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Abstract: The Second-Order Features Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems (abbreviated as “2nd-FASAM-L”), presented in this
work, enables the most efficient computation of exactly obtained mathematical expressions of first-
and second-order sensitivities of a generic system response with respect to the functions (“features”)
of model parameters. Subsequently, the first- and second-order sensitivities with respect to the
model’s uncertain parameters, boundaries, and internal interfaces are obtained analytically and
exactly, without needing large-scale computations. Within the 2nd-FASAM-L methodology, the
number of large-scale computations is proportional to the number of model features (defined as
functions of model parameters), as opposed to being proportional to the number of model parameters.
This characteristic enables the 2nd-FASAM-L methodology to maximize the efficiency and accuracy
of any other method for computing exact expressions of first- and second-order response sensitivities
with respect to the model’s features and/or primary uncertain parameters. The application of the
2nd-FASAM-L methodology is illustrated using a simplified energy-dependent neutron transport
model of fundamental significance in nuclear reactor physics.

Keywords: exact computation of first- and second-order sensitivities of model responses to features
of model parameters; first- and second-level adjoint sensitivity systems; neutron slowing down
and transport

1. Introduction

The accuracy of results (usually called “responses”) computed by models is usually
assessed by computing the functional derivatives (usually called “sensitivities”) of the
respective model responses with respect to the parameters in the respective computational
models. The conventional deterministic methods for computing such sensitivities include
finite-differences, “Green’s function method” [1], the “forward sensitivity analysis method-
ology” [2], and the “direct method” [3]. However, for a computational model comprising
many parameters, the conventional deterministic methods become impractical for comput-
ing sensitivities because they are subject to the “curse of dimensionality”, which is a term
introduced by Belmann [4] to describe phenomena in which the number of computations
increases exponentially in the respective phase-space.

Because they are conceptually easy to implement, so-called “statistical methods” are
also used to obtain approximate response sensitivities to parameters. Statistical methods
commence with “uncertainty analysis” by constructing an approximate distribution of
the response in the parameters’ space (called the “response surface”) and subsequently
inferring quantities that play the role of (approximate) first-order response sensitivities.
Statistical methods for uncertainty and sensitivity analysis are broadly categorized as
sampling-based methods [5,6], variance-based methods [7,8], and Bayesian methods [9].
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Various variants of the statistical methods for uncertainty and sensitivity analysis are
reviewed in the book edited by Saltarelli et al. [10].

The most efficient method for exactly computing first-order sensitivities is the “adjoint
method of sensitivity analysis”, since it requires a single large-scale (adjoint) computation
for computing all of the first-order sensitivities, regardless of the number of model pa-
rameters. The idea underlying the computation of response sensitivities with respect to
model parameters using adjoint operators was first proposed by Wigner [11] to analyze
first-order perturbations in nuclear reactor physics and shielding models based on the
linear neutron transport (or diffusion) equation, as subsequently described in textbooks
on these subjects [12–16]. Cacuci [2] is credited (see, e.g., [17,18]) with having conceived
the rigorous “1st-order adjoint sensitivity analysis methodology” for generic large-scale
nonlinear (as opposed to linearized) systems involving generic operator responses and
having introduced these principles to the earth, atmospheric, and other sciences.

The second-order adjoint sensitivity analysis methodology developed by Cacuci [19,20]
was applied [21] to exactly compute the 21,976 first-order sensitivities and 482,944,576 second-
order sensitivities for an OECD/NEA reactor physics benchmark [22] modeled by the
neutron transport equation. These computations were performed with the software package
PARTISN [23] in conjunction with the MENDF71X cross section library [24] based on
ENDF/B-VII.1 nuclear data [25]; the spontaneous fission source was computed using the
code SOURCES4C [26]. This work has demonstrated that, contrary to the widely held belief
that second- and higher-order sensitivities are negligible for reactor physics systems, many
second-order sensitivities of the OECD benchmark’s response to the benchmark’s uncertain
parameters were much larger than the largest first-order ones. This finding has motivated
the investigation of the largest third-order sensitivities, many of which were found to
be even larger than the second-order ones. Subsequently, the mathematical framework
for determining and computing the fourth-order sensitivities was developed, and many
of these were found to be larger than the third-order ones. This sequence of findings
has motivated the development by Cacuci [27] of the “nth-Order Comprehensive Adjoint
Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems”
(abbreviated as “nth-CASAM-L”), which was developed specifically for linear systems
because important model responses produced by such systems are various Lagrangian
functionals, which depend simultaneously on both the forward and adjoint state functions
governing the respective linear systems. Among the most important such responses are
the Raleigh quotient for computing eigenvalues and/or separation constants when solving
partial differential equations and the Schwinger functional for first-order “normalization-
free” solutions [28,29]. These functionals play a fundamental role in optimization and
control procedures, the derivation of numerical methods for solving equations (differential,
integral, integro-differential), etc.

In parallel with developing the nth-CASAM-L, Cacuci [30] has also developed the
nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-
CASAM-N). Just like the nth-CASAM-L, the nth-CASAM-N is formulated in linearly
increasing higher-dimensional Hilbert spaces (as opposed to exponentially increasing
parameter-dimensional spaces), thus overcoming the curse of dimensionality in the sen-
sitivity analysis of nonlinear systems, enabling the most efficient computation of exactly
determined expressions of arbitrarily high-order sensitivities of generic nonlinear system
responses with respect to model parameters, uncertain boundaries, and internal interfaces
in the model’s phase-space.

Recently, Cacuci [31] has introduced the “Second-Order Function/Feature Adjoint
Sensitivity Analysis Methodology for Nonlinear Systems” (2nd-FASAM-N), which enables
a considerable reduction (by comparison to the 2nd-CASAM-N) in the number of large-
scale computations needed to compute the second-order sensitivities of a model response
with respect to the model parameters, thereby becoming the most efficient methodology
known for computing second-order sensitivities exactly. Paralleling the construction of
the 2nd-FASAM-N, this work introduces the “First- and Second-Order Function/Feature
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Adjoint Sensitivity Analysis Methodology for Response-Coupled Adjoint/Forward Linear
Systems” (1st and 2nd-FASAM-L). The mathematical methodology of the 1st-FASAM-L
is presented in Section 3, while the mathematical methodology of the 2nd-FASAM-L is
presented in Section 4. The applications of the 1st-FASAM-L and the 2nd-FASAM-L are
illustrated in Section 5 by means of a simplified yet representative energy-dependent
neutron slowing-down model, which is of fundamental importance to reactor physics and
design [32–34]. The concluding discussion presented in Section 6 prepares the ground for
the subsequent generalization of the present work to enable the most efficient possible
computation of exact sensitivities of any (arbitrarily high) order with respect to the “feature
functions” of model parameters and, hence, to the model’s parameters.

2. Mathematical Modeling of Response-Coupled Linear Forward and Adjoint Systems

The generic mathematical model considered in this work is fundamentally the same
as that considered in [27], but with the major difference that functions (‘features”) of the
primary model parameters will be generically identified within the model. The primary
model parameters will be denoted as α1, . . ., αTP, where the subscript “TP” indicates “Total
number of Primary Parameters”; the qualifier “primary” indicates that these parameters do
not depend on any other parameters within the model. These model parameters are consid-
ered to include imprecisely known geometrical parameters that characterize the physical
system’s boundaries in the phase-space of the model’s independent variables. These bound-
aries depend on the physical system’s geometrical dimensions, which may be imprecisely
known because of manufacturing tolerances. In practice, these primary model parame-
ters are subject to uncertainties. It will be convenient to consider that these parameters
are components of a “vector of primary parameters” denoted as α ≜ (α1, . . . , αTP)

† ∈ RTP,
where RTP denotes the TP-dimensional subset of the set of real scalars. For subsequent
developments, matrices and vectors will be denoted using capital and lower-case bold
letters, respectively. The symbol “≜” will be used to denote “is defined as” or “is by defini-
tion equal to”. Transposition will be indicated by a dagger (†) superscript. The nominal
parameter values will be denoted as α0 ≜

