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Abstract: In 2021, Mexico produced approximately 24.2 million tons of white corn, generating
3.6 million tons of corn cob residue. The final disposal of corn cob poses an environmental challenge
in certain regions. This study examines the technical–economic feasibility and the greenhouse gas
(GHG) mitigation potential of integrating a small-scale cogenerating gasifier fueled by corn cob into
a nixtamalized corn flour manufacturing small and medium-sized enterprise (SME). This integration
enables the generation of heat and electricity from the produced synthesis gas. Moreover, the process
yields residual carbon, which can be used as biochar for soil restoration and removing atmospheric
CO2. This option holds significance for the corn flour agroindustry in Mexico, as, in 2021, it consumed
approximately 601.9 GWh of electrical energy and 938,279 GJ of thermal energy from LP Gas in its
manufacturing processes to produce 2.6 million tons of nixtamalized white corn flour. These processes
contributed to a total emission of 410,232 tons of CO2 into the atmosphere. The findings of this study
demonstrate a cumulative reduction of 51.7% in CO2 emissions, resulting in economic benefits of
USD 85,401 in 2017 for a case study SME that annually produces 1039 tons of corn flour. This study
reveals the integration of a gasifier–cogenerator system fueled by corn cob as an economically viable
low-carbon technology in the corn flour manufacturing industry.

Keywords: small CHP gasification; corn cob; biochar; Mexican flour industry; low carbon technology

1. Introduction

Unlike first-generation bioenergy, agricultural and forestry residues constitute a re-
newable source of energy that has a greater capacity to reduce GHG emissions and replace
fossil fuels [1]. Among the agricultural residues available in Mexico, corn cob constitutes
the second most abundant residue after sugarcane bagasse [2,3]. Globally, in 2021, Mexico
ranked ninth in corn production [4] and exported this food to 18 countries [5], ranking
as the tenth most significant exporter of corn grains worldwide. In 2021, approximately
24.2 million tons of white corn were produced [6], generating 3.6 million tons of residual
corn cobs (15% in weight [7]). In the period from October 2020 to September 2021, the
destiny destination of 54.5% of white corn production was for human consumption, 18.2%
for livestock consumption, 20.7% for self-consumption, 1.8% for exports, 0.7% for seed,
and the remaining 4.1% were losses [8]. Currently, the consumption structure remains
almost the same, with very slight variations. Corn cob is one of the primary residues
of the maize harvest, along with stover and leaves [3]. While most residues remain in
the field, most of the corn cob is generated in the agroindustrial process of corn grain
production [9]. The composition of corn cob consists mainly of cellulose, 45%, lignin, 15.8%,
and hemicelluloses, 33.6% [10,11]. It serves as a support to mitigate soil erosion [12], and
researchers have explored its potential for obtaining organic compounds [13] and other
industrial products [14–16]. However, its high content of lignocellulosic materials limits
its use as an input for chemical product transformation [17,18]. Due to the high degree of
lignification of corn cob, its low digestibility, and its low nutritional content [19], it is used
as cattle feed only during the dry or drought seasons.
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However, some regions in Mexico exhibit a much higher corn production compared
to consumption, resulting in the final disposal of corn cob as an environmental problem [2].
Thus, there is a need for a more modern energy valuation of corn cob. Studies on the energy
utilization of corn cob have been conducted since the beginning of the last century. A wide
variety of thermochemical processes have been studied and applied [20,21], such as direct
combustion, pyrolysis, gasification, and also biochemical processes: fermentation [22] and
biodigestion [23].

Numerous studies agree that the thermochemical conversion of biomass by gasification
is a technological alternative that is already commercially available for the transformation
of lignocellulosic biomass into syngas, bio-oil, and waste coal [10,24–26]. The synthesis gas,
or syngas for short, which is obtained by gasifying biomass above 700 ◦C typically contains
approximately 18% ± 4% hydrogen (in mass units), 18% ± 3% carbon monoxide, less than
4% methane, and 13% ± 3% carbon dioxide [27]. The composition of syngas primarily
depends mainly on the gasification temperature [9].

