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Abstract: Using whey, a by-product of the cheese-making process, is important for maximizing
resource efficiency and promoting sustainable practices in the food industry. Reusing whey can
help minimize environmental impact and produce bio-preservatives for foods with high bacterial
loads, such as Mexican-style fresh cheeses. This research aims to evaluate the antimicrobial and
physicochemical effect of CFS from Lactobacillus casei 21/1 produced in a conventional culture
medium (MRS broth) and another medium using whey (WB medium) when applied in Mexican-style
fresh cheese inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar
Typhimurium, Staphylococcus aureus, and Listeria monocytogenes). The CFSs (MRS or WB) were
characterized for organic acids concentration, pH, and titratable acidity. By surface spreading, CFSs
were tested on indicator bacteria inoculated in fresh cheese. Microbial counts were performed
on inoculated cheeses during and after seven days of storage at 4 ± 1.0 ◦C. Moreover, pH and
color were determined in cheeses with CFS treatment. Lactic and acetic acid were identified as
the primary antimicrobial metabolites produced by the Lb. casei 21/1 fermentation in the food
application. A longer storage time (7 days) led to significant reductions (p < 0.05) in the microbial
population of the indicator bacteria inoculated in the cheese when it was treated with the CFSs (MRS
or WB). S. enterica serovar Typhimurium was the most sensitive bacteria, decreasing 1.60 ± 0.04 log10

CFU/g with MRS-CFS, whereas WB-CFS reduced the microbial population of L. monocytogenes to
1.67 log10 CFU/g. E. coli and S. aureus were the most resistant at the end of storage. The cheese’s
pH with CFSs (MRS or WB) showed a significant reduction (p < 0.05) after CFS treatment, while
the application of WB-CFS did not show greater differences in color (∆E) compared with MRS-CFS.
This study highlights the potential of CFS from Lb. casei 21/1 in the WB medium as an ecological
bio-preservative for Mexican-style fresh cheese, aligning with the objectives of sustainable food
production and guaranteeing food safety.

Keywords: cell-free supernatants; dairy industry; food safety; natural antimicrobials; lactic-acid
bacteria; sustainability

1. Introduction

Most traditional Mexican fresh cheeses are artisanal products made from whole or
low-fat cow’s milk, frequently without the milk’s thermal treatment, through casein coagu-
lation with rennet (or other proteinase substitutes) [1]. Their processing is not commonly
standardized; producers handle low production volumes and often utilize unpasteurized
milk [2], which represents a health risk [3]. In the production of fresh Mexican-style cheese,
no bacteria are inoculated because it is not a fermented product; due to its short shelf life, it
is usually consumed soon after it is made [2]. It is common for this variety of cheese to be
a vehicle for pathogenic microorganisms, which can be attributed to unpasteurized milk
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or handling techniques during its production [4]. Unfortunately, there have been multiple
cases of illness linked to the consumption of this cheese, as it may contain harmful microor-
ganisms such as Salmonella [5–7], Listeria monocytogenes [8–10], Escherichia coli [11,12], and
Staphylococcus aureus [6,13,14].

Bio-preservation involves using microorganisms or their metabolites to increase the
shelf life and safety of food. Among of the most promising natural biological antagonists
are lactic acid bacteria (LAB), which have several potential applications. Numerous studies
have reported that LAB strains produce antimicrobial substances (organic acids, short-
chain fatty acids, hydrogen peroxide, and proteinaceous compounds) [15,16]. LAB are
commonly used as starter cultures in the food industry, particularly in cultured dairy
products [17]. Nonetheless, non-starter LAB have also been assessed for their ability
to prolong the shelf life of various foods, including bread, dairy products, fresh fruits,
vegetables, and animal feed [18–20]. Several studies have investigated the potential use
of non-traditional starter LAB to increase cheese safety and shelf life. Dal Bello et al. [21]
successfully controlled the growth of L. monocytogenes in cottage cheese using LAB. Settanni
et al. [22] were able to extend the safety and shelf life of Tosela cheese by controlling the
growth of L. monocytogenes, Salmonella spp., and coliforms using Lactobacillus paracasei
NdP78 and Streptococcus macedonicus NdP1.

