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Abstract: To molecularly characterize the impact of exercise on mitigating neoadjuvant treatment
(NAT)-induced physical decline in pancreatic ductal adenocarcinoma (PDAC) patients, a multi-omics
approach was employed for the analysis of plasma samples before and after a personalized exercise
intervention. Consisting of personalized aerobic and resistance exercises, this intervention was
associated with significant molecular changes that correlated with improvements in lean mass, appen-
dicular skeletal muscle index (ASMI), and performance in the 400-m walk test (MWT) and sit-to-stand
test. These alterations indicated exercise-induced modulation of inflammation and mitochondrial
function markers. This case study provides proof-of-principal application for multiomics-based
assessments of supervised exercise, thereby supporting this intervention as a feasible and beneficial
intervention for PDAC patients to potentially enhance treatment response and patient quality of life.
The molecular changes observed here underscore the importance of physical activity in cancer treat-
ment protocols, advocating for the development of accessible multiomics-guided exercise programs
for cancer patients.

Keywords: pancreatic cancer; exercise oncology; pancreatic adenocarcinoma; metabolomics; lipidomics;
proteomics; biomarkers

1. Introduction

Pancreatic cancer is the fourth leading cause of cancer-related death in the United
States [1] and surgical resection is the best-known treatment [2]. Neoadjuvant treatment
(NAT) is often prescribed to downstage tumors and improve response to surgical resec-
tion [3]. This preoperative treatment, however, can decrease patient physical fitness [4]
and muscle mass [5]. As both of these measures are positively associated with improved
surgical outcomes and survival, interventions designed to reduce these negative responses
should be developed to improve surgical outcomes [5,6]. Supervised exercise has been
shown to improve cardiovascular fitness and muscle mass in survivors (in accordance
with the National Cancer Institute definition referring to an individual from the time of
cancer diagnosis through the rest of life) of other cancer types receiving NAT [7–9], directly
counteracting the negative effects of the treatment. Unfortunately, due to logistical limita-
tions such as travel restrictions and socioeconomic barriers preventing access to specialized
facilities offering supervised exercise programs, only a few studies have been conducted
on supervised exercise during NAT in patients with pancreatic cancer [10–12].

A recent systematic review of investigations into preoperative fitness in patients with
pancreatic cancer identified only six trials published to date [13]. Four of these trials were in
patients receiving NAT and only one provided supervised exercise, performed by several of
the current authors [14], with others providing lower-intensity unsupervised alternatives.
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The primary finding of this review was that exercise in pancreatic cancer survivors receiving
NAT was safe and feasible, with no significant adverse events reported in any of the
investigations. Improvements in muscle mass [14], fitness [12], and surgical outcomes [15]
were found in some studies but were not consistent across studies. While the study of
supervised exercise was limited to three participants, several meaningful changes in fitness
and muscle mass were observed. Of particular note were results related to pancreatic
cancer cachexia. Two of the three participants met objective definitions of pancreatic
cancer cachexia (determined by dual-energy X-ray absorptiometry [DXA]) [16] at baseline,
but not after the exercise intervention, despite receiving NAT. This result bears further
investigation given its potential clinical implications. In particular, recent advances in
high-throughput mass spectrometry [17] allow for plasma-based multi-omics investigation
of the physiological mechanisms promoting increased muscle mass and cardiometabolic
fitness, providing insight to inform future exercise interventions in clinical populations.

Plasma-based metabolomics, lipidomics, and proteomics have been performed in
elite and recreational athletes to characterize molecular responses to exercise [18–23]. Tar-
geted analyses can reveal adaptations to exercise using markers of mitochondrial func-
tion (pyruvate, lactate, citrate, succinate, and malate), fatty acid metabolism (free- and
carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids), muscle mass, and
performance (myoglobin, creatine kinase M, leptin, C-C motif chemokine 28, and metallo-
proteinase inhibitor 4) [24]. As metabolic reprogramming and mitochondrial dysfunction
are central hallmarks of cancer [25], the rationale behind exercise as a therapeutic interven-
tion in this population lies in the opportunity to boost metabolic health and mitochondrial
biogenesis, which collectively function as a co-adjuvant to more established iatrogenic
interventions. While some of these methods have recently been implemented in other
cancer populations receiving NAT [26], there are currently no investigations in survivors
with pancreatic cancer, or in conjunction with an exercise intervention. This investigation
provides proof-of-concept and preliminary results from multi-omics analyses of banked
plasma samples from participants in a previously reported case series of a supervised
exercise program during NAT in patients with pancreatic cancer [14].