Syngas is usually used by direct combustion in boilers, burners, furnaces, and dry-
ers [28]. When burned in an internal combustion engine, the mechanical energy produced
can also produce electricity when coupled to a generator [29,30]; in addition, heat can be
recovered from engine exhaust gases [31] or by direct combustion in burners [28].

Biomass gasifiers also have liquid by-products such as tar or bio-oil [32,33]. Second-
generation liquid biofuels such as ethanol, methanol, and diesel can be produced from
syngas refining [33].

In theory, an ideal gasifier regularly operating at temperatures above 700 ◦C [34,35]
should not produce residual carbon; however, in practice, 5% to 10% by weight of the
input biomass is converted to residual carbon or biochar [36,37]. This biochar has a high
carbon content and has multiple applications, including its use in producing supercapacitor
catalysts [38], filtering tar from combustion or gasification gases, acting as a catalyst in
biodiesel production, and reducing nitrogen oxides [39]. The IPCC 1.5 ◦C special report
recognizes biochar as a carbon removal technique due to its capability of sequestering
carbon from the atmosphere, and when biochar is reintegrated into the soil, as a soil
structure improver or fertilizer as it has the potential to remain in the soil for hundreds of
years [40–43].

The total mitigation potential of residual biomass gasification is then the sum of
the CO2 emissions removed from the atmosphere, as they are stored underground in
biochar, and the avoided emissions are due to the substitution of fossil fuels used for the
cogeneration of heat and power.

This article displays the corn flour manufacturing industry’s technical–economic
feasibility and GHG mitigation potential by integrating a commercial small CHP gasifier
fed by corn cob; it will co-generate heat and power from the synthesis gas obtained. This
article quantifies the potential for mitigating GHG emissions in the corn flour industry. It
considers substituting LP gas in conventional boilers by introducing corn cob as a fuel in a
gasifier to produce synthesis gas and co-generate heat and electricity with it and biochar
as a by-product. The mitigation potential also includes substituting electricity from the
grid and carbon removal from the atmosphere due to using biochar for soil restoration,
resulting in carbon storage.

We are considering, on the one hand, the abundant amount of residual corn cob in
some regions of Mexico and, on the other hand, the energy needs of the corn flour industry
in Mexico. In this article, we propose, for the first time in the literature, the gasification of
corn cob for heat and power generation in this industry. We also are accounting for the GHG
mitigation benefit from the reutilization of residual carbon as biochar for soil restoration
and CO2 sequestration. Furthermore, we present the technical–economic feasibility results
and the potential of GHG mitigation in an SME of nixtamalized corn flour case study.



Energies 2024, 17, 2256 3 of 16

2. Materials and Methods
2.1. Corn Characterization

We conducted a literature review on studies that performed proximate and elemental
analyses of corn cob. The results of the proximate analyses are presented in Table 1. The
corn cob is a residue from the corn grain agroindustry and it can be directly utilized as
fuel due to its calorific value and high carbon content [44]. Table 1 provides typical values
for the fixed carbon content in corn cob from various countries. The results obtained from
proximate analysis range from 11.7% to 21.3% by weight [9,10,28,45–48]. Fixed carbon
represents the mass of organic matter that remains after moisture and volatile material
release due to increasing biomass temperature in this analysis. It plays a crucial role in
energy applications, as almost all fixed carbon forms carbon dioxide during combustion
reactions [49].

Table 1. Values obtained from the proximate analysis of corn cob.

Moisture
(%)

Volatiles
(%)

Ash
(%)

Fixed Carbon
(%) Country Reference

10.00 80.79 1.81 17.40 Colombia [9]
5.30 74.85 8.18 11.70 USA [10]

- 78.70 0.90 16.20 Thailand [45]
4.60 79.90 1.80 13.70 South Africa [46]
10.10 80.06 2.12 17.82 Italy [28]
5.10 65.10 8.50 21.30 South Africa [48]
10.52 65.23 7.71 16.54 Colombia [50]

Elemental values of C, H, O, N, and S and the higher calorific value obtained through
calorimetry are displayed in Table 2. The higher calorific value ranges from 14.37 to
19.34 MJ/kg. Based on the provided information, the elemental composition, calorific value,
emission factors, and amount of ash per biomass unit were determined to characterize the
corn cob.

Table 2. Corn cob elemental analysis.

