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Abstract: Environmental pollution caused by marine engines fueled with fossil fuels is a matter of
growing significance. The search for renewable and clean energy sources and improvements in the
way fossil fuels are burnt aims to reduce the environmental impact of these engines. For this purpose,
fatty acid methyl esters were produced from pure canola oil using KOH-assisted methanol-based
transesterification with a maximum yield of 90.68 ± 1.6%. The marine engine’s model was created
with CONVERGE software, followed by experimental verification. This paper examines the blended
fuel characteristics of a diesel engine with biodiesel blends (0%, 5%, 10%, and 15%) at different
loads of engines (50%, 75%, and 100%). It also explores the variation in these characteristics of B10
(10% biodiesel–diesel blends) at three different load conditions and four different EGR rates (0%,
5%, 10%, and 15%). The results indicate that the addition of biodiesel to diesel fuel reduces CO,
HC, and soot emissions, while increasing NOx emissions. Additionally, the EGR rate decreases
NOx emissions but results in higher levels of soot, CO, and HC emissions. Finally, response surface
methodology was used to elicit the engine’s characteristics. It was determined that the optimum
experimental operating conditions were 100% engine load, 6.9% biodiesel addition, and 7.7% EGR.
The corresponding BTE, BSFC, NOx, and HC emissions were 38.15%, 282.62 g/(kW-h), 274.38 ppm,
and 410.37 ppm, respectively.

Keywords: diesel-biodiesel blended fuel; fatty acid methyl esters; marine engine; RSM

1. Introduction

In the face of escalating environmental pollution and the dwindling supply of non-
renewable energy sources [1], there has been a heightened emphasis on environmental
pollution control. However, with ongoing increases in the global population, technological
advancements, and industrial development, human demand for energy is on the rise [2].
The engine cylinder combustion of non-renewable fossil fuels leads to the emission of
pollutants including soot, CO, HC, and NOx [3], prompting the search for renewable and
environmentally friendly alternatives. One such alternative that has garnered significant
attention is biodiesel [4].

Biodiesel is a renewable fuel devoid of polycyclic aromatic compounds [5], primarily
sourced from natural animal and plant oils [6]. It can be classified into various types,
including plant synthesis, animal synthesis, microbial synthesis, blended synthesis, plant
oil purification, and animal oil purification [7]. While the sources of plant oils for biodiesel
production are diverse, oilseed crops are commonly utilized, with canola oil being one
of the principal raw materials for the production of biodiesel [7]. Plant oils are often
processed into biodiesel via esterification reactions, which are considered to be one of the
most promising methods due to their low cost and simplicity of operation [8]. Therefore, in
this study, canola oil was selected as the feedstock, and methanol catalyzed by KOH was
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used for the transesterification reaction to produce FAME. The reaction parameters of the
transesterification reaction were optimized using the single variable method [9].

The advantages of biodiesel application in diesel engines are evident, as follows:
(1) Biodiesel exhibits similar physical and chemical properties to diesel, enabling direct
blending with diesel in any proportion without requiring modifications to fuel supply and
injection systems, thus allowing its direct application in diesel engines [10]. It maintains
nearly identical brake thermal efficiency, BSFC, and brake power [11]. (2) Biodiesel has
a higher cetane number and oxygen content than diesel [12], with an oxygen content of
approximately 10–11%, and it is free from sulfur and polycyclic aromatic compounds [5].
These characteristics of biodiesel facilitate thorough combustion in the engine, significantly
reducing emissions of toxic pollutants such as CO and soot [13]. (3) Biodiesel exhibits
good lubricating properties. Its dynamic viscosity is higher than that of traditional fossil
diesel, resulting in better lubrication performance. This reduces friction losses during
engine operation, leading to smoother engine operation and increased engine lifespan [14].
(4) Biodiesel has a higher flash point and cloud point, indicating lower susceptibility to
explosion. Therefore, biodiesel is safer than conventional diesel in terms of transportation,
storage, and utilization [12]. However, due to biodiesel’s poor low-temperature flow prop-
erties and oxidative stability, as well as its corrosiveness, its use may lead to corrosion and
damage to rubber components and metal hoses in the fuel supply system [15]. Moreover,
the poor low-temperature flow properties and oxidative stability further limit the stan-
dalone use of biodiesel in diesel engines, necessitating the blending of biodiesel with a
certain proportion of diesel or other fuels capable of improving its cold flow and oxidative
characteristics for practical use [16].

In diesel engines, numerous researchers have explored the utilization of biodiesel.
José et al. [17] discovered that biodiesel enhanced the combustion characteristics of diesel
engines, resulting in decreased emissions of soot, HC, and CO. Karavalakis et al. [18]
examined the application of low-concentration biodiesel–diesel blends in a heavy-duty
diesel engine, revealing that high-saturation biodiesel blends did not increase NOx emis-
sions. Additionally, both high- and low-saturation biodiesel blends showed an overall
decrease in HC and CO emissions in most testing cycles. Yoon and his team [19] con-
ducted experiments and found that the addition of canola oil biodiesel slightly reduced
combustion pressure and indicated mean effective pressure at low speeds, while showing a
slight increase at medium speeds. Uyumaz et al. [20] blended diesel with poppy seed oil
biodiesel and observed that biodiesel blending prolonged the combustion delay period,
with thermal efficiency decreasing by 5.73% and 13.05% for 10% and 20% biodiesel blend
ratios, respectively.

To reduce emissions of pollutants, considerations extend beyond fuel properties to
include technological advancements [21]. For diesel engines, extensive research has in-
dicated that EGR technology is one of the most common methods used to reduce the
mean emissions of pollutants [22]. NOx is primarily produced in high temperature, high
oxygen conditions, and EGR can decrease the combustion chamber temperature and NOx
emissions [23]. Hitoshi Yokomura [24] explored the influence of EGR rates on engine
combustion characteristics, revealing that higher EGR rates and excess air ratios success-
fully reduced NOx emissions. Kumar [25] and Saravanan [26] investigated the impact of
EGR rates on diesel engines, demonstrating that increasing EGR rates could reduce NOx
emissions. Furthermore, research by Dickey et al. [27] indicated that the emission of NOx
could be reduced by over 50% with an EGR rate of 15%, and over 80% with an EGR rate of
25%. However, increasing EGR could increase the emissions of PM and HC.

In summary, while biodiesel offers significant advantages in reducing soot, CO, and
HC emissions in exhaust gases [28], it can increase the emission of NOx within the cylinder.
NOx and particulate matter can be reduced by utilizing EGR technology. Therefore, in
order to improve the combustion and emission of diesel engines, this study employed CFD
software coupled with chemical reaction kinetics to simulate and investigate the effects of
three loads (50%, 75%, and 100%), four biodiesel–diesel blend ratios, and four EGR rates on
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the combustion, performance, and emission characteristics of marine engines. RSM was
utilized to optimize dual-fuel engines to maximize BTE and minimize BSFC, NOx, HC, and
CO emissions.