2. Materials and Methods
2.1. Participants, Assessments, and Intervention

This trial has been previously reported, including in-depth descriptions of patients,
assessments, exercise intervention, and outcomes (body composition, physical function,
patient-reported outcomes) [14]. All participants were functionally able to complete all
fitness and functional assessments along with a personalized exercise intervention at
intake. All were recently diagnosed (<4 weeks) with non-metastatic borderline-resectable
pancreatic adenocarcinoma upon enrollment, prescribed NAT, and living in the vicinity of
the exercise facility on the University of Colorado Anschutz Medical Campus. Participants
1 and 3 reported regular exercise prior to diagnosis and Participant 2 reported regular but
declining physical activity over the past several years. All participants received standard-
of-care interventions in addition to the exercise intervention, which included appointments
with a registered dietician. Participants 1 and 2 eventually underwent open Whipple
procedures. Prior to surgery, it was discovered that Participant 3′s cancer had metastasized,
and she was transitioned to palliative care.

The exercise intervention was performed during NAT. Participants received 2–3 super-
vised 60 min personalized exercise sessions per week until surgery, working one-on-one
with an exercise physiologist. Sessions consisted of a 10 min cardiovascular warmup,
followed by 45 min of combined aerobic and resistance exercises, and ended with 5 min
of flexibility activities. Exercise intensity was determined by a 0–10 rating of perceived
exertion (RPE) scale, with a target of 7/10. Heart rate was monitored (Polar F4, Kempele,
Finland) and kept below 85% heart rate reserve. Prior to each exercise session, partic-
ipants provided information on changes in symptoms or the onset of new symptoms,
which guided exercise modification to facilitate maximum symptom-limited participation.
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Assessments were performed at baseline, pre-surgery, and six weeks post-surgery. No
intervention was delivered after surgery. Assessments included multiple measures of body
composition (via DXA), physical fitness and function, and patient-reported outcomes.

2.2. Plasma Samples

Blood samples were collected in EDTA tubes at each timepoint during either clinical
blood draws within one week of the assessment or a study visit on the day of the assessment
(the baseline sample was collected in close proximity to multidisciplinary reviews). Plasma
was separated and stored at −80 ◦C for approximately four years without thaw.

2.3. Metabolomics and Lipidomics Sample Preparation

Prior to metabolomics or lipidomics analysis, individual samples were placed in
1.5 mL tubes for either metabolite or lipid extraction. Twenty µL were suspended in 180 µL
of water/methanol (50:50 v/v) for metabolite extraction or 180 µL of isopropanol/methanol
(50:50 v/v) for lipid extraction. Suspensions were vortexed for 30 min at 4 ◦C and then
centrifuged for 10 min, 18,213× g, 4 ◦C. Supernatants were isolated for LC-MS.

2.4. Metabolomics and Lipidomics UHPLC-MS Data Acquisition and Processing

Analyses were performed as previously published [27]. Briefly, the analytical plat-
form employs a Vanquish UHPLC system (Thermo Fisher Scientific, San Jose, CA, USA)
coupled online to a Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA,
USA). Polar metabolite extracts were resolved in singlicate over a Kinetex C18 column,
2.1 mm × 150 mm, 1.7 µm particle size (Phenomenex, Torrance, CA, USA) equipped with
a guard column (SecurityGuardTM Ultracartridge—UHPLC C18 for 2.1 mm ID Columns,
Phenomenex, Torrance, CA, USA) using an aqueous phase (A) of water and 0.1% formic
acid and a mobile phase (B) of acetonitrile and 0.1% formic acid for positive ion polarity
mode, and an aqueous phase (A) of water:acetonitrile (95:5) with 1 mM ammonium acetate
and a mobile phase (B) of acetonitrile:water (95:5) with 1 mM ammonium acetate for nega-
tive ion polarity mode. The column was equilibrated at 5% B, and upon injection of 10 µL
of extract, samples were eluted from the column using the solvent gradient: 0.5–1.1 min
5–95% B at 0.45 mL/min; hold at 95% B for 1.65 min at 0.45 mL/min, and then decrease to
5% over 0.25 min at 0.45 mL/min, followed by a re-equilibration hold at 5% B for 2 min
at 0.45 mL/min. The Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose,
CA, USA) was operated independently in positive or negative ion mode, scanning in Full
MS mode (2 µscans) from 60 to 900 m/z at 70,000 resolution, with 4 kV spray voltage,
45 sheath gas, 15 auxiliary gas, AGC target = 3e6, maximum IT = 200 ms. Non-polar lipid
extracts were resolved over an ACQUITY HSS T3 column, 2.1 mm × 150 mm, 1.8 µm
particle size (Waters, MA, USA) using an aqueous phase (A) of 25% acetonitrile and 5 mM
ammonium acetate and a mobile phase (B) of 90% isopropanol, 10% acetonitrile, and 5 mM
ammonium acetate. The column was equilibrated at 30% B, and upon injection of 10 µL of
extract, samples were eluted from the column using the solvent gradient: 0–9 min 30–100%
B at 0.325 mL/min; hold at 100% B for 3 min at 0.3 mL/min, and then decrease to 30%
over 0.5 min at 0.4 mL/min, followed by a re-equilibration hold at 30% B for 2.5 min
at 0.4 mL/min. The Q Exactive mass spectrometer was operated in positive ion mode,
scanning in Full MS mode (2 µscans) from 150 to 1500 m/z at 70,000 resolution, with 4 kV
spray voltage, 45 sheath gas, 15 auxiliary gas. When required, dd-MS2 was performed
at 17,500 resolution, AGC target = 1e5, maximum IT = 50 ms, and stepped NCE of 25, 35
for positive mode, and 20, 24, and 28 for negative mode. Calibration was performed prior
to analysis using the PierceTM Positive and Negative Ion Calibration Solutions (Thermo
Fisher Scientific).