C
(%)

H
(%)

N
(%)

S
(%)

O
(%)

Lower/Higher Calorific
Value (MJ/kg) Reference

47.82 5.50 0.38 0.40 44.09 17.97/19.34 [9]
51.80 5.50 0.84 0.34 41.60 - [10]
45.50 6.20 1.30 - 47.00 - [45]
50.20 5.90 0.42 0.03 43.50 19.14 * [46]
47.60 6.10 0.52 - 45.78 17.33/18.56 [28]
46.2 5.42 0.92 0.24 47.22 18.36 * [51]

44.40 5.6 0.43 1.30 48.27 18.02 ** [48]
39.95 4.97 0.60 - 47.42 14.7 *** [50]

* Higher Heating Value; ** Non specified; *** Lower Heating Value.

Carbon and oxygen are the main components of solid biofuels and are involved in an
exothermic reaction during combustion, generating CO2 and H2O [52]. Table 2 exhibits
that for all corn cob samples, carbon content ranged from 39.3% to 51.8%, oxygen content
ranged from 41.6% to 48.3%, and hydrogen content ranged from 5.0% to 6.2%.

The literature normally recommends a biomass moisture content below 20% for op-
timal gasification. In this article, we assume a 10% average moisture content, an 80.42%
volatile material content, and a 17.65 MJ/kg lower calorific value, which represents the
average values obtained from [9,28]. Based on these assumptions, it can be asserted that
the volatile content is relatively high compared to other biomass studies, which creates
favorable conditions for the generation of synthesis gas. Furthermore, the calorific value
and the percentage contents of fixed carbon and ash are considered average.
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2.2. Gasification of Corn Cob for Cogeneration and Residual Biochar

There are many routes for treating biomass for bioenergy; among the most employed
are the biological and thermochemical processes. Gasification, as one of the thermochemical
options, has gained significant recognition [53]. Gasification involves the conversion of
biomass via partial oxidation reactions into synthesis gas, also known as syngas or producer
gas. Syngas primarily consists of hydrogen (H2), methane (CH4), carbon monoxide (CO),
carbon dioxide (CO2), and water vapor (H2O), making it suitable for environmentally
friendly cogeneration applications [53]. In addition to syngas, the gasification process
allows for the production of valuable by-products, including bio-oil and biochar. Utilizing
corn cobs through gasification presents a sustainable approach to valorizing this residue, a
by-product of the grain corn agroindustry [14].

Some authors are still considering gasification technology as emerging [54]; never-
theless, a range of small-scale gasifier manufacturers are already available in the market,
typically designed for capacities between 5 and 100 kWt. Most gasifiers require forest
biomass with a maximum moisture content of 20% [55]. To accommodate a broader range
of biomass inputs, including firewood, agricultural residues, and agro-industrial residues,
we sought a versatile gasifier capable of accepting biomass with a moisture content of up
to 30% (by weight). The Power Pallet [56] meets these criteria. According to the manufac-
turer’s specifications, this gasifier incorporates a multi-stage gasification system, which
involves preheating the biomass input to reduce its moisture content to suitable levels for
gasification. This flexibility enables the utilization of different forest or agricultural biomass
sources with high efficiency, as shown in Figure 1 and Table 3. The PP30 gasifier integrates a
25 kWe electric generator and cogenerates up to 50 kWt of thermal energy through process
heat recovery. It operates with a specific biofuel consumption of 1 kg Biomass/kWhe and
produces up to 0.08 kg of biochar per kilogram of biomass input [57].

Energies 2024, 17, x FOR PEER REVIEW 5 of 17 
 

 

Gasification efficiency (wood to gas) 82% [56] 

Cost without shipping and installation 55,000 € [57] 

 
Figure 1. Simplified arrangement of components of the PP30 gasifier. Source: [58]. 