LAB are generally recognized as safe (GRAS) with qualified presumption of safety
(QPS) [23]; many of them have been studied as bio-preservatives due to the secretion of
antimicrobial compounds, either organic acids or bacteriocins [20]. Ensuring the safety
of cheeses while maintaining their organoleptic characteristics is a challenge for the food
industry. Therefore, the use of LAB cell-free supernatants (CFSs) can be an alternative since
they have interesting antimicrobial properties [19], especially in the bio-preservation of
raw foods such as beef [24], chicken [25–27], shrimp [28], and vegetables [29], among many
others [20].

To produce these CFSs and enable their possible use in the food industry, it is essential
to have a culture medium for the optimal growth of microorganisms and the production
of antimicrobial metabolites. It is important to consider the economic viability and safety
for consumption of the medium used to produce CFS. In most studies [19] addressing the
antimicrobial activity of CFS from LAB, the culture medium used is de Man, Rogosa, and
Sharpe (MRS) broth, which is excellent for the growth of Lactobacillus. However, due to its
high cost, MRS broth is unsuitable for industrial use. Zandona et al. [30] have mentioned
that whey is a sustainable food ingredient since it has been employed in the elaboration of
food products such as infant formula, meat products, beverages, soups, sauces, toppings,
creamers, nut coatings, pressed nuts, cheese-based sauces, potato chips, savory flavors,
savory puff pastries, and special bakery products such as pizza, biscuits, macaroni, soufflés,
and cakes. Hence, whey may be a potential ingredient for food-grade culture medium
since its nutrient profile includes sugar (lactose 46–52 g L−1), proteins (6.5–6.6 g L−1), and
minerals (5.0–5.2 g L−1) [31]. Recently, fermented whey by LAB has been investigated as
an antimicrobial. For instance, Yousefi et al. [32] optimized the fermentation conditions
of L. plantarum PTCC 1896 in whey to improve the antibacterial metabolites production,
whereas Izzo et al. [33] analyzed the antifungal activity from fermented goat’s sweet
whey utilizing four L. plantarum strains. However, they did not evaluate the antimicrobial
activity in any food matrix, and thus, further research is necessary. Also, whey has been
demonstrated to be suitable for LAB growth and fermented probiotic beverages [31,34].
Whey derived from the cheese industry is relatively cheap and readily available. This
approach would help improve food safety and the environment since the cheese industry
produces approximately 115 million tons, wasting around 47% [35]. Discharging untreated
whey into the environment can cause several problems such as water contamination,
dissolved oxygen depletion, and eutrophication [36]. Whey dissolved in water has a high
level of biochemical oxygen demand (BOD) ranging from 40 to 60 g L−1 and chemical
oxygen demand (COD) ranging from 50 to 80 g L−1 [30].
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Therefore, this research aims to evaluate the antimicrobial and physicochemical effect
of CFS from Lactobacillus casei 21/1 produced in a conventional culture medium (MRS
broth) and another medium using whey (WB) when applied in Mexican-style fresh cheese
inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar Ty-
phimurium, Staphylococcus aureus, and Listeria monocytogenes).

2. Materials and Methods

Figure 1 shows the flow diagram of the experiments performed in the present study.
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Figure 1. Flow diagram of the experiments, materials, and methods used for the present study.

2.1. Bacterial Strains, Culture Mediums Preparation and Growth Conditions

Lactobacillus casei 21/1 as well as indicator strains (Escherichia coli ATCC 25922, Salmonella
enterica serovar Typhimurium ATCC 14028, Staphylococcus aureus ATCC 29213, and Listeria
monocytogenes Scott A) were obtained from the Food Microbiology Laboratory of the Uni-
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versidad de las Americas Puebla (San Andres Cholula, Puebla, Mexico). Lb. casei 21/1 was
reactivated and sub-cultivated in de Man, Rogosa, and Sharpe (MRS) broth (Difco™ BD,
Sparks, MD, USA) at 35 ◦C. Indicator strains were reactivated and incubated in trypticase
soy broth (TSB, Bioxon BD, Mexico City, Mexico) at 35 ± 1.0 ◦C for 24 h.