Pathophysiology 2024, 31 169

2.5. Metabolomics and Lipidomics Data Analysis

Acquired data were converted from raw to mzXML file format using RawCon-
verter [28]. Samples were analyzed in randomized order with a technical mixture injected
after every 10 samples to qualify instrument performance. Metabolite assignments were
performed using accurate intact mass (sub-10 ppm), isotopologue distributions, and reten-
tion time/spectral comparison to an in-house standard compound library (MSMLS, IROA
Technologies, Ann Arbor, MI, USA) using El-MAVEN (Elucidata, Cambridge, MA, USA).
Lipidomics data were analyzed using LipidSearch 5.0 (Thermo Fisher Scientific, San Jose,
CA, USA), which provides lipid identification on the basis of accurate intact mass, isotopic
pattern, and fragmentation pattern to determine lipid class and acyl chain composition.
Graphs, heat maps and statistical analyses (either t-test or ANOVA), multivariate analyses
including Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analy-
sis (PLS-DA), hierarchical clustering analysis (HCA), and metabolite pathway enrichment
analysis were performed using MetaboAnalyst 5.0 [29].

2.6. Inductively-Coupled Plasma (ICP) Mass Spectrometry

Samples were analyzed as previously published [30]. Prior to ICP-MS analysis, 10 µL
of plasma was aliquoted into a 15 mL conical tube. A total of 200 µL of 65% nitric acid
and 20 ng/mL of gold were added to each sample followed by an addition of 100 µL of
30% hydrogen peroxide and brief vortexing. Samples were then incubated in an oven at
70 ◦C for approximately 2 h. Following incubation, 2190 µL of MilliQ water was added to
each tube (final nitric acid percentage of ~5%) and all samples were vortexed briefly. All
samples were then diluted 1:15 in a solution consisting of 20 ng/mL and 5% nitric acid.
Final dilutions of 1:250 and 1:3750 were then analyzed via ICP-MS. Different dilutions were
used to ensure all analytes fell within the calibration curves. All chemicals and materials
used for ICP-MS analysis were obtained from Thermo Fisher and all ICP-MS calibrants
and solutions were obtained from SPEX CertiPrep (Cole Parmer, Vernon Hills, IL, USA).
All samples were analyzed on a Thermo Scientific iCAP RQ ICP-MS coupled to an ESI
SC-4DX FAST autosampler system utilizing a peristaltic pump. The optimization of the
system was performed before the run by first calibrating the system with ICP-MS iCAP
Q/Qnova Calibration Solution, Specpure (Thermo Fisher Scientific, San Jose, CA, USA).
The system was subsequently tuned using a tuning solution consisting of Ba, Bi, Ce, Co, In,
Li, and U at 1.00 ± 0.05 µg/L. To monitor performance while the system was running, we
continually pumped the internal standard mix via the peristaltic pump and monitored the
signal throughout the run. Additionally, quality controls of a known concentration of each
analyte were injected at the beginning, throughout the run between samples, and at the
end of the run. The acceptance criteria for all QCs were ±25% of the known concentration.
Thermo Scientific Qtegra 2.10 software was used for all data acquisition and analysis.

