 (35) 0.41 (38) 0.72 (0.40–1.28)

Codominant

AA 4 (7.7%) 3 (6.5%) 1 0.97 141.4

AG 46 (88.5%) 41 (89.1%) 1.19 (0.25–5.63)

GG 2 (3.8%) 2 (4.3%) 1.33 (0.11–15.70)

Dominant
AA 4 (7.7%) 3 (6.5%) 1 0.82 139.4

AG + GG 48 (92.3%) 43 (93.5%) 1.19 (0.25–5.64)

Recessive
AA + AG 50 (96.2%) 44 (95.7%) 1 0.9 139.5

GG 2 (3.8%) 2 (4.3%) 1.14 (0.15–8.41)

Overdominant
AA + GG 6 (11.5%) 5 (10.9%) 1 0.92 139.5

AG 46 (88.5%) 41 (89.1%) 1.07 (0.30–3.77)

Log-Additive --- --- 1.16 (0.35–3.83) 0.8 139.4

AML: acute myeloid leukemia, OR: odds ratio, CI: 95% confidence interval, AIC: Akaike information criterion, all
p < 0.0031 were considered significant.

3.4. In Silico Analysis of mRNA Differential Expression and Prognosis

An in silico analysis of mRNA differential expression and the prognostic impact in
AML was performed using the GEPIA databases. The GEPIA database compared PDCD1
and LAG3 mRNA expression between AML tumor samples and healthy control samples
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from TCGA. PDCD1 mRNA levels were markedly reduced in AML samples in comparison
to controls (Figure 1A). A great dispersion in the level of expression was observed among
AML samples.
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obtained from the GEPIA database (http://gepia.cancer-pku.cn, accessed on 14 February 2024).

For the LAG3 mRNA expression, no significant difference between AML and control
groups was observed, noting a dispersion of values among AML patients as reported
for the PDCD1 gene (Figure 1B). On the other hand, analysis of the mRNA signature of
exhausted T cells shows a higher level of the expression of PDCD1 and LAG3 among AML
patients compared to controls (Figure 1C).

A Kaplan–Meier survival analysis in GEPIA evaluated the prognostic impact of PDCD1
and LAG3 mRNA expression. A higher PDCD1 expression is correlated with a significantly
worse overall survival in AML patients (Figure 1B, p = 0.00027), indicating its potential use
as a prognostic biomarker. However, LAG3 mRNA levels showed no significant association
with overall survival (p = 0.06) (Figure 2B).
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The cBioPortal database was used to analyze correlations between PDCD1 and LAG3
expressions among AML samples. A strong positive correlation was observed, with Pearson
and Spearman correlation coefficients both being 0.43 (p < 0.0001) (Figure 3). This suggests
a coordinated regulation of PDCD1 and LAG3 during AML development and progression.
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4. Discussion

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy charac-
terized by uncontrolled proliferation and impaired differentiation of myeloid progenitor
cells. Despite advancements in diagnostic and therapeutic approaches, the prognosis for
AML patients remains poor, with a high rate of relapse and resistance to conventional treat-
ments. The immune system plays a vital role in tumor surveillance and elimination, and
dysregulation of immune checkpoint pathways can contribute to tumor immune evasion
and disease progression. In this study, we investigated the relationship between specific
single-nucleotide polymorphisms (SNPs) in the PDCD1 (rs2227981) and LAG3 (rs12313899)
genes encoding the immune checkpoint receptors PD-1 and LAG-3, respectively and the
risk of developing AML in the Saudi population. Our findings revealed a significant corre-
lation between the PDCD1 rs2227981 polymorphism and a higher risk for AML; however,
no significant correlation was found for the LAG3 rs12313899 polymorphism.

The PDCD1 rs2227981 G allele, situated in exon 5 of the PD-1 gene, was found to be
more prevalent in AML patients than in healthy controls, indicating its possible involvement
in regulating immune evasion mechanisms in leukemia. The codominant and log-additive
models exhibited the most robust relationships, suggesting a dose-dependent impact of
the G allele on AML risk. The AA genotype seemed to provide protection against AML
formation, reinforcing the potential functional significance of this polymorphism. The
expression of the PD-1 receptor is highly regulated. It is mainly expressed on activated T
cells, playing a critical role in regulating peripheral tolerance and preventing autoimmunity.
Upon binding to its ligands, PD-L1 and PD-L2, which are expressed on tumor cells and
antigen-presenting cells, PD-1 signaling inhibits T cell proliferation, cytokine production,
and cytotoxic activity. Leukemic cells often upregulate PD-L1 expression, leading to T cell
exhaustion and suppression of anti-tumor immune responses [19,20].

The rs2227981 polymorphism is situated on exon 5 at position +7785 A/G. Multiple
studies have reported significant associations with various types of solid cancers, including
lung cancer [29], cervical cancer [30], and breast cancer [31]. A recent meta-analysis
suggested that the PD-1.5 (rs2227981) polymorphism is linked to significantly reduced
cancer risks in individuals with the A allele compared to those with the G allele [31–34].
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In addition, the role of polymorphisms in PD-1 genes was investigated in several types of
hematological cancer studies.