The whey-based (WB) medium was prepared using 10.0% w/w whey powder (10%
protein, 1.5% fat, 75% carbohydrates, and 1.1% sodium chloride; Food Technologies Trading,
Mexico City, Mexico), yeast extract 0.3% w/w (Difco™, BD, Sparks, MD, USA), magnesium
sulfate 0.02% (MgSO4•7H2O) (Merck, Burlington, MA, USA), manganese sulfate 0.005%
w/w (MnSO4•H2O) (Merck, Burlington, MA, USA), and water. In a previous study [37],
MRS broth (Difco™ BD, Sparks, MD, USA) was used as a conventional culture medium.
Fresh cultures of Lb. casei 21/1 were used to inoculate the culture media, adding the neces-
sary amount to obtain an initial population of 106 CFU mL−1. For the growth conditions in
culture media, Lb. casei 21/1 was incubated at 35 ± 1.0 ◦C for 48 h.

2.2. Preparation of Cell-Free Supernatant (CFS)

After fermentation with Lb. casei 21/1, the MRS broth and WB medium were centrifu-
gated at 7000× g for 15 min at 5 ◦C (Sorvall ST 8R, Thermo Fischer Scientific, Schwerte,
Germany). Later, the supernatants were filtered through a 0.45 µm Millipore membrane
filter (Advantec, MFS, Dublin, CA, USA). The CFSs from MRS or WB were concentrated
10-fold via vacuum evaporation on a Buchi R-210/215 rotary evaporator (Buchi, Flawil,
Switzerland) at 70 ± 1.0 ◦C and 25 cm Hg following the methodology described by Arrioja-
Bretón et al. [37]. Concentrated CFSs were refrigerated at 4 ± 1.0 ◦C until their use.

2.3. Characterization of CFSs
2.3.1. pH and Titratable Acidity

The pH of MRS and WB CFSs was determined by immersion electrode using a pH
meter (HI 2210 Hanna Instruments, Woonsocket, RI, USA). The percentage of titratable
acidity (TA%) of CFSs was determined following method 22.061 from AOAC [38] and
was expressed as a percentage of lactic acid (%w/v). The measurements were performed
in triplicate.

2.3.2. Organic Acid Determination in CFSs

The organic acids concentration from MRS and WB CFSs (lactic and acetic acid) was
determined via high-performance liquid chromatography (HPLC) following the method-
ology reported by Hernández-Figueroa et al. [39]. The chromatograph employed was an
Agilent 1260 (Agilent Technologies, Santa Clara, CA, USA) coupled with a diode array
detector (DAD) at a wavelength of 210 nm. CFSs (MRS or WB) were injected (20 µL)
using an Agilent G1329 autosampler (Agilent Technologies, Santa Clara, CA, USA). A C-18
column (250 × 4.6 mm) (Restek, Centre Country, PA, USA) was used with a mobile isocratic
phase of 20 mM monobasic potassium phosphate buffer solution (adjusted to pH 2.4) at
0.6 mL min−1 at room temperature. For the quantification of lactic and acetic acid, the
concentration of acids was linearly correlated with their respective peak areas, obtaining
correlation coefficients R2 > 0.99 employing standard solutions.

2.4. Laboratory-Scale Cheese Production

For the food application of CFSs, Mexican-style fresh cheese was manufactured with
commercial pasteurized brand Lala™ (Gomez Palacio, Durango, Mexico) whole milk (fat:
3.3%, protein: 3.1%, carbohydrates: 4.7%, 5 g of vitamin D/L, and 666 mg retinol equiva-
lents/L) following the methodology of Parra-Ocampo et al. [40] with slight modifications.
The milk was heated until reaching a temperature of 39 ± 1.0 ◦C, then 0.02% of 50% cal-
cium chloride (Reactivos Química Meyer, Mexico City, Mexico) and 0.03% of commercial
chymosin (Cuamex®, Chr. Hansen, Mexico City, Mexico) per liter of milk were added and
stirred. Then, the milk was left to rest for 20 min until it curdled. The curd was cut into
cubes of approximately 2 cm3 and left to rest for another 20 min. Cubes were subsequently
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placed on a mesh and squeezed to remove the whey. To the resulting paste, 1% salt was
added to the total cheese mass. Finally, the cheese mass was molded in a cylindrical mold
and pressed at 4 ± 1.0 ◦C for 24 h. Different batches of cheese (≈10 pieces each) were
prepared for all the treatments and analyses that were carried out.

2.5. Physicochemical Analyses
2.5.1. Proximate Analysis

For characterization of manufactured Mexican-style fresh cheese, AOAC [41] methods
were taken as references to determine moisture (method 33.7.03), fat (method 933.05), ash
(method 33.7.07), and protein (method 33.7.12 via the Kjeldahl method using a conversion
factor of 6.38). These determinations were performed in triplicate.