In this study, we utilized the available information of a small-scale cogenerating gas-
ifier manufactured by All Power Labs, model PP30, which features a downflow reactor 
with fixed bed architecture and has a single throat and a patented Imbert-type design 
(refer to Figure 1) [58]. Once the user turns on the reactor, it reaches operating temperature 
in approximately 30 min, ranging from 860 to 950 °C. The heating rate varies depending 
on the balance between combustion and reduction reactions. At the bottom of the reactor 
is a stirring and moving grate, facilitating the discharge of biochar through an auger. Con-
sidering the grate basket’s consumption and geometrical data, the char’s residence time is 
estimated to be around 4 h. The plant design incorporates dry filtration for gas cleaning, 
wherein the gas is cooled and filtered using felt bags above the water dew point. This 
method enables gas filtration without condensing tarry compounds, as they are retained 
within the baghouse [58]. 

2.3. Scenario Building Methodology 
The methodology employed in this study involves comparing technological scenar-

ios to assess the feasibility of integrating corn cob gasification into the corn flour manu-
facturing process. The reference year chosen is 2022, as it provides the necessary technical 
and economic information for scenario construction. The analysis period is 20 years, 
which aligns with the typical equipment lifetime. 

The first scenario, known as the Base Scenario (BS), uses steam boilers fueled by LP 
gas to provide process heat to corn flour production in small and medium enterprises in 
Mexico. The required electricity is purchased from the CFE distribution network. This 
scenario presents the calculations of thermal and electrical energy consumption and GHG 
emissions. 

In the Alternative Scenario (AS), a significant portion of the heat required for corn 
flour manufacturing is provided by cooling both the syngas from corn cob gasification 

Figure 1. Simplified arrangement of components of the PP30 gasifier. Source: [58].



Energies 2024, 17, 2256 5 of 16

Table 3. All Power Labs PP30 operation specifications.

Parameters Value References

Max. continuous operation 24 h [56]
Electrical efficiency (wood to power) 23% [56]
Gasification efficiency (wood to gas) 82% [56]

Cost without shipping and installation 55,000 € [57]

In this study, we utilized the available information of a small-scale cogenerating
gasifier manufactured by All Power Labs, model PP30, which features a downflow reactor
with fixed bed architecture and has a single throat and a patented Imbert-type design (refer
to Figure 1) [58]. Once the user turns on the reactor, it reaches operating temperature in
approximately 30 min, ranging from 860 to 950 ◦C. The heating rate varies depending on
the balance between combustion and reduction reactions. At the bottom of the reactor
is a stirring and moving grate, facilitating the discharge of biochar through an auger.
Considering the grate basket’s consumption and geometrical data, the char’s residence
time is estimated to be around 4 h. The plant design incorporates dry filtration for gas
cleaning, wherein the gas is cooled and filtered using felt bags above the water dew
point. This method enables gas filtration without condensing tarry compounds, as they are
retained within the baghouse [58].

2.3. Scenario Building Methodology

The methodology employed in this study involves comparing technological scenarios
to assess the feasibility of integrating corn cob gasification into the corn flour manufacturing
process. The reference year chosen is 2022, as it provides the necessary technical and
economic information for scenario construction. The analysis period is 20 years, which
aligns with the typical equipment lifetime.

The first scenario, known as the Base Scenario (BS), uses steam boilers fueled by LP gas
to provide process heat to corn flour production in small and medium enterprises in Mexico.
The required electricity is purchased from the CFE distribution network. This scenario
presents the calculations of thermal and electrical energy consumption and GHG emissions.

In the Alternative Scenario (AS), a significant portion of the heat required for corn flour
manufacturing is provided by cooling both the syngas from corn cob gasification and the
exhaust gases resulting from the combustion of the syngas in an internal combustion engine
that drives an electric generator. We assume that all the electricity generated in this scenario
is consumed in the corn flour production process, with any remaining demand being met
by electricity from the grid. Unlike the Base Scenario, a smaller LPG-fired steam boiler is
utilized to cover the thermal demand not met by the cogenerating gasifier. The scenario
calculates thermal and electrical energy consumption and the associated GHG emissions.