[
α0

1, . . . , α0
i , . . . , α0

TP
]†; the superscript “0” will be

used throughout this work to denote “nominal” or “mean” values.
The model is considered to comprise TI independent variables, which will be de-

noted as xi, i = 1, . . . , TI, and are considered to be the components of a TI-dimensional
column vector denoted as x ≜ (x1, . . . , xTI)

† ∈ RTI , where the sub/superscript “TI”
denotes the “Total number of Independent variables”. The vector x ∈ RTI of indepen-
dent variables is considered to be defined on a phase-space domain, denoted as Ω(α),
Ω(α) ≜ {−∞ ≤ λi(α) ≤ xi ≤ ωi(α) ≤ ∞; i = 1, . . . , TI}, the boundaries of which may
depend on some of the model parameters α. The lower boundary-point of an independent
variable is denoted as λi(α) (e.g., the inner radius of a sphere or cylinder, the lower range
of an energy-variable, the initial time-value, etc.), while the corresponding upper boundary-
point is denoted as ωi(α) (e.g., the outer radius of a sphere or cylinder, the upper range of an
energy-variable, the final time-value, etc.). A typical example of boundary conditions that
depend on imprecisely known parameters that pertain to the geometry of the models and
the parameters that pertain to the material properties of the respective models occur when
modeling particle diffusion within a medium, the boundaries of which are facing a vacuum.
For such models, the boundary conditions for the respective states (dependent) variables
(i.e., particle flux and/or current) are imposed not on the physical boundaries but on the “ex-
trapolated boundary” of the respective spatial domains. The “extrapolated boundary” de-
pends both on the imprecisely known physical dimensions of the medium’s domain/extent
and the medium’s properties, i.e., atomic number densities and microscopic transport cross
sections. The boundary of Ω(α), which will be denoted as ∂Ω[λ(α);ω(α)], comprises the
set of all of the endpoints λi(α), ωi(α), i = 1, . . . , TI, of the respective intervals on which
the components of x are defined, i.e., ∂Ω[λ(α);ω(α)] ≜ {λi(α) ∪ ωi(α), i = 1, . . . , TI}.

The mathematical model that underlies the numerical evaluation of a process and/or
state of a physical system comprises equations that relate the system’s independent vari-
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ables and parameters to the system’s state/dependent variables. A linear physical system
can generally be modeled by a system of coupled operator-equations as follows:

L[x; g(α)]φ(x) = Q[x; g(α)], x ∈ Ω(α) (1)

In Equation (1), the vector φ(x) ≜ [φ1(x), . . . , φTD(x)]
† is a TD-dimensional column

vector of dependent variables, where the sub/superscript “TD” denotes the “Total (number
of) Dependent variables”. The functions φi(x), i = 1, . . . , TD, denote the system’s “dependent
variables” (also called “state functions”). The matrix L(x;α) ≜

[
Lij(x;α)

]
, i, j = 1, . . . , TD, has

the dimensions TD × TD. The components Lij(x;α) are operators that act linearly on the
dependent variables φj(x) and also depend (in general, nonlinearly) on the uncertain model
parameters α. Furthermore, the vector g(α) ≜ [g1(α), . . . , gTG(α)] is a TG-dimensional
vector with the components gi(α), i = 1, . . . , TG, which are real-valued functions of (some
of) the primary model parameters α ∈ RTP. The quantity TG denotes the total number
of such functions that appear exclusively in the definition of the model’s underlying
equations. Such functions customarily appear in models in the form of correlations that
describe “features” of the system under consideration, such as material properties, flow
regimes, etc. Usually, the number of functions gi(α) is considerably smaller than the
total number of model parameters, i.e., TG ≪ TP. For example, the numerical model
(Cacuci and Fang, 2023) of the OECD/NEA reactor physics benchmark (Valentine 2006)
comprises 21,976 uncertain primary model parameters (including microscopic cross sections
and isotopic number densities), but the neutron transport equation, which is solved to
determine the neutron flux distribution within the benchmark, does not use these primary
parameters directly but instead uses just several hundred “group-averaged macroscopic
cross sections”, which are functions/features of the microscopic cross sections and isotopic
number densities (which, in turn, are uncertain quantities that would be components of the
vector of primary model parameters). In particular, a component gj(α) may simply be one
of the primary model parameters αj, i.e., gj(α) ≡ αj.

The TD-dimensional column vector Q[x; g(α)] ≜ (q1, . . . , qTD)
†, with the components

qi[x; g(α)], i = 1, . . . , TD, denotes inhomogeneous source terms, which usually depend
nonlinearly on the uncertain parameters α. Since the right-side of Equation (1) may
contain distributions, the equality in this equation is considered to hold in the weak (i.e.,
“distributional”) sense. Similarly, all of the equalities that involve differential equations in
this work will be considered to hold in the distributional sense.

When L[x; g(α)] contains differential operators, a set of boundary and initial con-
ditions, which define the domain of L[x; g(α)], must also be given. Since the complete
mathematical model is considered to be linear in φ(x), the boundary and/or initial con-
ditions needed to define the domain of L[x; g(α)] must also be linear in φ(x). Such linear
boundary and initial conditions are represented in the following operator form:

B[x; g(α);λ(α);ω(α)]φ(x) = C[x; g(α);λ(α);ω(α)], x ∈ ∂Ω[λ(α);ω(α)] (2)

In Equation (2), the quantity B[x; g(α);λ(α);ω(α)] denotes a matrix of dimensions
NB × TD with components denoted as Bij(x;α); i = 1, . . . , NB; j = 1, . . . , TD, which are
operators that act linearly onφ(x) and nonlinearly on the components of g(α); the quantity
NB denotes the total number of boundary and initial conditions. The NB-dimensional
column vector C[x; g(α); λ(α);ω(α)] comprises components that are operators that, in
general, act nonlinearly on the components of g(α).

Physical problems modeled by linear systems and/or operators are naturally defined
in Hilbert spaces. The dependent variables φi(x), i = 1, . . . , TD, for the physical system
represented by Equations (1) and (2) are considered to be square-integrable functions of the
independent variables and are considered to belong to a Hilbert space that will be denoted
as H0(Ω), where the subscript “zero” denotes “zeroth-level“ or “original”. Higher-level
Hilbert spaces, which will be denoted as H1(Ω) and H2(Ω), will also be used in this work.
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The Hilbert space H0(Ω) is considered to be endowed with the following inner product,
denoted as ⟨φ(x),ψ(x)⟩0, between the two elements φ(x) ∈ H0(Ω) and ψ(x) ∈ H0(Ω):

⟨φ(x),ψ(x)⟩0 ≜
TI

∏
i=1

ωi(α)∫
λi(α)

φ(x)·ψ(x)dx =
TD

∑
j=1

ω1(α)∫
λ1(α)

. . .

ωi(α)∫
λi(α)

. . .

ωTI(α)∫
λTI(α)

φj(x)ψj(x)dx1 . . . dxi . . . dxTI . (3)

The “dot” in Equation (3) indicates the “scalar product of two vectors”, which is
defined as follows:

φ(x)·ψ(x) ≜
TD

∑
i=1

φi(x)ψi(x) (4)

The product-notation
TI
∏
i=1

ωi(α)∫
λi(α)

[]dxi in Equation (3) denotes the respective multiple integrals.