2.5.2. pH and Color

The cheese pH was measured according to NMX-F-317-S-1978 [42]; 10.0 ± 1.0 g of
non-inoculated cheese (non-CFS) and CFS treated (MRS and WB) were mixed with 50 mL
distilled water. An electrode connected to a digital pH meter (HI 2210 Hanna Instruments,
Woonsocket, RI, USA) was employed. A Konica Minolta CR-400 colorimeter (Konica
Minolta, Tokio, Japan) was used in reflectance mode and CIELAB scale to determine the
color of the samples. Color differences (∆E) were assessed using Equation (1) where L∗

0
and L∗ are the initial luminosity of the sample and at the time it was analyzed, a∗0 and a∗

are the initial red–green contribution, and b∗0 and b∗ are the initial blue–yellow contribution
of the initial sample and the analyzed sample at each time point, respectively. The pH and
color measurements were taken in triplicate at 0, 4, and 7 days of storage at 4 ± 1.0 ◦C.

the ∆E =

√(
L∗

0 − L∗)2
+

(
a∗0 − a∗

)2
+

(
b∗0 − b∗

)2 (1)

2.6. Cheese Inoculation and CFS Treatment

The indicator bacteria (E. coli, S. aureus, S. enterica serovar Typhimurium, and L. mono-
cytogenes) were cultivated according to the conditions described in Section 2.1. Adequate
10-fold dilutions were performed to obtain a cell suspension of 105 CFU mL−1. Each side of
a piece of Mexican-style fresh cheese manufactured in the laboratory (~10 g) was inoculated
with 250 µL of the inoculum of each indicator microorganism and drained for 20 min.
Subsequently, cheese pieces were put in individual plastic bags (Whirl-Pak1, Nasco, Fort
Atkinson, WI, USA) with 1 mL of CFS from Lb. casei 21/1 (from MRS or WB) for surface
spread. Then, the samples were stored at 4 ± 1.0 ◦C for 7 days. Inoculated indicator bacteria
without CFSs cheese pieces were used as a negative control. These determinations were
performed in triplicate.

2.7. Microbiological Analysis of Laboratory-Scale and Locally Marketed Cheeses

After the application of CFSs in cheese, microbial counts were performed for each
indicator microorganism on days 0, 4, and 7; one piece (~10 g) of cheese inoculated with
each bacterium was put in a sterile plastic bag (Whirl-Pak1, Nasco, Fort Atkinson, WI, USA),
and homogenized for 2 min in a Stomacher 80 lab blender (Seward Ltd., West Sussex, UK)
with 90 mL of sterile peptone water (1 g L−1). Adequate decimal dilutions were prepared
into peptone water and plated in trypticase soy agar. Plates were incubated during 18–24 h
at 37 ± 1.0 ◦C.

Mexican-style fresh cheeses are commonly consumed, and it is well known that they
are associated with foodborne diseases [6]. For this reason, this study investigated the
ability of the CFSs to help reduce the risk associated with these products. For comparison
purposes, two cheeses were purchased in local markets (San Andres Cholula, Puebla,
Mexico), and the following methodology was used to verify the sanitary quality of the lab-
scale-manufactured cheeses. Counts of total mesophilic aerobic bacteria were completed
using standard agar (Bioxon, BD, Edo. de Mexico, Mexico) following the method NOM-092-
SSA1-1994 [43]; inoculated plates were incubated for 24 h at 37 ± 1.0 ◦C. For total coliform
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counts, violet-red bile agar (Bioxon, BD, Edo. de Mexico, Mexico) was used according
to method NOM-111-SSA1-1994 [44], Baird–Parker agar (Bioxon, BD, Edo. de Mexico,
Mexico) for S. aureus following the method NOM-115-SSA1-1994 [45], XLD agar (Bioxon,
BD, Edo. de Mexico, Mexico) for Salmonella, Oxford agar (Difco, BD, Sparks, MD, USA) for
L. monocytogenes, and MacConkey agar (Bioxon, BD, Edo. de Mexico, Mexico) for E. coli;
plates were incubated at 37 ± 1.0 ◦C for 18–24 h. These determinations were performed
in triplicate.

2.8. Statistical Analysis

The data of each experiment were assessed with analysis of variance (ANOVA) and
Tukey’s mean comparison test p < 0.05. Minitab 20 software (Minitab LLC, State College,
PA, USA) was utilized for the analysis.