Furthermore, we conduct a cost–benefit analysis to determine the economic feasibility
of both scenarios, making the following assumptions. We assume a zero cost for the corn
cob because, as already mentioned, some Mexican regions have high corn productivity,
such as the one assumed in this case study, where the corn cob is a residual product that
involves transportation costs to its final disposal site; in contrast, in this study, we assume
that the corn cob is in situ at the flour plant and therefore its cost is zero. Also, to determine
the cost of LPG and electricity over the 20-year analysis period starting in 2022, we use
official forecasts, see Figure 2.
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2.4. Cost Analysis Methodology

The following cost model was developed following [62], and was applied to estimate
the costs of the options analyzed in the comparison between feedstock LPG and electricity
in the Base Scenario and corn cob feedstock for heat and power generation in the Alternative
Scenario, where:

CTAS−BS = C1AS−BS + C2AS−BS + C3AS−BS (1)

C1AS−BS = Investment incremental costs in present value in the AS
C2AS−BS = Operation and maintenance costs in present value in the AS
C3AS−BS = Avoided energy costs in present value in the AS

with:

C1AS−BS = ∑p
y=0

ICASy − ICBSy

(1 + r)y (2)

where:

ICASy = Investment costs in relation to the implementation
o f the AS f or any year y o f period p.

ICBSy = Investment costs incurred f rom the BS f or any year y
o f period p.

y = Year
p = Analysis period
r = Discount Rate

with:

C2AS−BS =
p

∑
y=1

OMCAS y − OMCBS y

(1 + r)y (3)

where:
OMCAS y = Operation and maintenance annual

costs o f the AS in the year y o f period p.
OMCBSy = Operation and maintenance annual

costs o f the BS in the year y o f period p.

with:

C3AS−BS = ∑p
y=1

ECASy − ECBS y

(1 + r)y (4)
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where:
ECASy = Annual costs f rom energy required o f the

AS implementation in the year y o f period p.
ECBSy = Annual costs f rom energy used in the BS

f or any year y o f period p.

To obtain the net present value (NPV) of the incurred costs, we considered a discount
rate (TD) of 12% and an analysis period of 20 years because it is equal to the useful life of
the gasifier reactor.

3. Case Study: Corn Flour Production
3.1. Description of the Production Process

Healthy and clean corn grains are subjected to alkaline cooking and grinding to obtain
nixtamalized corn flour [63]. This process, known as traditional nixtamalization, involves
cooking the corn grains in a solution of calcium hydroxide Ca(OH)2 at a 1% concentration
per kilogram of grain (w/w) dissolved in water at 90 ◦C for 40 min. The ratio is 2 L of
water to each kilogram of grain [64]. This cooking softens and breaks the pericarp of the
grain, increases its moisture content, and makes it easier to grind into a dough known
as “nixtamal”. The term “nixtamalization” comes from the Nahuatl words “nextli” (ash
lime) and “tamalli” (cooked corn dough) and refers to the process of alkaline cooking of
corn grains.

After washing, the grain is crushed in a stone mill to obtain fresh dough with a
moisture content ranging from 45% to 55%. It is then passed through a flash dryer at 260 ◦C
for 4 s to obtain dehydrated dough as lumps with a 10% maximum moisture content [64].
The lumps are subsequently pulverized in a hammer mill, and the resulting flour is sieved
through a 0.5 mm mesh. Once sieved, the flour is ready to be packaged and stored (see
Figure 3).
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Figure 3. Stages in the manufacturing process of nixtamalized corn flour.

Electrical energy is required to provide mechanical energy through electric motors for
pumping water, transporting cooked grain, washing and rinsing cooked grain, wet grinding
of nixtamal, dry grinding of flour, sifting/sifting, and packaging flour. The thermal energy
requirements are for the alkaline grain cooking and wet dough drying stages. Table 4 shows
the average energy consumption per kilo of white corn grain.

Table 4. Average unit consumption of thermal and electric energy for the corn flour manufacturing
process; CO2 Emission Factors due to LPG combustion in boilers and electricity consumption from
the grid of the Mexican Electric System (MES).

Process Thermal Energy Electric Energy References

(kWht/kg Grain) (kWhe/kg Grain)

Cooking 0.273 [65]
Drying 0.402 [66]

Wet grinding—stones 0.041 [65]
Dry Grinding—hammers 0.075 [67]

Add energy 0.675 0.116
CO2 Emission Factors (kgCO2/kWh)

LPG 0.234 [68]
Electricity from MES 0.505 [69]
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3.2. Base Scenario

The Base Scenario considers a small and medium-sized industry (SME) with the
capacity to produce 1039 tons of nixtamalized white corn flour annually. This study
assumes that this production is achieved by operating two shifts of eight hours per day, five
days a week throughout the year (3840 h). According to [65], for every kilogram of white
corn grain, 0.93 kg of flour is obtained. Using the unit values from Table 4, we determined
the daily energy demand for this production, resulting in 3145 kWht/day of thermal energy
and 540 kWhe/day of electrical energy.