The linear operator L[x; g(α)] is considered to admit an adjoint operator, which will be
denoted as L∗[x; g(α)] and is defined through the following relation for a vectorψ(x) ∈ H0:

⟨ψ(x), L[x; g(α)]φ(x)⟩0 = ⟨L∗[x; g(α)]ψ(x),φ(x)⟩0 (5)

In Equation (5), the formal adjoint operator L∗[x; g(α)] is the TD × TD matrix com-
prising elements L∗

ji[x; g(α)], which are obtained by transposing the formal adjoints of the
forward operators Lij[x; g(α)]. Hence, the system adjoint to the linear system represented
by (1) and (2) can generally be represented as follows:

L∗[x; g(α)]ψ(x) = Q∗[x; g(α)],x ∈ Ω(α), (6)

B∗[x; g(α);λ(α);ω(α)]ψ(x) = C∗[x; g(α);λ(α);ω(α)], x ∈ ∂Ω[λ(α);ω(α)] (7)

When the forward operator L[x; g(α)] comprises differential operators, the operations
(e.g., integration by parts) that implement the transition from the left-side to the right side
of Equation (5) give rise to boundary terms, which are collectively called the “bilinear con-
comitant”. The domain of L∗[x; g(α)] is determined by selecting adjoint boundary and/or
initial conditions so as to ensure that the adjoint system is well posed mathematically. It
is also desirable that the selected adjoint boundary conditions should cause the bilinear
concomitant to vanish when implemented in Equation (5) together with the forward bound-
ary conditions given in Equation (2). The adjoint boundary conditions selected are, thus,
represented in operator form by Equation (7).

The relationship shown in Equation (5), which is the basis for defining the adjoint
operator, also provides the following fundamental “reciprocity-like” relation between the
sources of the forward and adjoint equations, i.e., Equations (1) and (6), respectively:

⟨ψ(x), Q[x; g(α)]⟩0 = ⟨Q∗[x; g(α)],φ(x)⟩0 (8)

The functional on the right-side of Equation (8) represents a “detector response”,
i.e., a reaction-rate between the particles and the medium represented by Q∗[x; g(α)],
which is equivalent to the “number of counts” of particles incident on a detector of par-
ticles that “measures” the particle flux φ(x). In view of the relation provided in (8), the
vector-valued source term Q∗[x; g(α)] ≜

{
q∗1 [x; g(α)], . . . , q∗TD[x; g(α)]

}† in the adjoint
equation Equation (6) is usually associated with the “result of interest” to be measured
and/or computed, which is customarily called the system’s “response”. In particular, if
q∗i [x; g(α)] = δ(x − xd) and q∗j ̸=i[x; g(α)] = 0, then ⟨Q∗[x; g(α)],φ(x)⟩0 = φi(xd), which
means that, in such a case, the right-side of Equation (8) provides the value of the ith-
dependent variable (particle flux, temperature, velocity, etc.) at the point in the phase-space
where the respective measurements are performed.

The results computed using a mathematical model are customarily called “model
responses” (or “system responses”, “objective functions”, or “indices of performance”). For
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linear physical systems, the system’s response may depend not only on the model’s state
functions and the system parameters but also on the adjoint state function. As has been
discussed by Cacuci [27,30], any response of a linear system can be formally represented
(using expansions or interpolation, if necessary) and fundamentally analyzed in terms of
the following generic integral representation:

R[φ(x),ψ(x); f(α)] ≜

ω1(α)∫
λ1(α)

. . .

ωTI(α)∫
λTI(α)

S[φ(x),ψ(x); g(α); h(α); x]dx1 . . . dxTI , (9)

where S[φ(x),ψ(x); g(α); h(α); x] is a suitably differentiable nonlinear function of φ(x),
ψ(x), and α. The integral representation of the response provided in Equation (9) can
represent “averaged” and/or “point-valued” quantities in the phase-space of indepen-
dent variables. For example, if R[φ(x),ψ(x); f(α)] represents the computation or the
measurement (which would be a “detector-response”) of a quantity of interest at point
xd in the phase-space of independent variables, then S[φ(x),ψ(x); g(α); h(α); x] would
contain a Dirac-delta functional of the form δ(x − xd). Responses that represent “differ-
entials/derivatives of quantities” would contain derivatives of Dirac-delta functionals
in the definition of S[φ(x),ψ(x); g(α); h(α); x]. The vector h(α) ≜ [h1(α), . . . , hTH(α)],
with the components hi(α), i = 1, . . . , TH, which appears among the arguments of the
function S[φ(x),ψ(x); g(α); h(α); x], represents the functions of primary parameters that
often appear solely in the definition of the response but do not appear in the mathematical
definition of the model, i.e., in Equations (1), (2), (6) and (7). The quantity TH denotes
the total number of such functions that appear exclusively in the definition of the model’s
response. Evidently, the response will depend directly and/or indirectly (through the
“feature” functions) on all of the primary model parameters. This fact has been indicated in
Equation (9) by using the vector-valued function f(α) as an argument in the definition of
the response R[φ(x),ψ(x); f(α)] to represent the concatenation of all of the “features” of
the model and response under consideration. The vector f(α) of “model features” is, thus,
defined as follows:

f(α) ≜ [g(α); h(α);λ(α);ω(α)]† ≜ [ f1(α), . . . , fTF(α)]
†; TF ≜ TG + TH + 2TI. (10)

As defined in Equation (10), the quantity TF denotes the total number of “feature
functions of the model’s parameters”, which appear in the definition of the nonlinear
model’s underlying equations and response.

Solving Equations (1) and (2) at the nominal (or mean) values, denoted as α0 ≜[
α0

1, . . . , α0
i , . . . , α0

TP
]†, of the model parameters yields the nominal forward solution, which

will be denoted as φ0(x). Solving Equations (6) and (7) at the nominal values, α0, of the
model parameters yields the nominal adjoint solution, which will be denoted as ψ0(x).
The nominal value of the response R

[
φ0(x),ψ0(x); f

(
α0)] is determined by using the

nominal parameter values α0, the nominal value φ0(x) of the forward state function, and
the nominal value ψ0(x) of the adjoint state function.

The definition provided by Equation (9) implies that the model response R[φ(x),ψ(x); f(α)]
depends on the components of the feature function f(α) and would, therefore, admit a
Taylor-series expansion around the nominal value f0 ≜ f

(
α0), having the following form:

R[f(α)] = R
(

f0
)
+

TF

∑
j1=1

{
∂R(f)
∂ f j1

}
f0

δ f j1 +
1
2

TF

∑
j1=1

TF

∑
j2=1

{
∂2R(f)
∂ f j1 ∂ f j2

}
f0

δ f j1 δ f j2 + . . . (11)

where δ f j ≜
[

f j(α)− f 0
j

]
; f 0

j ≜ f j
(
α0); j = 1, . . . , TF. The “sensitivities of the model

response with respect to the (feature) functions” are naturally defined as being the func-
tional derivatives of R[f(α)] with respect to the components (“features”) f j(α) of f(α). The
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notation {·}f0 indicates that the quantity enclosed within the braces is to be evaluated at the
nominal values f0 ≜ f

(
α0). Since TF ≪ TP, the computations of the functional derivatives

of Rk[f(α)] with respect to the functions f j(α), which appear in Equation (11), will be
considerably less expensive computationally than the computation of the functional deriva-
tives involved in the Taylor series of the response with respect to the model parameters.
The functional derivatives of the response with respect to the parameters can be obtained
from the functional derivatives of the response with respect to the “feature” functions f j(α)
by simply using the chain rule, i.e., the following:{

∂R(α)
∂αj1

}
α0

=
TF

∑
i1=1

{
∂R(f)
∂ fi1

∂ fi1(α)

∂αj1

}
α0

;

{
∂2R(α)
∂αj1 ∂αj2

}
α0

=
∂

∂αj2

TF

∑
i1=1

{
∂R(f)
∂ fi1

∂ fi1(α)

∂αj1

}
α0

; (12)

and so on. The evaluation and computation of the functional derivatives ∂ fi1(α)/∂αj1 ,
∂2 fi1(α)/∂αj1 ∂αj2 , etc., do not require computations involving the model and are, therefore,
computationally trivial by comparison to the evaluation of the functional derivatives
(“sensitivities”) of the response with respect to either the functions (“features”) f j(α) or the
model parameters αi, i = 1, . . . , TP.

