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Abstract: At the end of 2020, the Chinese government announced the pledge to become carbon
neutral in the year 2060. Simultaneously, quality growth objectives were established, which were
environmentally friendly and promoted the health and wellbeing of the population. The first objective
of this study is to assess the gains in energy efficiency and the savings in energy demand that this
commitment implies. Secondly, the feasibility of achieving these objectives of savings and efficiency
increases is discussed based on an international analysis. The method is based on a quantitative
estimate of the primary energy demand throughout the period from 1965 up to the year 2060. For
this purpose, long historical series taken from reliable international sources are analyzed. The
methodology applied to estimate and project future energy demand is new and based on several
steps: The first consists of analyzing the trends of the series and estimating the relationships between
them using a robust procedure. Secondly, equilibrium relationships are estimated, which avoids the
eventual instabilities involved in the estimation of dynamic models. The third characteristic is based
on the bootstrap, estimating and simulating the model by selecting random samples of different
sizes from the available dataset. The simulations generate a complete probability distribution for the
expected energy demand, which also allows for carrying out a risk analysis, assessing the risk of the
demand becoming significantly larger than the expected average. The first result obtained is that the
primary energy demand forecast for 2060 is much higher than the demand of the official forecasts
by almost three times. However, taking into account the objective to replace 85% of fossil sources
with renewables, this discrepancy is greatly reduced and becomes approximately 50% higher than
the official forecast. If the savings analyzed in relevant international references are accounted for,
then an additional reduction of even up to 40% of this demand could be achieved, so that the final
demand would fall further, close to official forecasts. The main and final conclusion is that although
the objective of making the Chinese economy carbon neutral by 2060 is feasible, it implies a radical
transformation that will necessarily require a determined and unwavering political commitment
throughout the entire period considered.

Keywords: China carbon neutral; forecasting energy demand; long-run simulation; energy efficiency
gains; bootstrap trend estimation

1. Introduction

At the end of 2020, the Chinese government announced a commitment to become
carbon neutral by the year 2060. In addition, it was expected that the peak of carbon
emissions would be reached before 2030. This would all be accompanied by a change in
the policy of growth, oriented towards quality growth that is environmentally friendly and
focused on the people’s wellbeing [1]. Although not many details were given at the time of
the pledge announcement, it is interesting to note that a publication close to the Chinese
government [2] indicated, among other things, that coal was not going to be abandoned, but
that it would be coupled with a policy of Carbon Capture Utilization and Storage (CCUS).
They also pointed out that measures would be adopted to develop the carbon emissions
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market and emission limits, and simultaneously underlined the commitment to reach a
circular economy and the greening of the economy. The pledge was not accompanied
at the time of its announcement by a detailed plan to implement it. However, it was
internationally accepted and received with surprise, and with relief, since China emits
approximately 30% of the world’s greenhouse gases (GHGs). Because of this, any plan to
cap world GHG emissions so that the temperature does not increase, following the lead of
the IPCC, involves the Chinese economy in an essential and primary way.

The international organizations specializing in energy analysis valued this commit-
ment very positively, although they underlined the enormous difficulty of carrying it out.
The IEA [3], for example, stressed the need to increase innovation, as well as electrification
in transport and buildings. It also noted that the targets were within the financial possibili-
ties of the Chinese economy. The IEA also stressed that it was necessary to adapt the pace
of transformation to the interests of shareholders and consumers, to allow them to adapt to
the changes. On its part, Irena [4], in addition to the usual advice on accelerated renewable
energy (RE) deployment, made the following recommendations: (a) develop a detailed plan
for the energy transformation of all sectors of the economy; (b) accelerate the phase-down
of coal as an energy source; (c) prioritize cities as champions of low-carbon living and,
simultaneously, prioritize a system based on distributed energy generation; (d) contribute
to making the electricity system more flexible by making urban energy demand more
responsive to renewable generation. Irena’s approach is especially interesting because it is
in line with the development of distributed energy and the abandonment of the centralized
system based on fossil fuels. This is an important difference in this report from that of
the IEA.

After this announcement, various official Chinese bodies began to publish increasingly
detailed reports on the roadmap for carrying out the plan. One of the best-known was
developed by Tsinghua University [5], although the horizon considered in this case was the
year 2050. Broadly speaking, this plan clarified that the objective was to reach approximately
85% RE in that year—including nuclear energy—and 15% from fossil energies, whose
emissions would be dealt with by the CCUS implementation. The roadmap also assumed
that the final energy demand would continue to increase slightly until 2030 and to decrease
thereafter, reaching in 2050 almost the same value as in 2020. A further similar scenario was
published by another Chinese institute [6], although the final energy demand estimates
were somewhat less restrictive. Recently, Sinopec [7] also published some detailed scenarios,
perhaps somewhat more realistic to the extent that they assume a slight increase in final
energy demand in 2060—although not by much more.