2. Materials and Methods

This section focuses on the modeling and validation of fuel engines. CONVERGE
Studio v3.0 simulation software was used to determine the combustion characteristics and
emission characteristics. The combustion characteristics included in-cylinder pressure and
in-cylinder combustion temperature, and the emission characteristics included soot, NOx,
CO, and HC emissions. The AVL-BOOST 2020 R1 software determined the performance
characteristics, including fuel consumption and thermal efficiency. Table 1 presents the
theoretical models involved in this study.

Table 1. The sub-models selected [27–35].

Model Selected Models

Spray-wall interaction model Rebound/slide model
Evaporation model Frossling drop evaporation model

Emission model Hiroyasu-NSC soot model and extended Zeldovich NOx model
Turbulent diffusion model O’Rourke model

Turbulence model RNG k-ε model
Combustion model SAGE model

Spray breakup model KH-RT model

2.1. Fundamental Equations
2.1.1. Fundamental Governing Equations

In 3D numerical simulations, the diesel engine obeys the equations of mass conserva-
tion, energy conservation, momentum conservation, and species conservation. The basic
system of the equations is as follows:

dm
dt

= ∑
bounds

mf (1)

d(ρHV)

dt
= V

dp
dt
− hAS(Tfluid − Twall) + ∑

bounds
(mf · H) (2)

d(mflx)

dt
=

∑
bounds

(mf · u)− 4Cf
dxAs

Φ
ρu2

2 − Cp(
1
2 ρu2)As + dpAs

dx
(3)

ρ

(
∂Yi
∂t

+
∂Yi
∂x

+
∂Yi
∂y

+
∂Yi
∂z

)
+

∂

∂x
(ρYiVix) +

∂

∂y

(
ρYiViy

)
+

∂

∂z
(ρYiViz) = ϖn (4)

where m is the volumetric flow rate, m3/s; Cp is the loss coefficient; A is the cross-sectional
area of the fluid, cm2; Cf is the friction coefficient; u is the boundary velocity, m/s; Twal is
the wall temperature, K; ρ is density, g/cm3; Tfuel is the fluid temperature, K; h is the heat
transfer coefficient, W/(m2·K); Φ is the equivalent diameter, mm; H is total enthalpy, kJ; As
is the heat transfer area, cm2; p is pressure, Pa; V is volume, m3; mf is the mass flow rate,
kg/s; and Yi is the mass fraction of the i species.

2.1.2. Turbulence Simulation

Turbulent motion significantly affects gas formation, flame propagation, and combus-
tion product formation. The k-E model is considered to possess a high degree of accuracy
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as well as feasibility [29]. Therefore, the k-E model was chosen to simulate the turbulence
within the cylinder. Its dissipation transport is defined by the equation:

ρ
(

∂ε
∂t +

∂(µiε)
∂xi

)
= ∂

∂xj

(
µ

Prε
∂ε
∂xj

)
− cε3 ρε ∂ui

∂xi

+
(

cε1
∂ui
∂xj

σij − cε2 ρε + csSs

)
ε
k − ρR

(5)

where S represents the source term; σij is the stress tensor, N/m; and µi is the turbulent
viscosity, cPs/40 ◦C.

2.1.3. Liquid Droplet Breakup Model

For blended diesel fuel, the atomization phenomenon and droplet breakup state are
commonly modeled using the KH–RT model [30]. Therefore, in this study, the KH–RT
model was adopted as the droplet breakup model.

In the CONVERGE software, the KH model accurately simulates the process of droplet
fragmentation under high density and high relative velocity conditions. The RT model
predicts the occurrence of unstable RT waves caused by the sudden deceleration of droplets.
In addition, the KH and RT models were combined in an integrated KH–RT model [31].

According to the surface wave theory, the radius of the daughter droplet rs can be
expressed as:

rs = B0ΛKH (6)

where rs is the new diameter at which the droplet breaks up and reaches a steady state,
µm; B0 is a constant, and in this study, was taken as 0.61; and ΛKH is the wavelength of the
unstable surface wave, µm.

The rate of change in the droplet radius and the break-up time are determined as follows:

drs

dt
=

(
rs − rp

)
ΓKH

, (rs ≥ rp) (7)

ΓKH =
3.726B1rp

ΩKHΛKH
(8)

ΛKH

rp
= 9.02

(1 + 0.4T0.7
0 )(1 + 0.45Z0.5

0 )

(1 + 0.87We1.67
g )

(9)

ΩKH

[
ρlr3

p

σ

]−0.5

=
(0.38We1.5

g + 0.34)

(1 + 1.4T0.6
0 )(1 + Zl)

(10)

where rp is the original droplet diameter, µm; and B1 is a constant related to the initial
perturbation of the liquid jet, s.

2.1.4. Liquid Density

Using the following formula, the liquid density can be calculated:

(1− TR-T)
2/7 = (1− T

Tb
)

2/7
− ϕ (11)

VS = VS-RZf
Ra (12)

ρ =
ρR

Zf
Ra

(13)

where TR-r and VS-r are the temperature and density variations at the reference tempera-
ture, respectively.
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2.1.5. Emission Model

In general, combustion in dual-fuel engines generates a significant amount of NOx
emissions, with the majority being NO [32]. This paper selected the extended Zeldovich
model. The following three reactions were considered:

N2 + O
K+

1←−−→
K−1

NO + N (14)

O2 + N
K+

2←−−→
K−2

NO + O (15)

N + OH
K+

3←−−→
K−3

NO + H (16)

Soot is a form of carbon particle with a diameter ranging from 0.1 to 10 µm, typically
produced by incomplete combustion in high-temperature, high-pressure, and oxygen-
deficient conditions in dual-fuel engines [33]. The soot model in this paper utilized the
Kinetic model built into the CONVERGE.

2.2. Boundary Conditions

To save computational time, this study did not consider the intake and exhaust pro-
cesses. The calculation time was set to start at the closure of the intake valve, and end
when the exhaust valve opened. The boundary conditions were set based on experimental
data provided by the 4190Z engine model [34]. The manufacturer of this equipment is
CNPC Jichai Power Company Limited in Jinan, Shandong province, China. The com-
putational area of the one-eighth engine model sketch is shown in Figure 1. This study
modeled one-eighth of the combustion chamber due to the symmetrical bowl structure.
The specifications are shown in Table 2.

Energies 2024, 17, x FOR PEER REVIEW 6 of 33 
 

 

 
Figure 1. CFD model. 

Table 2. Engine boundary conditions. 