3. Results and Discussion
3.1. Characterization of Lb. casei 21/1 CFS

Characterizing CFSs is essential in order to know the metabolites responsible for
their antimicrobial activity. As shown in Table 1, the CFSs from MRS or WB had low pH
values with significant differences (p < 0.05). The TA% values were high in comparison
with conventional fermentations (1–2%) [46]. The values for the concentration of organic
acids were high, with 1608.21 ± 11.62 and 866.42 ± 15.12 mM lactic acid for MRS and
WB, respectively. In contrast, acetic acid values of 750.86 ± 17.80 mM for MRS and
146.83 ± 2.79 mM for WB were obtained. It must be considered that these values are high
since the CFSs were concentrated, so the quantity of metabolites, such as organic acids,
was increased. With this characterization, it is notable that the type of culture medium had
a significant effect (p < 0.05), with the lab-culture medium (MRS) demonstrating a greater
production of organic acids due to its excellent nutrient profile. In similar studies, lower
concentrations (6.16 g L−1) of lactic acid than used in this study were reported in MRS
fermentations with different strains of Lacticaseibacillus casei [47]. It is well known that
acetic acid is a component that is produced in lesser quantities than lactic acid; acetic acid
concentrations of 0.0128–0.0141 mmol mL−1 were reported in MRS broth fermented with
Lacticaseibacillus casei BD 1415 [47].

Table 1. pH, titratable acidity, and acids of concentrated Lb. casei 21/1 cell-free supernatants (CFSs)
from de Man, Rogosa, and Sharpe (MRS) broth and whey-based (WB) medium.

MRS WB

pH 3.87 ± 0.03 a 3.47 ± 0.06 b

TA% 11.44 ± 0.50 a 6.14 ± 0.29 b

Lactic acid (mM) 1608.21 ± 11.62 a 866.42 ± 15.12 b

Acetic acid (mM) 750.86 ± 17.80 a 146.83 ± 2.79 b

TA%: Percentage of titratable acidity (expressed as lactic acid). Different letters in the same row show a significant
difference (p < 0.05) between CFSs.

Although the obtained values in the CFS from WB were significantly (p < 0.05) lower
than those for MRS, Lb. casei produced enough organic acids in WB to exert antimicrobial
activity. Whey fermentation media offers a sustainable, cost-effective, and environmentally
friendly approach to producing lactic and acetic acid with LAB, making it a favorable choice
for industrial applications. Whey fermentation by LAB is highly scalable and can be used for
commercial production of lactic and acetic acid or as a fermentate for various applications
as an antimicrobial agent [32,33]. For the food industry, whey is preferably used in powder
form rather than liquid as this extends its shelf life and ease of handling. The whey
powdering process consists of clarifying, separating cream, pasteurization, concentrating
total solids by evaporation, lactose crystallization, and whey drying (commonly by spray
drying) [30]. Most research related to whey focuses on its protein isolates and concentrates,
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which mainly contain β-lactoglobulin, α-lactalbumin, and bovine serum albumin, among
others, and are used in industry for their high protein content and bioactive properties [48].

However, obtaining whey proteins substantially increases the price and involves high
energy consumption. [48]. Therefore, all the components of whey have been used to design
a sustainable, eco-friendly, and economically viable culture medium. This is an advantage
compared with MRS broth, which has a high cost, and it has been reported that its use as
a postbiotic or CFS in food products negatively affects organoleptic properties [19].

3.2. Physicochemical Analysis and Microbial Load of Cheese

The composition of the manufactured Mexican-style fresh cheese was moisture 63.42 ± 1.77%,
protein 11.48 ± 1.49%, fat 5.40 ± 0.13%, ash 1.85 ± 0.03%, and 17.85% carbohydrates (by difference),
while cheese yield was approximately 10%. Caro et al. [49] previously obtained different composi-
tions for Panela cheese with lower moisture and lactose content (54.2% and 2.23%) and higher fat,
protein, and ash content (18.8%, 18.4%, and 2.57%, respectively). The differences are attributed to
the manufacturing process, in which the pressing force was probably insufficient to drain the whey.