2.7. Proteomics Sample Preparation

Individual samples were aliquoted (10 µL) 1.5 mL tube and resuspended in 180 µL
of 5% SDS, sonicated for 1 h, and centrifuged for 5 min at 10,000× g to collapse foam.
Proteins were digested in an S-Trap filter (Protifi, Huntington, NY, USA), following the
manufacturer’s procedure. Briefly, samples were reduced with 10 mM dithiothreitol at 55 ◦C
for 30 min, cooled to room temperature, and then alkylated with 25 mM iodoacetamide
in the dark for 30 min. Afterward, phosphoric acid was added to the samples to a final
concentration of 1.2% followed by 6 volumes of binding buffer (90% methanol; 100 mM
triethylammonium bicarbonate (TEAB); pH 7.1). After gentle mixing, the protein solution
was loaded onto an S-Trap filter, spun at 2000× g for 1 min, and the flow-through collected
and reloaded onto the filter. This step was repeated three times, and then the filter was
washed with 200 µL of binding buffer three times. Finally, 1 µg of sequencing-grade trypsin
and 150 µL of digestion buffer (50 mM TEAB) were added onto the filter and digested at
47 ◦C for 1 h. To elute peptides, three stepwise buffers are applied, with 200 µL of each
with one more repeat; these included 50 mM TEAB, 0.2% formic acid in water, and 50%
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acetonitrile and 0.2% formic acid in water. The peptide solutions were pooled, lyophilized,
and resuspended in 0.1% formic acid.

2.8. Proteomics Data Acquisition and Processing

A total of 200 ng of each sample was loaded onto individual Evotips (Evosep, Odense,
Denmark) for desalting and then washed with 20 µL 0.1% formic acid followed by the
addition of 100 µL of storage solvent (0.1% formic acid) to keep the Evotips wet until
analysis. The Evosep One system (Evosep, Odense, Denmark) was coupled to the timsTOF
Pro mass spectrometer (Bruker Daltonics, Bremen, Germany). Data were collected over
an m/z range of 100 to 1700 for MS and MS/MS on the timsTOF Pro instrument using an
accumulation and ramp time of 100 ms. Post-processing was performed with PEAKS studio
(Version X+, Bioinformatics Solutions Inc., Waterloo, ON, Canada). Pathway analyses were
performed with the DAVID 2021 software v2023q4. Graphs and statistical analyses were
prepared with GraphPad Prism 8.0 (GraphPad Software, Inc., La Jolla, CA, USA), and
MetaboAnalyst 5.0 [29].

2.9. Feature Enrichment Analyses

Features that had a magnitude Pearson Correlation R > 0.7 with target metrics (i.e., lean
mass, appendicular skeletal muscle index (ASMI), 400 m walk test distance, and 30 s sit-to-
stand test repetitions) were included for enrichment analyses. Metabolites were analyzed by
the Pathway Analysis module of MetaboAnalyst 5.0, using SMPDB for enrichment analysis.
Proteins were analyzed by GO Enrichment Analysis using PANTHER [31]. Enrichment
plots were generated with ggplot v3.5.0. Lipid enrichment analyses were performed using
BioPAN [32].

3. Results

Three participants were enrolled in this study, with body composition measurements
provided in Table 1. Changes in multiple outcomes measures during the intervention were
observed, including cardiovascular fitness: 400 m walk test and 30 s sit-to-stand test, and
body composition: total mass, lean mass, fat mass, appendicular lean mass, appendicular
skeletal muscle index [ASMI] (Table 2). Plasma was collected from three participants at
baseline and two participants after completing a personalized supervised exercise program
(Figure 1A). In addition to physiological and functional assessments [14] including lean
mass, appendicular skeletal muscle index (ASMI), 400 m walk test distance, and 30 s sit-
to-stand test results (Figure 1B), samples were analyzed using mass spectrometry-based
proteomics, lipidomics, metabolomics, and metalomics (using ICP-MS). After raw data
processing and filtering, 473, 425, 148, and 7 features were included in subsequent statistical
analyses, respectively (Figure 1C, Supplementary Table S1). Unsupervised Principal Com-
ponent Analysis of the consolidated dataset separated the three participants into distinct
regions of the plot, highlighting that chemical individuality drives the majority of distinc-
tion between samples (Figure 1D and accompanying Scree Plot in Figure 1E). Incorporation
of partial supervision for the development of a Partial Least Squares Discriminant Analysis
model to describe differences in plasma before and after the 12-week exercise program
separated samples based on timepoint along Component 1, explaining 23.7% of the sample
variance (Figure 1F). The top contributors to this clustering pattern by Variable Importance
in Project (VIP) included lipids (ceramides, Cer; sphingomyelins, SM; phosphocholines, PC;
and acylcarnitines, AcCa), metabolites (pyruvate, inosine, glycerol 3-phosphate, dAMP),
and proteins (IGLV5-39, HRNR, CD14) (Figure 1G). Collectively, the relative levels of the
top 100 significant features by T-test were able to cluster the Pre and Post samples by
Hierarchical Clustering Analysis (Figure 1H).
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platform consisting of proteomics, lipidomics, metabolomics, and metalomics. The number of ana-
lytes included in the study is numerated in the respective circles. (D) Principal Component Analysis 
of multiomics data in blue circles or red diamonds for Pre or Post, respectively, along with (E) the 
corresponding Scree plot. (F) Partial Least Squares Discriminant Analysis (PLS–DA) along with (G) 
the top 15 features containing the largest variable importance in projection (VIP) scores of the PLS–
DA. (H) The top 100 significant features are plotted as a heat map and colored according to Z–score. 