Type Value Type Value 
Stroke × Bore (mm) 210 × 190 The initial turbulent kinetic energy (m2/s2) 18.46 

Connecting rod (mm) 410 Fuel injection pressure (MPa) 81.12 
Rate speed (r/min) 1000 Inlet pressure (MPa) 0.189 

Number of cylinders 4 Initial inlet temperature (K) 312.26 
Effective power (kW) 220 Piston top temperature (K) 626.12 
Number of nozzles 8 Cylinder head surface temperature (K) 552.18 
Nozzle radius (mm) 0.3 Compression ratio (-) 14 

2.3. Mesh Generation 
Based on experimental conditions, this paper conducted a comparative analysis of 

cylinder pressure during the combustion process of biodiesel–diesel blend fuel to validate 
the applicability of the model. Corresponding dynamic meshes were developed based on 
the geometric shape of the dual-fuel engine, establishing an eighth-piston model with an 
injection cone angle of 150°. However, excessively fine meshes during modeling can 
significantly increase simulation computation time. As shown in Figure 2, the cylinder 
pressures were under three different mesh sizes for the dual-fuel engine. When selecting 
1.4 mm and 2 mm mesh sizes, their cylinder pressures were essentially the same. 
Therefore, this paper chose a 2 mm mesh for its simulation studies, which not only 
ensured computational accuracy, but also significantly reduced computation time. 

−20 −10 0 10 20 30 40 50 60 70 80

0

2

4

6

8

10  1.4 mm
  2  mm
  4mm

C
yl

in
de

r 
pr

es
su

re
(M

Pa
)

 Crank angle(℃A)  
Figure 2. Mesh independence. 
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Table 2. Engine boundary conditions.

Type Value Type Value

Stroke × Bore (mm) 210 × 190 The initial turbulent kinetic energy (m2/s2) 18.46
Connecting rod (mm) 410 Fuel injection pressure (MPa) 81.12

Rate speed (r/min) 1000 Inlet pressure (MPa) 0.189
Number of cylinders 4 Initial inlet temperature (K) 312.26
Effective power (kW) 220 Piston top temperature (K) 626.12
Number of nozzles 8 Cylinder head surface temperature (K) 552.18
Nozzle radius (mm) 0.3 Compression ratio (-) 14
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2.3. Mesh Generation

Based on experimental conditions, this paper conducted a comparative analysis of
cylinder pressure during the combustion process of biodiesel–diesel blend fuel to validate
the applicability of the model. Corresponding dynamic meshes were developed based on
the geometric shape of the dual-fuel engine, establishing an eighth-piston model with an
injection cone angle of 150◦. However, excessively fine meshes during modeling can signif-
icantly increase simulation computation time. As shown in Figure 2, the cylinder pressures
were under three different mesh sizes for the dual-fuel engine. When selecting 1.4 mm
and 2 mm mesh sizes, their cylinder pressures were essentially the same. Therefore, this
paper chose a 2 mm mesh for its simulation studies, which not only ensured computational
accuracy, but also significantly reduced computation time.
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2.4. Dual-Fuel Engine Configuration
2.4.1. Fuel Characteristics

The methodology and physicochemical properties of the transesterification reaction
have been described in detail in previous papers published by our team [35,36] and will not
be described here. FAME was produced by the transesterification reaction of rapeseed oil
with methanol using 1% wt/wt potassium hydroxide as the basic catalyst, a methanol-oil
molar ratio of 6:1, and a reaction time of 1 h. The main physical and chemical properties of
the experimental fuels are shown in Table 3.

Table 3. Fuel properties.

Fuel Heating Value
(MJ/kg)

Viscosity
(cPs/40 ◦C)

Density
(g/m3/15 ◦C)

Oxygen Content
(wt%)

D100 42.7 2.75 0.844 0.3
B5 42.54 2.89 0.846 0.38

B10 42.38 3.07 0.848 0.46
B15 42.25 3.16 0.849 0.53
B100 39.53 4.45 0.882 10.7

2.4.2. Diesel Engine Specifications

The experiment was conducted on a dual-fuel engine, as depicted in Figure 3. Different
blending ratios were injected into the cylinder through injectors. A magnetic fuel flow
sensor was used to measure fuel flow rate, an electronic fuel pressure sensor was used
to measure fuel pressure, and a thermocouple-type fuel temperature sensor was used to
measure fuel temperature during the experiment.
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2.4.3. Feasibility Testing and Model Validation

As shown in Figure 4, the simulated cylinder pressure was lower than the experimental
results by approximately 0.08, −0.16, and −0.21 MPa. The heat release rates at different
loads showed differences between experimental and simulated values within an acceptable
range. Furthermore, the comparison of NOx and HC emissions between the simulation
and the experiment at different loads, as shown in Figure 5, revealed errors within 5%.
Therefore, the CFD model can be effectively used to predict marine dual-fuel engines.
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3. Effect of Biodiesel with Different Blending Ratios on Engines

Utilizing simulation theory and engine parameters from the preceding section, we
incorporated a more advanced chemical reaction mechanism. This study analyzed the
combustion processes of four different blends of diesel fuel: pure diesel (D100), blended
fuel with 5% biodiesel (B5), blended fuel with 10% biodiesel (B10), and blended fuel with
15% biodiesel (B15), within the engine cylinder. Simulation calculations were conducted
to analyze the engine’s combustion, power, and emission characteristics. This included
cylinder combustion pressure, temperature, and so on [37].

3.1. Characteristics of Combustion
3.1.1. In-Cylinder Pressure

Figure 6 illustrates the influence of varying biodiesel ratios on combustion cylinder
pressure in cases of blended fuels. At three loads, the combustion pressure of the cylinder
increased as the proportion of biodiesel in the fuel mixture increased. As an example, when
the engine operated at 100% load-burning pure diesel (D100), the maximum combustion
pressure reached 9.7 MPa in the cylinder. The combustion pressure in the engine cylinder
reached peaks of 11.31 MPa, 11.84 MPa, and 12.40 MPa when the blended percentage was
5%, 10%, and 15%, respectively. The increased combustion pressure in the cylinder was
due to the favorable oxygen content of the biodiesel, which promoted the combustion of
the fuel and increased the rate of the combustion reaction [38].
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3.1.2. In-Cylinder Temperature

Figure 7 illustrates how blending various percentages of biodiesel with diesel fuel
affected combustion temperature within the engine cylinder, where the temperature field
distribution at 100% load is shown on the right. The in-cylinder combustion temperature
showed an increasing trend with increasing engine load. The substitution of diesel fuel
with biodiesel led to an increase in in-cylinder combustion temperature at three different
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loads. The increase in cylinder combustion temperature became more significant as the
biodiesel addition rate increased.
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For instance, when the engine burned B15 at 75% load, the in-cylinder combustion
temperature was at its highest, reaching 1781.69 K. In comparison, B10, B5, and D100 result
in lower temperatures of 1707.15 K, 1620.78 K, and 1421.4 K, respectively. Compared to
D100, the in-cylinder combustion temperatures of the engine increased by 14.03%, 20.1%,
and 25.35% when firing B5, B10, and B15, respectively. The high oxygen content of biodiesel
is the main reason for its combustion-promoting properties when blended with regular
diesel. The temperature field distribution shows that the local high temperature zone in the
engine cylinder increased with increasing biodiesel addition. This indicates that blending
biodiesel into diesel fuel can improve the combustion process and increase the temperature.