The range of validity of the Taylor series shown in Equation (11) is defined by its
radius of convergence. The accuracy—as opposed to the “validity”—of the Taylor series
in predicting the value of the response at an arbitrary point in the phase-space of model
parameters depends on the order of sensitivities retained in the Taylor expansion: the
higher the respective orders, the more accurate the respective response values predicted by
the Taylor series. In the particular cases when the response happens to be a polynomial
function of the “feature” functions f j(α), the Taylor series represented by Equation (11) is
finite and exactly represents the respective model responses.

In turn, the functions fi(α) can also be formally expanded in a multivariate Taylor
series around the nominal (mean) parameter values α0, namely the following:

fi(α) = fi
(
α0)+ TP

∑
j1=1

{
∂ fi(α)

∂αj1

}
α0

δαj1 +
1
2

TP
∑

j1=1

TP
∑

j2=1

{
∂2 fi(α)
∂αj1

∂αj2

}
α0

δαj1 δαj2

+ 1
3!

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

{
∂3 fi(α)

∂αj1
∂αj2 ∂αj3

}
α0

δαj1 δαj2 δαj3 + . . . ,
(13)

The choice of feature functions fi(α) is not unique but can be tailored by the user
to the problem at hand. The two most important guiding principles for constructing the
feature functions fi(α) based on the primary parameters are as follows:

(i) As will be shown below in Section 4 while establishing the mathematical framework
underlying the 2nd-FASAM-L, the number of large-scale computations needed to
determine the numerical value of the second-order sensitivities is proportional to
the number of first-order sensitivities of the model’s response with respect to the
feature functions fi(α). Consequently, it is important to minimize the number of
feature functions fi(α), while ensuring that all of the primary model parameters
are considered within the expressions constructed for the feature functions fi(α).
In the extreme case when some primary parameters, αj, cannot be grouped into
the expressions of the feature functions fi(α), each of the respective primary model
parameters αj becomes a feature function f j(α).

(ii) The expressions of the feature functions fi(α) must be independent of the model’s
state functions; they must be exact, closed-form, scalar-valued functions of the pri-
mary model parameters αj, so the exact expressions of the derivatives of fi(α) with
respect to the primary model parameters αj can be obtained analytically (with “pen-
cil and paper”) and, hence, inexpensively from a computational standpoint. The
motivation for this requirement is to ensure that the numerical determination of the
subsequent derivatives of the feature functions fi(α) with respect to the primary
model parameters αj becomes trivial computationally.
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The domain of validity of the Taylor series in Equation (13) is defined by its own radius
of convergence. Of course, in the extreme case when no feature function can be constructed,
the feature functions will be the primary parameters themselves, in which case the nth-
FASAM-L methodology becomes identical to the previously established nth-CASAM-L
methodology [27].

3. The First-Order Function/Feature Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward and Adjoint Linear Systems (1st-FASAM-L)

The “First-Order Function/Feature Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward/Adjoint Linear Systems” (1st-FASAM-L) aims at enabling the
most efficient computation of the first-order sensitivities of a generic model response of the
form R[φ(x),ψ(x);α] with respect to the components of the “features” function f(α). In
preparation for subsequent generalizations aimed at establishing the generic pattern for
computing sensitivities of an arbitrarily high order, the function u(1)(2; x) ≜ [φ(x),ψ(x)]†

will be called the “1st-level forward/adjoint function” and the system of equations satisfied by
this function (which is obtained by concatenating the original forward and adjoint equations
together with their respective boundary/initial conditions) will be called “the 1st-Level
Forward/Adjoint System (1st-LFAS)” and will be re-written in the following concatenated
matrix form:

F(1)[2 × 2; x; f]u(1)(2; x) = q(1)
F (2; x; f); x ∈ Ω(α); (14)

b(1)
F

[
u(1)(2; x); f

]
= 0; x ∈ ∂Ω[λ(α);ω(α)]; (15)

where the following definitions were used:

F(1)[2 × 2; x; f] ≜
(

L(x; f) 0
0 L∗(x; f)

)
; u(1)(2; x) ≜ [φ(x),ψ(x)]†; (16)

q(1)
F (2; x; f) ≜

(
Q(x; g)
Q∗(x; g)

)
; b(1)

F

[
2; u(1)(2; x); f

]
≜
(

B(x; f)φ(x)− C(f)
B∗(x; f)ψ(x)− C∗(f)

)
. (17)

In the list of arguments of the matrix F(1)[2 × 2; x; f], the argument “2× 2” indicates that
this square matrix comprises four component sub-matrices, as indicated in Equation (16).
Similarly, the argument “2” that appears in the block-vectors u(1)(2; x), q(1)

F (2; x; f), and

b(1)
F

[
2; u(1)(2; x); f

]
indicates that each of these column block-vectors comprises two sub-

vectors as components. Also, throughout this work, the quantity “0” will be used to denote
either a vector or a matrix with zero-valued components, depending on the context. For
example, the vector “0” in Equation (15) is considered to have as many components as the
vector b(1)

F

[
u(1)(2; x); f

]
. On the other hand, the quantity “0” that appears in Equation (16)

may represent either a (sub) matrix or a vector of the requisite dimensions.
The nominal (or mean) parameter values, α0, are considered to be known, but these

values will differ from the true values α, which are unknown, through the variations
δα ≜ (δα1, . . . , δαTP)

†, where δαi ≜ αi − α0
i . The parameter variations δα will induce

the variations δf(α) ≜ [δ f1(α), . . . , δ fTF(α)]
† in the vector-valued function f(α) around

the nominal value f0 ≜ f
(
α0) and will also induce variations δφ(x) and δψ(x), respec-

tively, around the nominal solution
(
φ0,ψ0

)
through the equations underlying the model.

All of these variations will induce variations in the model response R
[
u(1)(2; x); f

]
≡

R[φ(x),ψ(x); f(α)] in the neighborhood
[
φ0(x) + εδφ(x),ψ0(x) + εδψ(x); f0 + εδf

]
around(

φ0,ψ0; f0
)

, where ε is a real-valued scalar.
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Formally, the first-order sensitivities of the response R
[
u(1)(2; x); f

]
with respect to

the components of the feature function f(α) are provided by the first-order Gateaux (G)-
variation in R(φ,ψ, f) at the phase-space point

(
φ0,ψ0, f0

)
, which is defined as follows:

δR
(
φ0,ψ0, f0; δφ, δψ, δf

)
≜
{

d
dε R
[
φ0(x) + εδφ(x),ψ0(x) + εδψ(x); f0 + εδf

]}
ε=0

≡
{

d
dε R
[
u(1,0)(2; x) + εv(1)(2; x); f0 + εδf

]}
ε=0

≡ δR
[
u(1,0)(2; x); f0; v(1)(2; x), δf

]
,

(18)

where the following definitions were used:

u(1,0)(2; x) ≜
[
φ0(x),ψ0(x)

]†
; v(1)(2; x) ≜ [δφ(x), δψ]†. (19)

In general, the G-variation δR
(
φ0,ψ0, f0; δφ, δψ, δf

)
is nonlinear in the variations

δf(α), δφ(x), and/or δψ(x). In such cases, the partial functional Gateaux (G)-derivatives
of the response R(φ,ψ, f) with respect to the functions φ,ψ, f do not exist, which implies
that the response sensitivities to the model parameters do not exist either. Therefore, it will
be henceforth assumed in this work that δR

(
φ0,ψ0, f0; δφ, δψ, δf

)
is linear in the respective

variations, so the corresponding partial G-derivatives exist and δR
(
φ0,ψ0, f0; δφ, δψ, δf

)
is actually the first-order G-differential of the response. The usual numerical methods (e.g.,
Newton’s method and variants thereof) for solving the equations underlying the model also
require the existence of the first-order G-derivatives of the original model equations; these
will also be assumed to exist. When the first-order G-derivatives exist, the G-differential
δR
[
u(1,0)(2; x); f0; v(1)(2; x), δf

]
can be written as follows:

δR
[
u(1,0)(2; x); f0; v(1)(2; x), δf

]
=
{

δR
[
u(1)(2; x); f; δf

]}
dir

+
{

δR
[
u(1)(2; x); f; v(1)(2; x)

]}
ind

.
(20)

In Equation (20), the “direct-effect” term
{

δR
[
u(1)(2; x); f; δf

]}
dir

comprises only

dependencies on δf(α) and is defined as follows:

{
δR
[
u(1)(2; x); f; δf

]}
dir

≜

∂R
(

u(1); f
)

∂f
δf


α0

(21)

The following convention/definition was used in Equation (21):

∂[]

∂f
δf ≜

TF

∑
i=1

∂[]

∂ fi
δ fi =

TG

∑
i=1

∂[]

∂gi
δgi +

TH

∑
i=1

∂[]

∂hi
δhi +

TI

∑
i=1

∂[]

∂ωi
δωi +

TI

∑
i=1

∂[]

∂λi
δλi (22)

The above convention implies that

(a) For j = 1, . . . , TG:

∂R
(

u(1); f
)

∂ f j
δ f j ≜


ω1(α)∫

λ1(α)

. . .