The electricity supply in this scenario is from the Federal Electricity Commission
(CFE, by its acronym in Spanish) distribution network, demanding a total necessary for an
installed capacity of 33.7 kWe, and all the required heat is supplied by the combustion of
LPG to produce steam in a pyrotubular boiler with a capacity of 196.5 kWt (equivalent to
20 BHP (Boiler Horsepower)) [70] and an efficiency of 82%. To perform the cost analysis of
this BS scenario, we will use the information given in Table 5.

Table 5. Unit investment cost and investment cost of a 20 BHP boiler.

Equipment Cost Units References

Unit investment cost 20 BHP boiler USD 402.00 USD */W [71]

Investment cost 20 BHP boiler USD 79,011.89 USD Own calculations
with data from [71]

* Constant 2017 USD.

3.3. Alternative Scenario

This scenario considers the reuse of corn cob for the partial substitution of fossil fuels
involved in the annual manufacturing of 1039 tons of nixtamalized corn flour. Corn cob
is a residue of the corn agroindustry; for each ton of corn grain, 150 kg of corn cob is
obtained [65]. See Figure 4, a scheme showing the integration of a biomass CHP gasifier to
the nixtamalized white corn flour manufacturing process.
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The corn cob will be the input for a cogenerating biomass gasifier. Using corn cob with
the characteristics presented by [9] is considered (see Tables 1 and 2). Also, the gasifier–
cogenerator equipment considered is that described in Section 2.2, which generates 25 kWe
of electrical energy and 50 kWt of thermal energy with an input of 27.5 kg of biomass fuel
per hour. However, the above annual production requires more than this cogeneration
capacity. An extra heat generator, an LPG boiler of the same type as the one in BS, must be
included to satisfy the thermal demand. Nevertheless, with a smaller capacity, 147.7 kWt
(15 BHP) [70], and to satisfy the electrical demand, the purchase of electricity from the grid
is needed. To perform the cost analysis of this AS scenario, we will use the information
given in Table 6.

Table 6. Unit investment cost and investment cost of a 15 BHP boiler and a CHP gasifier.

Equipment Cost Units References

Unit investment cost CHP gasifier USD 2376.0 USD/kWe [57]

Investment cost CHP gasifier 25 kWe USD 59,400.0 USD Own calculations
with data from [57]

Unit investment cost Boiler USD 402.0 USD/kWt [71]

Investment cost 15 BHP boiler USD 59,375.8 USD * Own calculations
with data from [71]

* Constant 2017 USD.

4. Results
4.1. Reduction of GHG Emissions

Based on the average unit consumptions provided in Table 4, the production of
270.8 kg of flour per hour, operating in two shifts per day, five days per week throughout
the year to achieve a total production of 1039 tons per year of nixtamalized white corn flour,
requires an installed thermal capacity of 196.5 kWt and an electrical equipment capacity
of 33.7 kWe. We obtained the following emission scenarios by applying the CO2 emission
factors associated with the National Electric System and LPG, as summarized in Table 7
and Figure 5.

Table 7. Annual, cumulative, and avoided CO2 emissions (tCO2) in the Base Scenario (BS) and in the
Alternative Scenario (AS), and the total emissions reduction.

Annual
tCO2

Accumulated over 20 Years
tCO2

Cumulative Avoided
Emissions

AS-BS
tCO2

% Cumulative
Emissions Reduction

(AS-BS)/BS

LPG emissions in BS 176.6 3531.4
Grid electricity
emissions in BS 65.4 1307.0

Total BS emissions 241.9 4838.4
LPG emissions in AS 131.6 2632.0 899.4 18.6%

Grid electricity
emissions in AS 17.5 349.0 958.0 19.8%

Total AS emissions 149.1 2981.0
Emissions avoided by

energy substitution 92.9 1857.4 38.4%

Emissions avoided by
storage in Biochar 31.1 622.0 12.9%

Total avoided
emissions 124.0 2479.4 51.2%

Source: Own elaboration.
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In the Base Scenario, we observe that all thermal energy is supplied by a 196.5 kWt
boiler fueled by LPG, while all the electricity consumed is sourced from the CFE network.
The annual emissions in this scenario amount to 241.9 tons of CO2, with 73% attributed to
thermal demand and 27% to electricity demand.