3.2. Dynamic Characteristics
3.2.1. Fuel Consumption

Figure 8 shows the effects of biodiesel addition on engine fuel consumption. As the
engine load increased, the fuel consumption decreased. Under three loads, with an increase
in biodiesel addition, the fuel consumption also showed an upward trend. For instance,
when the engine burned D100 at 50% load, the fuel consumption was the lowest, reaching
370.27 g/(kW·h). When biodiesel additions increased to 5%, 10%, and 15%, the engine’s fuel
consumption also rose to 376.05, 379.74, and 382.89 g/(kW·h), respectively. The increase
can be attributed to the reduction in the total calorific value of the blended fuel due to the
inclusion of biodiesel, consequently resulting in higher fuel consumption.
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3.2.2. Thermal Efficiency

Brake thermal efficiency is the ratio of the energy generated when the fuel is burned in
the engine converted into useful work. The BTE can be calculated by the following Equation:

BTE =
3600

BSFC · LCV
(17)

where LCV is the fuel lower calorific value, MJ·kg−1.
The effect of blending different percentages of biodiesel into diesel on the thermal

efficiency of the engine is shown in Figure 9. This shows that as the load increased, the
thermal efficiency increased [39]. In addition, the thermal efficiency of the engine continued
to decrease with increasing biodiesel additions at all three loads. For instance, at 75% load,
the engine exhibited the highest thermal efficiency when utilizing D100 fuel, followed by
B5, B10, and B15. The thermal efficiency of the engine was reduced by 4.80%, 14.84%, and
23.10% compared to the D100 when burning the B5, B10, and B15 fuels, respectively. The
thermal efficiency of the engine decreased with increasing biodiesel addition. Although
the combustion was improved, the addition of biodiesel reduced the calorific value of the
fuel blend and increased the viscosity of the fuel blend. Consequently, the atomization of
the fuel was deteriorated, resulting in incomplete combustion of the fuel. As a result, the
overall thermal efficiency decreased.
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3.3. Emission Characteristic
3.3.1. Soot Emission

Figure 10 shows the effect of biodiesel addition on soot emissions from engine com-
bustion. The figure illustrates that soot emissions showed an elevated trend as the engine
load increased. This was due to the fact that as the engine load increased, the fuel supply



Energies 2024, 17, 2255 11 of 30

increased, and the in-cylinder combustion temperature rose, which promoted fuel cracking
and led to higher soot emissions. At all three loads, there was a continuous decrease in soot
emissions with an increasing biodiesel substitution rate. Moreover, the higher the biodiesel
substitution rate, the more notable the reduction in soot emissions. Specifically, at 75%
load, the engine exhibited the highest soot emissions when firing D100, followed by B5,
B10, and B15. The reduction in soot emissions was mainly due to the fact that biodiesel
was added, which reduced the amount of diesel fuel injected into the cycle and resulted in
fewer carbon-containing fuels being burned in each cycle. Furthermore, biodiesel possesses
a higher oxygen content compared to diesel. This increase in biodiesel content facilitated
faster combustion, enhancing the combustion processes, and consequently contributing to
lower soot emissions.
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operating at 75% load, the engine emitted 550.11 ppm of NOx while using D100 fuel. This 
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3.3.2. NOx Emission

Figure 11 illustrates the impact of biodiesel addition on NOx emissions. It is evident
from the figure that as the engine load rose, NOx emissions exhibited a continuous increase.
This was due to the fact that as the engine load increased, the in-cylinder combustion
temperature and combustion pressure rose, and the increase in cyclic injection also reduced
the excess air coefficient, which made the high-temperature reaction time longer and
promoted the generation of NOx in the cylinder. For instance, when operating at 75%
load, the engine emitted 550.11 ppm of NOx while using D100 fuel. This figure rose to
1093.00 ppm, 1394.20 ppm, and 1590.57 ppm when using B5, B10, and B15 fuels, respectively.

The distribution of NOx in the cylinder at 50% load is shown in the cloud diagram on
the right side of Figure 11. It is evident that the in-cylinder NOx distribution increased with
higher biodiesel additions. The main reason for this is that the inclusion of biodiesel raised
the oxygen content of the fuel blend, leading to an improved combustion rate and higher
combustion temperatures in the cylinder [37]. Higher combustion temperatures promoted
NOx production, resulting in higher NOx emissions in the exhaust gas [40].
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3.3.3. CO Emission 
Figure 12 illustrates the impact of biodiesel addition on engine CO emissions. Across 

the three loads examined, the inclusion of biodiesel led to a reduction in CO emissions. 
For instance, at 75% load, the engine firing D100 exhibited the highest CO emission of 
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ppm for B5, B10, and B15, respectively. This reduction can be attributed primarily to the 
decreased proportion of carbon in the fuel mixture resulting from biodiesel addition. 
Consequently, fewer carbon-containing fuels participated in combustion, leading to 
decreased CO emissions. The addition of biodiesel resulted in a reduction in CO 
emissions, with the extent of the reduction being directly proportional to the amount of 
biodiesel added. This is mainly because the addition of biodiesel reduced the proportion 
of carbon in the fuel mixture, and less carbon-containing fuels were involved in the 
combustion to reduce CO emissions. The injection of biodiesel increased the oxygen 
concentration in the fuel mixture, accelerating combustion speed and improving fuel 
combustion in the cylinder. The resulting increase in combustion temperature promoted 
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3.3.3. CO Emission

Figure 12 illustrates the impact of biodiesel addition on engine CO emissions. Across
the three loads examined, the inclusion of biodiesel led to a reduction in CO emissions.
For instance, at 75% load, the engine firing D100 exhibited the highest CO emission
of 15,305.47 ppm, whereas CO emissions decreased to 7585.35 ppm, 4282.12 ppm, and
752.23 ppm for B5, B10, and B15, respectively. This reduction can be attributed primarily
to the decreased proportion of carbon in the fuel mixture resulting from biodiesel addi-
tion. Consequently, fewer carbon-containing fuels participated in combustion, leading to
decreased CO emissions. The addition of biodiesel resulted in a reduction in CO emissions,
with the extent of the reduction being directly proportional to the amount of biodiesel
added. This is mainly because the addition of biodiesel reduced the proportion of carbon
in the fuel mixture, and less carbon-containing fuels were involved in the combustion to
reduce CO emissions. The injection of biodiesel increased the oxygen concentration in the
fuel mixture, accelerating combustion speed and improving fuel combustion in the cylinder.
The resulting increase in combustion temperature promoted the oxidation of CO, leading
to a reduction in CO emissions.