ωTI(α)∫
λTI(α)

∂S(φ,ψ; g; h)
∂gi

dx1 . . . dxTI


α0

δgi; i = 1, . . . , TG; (23)

(b) For j = TG + 1, . . . , TG + TH:

∂R
(

u(1); f
)

∂ f j
δ f j ≜


ω1(α)∫

λ1(α)

. . .

ωTI(α)∫
λTI(α)

∂S(φ,ψ; g; h)
∂hi

dx1 . . . dxTI


α0

δhi; i = 1, . . . , TH; (24)
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(c) For j = TG + TH + 1, . . . , TG + TH + TI:

∂R
(

u(1); f
)

∂ f j
δ f j ≜

 ∂

∂ωi

ω1∫
λ1

dx1 . . .
ωTI∫

λTI

dxTIS(φ,ψ; g; h)


α0

δωi, i = 1, . . . , TI; (25)

(d) For j = TG + TH + TI + 1, . . . , TG + TH + 2TI

∂R
(

u(1); f
)

∂ f j
δ f j ≜

 ∂

∂λi

ω1∫
λ1

dx1 . . .
ωTI∫

λTI

dxTIS(φ,ψ; g; h)


α0

δλi, i = 1, . . . , TI. (26)

The notation on the left-side of Equation (22) represents the inner product between
two vectors, but the symbol “(†)”, which indicates “transposition”, has been omitted in
order to keep the notation as simple as possible. “Daggers” indicating transposition will
also be omitted in other inner products, whenever possible, while avoiding ambiguities.

In Equation (20), the “indirect-effect” term
{

δR
[
u(1)(2; x); f; v(1)(2; x)

]}
ind

depends

only on the variations v(1)(2; x) ≜ [δφ(x), δψ]† in the state functions and is defined
as follows:

{
δR
[
u(1)(2; x); f; v(1)(2; x)

]}
ind

≜

{
ω1(α)∫
λ1(α)

dx1 . . .
ωTI(α)∫
λTI(α)

dxTI
∂S(φ,ψ;g;h)

∂u(1)(2;x)
v(1)(2; x)

}
α0

≜

{
ω1(α)∫
λ1(α)

dx1 . . .
ωTI(α)∫
λTI(α)

dxTI
∂S(φ,ψ;g;h)

∂φ δφ

}
α0

+

{
ω1(α)∫
λ1(α)

dx1 . . .
ωTI(α)∫
λTI(α)

dxTI
∂S(φ,ψ;g;h)

∂ψ δψ

}
α0

.

(27)

In Equations (21) and (27), the notation { }α0 has been used to indicate that the
quantity within the brackets is to be evaluated at the nominal values of the parameters and
state functions. This simplified notation is justified by the fact that when the parameters
take on their nominal values, it implicitly means that the corresponding state functions
also take on their corresponding nominal values. This simplified notation will be used
throughout this work.

The direct-effect term can be computed after having solved the forward system mod-
eled by Equations (1) and (2), as well as the adjoint system modeled by Equations (6) and (7),
to obtain the nominal values φ0,ψ0 of the forward and adjoint dependent variables.

On the other hand, the indirect-effect term
{

δR
[
u(1)(2; x); f; v(1)(2; x)

]}
ind

defined in

Equation (27) can be quantified only after having determined the variations v(1)(2; x) ≜
[δφ(x), δψ]† in the state functions of the First-Level Forward/Adjoint System (1st-LFAS).
The variations v(1)(2; x) are obtained as the solutions of the system of equations obtained
by taking the first-order G-differentials of the 1st-LFAS defined by Equations (14) and (15),
which are obtained via definition as follows:{

d
dε

F(1)
[
2 × 2; x; f0 + εδf

][
u(1,0)(2; x) + εv(1)(2; x)

]}
ε=0

=

{
d
dε

q(1)
F

[
2; x; f0 + εδf

]}
ε=0

, (28){
d
dε

b(1)
F

[
2; u(1,0)(2; x) + εv(1)(2; x); f0 + εδf

]}
ε=0

= 0[2]. (29)

Carrying out the differentiations with respect to ε in the above equations and setting
ε = 0 in the resulting expressions yields the following matrix-vector equations:{

V(1)[2 × 2; x; f]v(1)(2; x)
}
α0

=
{

q(1)
V

[
2; u(1)(2; x); f; δf

]}
α0

; x ∈ Ω
(
α0
)

; (30)

{
b(1)

v

(
u(1); v(1); f; δf

)}
α0

= 0; x ∈ ∂Ω
[
λ
(
α0
)

;ω
(
α0
)]

; (31)
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where

V(1)[2 × 2; x; f] ≜
(

L(x; f) 0
0 L∗(x; f)

)
= F(1)[2 × 2; x; f]; (32)

q(1)
V

[
2; u(1); f; δf

]
≜

(
q(1)

1 (φ; f; δf)
q(1)

2 (ψ; f; δf)

)
; b(1)

v

(
u(1); v(1); f; δf

)
≜

(
b(1)

1 (φ; δφ; f; δf)
b(1)

2 (ψ; δψ; f; δf)

)
; (33)

q(1)
1 (φ; f; δf) ≜

∂[Q − Lφ(x)]
∂f

δf ≜
TF

∑
j1=1

s(1)1 (j1;φ; f)δ f j1 (34)

q(1)
2 (ψ, f; δf) ≜

∂[Q∗ − L∗ψ(x)]
∂f

δf ≜
TF

∑
j1=1

s(1)2 (j1;ψ; f)δ f j1 (35)

b(1)
1 (φ; δφ; f; δf) ≜ Bδφ+

∂(Bφ− C)

∂f
δf; (36)

b(1)
2 (ψ; δψ; f; δf) ≜ B∗δψ+

∂(B∗ψ− C∗)

∂f
δf. (37)

In order to keep the notation as simple as possible in Equations (30)–(37), the differ-
entials with respect to the various components of the feature function f(α) have all been
written in the form (∂[]/∂f)δf, keeping in mind the convention/notation introduced in
Equation (22). The system of equations comprising Equations (30) and (31) will be called
the “1st-Level Variational Sensitivity System (1st-LVSS)”, and its solution, v(1)(2; x), will be
called the “1st-level variational sensitivity function”, which is indicated by the superscript
“(1)”. The solution, v(1)(2; x), of the 1st-LVSS will be a function of the components of the
vector of variations δf. In principle, therefore, if the response sensitivities with respect to
the components of the feature function f(α) are of interest, then the 1st-LVSS would need
to be solved as many times as there are components in the variational feature function δf.
On the other hand, if the response sensitivities with respect to the primary parameters are
of interest, then the 1st-LVSS would need to be solved as many times as there are primary
parameters. Solving the 1st-LVSS involves “large-scale computations”.