The Chinese government’s announcement also drew, and continues to draw, a lot
of attention in the academic world, although it has mainly been Chinese authors who
have analyzed it concluding, in general, that it is feasible. For example [8], although their
analysis is fundamentally descriptive, it stresses the need to stop the development of new
coal mines and accelerate as much as possible the deployment of renewable energies. In [9],
they used a 19-year database (2001; 2019) to estimate a disaggregated demand model for
various types of energy and predict future demand up to 2060. The estimate was based
on the method of least squares, including several parameters that were estimated a priori.
On the other hand, in this study, to make the projection it was assumed that the efficiency
in the demand for energy of each type would follow the official forecasts. Thus, finally,
they obtained that the prediction was consistent with the assumptions of the government,
so that the expected energy demand will turn out to be in 2060 approximately the same
as that of 2020. In [10], they carried out a demand analysis, also up to 2060, based on a
breakdown into 30 Chinese provinces. These authors took the official forecasts for energy
intensity as the dependent variable in the prediction period. From there, they estimated a
model, and the result they obtained was that the expected aggregate energy demand in
2060 will be approximately equal to that of 2020, confirming the official forecasts. Perhaps
the most interesting aspect of this study is that they analyzed the demands of each province
independently. In [11], they started from a standard emissions equation that was broken
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down into several explanatory factors. In turn, these factors and their future evolution
were predicted using a type of machine-learning model—a genetic algorithm with a long
short-term memory approach (GA-LSTM). These authors used a sample from 2000 to 2019,
i.e., 20 observations, to estimate these models. Furthermore, they only estimated with 85%
of the sample, so ultimately, they used only 17 observations to estimate an independent
machine-learning model for each variable. The final conclusion was that the objectives for
2030 can be achieved, although for 2060 they are less optimistic. In [12], they developed
an emissions model based on growth, but measured through a series of indicators that
included quality, i.e., ‘quality growth’ as the authors put it. The model used was the
Environmental Kuznets Curve (EKC). These authors concluded that neutrality in carbon
emissions can be achieved before 2050 but that the demands on quality growth are very
high. An issue with this model is that being a quadratic function, beyond the point where
zero emissions are reached, it implies that they become increasingly negative, something
not feasible in the long run. In [13], they applied a grey-type model to predict the demand
for non-renewable energy. Although they only extrapolated it to 2026, they concluded that
it would continue to grow, a result that perhaps calls into question the official forecasts.
In [14], they emphasized that a country like the United States, currently the world’s second
largest emitter of greenhouse gases, has taken nearly 90 years to reach the point of reducing
emissions while maintaining economic growth. However, China is expected to reach that
point much sooner, implying that the demands on China are much higher than they have
been for other Western countries. This, following the authors, underscores the difficulty and
effort of the neutrality commitment. In [15], they established a predictive model based on a
disaggregated analysis for 30 Chinese provinces, and analyzed several possible scenarios
of population, technology, and economy growth. To analyze their emission models for each
province, they used the official forecasts, from which they estimated the model, so that their
final outcome was that the official forecast can be met, since the decreases implied by the
estimates are considered viable. From another more limited perspective, [16] analyzed the
demand for the critical minerals necessary for the planned deployment of RE, especially
photovoltaic (PV), wind, and electric vehicles (EVs). The most salient conclusion from this
study was the limited cobalt supply, which may make it difficult to carry out plans for the
deployment of EVs. This also matches the general estimates made for the world [17].

In summary, the general conclusion, both from international organizations and from
academic studies, is that the objective of neutrality announced by the Chinese government
is feasible, although it implies a series of important transformations of the Chinese energy
system. It should also be noted that all these studies are based on very short historical
series, generally a maximum of 20 years. In addition, the methods applied are either
excessively simple and based on a direct application of ordinary least squares, to more
or less disaggregated models, or they even apply machine-learning methods to rather
short databases, with a limited suitability for this type of estimation approach. In addition,
almost all the studies introduce in one way or another the official forecasts of efficiency
gains within their forecasts, which, although not necessarily incorrect, does not provide an
independent assessment of the feasibility of those forecasts.