Several studies have assessed the potential link between PDCD1 gene variations and
hematological cancers such as multiple myeloma and leukemia. Kasamatsu, et al. [35]
did not find any link between individual examined SNPs (PD-1.1, rs41386349, PD-1.9)
and multiple myeloma. However, an association was observed with specific haplotypes
(GCC/GCC) of the three selected SNPs with disease. Similarly, Grzywnowicz, et al. [36]
observed no links between five specific SNPs of PDCD1, including the PD-1.5 polymor-
phism, and the risk of developing chronic lymphocytic leukemia in a population from
Poland. Recently, Wu et al. [23] reported an association between rs2227982 and AML in
Jinan in China, but no link was found for rs2227981. It is worth noting that rs2227981 is a
synonymous polymorphism that does not alter the protein’s final amino acid structure. The
strong association between this polymorphism and malignancies is likely due to a linkage
disequilibrium with other PD-1 gene polymorphisms, which could potentially change the
expression level of PD-1. In contrast to the findings for PD-1 rs2227981, our study did not
observe a significant association between the LAG3 rs12313899 polymorphism and AML
risk in the Saudi population. The LAG-3 receptor, expressed on activated T cells and natural
killer (NK) cells, negatively regulates T cell activation and proliferation upon binding to its
ligands, including MHC class II molecules [37,38]. While our study did not find a signifi-
cant association between the LAG3 rs12313899 polymorphism and AML risk, a few other
studies have reported associations between LAG3 genetic variations and susceptibility
to or prognosis of some cancer types, including AML [23], where LAG3 rs2365094 was
associated with risk stratification for AML in a Chinese population from Ji’nan, Shandong.
A protective association with progression of localized prostate cancer was reported for
LAG3:rs1997510 in non-Hispanic white men [39]. In addition, Lee et al. [40] showed an
association between LAG-3 rs2365094G> C and the risk of multiple myeloma in women,
while they reported a protective effect of the A allele of LAG-3 rs3782735.

In addition to the genetic association analysis, we performed in silico analyses to
evaluate the potential impact of PDCD1 and LAG3 gene expression levels on the overall
survival of AML patients and their association with AML. Based on a GEPA database
analysis, the expression of PD-1 is higher in the control than in AML. This result is to
be taken with caution for many reasons. First, the two analyzed groups have different
sizes (173 vs. 70) and matching between these two groups for age, sex and ethnicity is
not guaranteed. In addition, we noticed that the expression level values in the AML
plot are more dispersed, suggesting a heterogeneity in the clinical profile of patients that
could be related to the stage of disease, medication, age, gender, genome profile, and
other factors. All these factors could influence the differential expression of PD-1 genes
among individuals with cancer diseases [41]. On the other hand, our analysis shows a
potential correlation between high PD-1 mRNA levels and a decreased overall survival.
This result confirms the heterogeneity of the AML group, although the specific mechanisms
underlying this observation require further investigation.

PD-1 expression has been observed on B and T cells and other immune system cells, in
addition to elevated expressions of PD-1 and its ligand PD-L1 in hematological malignan-
cies [42]. When PD-1 interacts with its ligand in cancerous cells, it reduces the sensitivity
of these cells to immune responses, allowing them to grow and develop [43]. Thus, it has
been reported that increased PD-1 signaling is associated with a worse overall survival
in AML patients [44]. Studies indicate that PD-1 signaling could impact the progression
and unfavorable outcome of AML by promoting T cell exhaustion. Upregulation of LAG-3
has been reported in various malignancies, including AML, and is associated with T cell
dysfunction and tumor immune evasion [45,46]. Radwan et al. [45] showed that the up-
regulation LAG-3 expressions was correlated with patients with an unfavorable prognosis
of AML compared with those with a favorable prognosis. It is important to note that the
functional consequences of the examined SNPs in the PDCD1 and LAG3 genes have not
been fully elucidated. SNPs can potentially influence gene expression, protein structure,
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or protein–protein interactions, ultimately affecting immune checkpoint regulation and
anti-tumor immune responses.

5. Conclusions

Further functional studies are warranted to elucidate the underlying mechanisms
by which these polymorphisms may contribute to AML susceptibility or prognosis. In
addition to the several strengths of our study, there are also limitations to consider. First,
the sample size was relatively small, which may have limited the statistical power to detect
modest associations, particularly for the LAG3 polymorphism. Larger multicenter studies
with diverse ethnic populations would be beneficial to validate and extend our findings.
Second, we focused on two specific SNPs in the PDCD1 and LAG3 genes, but additional
genetic variations or haplotype analyses may provide further insights into the potential
role of these immune checkpoint genes in AML susceptibility and prognosis. Finally,
it is essential to consider the complex interplay between genetic factors, environmental
exposures, and lifestyle factors in the development and progression of AML. Future studies
should integrate comprehensive genetic profiling, epigenetic analyses, and detailed clinical
and epidemiological data to gain a more holistic understanding of the interplay between
immune checkpoint pathways and leukemogenesis.
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