On the other hand, solving the 1st-LVSS can be avoided altogether by using the
ideas underlying the “adjoint sensitivity analysis methodology” originally conceived
by Cacuci [2] and subsequently generalized by Cacuci [27,30] to enable the computa-
tion of arbitrarily high-order response sensitivities with respect to primary model pa-
rameters for both linear and nonlinear models. Thus, the need for solving repeatedly
the 1st-LVSS for every variation in the components of the feature function (or for every
variation in the model’s parameters) is eliminated by expressing the indirect-effect term{

δR
[
u(1)(2; x); f; v(1)(2; x)

]}
ind

defined in Equation (27) in terms of the solutions of the
“1st-Level Adjoint Sensitivity System” (1st-LASS), which will be constructed by implementing
the following sequence of steps:

1. Introduce a Hilbert space, denoted as H1, comprising vector-valued elements of the

form χ(1)(2; x) ≜
[
χ
(1)
1 (x),χ(1)2 (x)

]†
, where the components χ(1)i (x) ≜

[
χ
(1)
i,1 (x), . . . ,

χ
(1)
i,j (x), . . . , χ

(1)
i,TD(x)

]†
, i = 1, 2, are square-integrable functions. Consider further that

this Hilbert space is endowed with an inner product denoted as
〈
χ(1)(2; x),θ(1)(2; x)

〉
1

between two elements, χ(1)(2; x) ∈ H1, θ(1)(2; x) ∈ H1, which is defined as follows:

〈
χ(1)(2; x),θ(1)(2; x)

〉
1
≜

2

∑
i=1

〈
χ
(1)
i (x),θ(1)i (x)

〉
0

(38)

2. In the Hilbert H1, form the inner product of Equation (30) with an as-yet-undefined vector-

valued function a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
∈ H1 to obtain the following relation:
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{〈
a(1)(2; x), V(1)

[
2 × 2; x; f0

]
v(1)(2; x)

〉
1

}
α0

=
{〈

a(1)(2; x), q(1)
V

[
2; u(1)(2; x); f; δf

]〉
1

}
α0

. (39)

3. Using the definition of the adjoint operator in the Hilbert space H1, recast the left-side
of Equation (39) as follows:{〈

a(1)(2; x), V(1)[2 × 2; x; f]v(1)(2; x)
〉

1

}
α0

=
{〈

v(1)(2; x), A(1)[2 × 2; x; f]a(1)(2; x)
〉

1

}
α0

+
{

P(1)
[
v(1)(2; x); a(1)(2; x); f; δf

]}
α0

,
(40)

where
{

P(1)
[
v(1)(2; x); a(1)(2; x); f; δf

]}
α0

denotes the bilinear concomitant defined on the

phase-space boundary x ∈ ∂Ω
(
α0) and A(1)[2 × 2; x; f] is the operator formally adjoint to

V(1)[2 × 2; x; f], i.e., the following:

A(1)[2 × 2; x; f] ≜
{

V(1)[2 × 2; x; f]
}∗

=

(
L∗(x; f) 0

0 L(x; f)

)
. (41)

4. Require the first term on right-side of Equation (40) to represent the indirect-effect
term defined in Equation (27) by imposing the following relation:

A(1)[2 × 2; x; f]a(1)(2; x) = q(1)
A

[
2; u(1)(2; x); f

]
, x ∈ Ω

(
α0
)

; (42)

where

q(1)
A

[
2; u(1)(2; x); f

]
≜

∂S
(

u(1); f
)

∂u(1)(2; x)

†

≜


[
∂S
(

u(1); f
)

/∂φ
]†[

∂S
(

u(1); f
)

/∂ψ
]†

. (43)

5. Implement the boundary conditions represented by Equation (31) into Equation (40)
and eliminate the remaining unknown boundary-values of the function v(1)(2; x) from
the expression of the bilinear concomitant

{
P(1)

[
v(1)(2; x); a(1)(2; x); f; δf

]}
α0

by se-

lecting appropriate boundary conditions for the function a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†

to ensure that Equation (42) is well posed while being independent of unknown val-
ues of v(1)(2; x) and δf. The boundary conditions chosen for the function a(1)(2; x) ≜[
a(1)1 (x), a(1)2 (x)

]†
can, thus, be represented in operator form as follows:{

b(1)
A

[
u(1)(2; x); a(1)(2; x); f

]}
α0

= 0, x ∈ ∂Ω
[
λ
(
α0
)

;ω
(
α0
)]

. (44)

The selection of the boundary conditions for a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
repre-

sented by Equation (44) eliminates the appearance of the unknown values of v(1)(2; x)
in
{

P(1)
[
v(1)(2; x); a(1)(2; x); f; δf

]}
α0

and reduces this bilinear concomitant to a residual

quantity that contains boundary terms involving only known values of u(1)(2; x), a(1)(2; x),
f, and δf. This residual quantity will be denoted as

{
P̂(1)

[
u(1)(2; x); a(1)(2; x); f; δf

]}
α0

.
In general, this residual quantity does not automatically vanish, although it may do
so occasionally.

6. The system of equations comprising Equation (42) together with the boundary condi-
tions represented Equation (44) will be called the First-Level Adjoint Sensitivity System

(1st-LASS). The solution a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
of the 1st-LASS will be called

the first-level adjoint sensitivity function. The 1st-LASS is called “first-level” (as opposed
to “first-order”) because it does not contain any differential or functional-derivatives,
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but its solution, a(1)(2; x), will be used below to compute the first-order sensitivities
of the response with respect to the components of the feature function f(α).

7. Using Equation (39) together with the forward and adjoint boundary conditions
represented by Equations (31) and (44) in Equation (40) reduces the latter to the
following relation:{〈

a(1)(2; x), q(1)
V

[
2; u(1)(2; x); f; δf

]〉
1

}
α0

=
{〈

v(1)(2; x), A(1)[2 × 2; x; f]a(1)(2; x)
〉

1

}
α0

+
{

P̂(1)
[
u(1)(2; x); a(1)(2; x); f; δf

]}
α0

.
(45)

8. In view of Equations (27) and (42), the first term on the right-side of Equation (45)

represents the indirect-effect term
{

δR
[
u(1)(2; x); f; v(1)

]}
ind

. It, therefore, follows
from Equation (45) that the indirect-effect term can be expressed in terms of the

first-level adjoint sensitivity function a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
as follows:{

δR
[
u(1)(2; x); f; v(1)(2; x)

]}
ind

=
{〈

a(1)(2; x), q(1)
V

[
2; u(1)(2; x); f; δf

]〉
1

}
α0

−
{

P̂(1)
[
u(1)(2; x); a(1)(2; x); f; δf

]}
α0

≡
{

δR
[
u(1)(2; x); a(1)(2; x); f; δf

]}
ind

.
(46)

As indicated by the identity shown in Equation (46), the variations δφ and δψ have
been eliminated from the original expression of the indirect-effect term, which now depends

on the first-level adjoint sensitivity function a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
. Adding the

expression obtained in Equation (46) with the expression for the direct-effect term defined
in Equation (21) yields, according to Equation (20) the following expression for the total first-
order sensitivity {δR(φ,ψ, f; δφ, δψ, δf)}α0 of the response R[φ(x),ψ(x); f] with respect
to the components of the feature function f(α):

{δR(φ,ψ, f; δφ, δψ, δf)}α0 =

{
∂R(u(1);f)

∂f δf
}
α0

+
{〈

a(1)(2; x), q(1)
V

[
2; u(1)(2; x); f; δf

]〉
1

}
α0

−
{

P̂(1)
[
u(1)(2; x); a(1)(2; x); f; δf

]}
α0

≡
TF
∑

j1=1

{
R(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
δ f j1

}
α0

.
(47)

The identity that appears in Equation (47) emphasizes the fact that the variations δφ
and δψ, which are expensive to compute, have been eliminated from the final expressions of
the first-order sensitivities R(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
of the response with respect to

the components f j1(α), j1 = 1, . . . , TF, of the feature functions. The dependence on the vari-

ations δφ and δψ has been replaced in the expression of R(1)
[

j1; u(1)(2; x); a(1)(2; x); f(α)
]

by the dependence on the first-level adjoint sensitivity function a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
.