In this context, therefore, the objectives of this study are the following:

(1) Quantitatively estimate an aggregate model for the primary energy demand in China,
based on long historical series and using a novel estimation methodology.

(2) Project future energy demand up to 2060 and its full statistical distribution, going
beyond the usual sensitivity analysis based on scenarios, which also allows for a
risk assessment.

(3) Evaluate the feasibility of achieving the neutrality objectives for the year 2060, present-
ing the discussion on the forecasts obtained independently, and without incorporating
any assumption from the start that implies compliance with the objectives—as has
been the usual practice in studies so far.

The reporting of this study is as follows: Starting from a survey of the most relevant
contributions in this field carried out in Section 1, the general lines of the methodology
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are presented in Section 2. The series used, and the main results, are presented divided
into several subsections in Section 3. Section 4 compares these results with the official
projections and evaluates their feasibility. Section 5, finally, presents a brief summary of the
conclusions and policy implications, as well as possible limitations and further extensions
of the study.

2. Methodology

In a previous study [18], economic behavioral models were specified for the variables
also considered in this new study, i.e., final energy demand, GDP growth, and population—
although for a different economy, i.e., the aggregate world. The basic models analyzed here
are inspired by those previous models, although the specification is different since the data
and the case analyzed are also different. The method of analysis, however, is different and
novel in the literature. The proposed methodology could be characterized, in a nutshell, as
a robust estimate of the equilibrium trends, based on random samples over the selected
historical period, which allows for obtaining a statistical distribution of the forecasts in the
horizon of interest, the year 2060 in this case.

The first step is the estimation of the trends of the variables involved, conducted with
a methodology based on the state space model [19]. It can be characterized as follows:

xn = Fxn−1 + Gvn

yn = Hxn + wn (1)

where F and G are square matrices and H is a matrix of appropriate dimensions. The errors
vn, wn are white noise following the distributions of N

(
0, τ2) and N

(
0, σ2), respectively.

The model and the underlying variable xt, i.e., the trend in this case, can be estimated by
maximizing the likelihood and selecting the best degree of the dynamic model according
to the Akaike Information Criteria (AIC). Analyzing the trends, rather than the original
variables, has several advantages. First, this procedure removes random components that
might overshadow the relationship among the variables analyzed. In fact, it is found
that when estimating the models with the trend variables instead of the original ones, the
precision of the estimates is greater, and their variance is lower. Additionally, it is sensible
to assume that economic agents plan their future behavior considering a horizon, instead of
simply reacting to contemporary changes. For this reason, it is likely that the estimation of
the model with trend variables is more precise—in fact, it is easy to verify that, in this case,
if it is estimated with observed variables instead of trend variables, then the estimators will
be biased. However, in the event that economic agents decide their behavior based on the
current values of the relevant variables without making future plans, the estimation of the
model with trend variables is unbiased.

The second aspect to consider is the estimation method. In this study, the least absolute
deviations (LAD) method [20] was chosen based on the minimization of Laplace errors.
This method, as opposed to the standard method of ordinary least squares, is more robust,
that is, less sensitive to possible outliers and erratic changes in short-term trends. All these
phenomena almost certainly occur over a long historical period, such as the one considered
here. Therefore, a robust method is preferable to the traditional least squares method. The
LAD estimator is derived by minimizing the following expression with respect to (w.r.t.)
the parameter vector β, over a set of T available observations,

min

{
T

∑
t=1

∣∣yt − x′tβ
∣∣} (2)

where x′t is a vector of potential explanatory variables for the dependent observation, yt. It
is costlier to compute than the standard ordinary least squares estimator, but with the vast
increases in computer power, this issue has become broadly irrelevant.
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The next aspect is the estimate itself. First, the long-run equilibrium relationships are
estimated, which can be estimated by directly relating the relevant variables in levels [21].
This avoids dynamic complications, which are only relevant in short-term forecasting.
The linear dynamic model, which is standard in applied statistic research, can be written
as follows:

∆yt = ∆α(L)x′t − γ
(
yt−1 − β′xt−1

)
(3)

where α(L) is a polynomial in the lag operator, L. The crucial insight is that the long-
run equilibrium relationship, (yt−1 − β′xt−1), can be estimated by directly omitting the
dynamics—provided the variables are trending, and the fitted residual is stationary [21].
This estimation procedure is not appropriate for short-term forecasting, but is especially
adequate when the objective is to derive long-run equilibrium forecasts. Furthermore, the
estimation of simultaneous dynamic models can generate unstable dynamics that would
invalidate the estimation process [22]. There is no clear method in the literature to avoid this
problem, which makes it advisable to opt for the estimation of equilibrium trends, as is done
in this study. The proposed method is inspired by the jackknife and bootstrap methods [23],
in the sense that it is based on random selections from the sample under study, to set up
the estimation sample in each case—i.e., for example, from a sample of T observations, T
estimation samples are selected, dropping in each case a different observation. In addition,
the size of the estimation sample is another variable to consider. This all generates a wide
range of cases, which confirms the variability of the parameters throughout the historical
period analyzed, and even that of the proposed model, since the statistical significance of the
variables depends on the estimation sample. This variety of estimations, moreover, results
in a non-trivial statistical distribution for the variables considered in the relevant horizon—
the year 2060 in this case-, as well as for all intermediate dates. It must be emphasized that
this method avoids and overcomes the traditional approach-scenario-based sensitivity test
by supplying the complete statistical distribution of the simulated variable.

In summary, the procedure is based on the following points:

(a) Extraction of the trends of the variables analyzed;
(b) Identification of the essential characteristics of the variables, and of the general model;
(c) Estimation of equilibrium trend relationships;
(d) Application of the robust estimation method, LAD;
(e) Selection of multiple samples, within the available database, randomly, and of different sizes;
(f) Simulation and derivation of the future statistical distribution of the variables

analyzed—notably energy demand, in the present case;
(g) Characterization of the distribution obtained and risk analysis.

There are alternative simulation methods for future horizons. For example, bottom-up
methods try to specify fairly detailed individual behavior relationships, and from there
derive the future simulation—see, e.g., [18], for a more detailed discussion. The problem
with these models, although they are theoretically superior, is that they require a large
amount of data that are not available, so that in the end most parameters have to be
inferred on a priori grounds. Disaggregated historical methods are also interesting, and
are related to the method of historical series analysis proposed here. But the problem,
again, is that the series are either not available or are too short to generate credible forecasts.
Lastly, machine-learning and artificial intelligence methods, very popular in short-term
forecasting, have proven their usefulness because they are capable of capturing highly
non-linear relationships, which are impossible to detect with traditional statistical models.
However, their ability to predict the long term is not entirely clear, since dynamic non-linear
relationships, beyond a few observations very close to the estimation sample, can generate
chaotic results, i.e., highly extreme and variable outcomes, because of their underlying
mathematical properties [24].

The next methodological aspect that is used in this work is the risk analysis, which is
implied in the random distribution of the simulations. For this purpose, measures already



Energies 2023, 16, 6863 6 of 16

known are used, such as the Value at Risk (VaR) and the Conditional Value at Risk CVaR,
put forward and discussed by [25]. They are defined as follows,

Prob{x ≥ VaR} = α

CVaR = E{x|x ≥ VaR} (4)

Fundamentally, these measures try to quantify the possibility, or likelihood, that
an unfavorable event, even if not likely, will occur. These measures are calculated and
presented in Section 3.

3. Empirical Results

This section reports the main results of the study. It is based on a dataset drawn from
reliable international sources. Primary energy data since 1965 are available in terms of
annual TWh in Our World in Data (OWD) [26]. Gross domestic product (GDP) data since
1950 are available from the Madison project [27], and for more recent dates, from the World
Bank. Finally, regarding population data, they are available from 1820 in [27], and from
1950, including projections up to 2060, from the demographic department of the United
Nations [28].

This section is organized as follows: Firstly, the main results of the trend analysis
are presented in Section 3.1. Secondly, the more salient characteristics of the analyzed
variables are analyzed in Section 3.2. Finally, Section 3.3 reports the results of the stochastic
simulations up to the horizon of 2060.

3.1. Trend Analysis

Figure 1 displays the implementation of the trend estimation methodology discussed
in Section 2 to the final energy demand. As can be seen, the trend smooths out a large
part of the short-term random movements of the original observations and allows a better
assessment of its long-term behavior.
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Figure 1. Energy (primary): trend and actual.

The application of this methodology to the analysis of GDP and the population yields
similar results, although in both cases the effect is not as pronounced, and therefore the
corresponding figures are omitted.