Counts of the indicator microorganisms E. coli, S. enterica serovar Typhimurium, S.
aureus, and L. monocytogenes on the uninoculated Mexican-style fresh cheese were under
detection level (<10 CFU/g) (Table 2). The initial counts of total mesophilic aerobic bacteria
were 2.54 ± 0.09 log10 CFU/g, and total coliforms were <10 CFU/g, indicating that these
bacterial counts were acceptable for the aim of the study. However, microbiological analyses
of commercially available Mexican-style fresh cheese samples obtained from local markets
(Table 2) indicate that these cheeses presented results outside the established microbiological
quality standards. These cheeses were not suitable for consumption and represent a risk to
consumer health due to high bacterial counts and pathogenic microorganisms, including
L. monocytogenes. The Mexican official standard NOM-243-SSA1-2010 [50] establishes a
maximum allowed level for total coliform bacteria in milk derivatives of 2 log10 CFU g−1

or mL−1, aerobic mesophilic 5 log10 CFU g−1 or mL−1, and in the case of S. aureus, 2 log10
CFU g−1 or mL−1; the microbial counts of these commercially Mexican-style fresh cheeses
were above the established maximum limits and may be associated with low hygiene in
their food production and/or handling processes. Silva-Paz et al. [51] reported similar
counts of aerobic mesophilic bacteria (≤5 to 6.5 ≥ log10 CFU g−1) and coliforms ranging
from <100 to 5 ≥ log10 CFU g−1 in artisanal cheese.

Table 2. Microbial counts (log10 CFU/g) of Mexican-style fresh cheeses.

Cheese E. coli L. monocytogenes S. aureus
Aerobic

Mesophilic
Bacteria

Total
Coliforms

Local market 1 2.05 ± 0.16 a 1.11 ± 0.10 a 1.64 ± 0.03 b 7.85 ± 0.05 a 2.23 ± 0.46 a

Local market 2 2.13 ± 0.10 a 1.27 ± 0.10 a 1.80 ± 0.01 a 4.70 ± 0.01 b 2.18 ± 0.04 b

Manufactured in
laboratory <10 c <10 c <10 c 2.54 ± 0.09 c <10 c

Different letters show a significant difference (p < 0.05) between the analyzed cheeses.

Raw milk used in cheese production may contain pathogens such as E. coli, Listeria,
Salmonella, and S. aureus [6,9,12]. These pathogens can survive and spread during cheese
production if the milk is not pasteurized correctly or becomes contaminated during han-
dling [52]. Cross-contamination can also occur if equipment, utensils, or surfaces are not
properly sanitized. Proper hygiene practices during packaging, storage, and distribution of
fresh cheese are essential to prevent pathogen contamination and ensure consumer safety.

3.3. Antimicrobial Effect of CFS in Mexican-Style Fresh Cheese

As can be observed in Figure 2, the storage time with the CFSs either from MRS or
WB had a significant effect (p < 0.05) since a longer storage time (7 days) led to greater
reductions in the microbial populations of indicator bacteria. The CFS from MRS broth
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decreased S. enterica serovar Typhimurium to 1.29 ± 0.05 log10 CFU g−1 after four days
and 1.60 ± 0.04 log10 CFU g−1 after seven days of storage at 4 ◦C, while with CFS from WB,
the microbial population decreased to 0.88 ± 0.08 log10 CFU g−1 after seven days. In the
case of L. monocytogenes, applying the CFSs from MRS broth and WB medium decreased
the counts by 1.43 ± 0.04 and 1.67 ± 0.03 log10 CFU g−1 after seven days of storage at 4 ◦C,
respectively. Moreover, in vivo antimicrobial activity results showed that the type of culture
medium affected the antimicrobial activity. The S. enterica serovar Typhimurium was the
most sensitive microorganism to CFS from MRS broth, while L. monocytogenes was the
most sensitive to the WB medium. E. coli and S. aureus were the most resistant to Lb. casei
CFS (MRS and WB) activity in the studied Mexican-style fresh cheese. In a previous study,
Arrioja-Bretón et al. [37] reported an in vitro assay for the antimicrobial activity of studied
Lb. casei 21/1 CFS (from MRS) against the four tested indicator bacteria; L. monocytogenes
was the most sensitive microorganism with inhibition zones higher than 22 mm, followed
by S. enterica serovar Typhimurium, while the most resistant tested microorganisms were S.
aureus and E. coli with lower inhibition halos.
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Figure 2. Logarithmic reductions (N/N0) of tested indicator microorganisms (E. coli ATCC 25922, S.
aureus ATCC 29213, S. enterica serovar Typhimurium ATCC 14028, and L. monocytogenes Scott A) in
studied Mexican-style fresh cheese treated with Lb. casei 21/1 CFS from (A) de Man, Rogosa, and
Sharpe (MRS) broth and (B) whey-based medium (WB). Different letters show a significant difference
(p < 0.05) between the samples.