It is very important to note that the 1st-LASS is independent of variations δf(α) in the
components of the feature function and, consequently, also independent of any varia-
tions δα in the primary model parameters. Hence, the 1st-LASS needs to be solved only

once to determine the first-level adjoint sensitivity function a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
.

Subsequently, the “indirect-effect term” is computed efficiently and exactly by simply per-
forming the integrations required to compute the inner product over the adjoint function

a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
, as indicated on the right-side of Equation (47). Solving

the First-Level Adjoint Sensitivity System (1st-LASS) requires the same computational ef-
fort as solving the original coupled linear system, entailing the following operations:
(i) inverting (i.e., solving) the left-side of the original adjoint equation with the source[

∂S
(

u(1);α
)

/∂φ
]†

to obtain the first-level adjoint sensitivity function a(1)1 (x) and (ii) in-
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verting the left-side of the original forward equation with the source
[
∂S
(

u(1);α
)

/∂ψ
]†

to

obtain the first-level adjoint sensitivity function a(1)2 (x).

The first-order sensitivities R(1)
[

j1; u(1)(2; x); a(1)(2; x); f(α)
]
, j1 = 1, . . . , TF, can be

expressed as an integral over the independent variables as follows:

R(1)
[

j1; u(1)(2; x); a(1)(2; x); f(α)
]
≜

ω1(α)∫
λ1(α)

dx1 . . .

ωTI(α)∫
λTI(α)

dxTIS(1)
[

j1; u(1)(2; x); a(1)(2; x); f(α)
]
. (48)

In particular, if the residual bilinear concomitant is non-zero, the functions
S(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
would contain suitably defined Dirac-delta functionals

for expressing the respective non-zero boundary terms as volume-integrals over the phase-
space of the independent variables. Dirac-delta functionals would also be used in the
expression of S(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
to represent terms containing the deriva-

tives of the boundary end-points with respect to the model and/or response parameters.
The response sensitivities with respect to the primary model parameters would be

obtained by using the expression obtained in Equation (48) in conjunction with the “chain
rule” of differentiation provided in Equation (12).

It is important to compare the results produced by the 1st-FASAM-L (for obtaining
the sensitivities of the model response with respect to the model’s features) with the 1st-
CASAM (the First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems) methodology, which provides the expressions of
the response sensitivities directly with respect to the model’s primary parameters. Recall
that the 1st-CASAM-L [27] yields the following expression for the first-order sensitivities
of the response with respect to the primary model parameters:{

∂R[j1;u(1)(2;x);a(1)(2;x);α]
∂αj1

}
α0

=

{
ω1(α)∫
λ1(α)

dx1 . . .
ωTI(α)∫
λTI(α)

dxTI
∂S[u(1)(2;x);α]

∂αj1

}
α0

+
TI
∑

k=1

TI
∏

m=1,k ̸=j

{
ωm(α)∫
λm(α)

dxmS
[
u(1)(2; . . . , ωk, . . .);α

]
∂ωk(α)

∂αj1
− S

[
u(1)(2; . . . , λk, . . .);α

]
∂λk(α)

∂αj1

}
α0

+

{〈
a(1)(2; x), ∂

∂αj1
q(1)

[
u(1)(2; x);α

]〉
1

}
α0

−
{

∂
∂αj1

P̂(1)
[
u(1); a(1);α

]}
α0

; j1 = 1, . . . , TP.

(49)

The same first-level adjoint sensitivity function, denoted as a(1)(2; x), appears in
Equation (49), as well as in Equation (48). Therefore, the same number of “large-scale
computations” (which are needed to solve the 1st-LASS to determine the first-level adjoint
sensitivity function) is needed for obtaining either the response sensitivities with respect
to the components, f j(α), j = 1, . . . , TF, of the feature function f(α) using the c or for
obtaining the response sensitivities directly with respect to the primary model parameters
αj, j = 1, . . . , TP, by using the 1st-CASAM-L. The use of the 1st-CASAM-L would also
require performing a number of TP integrations to compute all of the response sensitivities
with respect to the primary parameters; in contradistinction, the use of the 1st-FASAM-L
would require only TF integrations (TF < TP) to compute all of the response sensitivities
with respect to the components f j(α) of the feature function. Since integrations using
a quadrature-scheme are significantly less expensive computationally in comparison to
solving systems of equations (e.g., the original equations underlying the model and the
1st-LASS), the computational savings provided by the use of the 1st-FASAM-L are small by
comparison to using the 1st-CASAM-L. However, this conclusion is valid only for the com-
putation of first-order sensitivities. As will be shown in Section 4 below, the computational
savings are significantly larger when computing the second-order sensitivities by using the
2nd-FASAM-L rather than using the 2nd-CASAM-L (or any other method).
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4. The Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward and Adjoint Linear Systems (2nd-FASAM-L)

The “Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward/Adjoint Linear Systems“ (2nd-FASAM-L) determines the
second-order sensitivities ∂2R

[
u(1)(2; x); f(α)

]
/∂ f j2 ∂ f j1 of the response with respect to the

components of the “feature” function f(α) by conceptually considering that the first-order
sensitivities R(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
≜ ∂R

[
u(1)(2; x); f(α)

]
/∂ f j1 , which were ob-

tained in Equation (48), are “model responses”. Consequently, the second-order sensitivities
are obtained as the “1st-order sensitivities of the 1st-order sensitivities” by applying the con-
cepts underlying 1st-FASAM to each first-order sensitivity R(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
,

j1 = 1, . . . , TF, which depends on both the vector u(1)(2; x), which comprises the original
state variables, and on the first-level adjoint function a(1)(2; x).

To establish the pattern underlying the computation of sensitivities of arbitrarily high
order, it is useful to introduce a systematic classification of the systems of equations that
will underly the computation of the sensitivities of various orders. As has been shown
in Section 3 above, the first-order response sensitivities R(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
depend on the original state functions u(1)(2; x) ≜ [φ(x),ψ(x)]† and the first-level adjoint

sensitivity function a(1)(2; x) ≜
[
a(1)1 (x), a(1)2 (x)

]†
. The system of equations satisfied by

these functions will be called “the 2nd-Level Forward/Adjoint System (2nd-LFAS)” and will be
re-written in the following concatenated form:

F(2)
[
22 × 22; f(α)

]
u(2)

(
22; x

)
= q(2)

F

[
22; u(1)(2; x); f(α)

]
; x ∈ Ω(α); (50)

b(2)
F

(
22; u(2); f

)
≜
(

b(1)
F , b(1)

A

)†
= 0; x ∈ ∂Ω[λ(α);ω(α)]; (51)

where the following definitions were used:

F(2)
[
22 × 22; f(α)

]
≜ diag

(
F(1), A(1)

)
; u(2)

(
22; x

)
≜
[
u(1)(2; x), a(1)(2; x)

]†
; (52)

q(2)
F

[
22; u(1)(2; x); f(α)

]
≜
[
q(1)

F (2; x; f), q(1)
A

[
2; u(1); f

]]†
(53)

The notation used for the matrix F(2)[22 × 22; f(α)
]

indicates the following character-
istics: (i) the superscript “2” indicates “2nd-level”; (ii) the argument “22 × 22” indicates
that this square matrix comprises 4 × 4 = 16 component sub-matrices. Similarly, the
argument “22” that appears in the block-vectors u(2)(22; x

)
, q(2)

F

[
22; u(1)(2; x); f(α)

]
and

b(2)
F

(
22; u(2);α

)
indicates that each of these column block-vectors comprises four sub-

vectors as components.
The first-order G-differential of the first-order sensitivity R(1)

[
j1; u(2)(22; x

)
; f(α)

]
j1 =

1, . . . , TF is obtained by definition as follows:{
δR(1)

[
j1; u(2)(22; x

)
; v(2)(22; x

)
; f; δf

]}
α0

≜
{

d
dε δR(1)