3.2. Data Analysis

A preliminary analysis and description of the series can help to identify their main
characteristics and the relevant estimation periods. First, the relationship between energy
and income shows considerable increases in efficiency over time, as can be seen in the
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figure that displays this ratio—i.e., energy over GDP. Figure 2 displays the evolution of
the logarithm of this ratio and a simple adjustment based on the logarithm of GDP. The
final result is an elasticity that lies between 0.6 and 0.7 depending on the selected sample.
Likewise, it can be checked that this relationship is relatively stable from 1977 onwards,
which will be the period selected for the estimation. The population rate of change also
turns out to be significant with a positive effect on the energy demand.
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The analysis of the population is reported in Figure 3. Disregarding a highly vari-
able behavior around 1960, the evolution of the population growth rate follows a clearly
downward trend, which is sustained over the time period observed. In fact, a simple linear
projection reasonably fits the observations and agrees, to some extent, with the predictions
of the United Nations demographic department up to 2060 [28].
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Finally, the evolution of GDP is analyzed in Figure 4. Two periods are clearly observed,
before and after 2004, with considerable variability, especially before 2004. It is not possible
to set up a model for the entire sample, nor for the period after 2004, since a simple trend
would generate increasingly negative growth rates, something highly unlikely. Therefore,
for this variable, the official expected values will be used to carry out the simulations. Nev-
ertheless, to conduct stochastic simulations, the variability of this variable will be taken into
account as follows: For the sample selected in each case, the mean and the corresponding
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errors will be estimated. These errors will be used to bootstrap the distribution and possible
values of the variable—i.e., the GDP. More formally, given a subsample of size n derived by
randomly selecting, without replacement, observations from the total available sample, T,
the mean and the errors of the GDP are given by

GDPi = m̂ + êi (5)

where m̂ is the estimated mean, êi is the fitted error, and {i = 1, . . . , n}. Simulated values
for GDP are now derived by sampling from the estimated values, êi.
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Testing the validity of these relationships, mainly for energy demand, their even-
tual non-linearity is especially considered. To analyze this issue, the Loess [29] and the
Nadaraya–Watson [30] non-parametric estimators are tested. Likewise, the quantile regres-
sion is also estimated [31]. In none of the three cases is a significant non-linear relationship
detected—if the model is indeed non-linear, then the elasticity will vary according to
different values of the explanatory variable, i.e., the GDP, as can be easily checked by
means of a straightforward second-order Taylor expansion. However, what is observed
is that depending on the samples, the elasticity changes, even if only within a reasonably
limited interval. This variability of the model parameters has customarily been treated as
a heteroskedasticity problem [32], but in this case, this approach is not suitable because
a proper statistical test does not significantly detect it. Consequently, the estimation in
different samples will result in a variable elasticity, and therefore a variable energy forecast,
which will be taken into account in the random simulations of the scenarios analyzed up
to 2060.

3.3. Stochastic Simulations

This subsection is devoted to reporting the main conclusions of the empirical findings
of this study. The simulations are carried out by randomly selecting samples—repeatedly
and of different sizes—within the historical period given by the database analyzed. More
specifically, the estimation sample sizes run from 16 to 40 observations out of the available
sample of 57 annual data. The number of draws in each case is directly related to the
sample size. Finally, the model is simulated by generating 100 replications of the GDP as
detailed in Equation (5). The total number of simulations is over 3 × 105, which is taken
as a sufficiently adequate number to capture and estimate the future distribution of the
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simulated variables, i.e., energy and GDP. Simulations with a lower number of observations,
e.g., half, generated a similar histogram for 2060. The estimated equations are discussed in
Section 3.2, and the GDP values are taken according to the official forecasts [5].

The fundamental reason for applying this methodology is that it allows for obtaining
the random properties of a simulation, which is superior to a simple scenario model, and
it is also justified by the variability of the parameter estimation in the selected historical
sample. This can be checked graphically in Figure 5, where the different values of the
GDP elasticity of energy demand are displayed according to the estimating sample. The
figure presents the histogram and its accumulated values for the values obtained of the
different elasticity estimates. Although the mean value is approximately 0.7, the variability
is considerable, ranging between 0.66 and 0.78. This variability translates into the variability
of the final distribution for the model simulations, especially energy and GDP.
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Figure 5. Histogram of the GDP elasticity of Energy demand.

The main results of the simulations are reported in Table 1. The table presents data
for primary energy demand in PWh. It can be seen that, in principle, the distribution is
quite symmetrical, since the mean and median are very close. However, the variability
is considerable, as shown by the risk measures, in particular the CVaR. According to this
measure, the energy demand could be nearly 30% higher than the average, although with
not too high a probability of 5%. In any case, this measure provides an idea of the existing
risk, and advises planning the deployment of renewable energy above the objectives set for
the average, i.e., the mean value.