In the Alternative Scenario, we introduce a gasifier that utilizes corn cob as fuel,
providing 27.5 kg/h. This gasifier generates 50 kWt of thermal energy and cogenerates 25
kWe of electricity. Additionally, heat generation is complemented by a 146.5 kWt boiler,
and an additional electricity requirement of 8.7 kW is purchased from the CFE network to
meet the same energy demand as in the Base Scenario. The Alternative Scenario results in
annual emissions of 149.1 tons of CO2, with 88% corresponding to the thermal demand of
the boiler and 12% to the electrical demand.

Thanks to the integration of corn cob gasification, which accounts for 25.4% of heat
generation and 74.2% of electricity generation, a reduction of 92.9 tCO2 per year is achieved
compared to the Base Scenario. This reduction corresponds to a decrease of 38.4% relative
to the Base Scenario. Furthermore, as mentioned in Section 2.2, corn cob gasification
also generates biochar as a by-product, with an average production of 80 g per kilo of
corn cob, equivalent to 2.2 kg of carbon per hour, which further translates to 8.1 kg of
CO2/h. Over a year, this amounts to 31.1 tons of avoided CO2 emissions, assuming the
biochar is a soil improver and restorer. Importantly, the biochar remains stored in solid
form for extended periods, effectively removing CO2 from the atmosphere. This additional
atmospheric removal represents a further reduction of 12.9% compared to the Base Scenario.
When combined with the reduction mentioned above, the total avoided emissions reach
124.0 tons per year, summing up to 2479.4 tCO2 in all the analyzed period, corresponding
to a total reduction percentage of 51.2% compared to the Base Scenario. The contribution
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to emission reduction from corn cob gasification, which partially substitutes LPG and
electricity, accounts for 18.6% of thermal and 19.8% of electrical energy.

When comparing the two scenarios of corn flour production in relative terms, we
verified that the total energy consumption per mass product unit is the same in both
scenarios, as we initially assumed (0.791 kWh/kg corn flour). Nevertheless, introducing a
corn cob gasifier into the manufacturing process significantly reduced CO2 emissions per
product unit. Specifically, emissions decreased from 233 grCO2/kg corn flour in the BS to
114 grCO2/kg corn flour in the AS, representing a substantial overall reduction of 51.2%
per product unit.

4.2. Cost Analysis

Data from Tables 5 and 6, Figure 6, and Table 8 show the resulting costs in net present
value, considering a discount rate of 12% and an analysis period of 20 years due to the
useful life of the gasifier [56]. Although the investment and O&M costs are 33% and 54%
higher in the AS, respectively, considerable savings are obtained in LPG and electricity,
although its price reduction is expected, see Figure 2 A notable saving is in electricity,
which, in the AS, costs approximately only a quarter of the BS. Furthermore, the NPV of
the cash flow is negative, which indicates that this investment will not only be recovered
but will also yield benefits.
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Table 8. Net present value of investment, O&M, and energy costs and the total costs in the BS, the AS,
and the difference between the two scenarios.

BS AS AS − BS

Investment USD 79,012 USD 118,776 USD 39,764
O&M USD 17,705 USD 38,817 USD 21,112

Electricity USD 81,776 USD 21,187 USD −60,589
LPG USD 336,833 USD 251,145 USD −85,688

Total costs USD 515,326 USD 429,925 USD −85,401
Source: Own elaboration.
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The levelized cost of energy (LCOE) for each scenario (BS and AS) was estimated
by annualizing the total costs presented in Table 8 and considering the annual thermal
and electrical energy requirements, using kWh units, thus obtaining that for the Base
Scenario the LCOE is USD 7.80 cents/kWh while for the Alternative Scenario it is USD
6.51 cents/kWh, which indicates that the energy cost for the AS is 17% lower than that
found for the BS, which reiterates that it is economically viable to use corn cob as an option
to mitigate climate change.