3.3.4. HC Emission

Incomplete combustion of fuel leads to HC emissions, and the addition of biodiesel had
an effect on HC emissions in the tailpipe. Figure 13 shows the effect of biodiesel additions
on HC emissions from the engine, and it can be seen that HC emissions were increasing as
the engine load increased. This was due to the increase in load, which increased the amount
of cyclic injection, resulting in there being a larger amount of over-concentrated mixture in
the cylinder. The reduced oxygen concentration within the cylinder resulted in incomplete
combustion and hindered the oxidation of HC emissions, thereby leading to an increase in
HC emissions. Additionally, HC emissions from the engine decreased consistently across
all three loads with increasing biodiesel additions. At 50% load, where the fuel injection
was lower and the excess air coefficient was higher, HC emissions were naturally reduced.
At 75% and 100% load, the engine released higher fuel injections, resulting in incomplete
combustion of fuel. The increased involvement of fuel in diffusion combustion resulted in
uneven mixing of fuel and air, consequently leading to higher HC emissions. However, the
addition of biodiesel, with its higher oxygen content, promoted in-cylinder fuel combustion
and thereby reduced HC emissions.
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4. EGR Ratios 
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4. EGR Ratios

This section investigates the impact of different loads on engine combustion and
emission characteristics when employing B10 blended fuel in internal combustion engines
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while varying EGR rates (0%, 5%, 10%, and 15%) [41]. The impact of EGR rates on engine
combustion and performance characteristics were primarily evaluated through parameters
such as in-cylinder pressure, in-cylinder temperature, fuel consumption, and thermal
efficiency. This study investigated the impact of various EGR rates on the emission of
pollutants, including soot, NOx, CO, and HC in engine exhaust gases.

4.1. Characteristics of Combustion
4.1.1. In-Cylinder Pressure

As the percentage of EGR increased, the ignition process was delayed due to the lower
oxygen concentration and lower overall gas temperature. This delay was also reflected
in the cylinder pressure curve. Figure 14 illustrates the impact of different EGR rates
on in-cylinder combustion pressure under 50%, 75%, and 100% loads. The figure shows
that the in-cylinder combustion pressure decreased as EGR rates increased, with a more
pronounced reduction in peak in-cylinder combustion pressure at higher EGR rates. For
example, at 75% load, the peak in-cylinder combustion pressure decreased by 2.85% with
5% EGR, 5.79% with 10% EGR, and 12.29% with 15% EGR, compared to no EGR. The
decrease in oxygen concentration entering the cylinder due to the increase in EGR rate was
the main reason for the reduced combustion rate and extended ignition delay time [32].
Furthermore, the introduction of inert gases by EGR also contributed to a certain degree
of retardation in the chemical reaction rate of in-cylinder fuel combustion, resulting in
a decrease in peak in-cylinder combustion pressure [42]. In addition, the noble gases
increased the specific heat capacity of the intake air, which further promoted the reduction
in peak in-cylinder combustion pressure.
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4.1.2. In-Cylinder Temperature

Figure 15 shows the effect of varying EGR rates on the in-cylinder combustion temper-
ature of the engine at different loads. It is evident that the peak in-cylinder combustion
temperature of the engine decreased steadily with increasing EGR rates at all loads. Further-
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more, the decrease in peak in-cylinder combustion temperature became more significant
with higher EGR rates. At 75% load, the highest peak in-cylinder combustion temperature
occurred when EGR was not utilized. The peak temperature decreased by 2.30%, 3.49%,
and 9.49% respectively when EGR rates of 5%, 10%, and 15% were employed, compared to
no EGR. The decrease in in-cylinder combustion temperature was primarily attributed to
the increase in inert gases in the cylinder resulting from the rise in EGR rate. The dilution
of the mixture caused by this phenomenon resulted in a reduction in the combustion rate.
Moreover, a rise in the EGR rate precipitated a decline in the oxygen concentration within
the cylinder. The decline in the combustion temperature within the cylinder, as induced by
this reduction, adversely impacted the combustion process of fuel, leading to a persistent
decrease in the peak in-cylinder combustion temperature of the engine with escalating
EGR rates.

Energies 2024, 17, x FOR PEER REVIEW 17 of 33 
 

 

800
1000
1200
1400
1600
1800
2000
2200

800
1000
1200
1400
1600
1800
2000

-20 0 20 40 60 80

800

1000

1200

1400

1600

1800

EGR=0%

100% load
 EGR=0%
 EGR=5%
 EGR=10%
 EGR=15%

EGR=5%
EGR=10%

10°CA

EGR=15%

75% load

500

640

780

920

1060

1200

1340

1480

1620

1760

1900

50% load

Crank angle（°CA）

C
yl

in
de

r 
te

m
pe

ra
tu

re
（

K
）

 
Figure 15. Combustion temperature and temperature distribution at 10 °CA. 

4.2. Dynamic Characteristics 
4.2.1. Thermal Efficiency 

Figure 16 shows how changing the EGR rates affects how well the engine works 
when it is performing different amounts of work. The graph shows that as the amount of 
EGR goes up, the efficiency of the engine goes down, no matter how hard it is working. 
For instance, when the engine was working at its hardest, the efficiency went down by 2. 
19%, 334%, and 449% as the EGR rate went up to 5%, 10%, and 15%, compared to not 
using EGR at all. This decrease in engine thermal efficiency can be attributed to the 
increase in exhaust gas content in the engine cylinder with higher EGR rates. This exerted 
a certain inhibitory effect on the combustion process of in-cylinder fuel. Therefore, it is 
important to maintain a balance between EGR rates and engine thermal efficiency. 
Additionally, the increase in exhaust gas content in the intake air led to a decrease in 
oxygen concentration in the cylinder, creating a state of oxygen deficiency inside the 
cylinder. This state was unfavorable for the complete combustion of fuel [43]. 

50 75 100
35

36

37

38

39

40

41

42

43

44

45

In
di

ca
te

d 
th

er
m

al
 e

ffi
ci

en
cy

(%
)

Engine load(%)

 EGR=0%
 EGR=5%
 EGR=10%
 EGR=15%

 
Figure 16. Effect of EGR rate on thermal efficiency. 

Figure 15. Combustion temperature and temperature distribution at 10 ◦CA.

The in-cylinder temperature distribution for an engine with a crank angle of 10 ◦CA
at different loads and EGR rates is shown in Figure 15. At all loads, the localized high-
temperature regions in the engine cylinder decreased with a continuous increase in EGR
rates. This was mainly due to the decrease in oxygen concentration in the engine cylinder
when higher EGR rates were employed, coupled with an increase in the specific heat
capacity of intake air, both of which were unfavorable for fuel combustion inside the
cylinder, resulting in a reduction in cylinder temperature.