Table 1. Primary Energy Demand (PWh): Stochastic simulations.

2030 2050 2060

mean 55.0 93.3 121.7
median 55.0 93.2 121.2

VaR 59.3 109.2 149.0
CVaR 60.4 113.8 156.6

CVaR (median) 60.1 112.6 155.0

The following Table 2 presents the results of the GDP simulations. In this case, the
variability is greater, and in fact, when comparing the CVaR with the mean, it turns out to be
almost 40% larger. These simulations are based on the official projections for GDP, but since
its wide variability over the period considered is implemented into the simulations—see
Figure 4—the possible final values lie within a fairly wide range.
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Table 2. Gross Domestic Product (trillions): Stochastic simulations.

2030 2050 2060

mean 36.6 88.2 137.4
median 36.5 87.7 135.7

VaR 40.0 107.6 177.0
CVaR 41.0 114.2 190.8

CVaR (median) 40.7 112.0 185.9
Notes: trillions USD international PPP constant 2017 prices.

Figures 6 and 7, finally, visually report the results obtained and presented in the
previous tables. Figure 6 displays the histogram of the simulations for energy, in this case
in TWh. The histogram is reasonably symmetrical, as noted above, given the similarity
between the mean and the median, although the risk measures reveal a right tail quite
far from the mean; indeed, some values are rather extreme, e.g., 180 PWh, even if with a
low probability.
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The histogram for GDP is presented in Figure 7 and the comments are similar. In this
case, the symmetry is less marked, even if the similarity between the values of the mean
and median may suggest otherwise. It should be emphasized that the simulations are
based on official projections, although the great variability observed is due to the simulated
errors obtained from the adjustment of the mean in each selected estimation sample.

These results can be compared with those derived by means of a standard simulation
of the estimated energy demand model over the whole sample (t = 1, . . . , T), i.e.,

α(L)log(Et) = β0 + β1(L)log(GDPt) + β2(L)∆log(Popt) + εt (6)

Simulating this equation up to 2060, conditional on the official forecasts for GDP and
the population projections of the UN [28], yield 142.5 trillion USD for GDP and 125.5 PWh
for primary energy. These values are somewhat larger than those reported in Tables 1 and 2.
Additionally, the stochastic distribution of the simulations can only be derived under strong
further assumptions on the specified model.

The significance of these results and their implications are analyzed in the following
Section 4.

4. Discussion

In 2020 the Chinese government announced a pledge to become carbon neutral by
2060. Later, specific roadmaps were presented by several official institutions—e.g., [5–7].
To do this, firstly, energy demand projections were used in all the corresponding years
from the present, up to and including 2060. Therefore, it is adequate now to compare these
official forecasts with the results in the empirical Section 3. The Chinese plans considered
three possible scenarios [7], and Table 3 presents one of them, the most ambitious in the
sense that it implies a greater share of renewable energy—see Table A1 in Appendix B for
more detail on the specific roadmap over the years and a breakdown of energy types. A
forecast of the CO2 emissions pathway compatible with the 1.5 ◦C target, broadly in line
with the Green Urgent Scenario analyzed next, is also reported in Appendix B, Table A2.

Table 3. China 2060 Green Urgent Scenario (GUS).

2020 2060

Fossil sources 426.5 86.7
(%) 85.1 15.1

Renewable sources 74.7 487.2
(%) 14.9 84.9

Total 501.2 573.9
Notes: Units—10 b. tons of standard coal.

Although the units used by Chinese official statistics are different from the usual ones
in international organizations, it can immediately be seen that the increase in primary
energy from 2020 to 2060 is approximately 14%—(573.9⁄501.2) − 1∼=14%. This contrasts
sharply with the values obtained in the results of the empirical section, where an increase
close to 200% in primary energy demand was forecast between those years. The aim of this
section is to discuss whether this large discrepancy can be covered, and therefore whether
the official Chinese plans are achievable.