Analysis of the protein, lipid, and metabolite compartments individually also re-
vealed subtle, but significantly changing levels (Figure 2). Only the levels of immuno-
globulin fragments (IGLV5-39, IGHV3-20), hornerin (HRNR), keratin (KRT2, KRT6A, 

Figure 1. Multiomics analysis of plasma before and after a 12–week supervised exercise program for
patients with pancreatic adenocarcinoma tumors. (A) Three participants were prescribed a 12–week
supervised exercise program. Plasma samples were collected from all three participants before training,
and two of the participants upon completion of training. (B) Body composition and physical fitness
parameters are shown for individual participants (labeled P and corresponding number) in blue or red
circles for Pre and Post exercise program, respectively, along with (C) a multiomics platform consisting
of proteomics, lipidomics, metabolomics, and metalomics. The number of analytes included in the
study is numerated in the respective circles. (D) Principal Component Analysis of multiomics data in
blue circles or red diamonds for Pre or Post, respectively, along with (E) the corresponding Scree plot.
(F) Partial Least Squares Discriminant Analysis (PLS–DA) along with (G) the top 15 features containing
the largest variable importance in projection (VIP) scores of the PLS–DA. (H) The top 100 significant
features are plotted as a heat map and colored according to Z–score.
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Table 1. Body Composition.

Participant 1 Participant 2 Participant 3

Age 70 years 74 years 70 years
Sex Male Male Female
BMI 20.8 24.8 16.3

Length of exercise
intervention (weeks) 17 21 19

Exercise sessions (N) 28 55 46

NAT Description
Four 2-week cycles of

FOLFIRINOX followed by
5 treatments with SBRT

Three 4-week cycles of
gemcitabine/ABRAXANE followed

by 5 treatments with SBRT

Four 2-week cycles of
FOLFIRINOX followed by

5 treatments with SBRT

Abbreviation: BMI, body mass index. NAT (neo-adjuvant treatment).

Table 2. Physical Fitness.

Participant 1 Participant 2 Participant 3

Baseline Pre-
Surgery

Post-
Surgery Baseline Pre-

Surgery
Post-

Surgery Baseline Pre-
Surgery

400 MWT (s) 211 188 (+11) 195 (+8) 213 205 (+4) 213 (0) 214 190 (+11)
30 s Sit-to-Stand Test 13 20 (+54) 43.5 (+8) 9 13 (+44) 10 (+11) 22 22 (0)

Total Mass (kg) 63.5 71.8 (+13) 64.7 (+2) 78.8 76.5 (−3) 69.2 (−12) 45.2 47.3 (+4)
Lean Mass (kg) 49.8 57.0 (+15) 51.3 (+3) 57.9 58.4 (+1) 54.1 (−6) 37.2 38.9 (+4)
Fat Mass (kg) 11.2 12.2 (+9) 10.8 (−4) 18.1 15.3 (−15) 12.5 (−31) 6.2 6.6 (+6)

Appendicular Lean
Mass (kg) 21.7 25.6 (+18) 22.7 (+5) 23.9 25.6 (+7) 22.7 (−5) 15.1 15.5 (+3)

ASMI (kg/m2) 6.96 * 8.22 (+18) 7.28 (+6) 7.36 7.86 (+7) 6.98 * (−5) 5.3 * 5.45 (+3)

Abbreviation: 400 MWT, 400-m Walk Test. ASMI, Appendicular Skeletal Muscle Index. Percent changes indicated
in parentheses. * Meets criteria for pancreatic cancer cachexia (<7.26 kg/m2 in males and <5.45 kg/m2 in females).