4.2. Dynamic Characteristics
4.2.1. Thermal Efficiency

Figure 16 shows how changing the EGR rates affects how well the engine works when
it is performing different amounts of work. The graph shows that as the amount of EGR
goes up, the efficiency of the engine goes down, no matter how hard it is working. For
instance, when the engine was working at its hardest, the efficiency went down by 2. 19%,
334%, and 449% as the EGR rate went up to 5%, 10%, and 15%, compared to not using
EGR at all. This decrease in engine thermal efficiency can be attributed to the increase in
exhaust gas content in the engine cylinder with higher EGR rates. This exerted a certain
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inhibitory effect on the combustion process of in-cylinder fuel. Therefore, it is important
to maintain a balance between EGR rates and engine thermal efficiency. Additionally, the
increase in exhaust gas content in the intake air led to a decrease in oxygen concentration
in the cylinder, creating a state of oxygen deficiency inside the cylinder. This state was
unfavorable for the complete combustion of fuel [43].
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4.2.2. Fuel Consumption

Figure 17 illustrates the effects of different EGR rates on engine fuel consumption
at various loads. The figure indicates that engine fuel consumption increased steadily
with increasing EGR rates at all loads. For example, when operating at 50% load, the
engine’s fuel consumption without EGR was 370.72 g/(kW·h). At a 5% EGR rate, fuel
consumption rose to 376.23 g/(kW·h). Increasing the EGR rate to 10% resulted in a further
rise to 378.97 g/(kW·h), while at 15%, it climbed to 381.87 g/(kW·h). These increments
corresponded to 1.49%, 2.23%, and 3.01%, respectively. The increase in the EGR rate was
primarily responsible for this phenomenon. This led to a higher quantity of exhaust gases
entering the cylinder, which in turn reduced the oxygen concentration inside the cylinder.
This created localized oxygen-deficient zones and inhibited the chemical reaction process of
in-cylinder fuel combustion. As a result, incomplete combustion of fuel occurred, leading
to a continuous increase in engine fuel consumption [44].
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4.3. Emission Characteristic
4.3.1. Soot Emission

Figure 18 depicts how different EGR rates affected soot emissions from the engine
under various load conditions. The figure shows that soot emissions increased initially and
then decreased with crank angle across the three loads. This was due to the continuous
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oxidation of early-formed soot during the combustion process, leading to a reduction in soot
emissions in the later stages of combustion. Furthermore, as the engine EGR rate increased,
soot emissions also increased continuously. The primary reason for this phenomenon
lies in the reduction in the oxygen concentration within the cylinder as the EGR rates
increased. This decline notably impacted the oxidation process of soot, consequently
leading to heightened soot emissions. Furthermore, an increase in the EGR rate resulted
in a significant reduction in the generation rate and peak mass of OH radicals. This was
due to a decrease in the in-cylinder temperature, which weakened the oxidation effect of
OH radicals on soot, leading to an increase in soot emissions [45]. Additionally, higher
EGR rates led to an increase in the formation of soot precursors, which further contributed
to increased soot emissions. This is because the oxidation process of soot precursors was
inhibited at higher EGR rates [46].
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4.3.2. NOx Emission

Figure 19 demonstrates the effect of varying EGR rates on NOx emissions from the
engine across different load conditions. The graph reveals a consistent reduction in NOx
emissions as EGR rates increased across all loads. For instance, at 100% load, the NOx
emission peaked at 681.48 ppm without EGR utilization. However, with an EGR rate of
5%, this value diminished to 484.62 ppm, further dropping to 312.06 ppm with a 10%
EGR rate, and reaching 174.47 ppm with a 15% EGR rate. The reduction in average
cylinder temperature with EGR utilization primarily caused a decrease in in-cylinder
combustion temperature, which significantly influenced NOx emissions. The activation
energy associated with NOx formation reactions decreased as the in-cylinder combustion
temperature decreased with EGR, leading to a reduction in in-cylinder NOx emissions.
With increasing EGR rates, more exhaust gas was introduced into the cylinder, which
reduced the oxygen concentration involved in combustion and affected the ignition and
combustion process of in-cylinder fuel. Additionally, increased EGR led to an increase in
exhaust gas content in the intake air, which further increased the specific heat capacity of
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the intake air, resulting in a decrease in in-cylinder temperature [47]. The reduction in NOx
emissions was a result of these factors [48].
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Figure 19. NOx emissions and distribution.

Figure 19 illustrates the contour map of the in-cylinder NOx distribution of the engine
under different loads and EGR rates. It can be observed that the in-cylinder NOx distribu-
tion decreased with the continuous increase in EGR rates at all loads. Furthermore, when
juxtaposed with the contour map depicting the distribution of in-cylinder combustion tem-
peratures, as illustrated in Figure 15, it becomes evident that NOx primarily accumulated
in areas characterized by elevated temperatures. Temperature is a crucial factor that affects
the generation of NOx emissions. Increasing the EGR rates led to a decrease in in-cylinder
combustion temperature, which was unfavorable for NOx pollutant generation, resulting
in reduced NOx emissions.

4.3.3. CO Emissions

Figure 20 illustrates the impact of different exhaust gas recirculation (EGR) rates on
CO emissions from the engine under various loads. The figure shows that CO emissions
initially increased and then decreased with the increase in crank angle. This was due to
the oxidation of early-formed CO pollutants during combustion, leading to a decrease
in CO emissions. CO emissions increased continuously with increasing EGR rates at
all loads. Higher EGR rates resulted in a more pronounced increase in CO emissions.
This is because the production of CO was mainly influenced by temperature and oxygen
content [49]. When EGR was not utilized, the relatively higher temperature and oxygen
content inside the cylinder had a smaller impact on CO emissions compared to the scenario
with EGR. As EGR rates increased, exhaust gas was introduced into the cylinder, reducing
oxygen concentration and promoting the formation of oxygen-deficient regions. This led to
increased CO emissions. Furthermore, EGR utilization increased the exhaust gas content in
the intake air, thereby raising the specific heat capacity of the mixture and lowering the
combustion temperature inside the cylinder. The lower temperature and oxygen content
were unfavorable for CO oxidation, resulting in increased CO emissions [50].
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4.3.4. HC Emission

Figure 21 showcases how different EGR rates influenced HC emissions from the engine
across various load conditions. The graph illustrates a consistent rise in HC emissions
as EGR rates increased at all loads. This trend stemmed from the reduction in oxygen
content within the cylinder due to increased EGR rates, consequently diminishing the
engine’s combustion efficiency. As a result, the flame was more likely to extinguish near
the cylinder wall during combustion, leading to incomplete fuel combustion and increased
HC emissions [51], which are one of the primary sources of HC emissions. Moreover,
the escalation of EGR rates led to a decrease in both in-cylinder combustion temperature
and oxygen content. This alteration significantly impacted the oxidation process of HC,
ultimately culminating in an upsurge in HC emissions.
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5. Multi-Objective Optimization Based on Response Surface Methodology

This study focused on the optimization of combustion and emission characteristics
of a dual-fuel engine based on three factors: load, blend ratio of canola oil, and EGR.
Response surface methodology was employed to conduct multi-objective optimization of
the dual-fuel engine [52]. The primary objective was to enhance the BTE of the diesel engine
while reducing BSFC, as well as the emissions of nitrogen NOx, HC, and CO under high
engine loads by incorporating canola oil and EGR. The ultimate objective was to ascertain
the most advantageous operational parameters for the dual-fuel engine utilizing biodiesel.

5.1. Model Fitting Analysis and Evaluation

In the present study, response surface methodology was used to establish a response
surface model for dual-fuel engines to predict their combustion and emission performance.
Based on the above research scope, the Box–Behnken experimental design method was
used to design experiments for the following parameters: engine load from 50% to 100%,
canola oil addition rate from 0% to 15%, and EGR rate from 0% to 15%. Initially, it is
essential to incorporate the pertinent input variables into the mathematical model of the
response surface.