First, it should be underlined that the predictions of the empirical Section 3.3 refer
to primary energy, but a conversion to final energy has to be implemented because fossil
fuels lose a large amount of potential energy in combustion processes, energy that is not
recoverable, in general. It is just the opposite with RE, since their power is immediately
converted to electricity, and therefore the losses are minimal. The conversion factors
from primary to final energy are debatable, but those most accepted by international
organizations such as Irena [33], the IEA [34], and the European Union [35] range between
50% and 60%. With these values, and taking into account that the proportion of RE in the
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plan analyzed in Table 3 is approximately 85%, the final energy (FE) involved in this plan,
according to the forecasts of the empirical results, would be the following:

FE < −121× 0.85× 0.55 + 121× 0.15 = 74.717 (7)

The final simulated primary energy, on average, for 2060 in Table 1 is 121 PWh. The
result obtained, therefore, is approximately 75 PWh. To assess this value, we can apply the
14% increase in energy assumed in the plan in Table 3 to the energy effectively consumed
in 2020, which generates approximately 47 PWh. Subtracting this figure from the previous
forecast, i.e., 75 PWh, yields the following value: 74.717 PWh − 47.310 PWh = 27.407 PWh.
This figure implies an excess demand of approximately 50% over the planned energy.

The question now is whether this energy demand excess can be explained away by
savings and other increased efficiency measures. In order to discuss this issue, a study
focusing on the whole world conducted by [36] can be brought to bear. In that study, the
authors consider a series of efficiency and savings measures that can be classified into
three broad categories: (a) changes in dietary and transportation patterns, (b) deployment
of renewables with an increase in the participation of prosumers, and (c) efficiency gains
in buildings and telecommunications. With these three types of measures, the authors
conclude that an additional 40% could be saved in energy demand. Applying this reduction
to the previously obtained figure of 74.7 PWh yields a final value of 44.8 PWh, which is
already lower than the forecast value of 47.3 PWh. Therefore, assuming that these savings
and efficiency gains can be realized, the plan in Table 3 put forward by the Chinese
government would be feasible.

Nevertheless, a set of caveats should be underlined in this regard. First, the savings
assumed in [36] include the deployment of RE, something that is already considered in the
first transformation that has been carried out in this section to reach the figure of 74.7 PWh.
Secondly, this plan includes significant changes in demand patterns, in particular in diet
and transport, something that would require a change in the preferences of consumers,
or at least a change in the transport infrastructures so that it would be possible to replace
private with public transportation. Thirdly, the plan assumes a very rapid and accelerated
deployment of RE, although taking into account the previous performance of the Chinese
economy, it could be surmised that this would be the least problematic aspect. Fourthly and
lastly, it should be noted that in this analysis we start from a forecast of average demand,
but this forecast is random and, in fact, there is a non-negligible probability that the final
demand turns out to be much higher, as pointed out in Table 1 in the empirical Section 3.3.
Therefore, the recommendation would be to plan for a demand that could be significantly
higher to guarantee that the objectives of a carbon-neutral economy are achieved.

As a summary, possibly the main issue to be remarked on is that it will be necessary
to change the habits and consumption patterns of society in order to achieve the decar-
bonization objectives. This may seem hazardous from a political point of view, but in this
regard, it is interesting to note the research by [37], where they show that many of the
changes in demand required to reduce carbon emissions would actually improve the utility
of individuals.

Although the main conclusion obtained in this study as an answer to the initial research
question, i.e., the feasibility of the objective of carbon neutrality in 2060, is affirmative and
similar to that of other academic studies [9–12], the methodology is very different. First,
those studies are based on short annual series—i.e., a maximum of 20 years, compared to
the 57 used here. Additionally, the aforementioned studies embody the assumptions of
efficiency [9] or a reduction in emissions [11] in the forecast model in one way or another.
The approach followed here, on the contrary, consists of an estimate and projection of
the expected demand in an independent way, and only from there has this conclusion
been reached, analyzing the necessary expansion of RE and the necessary savings in the
consumption of energy and lifestyle changes. The study by [13] is based on a different
quantitative methodology, and although it expresses certain doubts regarding the feasibility
of the neutrality target for 2060, it only goes until 2026. The study by [16], on the other
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hand, although not directly addressing the projection of energy demand, is relevant and
complementary to all the others, including this study, to the extent that it stresses the critical
need for rare minerals.