Analysis of the protein, lipid, and metabolite compartments individually also revealed
subtle, but significantly changing levels (Figure 2). Only the levels of immunoglobulin
fragments (IGLV5-39, IGHV3-20), hornerin (HRNR), keratin (KRT2, KRT6A, KRT33B),
plexin domain containing 2 (PLXDC2) were higher after the exercise program (Figure 2A).
Increases in phosphatidylinositol (PI), phosphoethanolamine (PE), PC, and SM lipid species
were observed, along with decreased levels of two ceramides (Figure 2B). Furthermore,
the lipid backbone glycerol 3-phosphate, along with aspartate and the creatine precursor
guanidinoacetate were elevated in plasma, while the nucleoside inosine, glycolytic end
product pyruvate, ketone body hydroxybutyrate, and branched chain/fatty acid oxida-
tion intermediates acylcarnitines AC(5:1) and AC(18:0), were diminished after training
(Figure 2C).
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Figure 2. Volcano Plots of (A) proteomics (circles), (B) lipidomics (triangles), and (C) metabolomics
(squares) results for Participants 1 and 2 Pre and Post exercise intervention in blue and red, respec-
tively. The x–axis indicates log2(fold change[FC]) and the y–axis -log10(p–value) from a two-tailed
paired T–test. Features with FC > 1 and p-value < 0.05 are colored according to positive (red) or
negative (blue) fold change.

In addition to the measurement of steady-state protein, lipid, and metabolite levels,
systems analyses were performed to identify molecular clusters that correlate with phys-
iological and performance parameters measured before and after the exercise program.
Molecular features that significantly correlated (Pearson |R| > 0.7, log10(p-value) > 1.3)
with fat mass were identified (Figure 3A). This list was then filtered by proteins for sub-
sequent gene ontology (GO) (Figure 3B), highlighting an enrichment in very low-density
lipoprotein (VLDL) and high-density lipoprotein (HDL) particle remodeling, lipid transport,
an immune system function (Figure 3B). While only two metabolites were statistically corre-
lated with fat mass change (leucine, acetylcholine, Supplementary Table S1), 22 proteins and
33 lipids did significantly correlate (top 10 for each shown in Figure 3C). While cytastatin 3
was a top protein correlate, albumin was the top negative correlate (Figure 3D). Lipid levels,
especially ceramides predominantly correlated inversely with fat mass (Figure 3D). On the
other hand, correlates with lean mass (Figure 3E) and GO enrichment revealed that proteins
correlating with changes in lean mass were functionally important in immune system
processes, including the complement pathway, acute phase response, and leukocyte acti-
vation (Figure 3F). Metabolite set enrichment (MSEA) highlighted metabolites associated
with amino acid and nitrogen metabolism (urea cycle, ammonium recycling, polyamine
biosynthesis) (Figure 3G). Lipid enrichment analysis demonstrated an active network
centered upon (lyso)phosphatidylinositol (LPI, PI) homeostasis mediated in part by the
lysophospholipid acyltransferase, MBOAT7 (Figure 3H). In support of enhanced MBOAT7
activity, both LPI(18:1) and PI(16:0/22:6) were positively associated with increased lean
mass (Figure 3I).
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These findings were mirrored when analyzing molecular correlates with appendicular
skeletal muscle index (ASMI), which is derived from the lean mass measurements. Top
correlates (Figure 4A) and GO enrichment (Figure 4B,C) highlighted the centrality of
inflammation and the acute phase response, along with nitrogen metabolism. Individual
correlation plots are shown for top inflammatory protein correlates serum amyloid A1
(SAA1) and 4 (SAA4) as well as C-reactive protein (CRP) (Figure 4D). MSEA revealed
enrichment in the urea cycle and associated metabolites including arginine, citrulline,
creatinine, creatine, asymmetric dimethyl arginine, and creatine (Figure 4D,E). Indeed, the
levels of acute phase response proteins including alpha-2-macroglobulin, prothrombin,
fibronectin, and transferrin receptor protein 1 were positively associated with increases
in ASMI, while proinflammatory markers such as C-reactive protein, haptoglobin, and
serum amyloid A1 and A4 were inversely associated (Figure 4C). Additionally, baseline
circulating levels of arginine and citrulline, the respective substrate and product of nitric
oxide synthase (NOS) were positively correlated along with the quinolinic/kynurenic
acid ratio. Creatine, amino acids (glutamine, phenylalanine, asparagine), and lactate were
inversely correlated with an increase in ASMI (Figure 3E).