5.2. Analysis and Evaluation of Fitting Model

Utilizing the least squares method, the response variables, including BSFC, BTE, HC,
and NOx emissions, were fitted based on the simulated results obtained through design.
The regression equations for each response variable in the response surface model are
presented below:

BSFC = 327.02− 41.69x− 47.48y + 22.78z− 0.6412xy− 8.81xz
+5.1yz− 5.8x2 + 5.2y2 + 15.49z2 (18)

BTE = 38.48 + 1.66x + 2.28y− 0.8256z + 0.9258xy− 0.0036xz
−0.3501yz− 0.3566x2 + 0.5551y2 + 0.2567z2 (19)

HC = 563.16− 115.55x− 237.61y + 32z− 12.47xy + 35.56xz
+29.81yz− 45.88x2 + 2.06y2 − 25.63z2 (20)

NOx = 400 + 138.35x + 119.17y− 72.01z + 45.9xy− 13.29xz
−24.23yz + 17.97x2 − 10.86y2 + 15.40z2 (21)

where x, y, and z denote the canola oil addition fraction, load fraction, and EGR, respectively.
The ANOVA parameters are shown in Tables 4 and 5. From the tables, it can be seen

that the p-values of the quadratic model were all less than 0.0001. Therefore, the response
surface model showed good predictability and agreement with experimental results.
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Table 4. Analysis of variance table of BSFC and BTE.

Parameter
BSFC BTE

F-Value p-Value F-Value p-Value

Model 162.68 <0.0001 144.65 <0.0001
x 459.82 <0.0001 412.71 <0.0001
y 630.04 <0.0001 789.65 <0.0001
z 161.20 <0.0001 120.23 <0.0001

xy 0.0687 0.7897 79.01 <0.0001
xz 12.98 0.0048 0.0013 0.9697
yx 4.56 0.0653 12.02 0.0073
x2 2.99 0.1203 6.21 0.0296
y2 2.96 0.1173 18.34 0.0017
z2 20.89 0.0010 3.16 0.1073
R2 0.9928 0.9923

Adj-R2 0.9873 0.9854
Pred-R2 0.9398 0.9381

Table 5. Analysis of variance of HC and NOx.

Parameter
HC NOx

F-Value p-Value F-Value p-Value

Model 189.68 <0.0001 536.40 <0.0001
x 284.46 <0.0001 2224.93 <0.0001
y 1252.22 <0.0001 1715.82 <0.0001
z 24.89 0.0005 689.08 <0.0001

xy 2.12 0.1812 152.72 <0.0001
xz 17.20 0.0020 13.10 0.0047
yx 11.81 0.0064 42.54 <0.0001
x2 14.82 0.0032 12.41 0.0055
y2 0.0364 0.8525 5.54 0.0404
z2 4.55 0.0587 8.96 0.0135
R2 0.9842 0.9978

Adj-R2 0.9789 0.9962
Pred-R2 0.9623 0.9651

The difference between the predicted values and the actual values is called the residual.
Figure 22a–d present a numerical comparison of the actual and predicted levels for the
engine. The figures depict that the deviations between the predicted and experimental data
for the engine fall within the ideal range. Furthermore, a proportional relationship between
the predicted and actual values was evident. Demonstrating the accuracy of established
models for predicting dual fuel engine performance, all regression models for the response
shown in the figures had a good fit at the 95% confidence level.

5.3. Optimization Results Analysis
5.3.1. Specific Fuel Consumption for Brakes

BSFC denotes the effective power output of an engine utilizing various fuels over a
defined time interval. In Table 4, it is evident that the fractions of canola oil, engine load, and
EGR significantly influenced the engine (p < 0.0001). Furthermore, the coefficients of determi-
nation R2, Adj-R2, and Pred-R2 for BSFC response values were 99.28%,98.73%, and 93.98%,
respectively, demonstrating the exceptional suitability of this model for BSFC prediction.

The BSFC surface plots of separate variables at different loads are depicted in Figure 23a–c.
Higher values of the F-statistic in Table 4 correspond to a greater influence on BSFC. Therefore,
the sequence of factors affecting BSFC emissions was as follows: engine load > canola oil
ratio > EGR. Among these, engine load exhibited a positive correlation with BSFC. This is
because an increase in load improved the combustion conditions of the engine, leading to a
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reduction in BSFC. However, the effect of EGR on BSFC initially changed slowly, followed
by a significant increase in BSFC with an increase in EGR. Increasing the EGR rate reduced
the oxygen concentration in the engine cylinder, resulting in inadequate fresh air intake and
deteriorated combustion, ultimately increasing BSFC. Therefore, higher loads contributed to a
reduction in BSFC.
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5.3.2. Thermal Efficiency

Table 4 displays the impact parameters of canola oil proportion, EGR, and load on
engine BTE, revealing their notable effects on BTE (p < 0.0001). Moreover, the noteworthy
p-values of the quadratic terms signify the presence of quadratic impacts. Furthermore,
the high values of R2, Adj-R2, and Pred-R2, standing at 99.23%, 98.54%, and 93.81%,
respectively, demonstrate the model’s exceptional predictive capability for BTE.

Figure 24a–c illustrate the BTE surface plots depicting the influence of different vari-
ables across various loads. It can be observed that the order of variables influencing BTE
was as follows: load > canola oil percentage > EGR. Particularly, an increase in load led
to a noticeable enhancement in BTE, especially at higher loads. This was attributed to
the increased intake volume as the load rose, which significantly improved combustion
conditions within the engine cylinder, consequently boosting BTE. Across all scenarios, as
EGR varied from 0% to 15%, BTE exhibited a decreasing trend. Elevated EGR levels diluted
the concentration within the engine cylinder, diminishing the combustion reaction rate,
and consequently leading to a decline in BTE. Therefore, optimal BTE can be attained at
higher loads.
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5.3.3. HC Emission

Table 5 displays the influence parameters of canola oil proportion, engine load, and
EGR on engine HC emissions, revealing the significant impact of all three variables on
HC emissions (p < 0.0001). Additionally, the elevated values of R2, Adj-R2, and Pred-R2,
standing at 98.42%, 97.89%, and 96.23%, respectively, indicate the model’s outstanding
predictive ability for HC emissions.