5. Conclusions

The purpose of this study is to estimate China’s primary energy demand in 2060, and
to assess the feasibility of achieving the carbon neutrality objectives announced by the
Chinese Government. To this end, a primary energy demand model is estimated using a
novel method, which allows for obtaining the statistical distribution of demand in 2060.
This, in turn, allows for carrying out a complete risk analysis, due to the uncertainty
involved in the random distribution, and overcoming the standard sensitivity analysis
based on scenarios. Second, the modeling is based on long historical series from reliable
international sources. The first conclusion obtained is that the expected energy demand,
in principle, is much higher than that officially forecast by China. However, taking into
account renewable energy expansion plans of up to 85%, this discrepancy is reduced to only
50% higher than the official forecast. If feasible savings and efficiency gains based mainly
on changes in transportation patterns and dietary styles according to international research
are added, then this excess could be further shrunk by almost an additional 40%. The
final result of these calculations is that the expected primary energy demand, on average,
could be within the range of the official forecasts. Nevertheless, this refers to the average
value, and there is a small but non-negligible probability—specifically 5%—that the final
demand is up to 30% higher than the expected average demand. Several conclusions can
be drawn from this analysis: Firstly, to achieve this objective, a strong and unwavering
political commitment is necessary, aimed at accelerating the renewable transformation,
as well as modifying behavior patterns, especially with regard to transport and dietary
habits. Furthermore, since these conclusions refer only to average values, the speed of
RE deployment must be even greater if the risk of excess demand is to be reduced. The
intensity and magnitude of the effort required to achieve this objective demands several
additional aspects, as also pointed out both in the official Chinese plans and by international
organizations—e.g., the IEA and Irena.

The risks implied by current international events cannot be overemphasized either.
Specifically, the Ukraine war underlines the need to achieve energy independence, and
given the lack of one’s own fossil resources, points to accelerated RE deployment as the
only way out. The social pressure to recover the pre-pandemic growth levels is also another
significant risk, inasmuch as it may lead to choosing the easiest short-term way out, namely,
increasing coal-related developments [38].

From the sustainable development goals perspective, the Chinese stance underscores
the transition from simply material growth at any rate to quality growth focused on the
wellbeing of the people and the environment. This may also set a policy example for other
countries. Specifically for other developing countries, several lessons are immediate from
these results: first, the need to accelerate the deployment of RE and to avoid all kinds
of short-run pressures to continue consuming fossil resources; second, to ensure energy
security, fossil fuel dependence must be curtailed as fast as possible; third, the focus on
quality growth rather than straightforward material growth, coupled with dietary and
demand consumption changes.

Regarding the limitations of this study, perhaps the main one also derives from its
advantages, which is the use of long, but highly aggregated historical series. Thus, possibly
the most promising extension of this study would consist of combining the long historical
series used here with disaggregated series, e.g., by type of energy or by province, but much
shorter, as those used by other researchers. Combining both sources of information would
make it possible to obtain more reliable results, although the methodology to do so is only
available to a limited extent. Another aspect to develop is the estimation of alternative,
and specifically dynamic, models instead of the equilibrium approach adopted here. This
approach can imply instabilities, but if they are resolved then it could offer a point of
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contrast to the results presented here. Finally, the estimation method and the methodology
for the selection of the samples is another point that deserves to be developed.

All these aspects open a new line of research that would also allow the implementation
of this newly presented methodology to other regions and countries.
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CCUS Carbon Capture Utilization and Storage
CvaR Conditional Value at Risk
EKC Environmental Kuznets Curve
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GA-LSTM Genetic Algorithm, Long Short-Term Memory
GDP Gross Domestic Product
GHG Greenhouse Gas
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IPCC Intergovernmental Panel on Climate Change
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OWD Our World in Data
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UN United Nations
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Appendix A

The calculations involved in all the steps of the implementation of the methodology
introduced in this study, and the management of the raw dataset, have been carried out with
the statistical software R. The figures have been designed with the software gnuplot [39].
Both software are free open-source software (FOSS), which together with the public source
of all the data used, guarantees the reproducibility of the results.

Appendix B

Table A1. Primary Energy Demand Forecast—Green Urgent Scenario (GUS).

2030 2040 2050 2060

Coal 276,584 180,939 86,036 17,143
Oil 104,274 87,060 58,360 28,572
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Table A1. Cont.

2030 2040 2050 2060

Natural gas 69,021 81,861 75,772 41,230
Hydropower 50,150 53,768 56,481 62,160

Nuclear Power 21,240 35,178 52,547 77,700
Wind Power 42,185 77,220 115,210 152,810
Photovoltaic 38,055 78,936 123,640 168,350

RE (other) 236 1716 7025 25,900
Total 601,745 596,679 575,071 573,865

Notes: Units—10 thousand tons of standard coal. Source, [7].

Table A2. CO2 emissions under the 1.5 ◦C scenario.

2020 2030 2050 2060

10.03 7.44 1.47 0
Units: tce (metric tons of coal equivalent). Source, [5].
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