Comparable systematic patterns were observed when correlating molecular features
with changes in physical function. Times for the 400 MWT were positively correlated
with the TGFβ inhibitor vasorin (VASN), norepinephrine regulator dopamine beta hy-
droxylase (DBH), and heme scavenging protein hemopexin (HPX). In addition, positive
associations between 400 MWT times and lactate, oleic acid (FA[18:1]), and linoleidyl
carnitine (AC[18:2]) highlight improvements in aerobic capacity as the abundance of these
compounds decreased with walk time (Figure 5A,B) [21]. Systematically, 400 MWT improve-
ments correlated with proteins involved in immune function (e.g., toll-like receptor (TLR4)
signaling) and hemostasis (e.g., platelet aggregation, coagulation). Nitrogen homeostasis
centrality was observed in MSEA, highlighted by enrichment in amino acid, ammonia recy-
cling, and urea cycle metabolism. Moreover, phospholipolysis mediated by phospholipase
A2 (PLA2G) was revealed in lipidomics data (Figure 5A, right). Like 400 MWT, GO analysis
of proteomic correlates with chair rise repetitions determined the enrichment of proteins
involved in coagulation, hemostasis, and immune system activity including complement
activity and immunoglobulin production (Figure 5C). In addition, 30 sec sit-to-stand results
were inversely correlated with circulating acylcarnitines, which decreased in conjunction
with increased repetitions. Higher repetitions were associated with increased levels of
purine catabolites (xanthine, 5-hydroxyisourate), the polyamine spermidine, and TCA cycle
intermediate succinate (Figure 5D).
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4. Discussion

Exercise has been increasingly recognized as an effective therapy for cancer patients in
general, and PDAC patients in particular, due to improved response to surgery and therapy,
reduction in treatment side effects, and noted improvements in quality of life [33]. More-
over, while aerobic exercise reduces PDA tumor growth, prolongs survival, and sensitizes
tumors to chemotherapy in animal models [34], more research is needed to understand the
effects of exercise, and underlying mechanisms, in PDAC patients [35]. A recent clinical trial
of resistance and aerobic exercise in PDAC patients (n = 64) receiving NAT demonstrated
similar physical and functional improvements as this case series [9]. However, the authors
are unaware of investigations into the mechanisms of these improvements, specifically
using a multiomics approach. To date, the only study investigating exercise-associated
mechanisms in this population demonstrated potential tumor vasculature remodeling [36].
Therefore, we describe here a proof of principal case study that leveraged state-of-the-art or-
thogonal mass spectrometry-based to analyze the plasma proteome, lipidome, metabolome,
and metalome of PDAC patients before and after a personalized exercise program. Comple-
tion of this program resulted in improved physiological parameters such as lean mass and
ASMI, as well as improved physical function as assessed by standardized 400 MWT and
30 s sit-to-stand tests [14]. Although limited in enrollment to three participants, this case
study details a multiomics approach to provide quantitative information on 1053 molecules,
which helped characterize molecular associations with physical improvements after exer-
cise training. The validity of this approach is supported by protein and lipid correlates with
fat mass. For instance, albumin has been shown to inversely correlate with fat percentage
and body mass index in humans [37], an observation, which was reproduced here.

Among several observed pathways, systematic biological analyses suggested the
impact that exercise training has on inflammation. Improved ASMI measurements were
associated with an increase in immunoglobulin G (IgG), indicating that exercise in these
patients might stimulate the adaptive immune system and potentially lead to better recog-
nition and targeting of tumor cells. This adaptation would be particularly promising as
PDAC tumors are largely considered immunologically “cold” tumors [38]. In addition, we
observed a decrease in direct markers of inflammatory status including acute phase proteins
C-reactive protein (CRP) and Serum Amyloid A (SAA1 and SAA2). This response indicates
a reduction in systemic inflammation after the supervised exercise program, which is favor-
able as chronic inflammation can contribute to cancer progression [39]. On the other hand,
positive correlations were observed between ASMI and alpha-2-Macroglobulin (A2M) and
Alpha-2-HS-Glycoprotein (AHSG), which are protease inhibitors involved in regulating
the coagulation cascade. The upregulation of these proteins might reflect a shift towards
maintaining proteostasis, a crucial aspect of cellular homeostasis that, when disturbed, can
contribute to cancer progression [40]. While immune cell phenotyping was not available
for this study, future work should consider associations between multiomic signatures and
immune cell populations. Indeed exercise-mediated impact on leukocyte populations is
well established. Recent work has begun to demonstrate impacts in breast cancer patients
as well, who exhibited exercise intensity-dependent leukocyte mobilization [41].