Figure 25a–c illustrate the HC surface plots showcasing the impact of different vari-
ables across various loads. The sequence of variables impacting HC emissions was evident
as follows: load > canola oil percentage > EGR, with load exerting the most pronounced
influence. As load escalated, HC emissions notably diminished, particularly at 100% load,
where unburned HC emissions reached their nadir. This phenomenon can be ascribed to
the substantial enhancement in combustion conditions within the engine cylinder with
increasing load, resulting in more thorough combustion. The elevation in biodiesel content
led to an augmentation in concentrations of H and OH radicals within the engine cylinder,
accompanied by an increase in cylinder temperature, collectively contributing to the reduc-
tion in HC emissions. Therefore, larger loads and higher biodiesel percentages contributed
to a reduction in HC emissions.
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5.3.4. NOx Emission

The primary factors influencing NOx emissions included the oxygen concentration
and the temperature within the engine cylinder. The impact parameters of biodiesel blends,
engine load, and EGR on engine NOx emissions are presented in Table 5, demonstrating
the significant effects of these three variables on NOx emissions (p < 0.0001). Furthermore,
the values of R2, Adj-R2, and Pred-R2 for the response of NOx emissions stand at 99.78%,
99.62%, and 96.51%, respectively, indicating the high suitability of the model for predicting
NOx emissions.

Figure 26a–c display the surface plots depicting NOx emissions under various condi-
tions across different loads. It is evident that the magnitude of the effect on NOx emissions
followed the order EGR > canola oil percentage > load, with EGR having the most signifi-
cant effect on NOx emissions. This was mainly due to the decrease in fresh air and oxygen
concentration that resulted from the increased EGR, which led to a reduction in flame prop-
agation speed and a slower rise in temperature. In addition, both high biodiesel blends and
high engine load increased the cylinder temperature, which promoted nitrogen–oxygen
reactions and resulted in the formation of a large amount of NOx. Hence, EGR emerged as
a crucial factor in mitigating NOx emissions. By introducing appropriate EGR under high
loads and canola oil addition, optimal NOx emissions can be achieved.
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5.3.5. Multi-Objective Optimization

In this section, a response surface methodology was utilized to perform multi-objective
optimization of the engine. The goal was to attain higher BTE while simultaneously
lowering BSFC, HC, and NOx emissions under high engine load conditions through the
incorporation of both canola oil and EGR. Ultimately, the optimal solution yielded an
ideal value of 0.788. Accordingly, the optimal input parameters were identified as 6.9%
canola oil fraction, 100% engine load, and 7.7% EGR. Contour plots of BSFC, BTE, HC,
and NOx emissions at the maximum expected value after optimization are shown in
Figure 27. Considering the optimized input parameters, the best values of BSFC, BTE,
HC, and NOx emissions were determined as 282.62 g/(kW·h), 38.15%, 410.37 ppm, and
274.38 ppm, respectively.

Overall, the three factors significantly influenced the desired output responses, sta-
tistically contributing to an enhancement in BTE and reduction in BSFC, NOx, and HC
emissions. Moreover, EGR demonstrated significant statistical significance in reducing
NOx emissions. It is noteworthy that post-multi-objective optimization using RSM, the
combustion and emission characteristics of the dual-fuel engine experienced substantial
improvements when appropriate amounts of canola oil and EGR were utilized.
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To validate the accuracy of the response surface optimization results, experimental
tests were performed on the dual-fuel engine. Table 6 presents the experimental values,
predicted values, and error ratios of the dual-fuel engine. It is evident that there exists
a substantial correlation among all the output responses. The discrepancies between
the experimental and predicted values for BSFC, BTE, HC, and NOx emissions were
relatively minor, standing at −0.761%, 0.370%, −1.199%, and 3.699%, respectively. Thus,
the established response surface model demonstrated high prediction accuracy for the
dual-fuel engine.

Table 6. Comparison of predicted and experimental results.

Biodiesel% Load% EGR% Parameter BSFC
(g/kW·h)

BTE
(%)

HC
(ppm)

NOx
(ppm)

Actual 280.47 38.29 405.45 284.53

6.9 100 7.7 Predicted 282.62 38.15 410.37 274.38

Error(%) −0.761 0.370 −1.199 3.699

6. Conclusions

This research delved into exploring the combustion and emission characteristics of a
dual-fuel engine utilizing biodiesel blends, employing both simulation and experimental
approaches. Initially, an accurate 3D CFD model was devised to simulate the engine’s
fuel injection, combustion, and emission processes. Following this, the investigation
delved into assessing the influence of varying biodiesel blend ratios on key parameters
such as in-cylinder pressure, combustion temperature, and BSFC, as well as emissions of
NOx, HC, and CO, leveraging the established model. Furthermore, the study scrutinized
the impact of different EGR rates on the performance of the biodiesel dual-fuel engine.
Ultimately, employing a multi-objective optimization approach via RSM, the research
aimed to optimize BTE while concurrently minimizing BSFC, NOx, HC, and CO emissions
across different engine loads, blend ratios, and EGR rates, thus identifying the most
favorable operational conditions for engine. Hereunder is the condensed overview of the
entire investigation:

(1) Increasing the biodiesel proportion in the fuel blend at 50%, 75%, and 100% loads
amplified the cylinder pressure and temperature. This augmentation was more
conspicuous at higher biodiesel ratios. Nonetheless, integrating biodiesel affected
the engine’s economic viability. Irrespective of the load conditions examined, higher
biodiesel ratios correlated with heightened fuel consumption and diminished thermal
efficiency. Additionally, raising the biodiesel content substantially reduced soot, CO,
and HC emissions in the exhaust, albeit at the expense of escalated NOx emissions.

(2) At 50%, 75%, and 100% engine loads, elevating the EGR rate diminished both cylinder
combustion temperature and pressure. This reduction was more pronounced at higher
EGR rates. However, the utilization of EGR technology in the engine did affect its
economic performance to a certain extent. Across all loads investigated, augmenting
the EGR rate led to increased fuel consumption and decreased thermal efficiency of
the engine. Furthermore, raising the engine’s EGR rate markedly diminished NOx
emissions in the exhaust, albeit resulting in elevated emissions of soot, CO, and HC.

(3) Increasing the engine load had a significant effect on improving BSFC and BTE.
Augmenting the proportion of canola oil and load can reduce HC emissions, but may
increase NOx emissions. However, the utilization of EGR technology can notably
decrease NOx emissions.

(4) Utilizing the response surface methodology for multi-objective optimization, the opti-
mum operating conditions for the engine were found to be running at 100% load, with
a biodiesel blend of 6.9% and an EGR rate of 7.7%. Following a comprehensive analy-
sis, an ideal value of 0.656 was determined. At this configuration, the corresponding
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values for BSFC, BTE, HC, and NOx emissions were established as 282.62 g/(kW·h),
38.15%, 410.37 ppm, and 274.38 ppm, respectively.
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Nomenclature

3D Three-dimensional
CFD Computational fluid dynamics
ANOVA Analysis of variance
CPs Cylinder pressures
B5 5% biodiesel + 95%diesel
D100 Pure diesel
B10 10% biodiesel + 90%diesel
EGR Exhaust gas recirculation
B15 15% biodiesel + 85%diesel
FAME Fatty acid methyl esters
B100 Pure biodiesel
HC Hydrocarbon
BTE Brake thermal efficiency
HRR Heat release rate
BSFC Brake specific fuel consumption
KH-RT Kelvin Helmholtz model and Rayleigh Taylor
CI Compression ignition
NOx Nitrogen oxides
CO Carbon monoxide
RSM Response surface methodology
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