The reductions in log10 cycles were similar to those reported in similar studies. For
instance, Dal Bello et al. [21] successfully controlled the growth of L. monocytogenes using
bacteriocins produced by Lactococcus lactis while manufacturing cottage cheese. In addition,
Kousta et al. [53] studied the effect of adding ferulic acid or nisin (4 mg/g) to fresh cheese
to inhibit L. monocytogenes growth; they observed reductions of 2.0 or 1.5 logarithmic cycles
after 21 days of storage, respectively. Major inhibition rates were reported from Lb. rham-
nosus in semi-hard goat cheese against S. aureus (21.66%), L. monocytogenes (10.23%), and
Salmonella enterica serovar Enteritidis (5.52%) after 21 days of storage at 4 ◦C. [54]. Some-
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times, LAB can only have a bacteriostatic effect, such as in the study reported by Settanni
et al. [22], who controlled the growth of L. monocytogenes and Salmonella spp. in Tosèla
cheese employing Lactobacillus paracasei NdP78 or Streptococcus macedonicus NdP1. They
achieved reductions of 1.79 and 2.22 log10 CFU g−1 in coliforms and S. aureus, respectively.

The bacterial inhibition can be attributed to the high concentration of organic acids
(lactic and acetic acid) in the CFSs, which act as antimicrobial compounds; their efficacy
is well known since, in the food industry, organic acids are widely used as disinfectants
or natural preservatives [16,46]. Organic acids reduce the pH of foods, and if this is <pKa
of the organic acid, cell acidification occurs and interferes with the maintenance of the
cell wall integrity of microorganisms, affecting the transport of metabolites and altering
essential functions [46]. According to our previous reports, Lb. casei’s 21/1 antimicrobial
activity is primarily due to organic acids, since neutralized CFS (pH 6.5) from MRS or
flour–water mixture lost inhibitory activity entirely [37,55]. In the disinfection of the
meat products, lactic acid has been widely used, with concentrations close to that of this
study (1342.15 mM or ≈10% v/w) applied at 55 ◦C on bovine skin reducing Salmonella
population to 3.4 log10 cycles [56]. Meanwhile, acetic acid was used to disinfect meat at
concentrations of 268.43 mM or ≈2% v/w, reducing the microbial population of S. enterica
serovar Typhimurium and E. coli [46]. As observed in Figure 3, the pH of the cheeses
decreased significantly (p < 0.05) with the addition of CFSs (4.23–4.60). The pH of the
control cheese was in the range reported for queso blanco or queso fresco (5.2–6.8) [57].
Previous studies also observed a descending pH value of foods when CFS from Lactobacillus
was applied. For instance, fresh beef surfaces treated with CFS from Lb. plantarum reached
a pH of 3.80 [37]. In contrast, ground beef’s pH decreased by 0.5 or 1.0 after 3 or 6 days
of storage at 4 ◦C (pH = 4.9) wrapped in bacterial nanocellulose films impregnated with
20% CFS from Lb. plantarum [58]. Lactic and acetic acids are impregnated and incorporated
into the food matrix, leading to a lower pH after CFS treatment. Regarding storage, the pH
remained stable and no significant differences were observed (p > 0.05). With these results,
it can be argued that CFS from WB medium fermented with Lb. casei 21/1 is a source
of antimicrobial compounds that are sustainable, eco-friendly, and economically viable.
Furthermore, applying them as bio-preservatives to Mexican-style fresh cheeses would help
avoid foodborne diseases and improve food safety, given that it has been demonstrated
that commercial cheeses present a risk for human consumption.
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Figure 3. Evolution of pH during storage of fresh Mexican-style cheeses without cell-free supernatant
(Without CFS) and with Lb. casei 21/1 CFS from de Man, Rogosa, and Sharpe broth (MRS) or whey
medium (CFS). Different capital letters indicate significant differences between the different cheeses
at the same storage time at 4 ◦C (p < 0.05). Different lowercase letters indicate significant differences
(p < 0.05) between storage time at 4 ◦C in the same sample.
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3.4. Appearance of Cheese with CFSs of Lb. casei 21/1