The mitigation cost of the partial substitution of a conventional LPG boiler for a
cogenerator gasifier with a smaller size boiler in the small and medium-sized nixtamalized
corn flour industry in Mexico, resulting from the ratio of the NPV of the cash flow between
the avoided emissions, was USD −85,688/2479 = USD −34.44/tCO2. Being negative, this
value means that these expenses and investments result in a benefit in the long term. Another
indicator of this investment’s convenience is the investment’s payback period; considering
an additional investment cost of USD 39,764 divided by the annual equivalent value of the
savings obtained, USD 16,757, the resulting payback period is 2.4 years. Table 8 presents the
net present value of the investment, O&M, energy costs, and the resulting total cost. The
calculations were performed considering the BS, the AS, and the difference between them.

5. Conclusions

This article analyzes the GHG mitigation potential and the technical–economic feasibil-
ity of a small-scale industry manufacturing 1039 tons of corn flour annually. The industry
considers the integration of a gasifier with cogeneration capacity, which will be fueled by
corn cobs, one of the major agricultural residues in Mexico. The gasification process pro-
duces synthesis gas, which can generate electricity when burned in an internal combustion
engine coupled to a 25 kWe power generator. In addition, heat recovery from the engine’s
exhaust gases can produce up to 50 kWt of thermal energy, used in the corn flour manufac-
turing process jointly with the electricity that is generated initially. Moreover, biochar is
obtained as a by-product of corn cob gasification, which will be used for soil restoration,
CO2 removal, and underground carbon sequestration. Due to this carbon removal plus
the avoided emissions from heat and electricity generation from corn cob gasification, a
low-carbon technology is harnessed in small-scale industries. This option represents an
overall cumulative reduction related to the Base Scenario of 2479 tCO2, which represents a
51.2% reduction in GHG emissions compared to the conventional system. In relative terms,
the emissions decreased from 233 grCO2/kg corn flour in the BS to 114 grCO2/kg corn
flour in the AS, representing a substantial overall reduction of 51.2% per product unit.

Finally, the mitigation cost of the partial substitution of a conventional LPG boiler for a
cogenerator gasifier with a smaller size boiler in the small and medium-sized nixtamalized
corn flour industry in Mexico, resulting from the ratio of the NPV of the cash flow between
the avoided emissions, was USD −34.44/tCO2, and since this value is negative, it means
that these expenses and investments result in a benefit in the long term. Additionally,
according to our results, the LCOE for the BS is USD 7.80 cents/kWh and the LCOE for the
AS is USD 6.51 cents/kWh. This means that the energy cost for the Alternative Scenario is
17% lower than that found for the Base Scenario. Therefore, it is economically feasible to
use corn cobs as an option to mitigate climate change.

This work shows, for the first time in the literature on gasification, the environmental
and economic advantages of including a gasifier–cogenerator that takes advantage of a
residue from the corn grain industry in the manufacturing industry of nixtamalized white
corn flour in Mexico.
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◦C Degrees Celsius
AS Alternative Scenario
BHP Boiler Horsepower
BS Base Scenario
C Carbon
Ca(OH)2 Calcium Hydroxide
CFE Federal Electricity Commission (CFE, by its acronym in Spanish)
CH4 Methane
CHP Combined Heat and Power
CO Carbon Monoxide
CO2 Carbon Dioxide
GHG Greenhouse gas
GJ Gigajoule
GWh Giga watt hour
H Hydrogen
H2O Water
IPCC Intergovernmental Panel on Climate Change
kg Kilogram
kW Kilowatts
kWe Kilowatt electric
kWh Kilowatt hour
kWhe Kilowatt hour electric
kWht Kilowatt hour thermal
kWt Kilowatt thermal
LCOE Levelized cost of energy
LPG Liquefied Petroleum Gas
MES Mexican Electric System
MJ/kg Megajoule/Kilogram
mm Millimeters
N Nitrogen
NPV Net present value
O Oxygen
O&M Operation and Maintenance
S Sulfur
SME Small and medium-sized enterprise
tCO2 Tons of Carbon Dioxide
USD US Dollar
w/w % Weight concentration
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