We also observed correlations between several small molecules, lipids, and functional
performance metrics including the 400 MWT and 30 s sit-to-stand test. In the two pa-
tients who completed the exercise program, we observed an inverse correlation between
medium-chain acylcarnitine levels and improvements in functional performance, indicating
improvement in mitochondrial capacity after exercise training. Free fatty acids are mobi-
lized for energy generation within the mitochondria via conjugation with L-carnitine to
form acylcarnitines. Accumulation of these molecules in plasma, especially medium-chain
acylcarnitines, are markers of fatigue in elite cyclists [21] and mitochondrial dysfunction in
patients suffering from post-acute sequelae of COVID-19 (PASC) [42] or diabetes [43].

This case study serves as proof-of-concept for successfully performing the presented
analyses in this under-investigated patient population with the associated exercise interven-
tion. Associations were observed with clinical measures associated with survival and surgi-
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cal outcomes, specifically physical fitness (400 MWT) and body composition (ASMI) [5,6].
Measurement of these immunological and mitochondrial pathways upon initiation of a
preoperative exercise intervention could guide biological personalization of the exercise
prescription by emphasizing resistance training to influence body composition or endurance
training to influence mitochondrial function, as indicated. Tracking of these outcomes
throughout the intervention could also provide real-time information on the effectiveness of
the exercise prescription, with possible indications for prescription adaptation.

The primary limitation of this proof-of-concept study was low patient recruitment.
Due to the limited number of participants in this study, systems analyses were performed
on all five samples (including before and after samples for Participants 1 and 2, and only
before for Participant 3). Moreover, the inclusion of all samples from participants in the
data analysis highlighted that Participant 3 had higher inflammatory protein levels at the
outset, including albumin, SAA1/2/4, and CRP. As a case study with only three subjects,
it Is not possible to make broad conclusions regarding inflammatory status. However,
these data do highlight the potential in monitoring patient status and forecasting exercise
or treatment response, as it was discovered prior to surgery that Participant 3’s cancer
had metastasized, and she was transitioned to palliative care. To increase enrollment,
future investigations can be expanded through the advent of high-quality supervised tele-
health exercise oncology programs [44,45], which were developed to overcome geographic
accessibility issues in this population. The integrated utilization of remote dried blood
sampling for mass spectrometry-based workflows [46–48], which are amenable to monitor-
ing molecular responses to exercise [21,22], will enable the continued investigation of the
findings presented in this study. The combination of these platforms improves access to
supervised and omics-guided exercise training for cancer patients, thereby expanding both
the data-driven resolution of this therapeutic intervention and diversifying the population
of patients who may benefit from targeted exercise therapy.
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Abbreviations

A2M Alpha-2-Macroglobulin
AHSG Alpha-2-HS-Glycoprotein
AC Acylcarnitine
BMI Body Mass Index
CD14 Cluster of Differentiation 14
CRP C-Reactive Protein
DBH Dopamine Beta Hydroxylase
DXA Dual-Energy X-Ray Absorptiometry
GO Gene Ontology
HCA Hierarchical Clustering Analysis
HPX Hemopexin
HRNR Hornerin
ICP-MS Inductively Coupled Plasma Mass Spectrometry
IGHV3-20 Immunoglobulin Heavy Variable 3-20
IGLV5-39 Immunoglobulin Lambda Variable 5-39
KRT2 Keratin 2
KRT33B Keratin 33B
KRT6A Keratin 6A
LC-MS Liquid Chromatography-Mass Spectrometry
MBOAT7 Membrane Bound O-Acyltransferase Domain Containing 7
MSEA Metabolite Set Enrichment Analysis
MWT Meter Walk Test
NAT Neoadjuvant Treatment
NOS Nitric Oxide Synthase
PASC Post-Acute Sequalae of COVID19
PC Phosphocholine
PCA Principal Component Analysis
PE Phosphoethanolamine
PI Phosphatidylinositol
PLA2G Phospholipase A2 Group
PLS-DA Partial Least Squares-Discriminant Analysis
PLXDC2 Plexin Domain Containing 2
QCs Quality Controls
RPE Rating of Perceived Exertion
SAA1 Serum Amyloid A1
SAA2 Serum Amyloid A2
SDS Sodium Dodecyl Sulfate
SM Sphingomyelin
SMPDB Small Molecule Pathway Database
TEAB Triethylammonium Bicarbonate
TLR4 Toll Like Receptor 4
UHPLC-MS Ultra-High Performance Liquid Chromatography-Mass Spectrometry
VASN Vasorin
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