The appearance and color of a product are important aspects to consider since they
influence consumers’ acceptability. As can be seen (Figure 4), the addition of CFS from
MRS affected the appearance of the cheese; a slight brown color developed, while CFS
from WB media did not exert a notable change. This agrees with the color parameters
(Table 3), because the differences in color to MRS samples were more distinctive than in
the WB-treated cheeses, according to the scale categorization proposed by Francis and
Clydesdale [59]. Furthermore, the contribution of a* in MRS cheeses increased significantly
(p < 0.05), and L* values decreased significantly (p < 0.05), giving brownish colors character-
istic of the culture medium. On the other hand, the parameters of color in cheeses treated
with CFS from WB presented an increase in yellowish color due to the a* and b* values,
which significantly (p < 0.05) increased and decreased, respectively. The brown color of CFS
from MRS broth directly impacted the food color, whereas WB medium slightly modified
it. In previous studies, CFS from MRS stained beef cubes (wrapped in whey isolate film
with added CFS from L. sakei or immersed in a marinade containing CFS from L. plantarum)
to brown colors [55,60].
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Table 3. Color properties and color difference of Mexican-style fresh cheeses with Lb. casei 21/1 CFS.

Time Control (without CFS)

L* a* b* ∆E

0 89.98 ± 0.8 Ba 2.65 ± 0.01 Ab 13.53 ± 0.23 Bb

4 90.30 ± 0.23 Ba 2.85 ± 0.03 Aa 14.18 ± 0.04 Ca 0.26 ± 0.05
7 90.16 ± 0.03 Aa 2.79 ± 0.09 Aa 13.45 ± 0.08 Cb 0.77 ± 0.10

MRS cell-free supernatant

0 82.78 ± 0.08 Ca −0.05 ± 0.13 Cb 20.93 ± 0.05 Aa 10.67 ± 0.03
4 77.51 ± 0.09 Cb 2.11 ± 0.03 Ba 18.12 ± 0.13 Bb 13.29 ± 0.04
7 70.74 ± 0.3 Bc 2.14 ± 0.04 Ba 19.29 ± 0.04 Ac 20.09 ± 0.27

Whey-based cell-free supernatant

0 93.75 ± 0.14 Aa 1.6 ± 0.27 Ba 9.1 ± 0.22 Cc 5.92 ± 0.19
4 91.91 ± 0.31 Ab −2.94 ± 0.04 Cb 19.71 ± 0.67 Aa 5.36 ± 0.04
7 90.46 ± 0.21 Ac −1.20 ± 0.05 Cc 17.23 ± 0.1 Bb 8.57 ± 0.48

Color CIELAB scale parameters: L*: luminosity, a*: red–green contribution, b*: blue–yellow contribution, ∆E:
color differences. Different capital letters indicate significant differences between the different cheeses at the same
storage time at 4 ◦C (p < 0.05). Different lowercase letters indicate significant differences (p < 0.05) between storage
time at 4 ◦C in the same sample.

4. Conclusions

The studied cell-free supernatants from Lb. casei 21/1 from MRS broth and WB
medium were effective against microorganisms causing foodborne illness, mainly S. enterica
serovar Typhimurium and L. monocytogenes. The CFS from WB medium can be a suitable
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alternative as a bio-preservative in foods at risk of contamination, such as Mexican-style
fresh cheeses, due to its economic viability and as a safe consumption ingredient. The
incorporation of CFS from WB medium slightly affected the color and appearance of cheeses
compared with MRS broth. Further studies could examine the best way to incorporate
supernatants into cheeses or other foods, evaluating the contact time and changes in sensory
properties. Although Lb. casei 21/1 is a LAB commonly recognized as GRAS, it will be
important to consider toxicological studies of CFS obtained from the WB culture medium.
In addition, exploration of other bioactive properties that benefit consumers’ health could
be sought, as occurs with postbiotics. Whey, a by-product of cheese production, can be
utilized as a fermentation substrate, which can help reduce production costs compared with
conventional culture medium. Not only is this cost effective, but it also aids in managing
dairy waste sustainably. Whey contains valuable nutrients that promote the growth of
lactic acid bacteria, thus enhancing acid production efficiency. Whey fermentation aligns
with sustainability and regulatory guidelines by reducing waste and promoting efficient
resource use, helping companies comply with environmental regulations and meet their
social responsibility objectives.
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