[
j1; u(1)(2; x) + εv(1)(2; x); a(1)(2; x) + εδa(1)(2; x); f + εδf

]}
ε=0

=
{

δR(1)
[

j1; u(2)(22; x
)
; v(2)(22; x

)
; f
]}

ind
+
{

δR(1)
[

j1; u(2)(22; x
)
; δf
]}

dir

(54)
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The direct-effect term
{

δR(1)
[

j1; u(2)(22; x
)
; δf
]}

dir
in Equation (54) is defined as follows:

{
δR(1)

[
j1; u(2)(22; x

)
; δf
]}

dir

≜
TF
∑

j2=1

{
∂

∂ f j2

ω1(α)∫
λ1(α)

dx1 . . .
ωTI(α)∫
λTI(α)

dxTIS(1)
[

j1; u(2)(22; x
)
; f(α)

]}
α0

δ f j2 .
(55)

and can be computed immediately. The indirect-effect term { δR(1)[ j1; u(2)(22; x
)
; v(2)(22; x

)
;

f]}ind in Equation (54) depends on the second-level variational sensitivity function v(2)(22; x
)
≜[

v(1)(2; x), δa(1)(2; x)
]

and is defined as follows:

{
δR(1)

[
j1; u(2)

(
22; x

)
; v(2)

(
22; x

)
; f
]}

ind
≜

ω1(α)∫
λ1(α)

dx1 . . .

ωTI(α)∫
λTI(α)

dxTI

[
s(2)
(

22; j1; u(2); f
)
·v(2)

(
22; x

)]
, (56)

where
s(2)
(

22; j1; u(2); f
)
≜ ∂R(1)

[
j1; u(2)

(
22; x

)
; v(2)

(
22; x

)
; f
]
/∂u(2). (57)

Evidently, the functions v(1)(2; x) and δa(1)(2; x) are needed in order to evaluate the
above indirect-effect term. These functions are the solutions of the system of equations ob-
tained by taking the first-G-differential of the 2nd-LFAS defined by Equations (52) and (53).
Applying the definition of the first G-differential the 2nd-LFAS yields the following Second-
Level Variational Sensitivity System (2nd-LVSS) for the Second-Level variational sensitivity

function v(2)(22; x
)
≜
[
v(1)(2; x), δa(1)(2; x)

]†
:{

d
dε F(2)

[
22 × 22; f0 + εδf

][
u(2,0)(22; x

)
+ εv(2)(22; x

)]}
ε=0

=
{

d
dε q(2)

F

[
22; u(1,0)(2; x) + εv(1)(2; x); f0 + εδf

]}
ε=0

; x ∈ Ω
(
α0); (58)

{
d
dε

b(2)
F

[
u(2,0)

(
22; x

)
+ εv(2)

(
22; x

)
; f0 + εδf

]}
ε=0

= 0; x ∈ ∂Ω
[
λ
(
α0
)

;ω
(
α0
)]

. (59)

Carrying out the differentiation with respect to ε in Equations (58) and (59), and setting
ε = 0 in the resulting expressions, yields the following 2nd-LVSS:{

V(2)
[
22 × 22; x; f

]
v(2)

(
22; x

)}
α0

=
{

q(2)
V

[
22; u(2)

(
22; x

)
; f; δf

]}
α0

; x ∈ Ω
(
α0
)

; (60)

{
b(2)

v

(
u(2); v(2); f; δf

)}
α0

= 0; x ∈ ∂Ω
[
λ
(
α0
)

;ω
(
α0
)]

; (61)

where the following definitions were used:

V(2)[22 × 22; x; f
]
=

(
V(1)[2 × 2; x; f] 0
V(2)

21

(
2 × 2; u(1); f

)
A(1)[2 × 2; x; f]

)
;

V(2)
21

(
2 × 2; u(1); f

)
≜

 − ∂2S(u(1);f)
∂φ∂φ − ∂2S(u(1);f)

∂φ∂ψ

− ∂2S(u(1);f)
∂ψ∂φ − ∂2S(u(1);f)

∂ψ∂ψ

;

(62)

q(2)
V

[
22; u(2)(22; x

)
; f; δf

]
≜

 q(1)
V

[
2; u(1); f; δf

]
p(1)

A

[
2; u(1); a(1)1 ; f; δf

] ;

p(1)
A

[
2; u(1); a(1)1 ; f; δf

]
≜

 p(1)
1

(
u(1); a(1)1 ; δf

)
p(1)

2

(
u(1); a(1)1 ; δf

) ;

(63)
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p(1)
1

(
u(1); a(1)1 ; f; δf

)
≜

∂2S
(

u(1); f
)

∂f∂φ
δf −

∂
[
L∗(f)a(1)1

]
∂f

δf; (64)

p(1)
2

(
u(1); a(1)2 ; f; δf

)
≜

∂2S
(

u(1); f
)

∂f∂ψ
δf −

∂
[
L(f)a(1)2

]
∂f

δf; (65)

b(2)
v

(
u(2); v(2); f; δf

)
≜

 b(1)
v

(
u(1); v(1); f; δf

)
δb(1)

A

(
u(2); v(2); f; δf

); (66)

The matrix V(2)
21

(
2 × 2; u(1); f

)
depends only the system’s response and is responsible

for coupling the forward and adjoint systems. Although the forward and adjoint systems
are coupled, they can nevertheless be solved successively rather than simultaneously
because the matrix V(2)[22 × 22; x; f

]
is block-diagonal. All of the components of the

matrices and vectors underlying the 2nd-LVSS are to be computed at nominal parameter
and state function values, as indicated in Equations (60) and (61).

Computing the indirect-effect term
{

δR(1)
[

j1; u(2)(22; x
)
; v(2)(22; x

)
; f
]}

ind
by solving

the 2nd-LVSS would require at least 2TF(TF + 1) large-scale computations (to solve the
2nd-LVSS) for every component of the feature function f(α).

The need for solving the 2nd-LVSS will be circumvented by deriving an alterna-
tive expression for the indirect-effect term

{
δR(1)

[
j1; u(2)(22; x

)
; v(2)(22; x

)
; f
]}

ind
, as de-

fined in Equation (56), in which the second-level variational function v(2)(22; x
)

will be
replaced by a second-level adjoint function which is independent of variations in the
model parameter and state functions. This second-level adjoint function will be the
solution of a Second-Level Adjoint Sensitivity System (2nd-LASS), which will be con-
structed by using the same principles employed for deriving the 1st-LASS. The 2nd-
LASS is constructed in a Hilbert space, denoted as H2, which will comprise elements
block-vectors of the same form as v(2)(22; x

)
, i.e., a vector in H2 has the generic struc-

ture χ(2)
(
22; x

)
≜
[
χ
(2)
1 (x),χ(2)2 (x),χ(2)3 (x),χ(2)4 (x)

]†
, comprising four vector-valued com-

ponents in the form χ
(2)
i (x) ≜

[
χ
(2)
i,1 (x), . . . , χ

(2)
i,j (x), . . . , χ

(2)
i,TD(x)

]†
, i = 1, 2, 3, 4 = 22. The

inner product between the two elements, χ(2)(2; x) ∈ H2 and θ(2)(2; x) ∈ H2, of this Hilbert
space will be denoted as

〈
χ(2)(2; x),θ(2)(2; x)

〉
22

and defined as follows:

〈
χ(2)(2; x),θ(2)(2; x)

〉
22

≜
22

∑
i=1

〈
χ
(2)
i (x),θ(2)i (x)

〉
0

(67)

Note that there are j1 = 1, . . . , TF distinct indirect-effect terms
{

δR(1)
[

j1; u(2)(22; x
)
;

v(2)(22; x
)
; f
]}

ind
. Each of these indirect-effect terms will serve as a “source” for a “2nd-

Level Adjoint Sensitivity System (2nd-LASS)” that will be constructed by applying the
same sequence of steps that was used in Section 3 to construct the 1st-LASS. This im-
plies that a distinct second-level adjoint sensitivity function of the form a(2)

(
22; j1; x

)
≜[

a(2)1 (j1; x), a(2)2 (j1; x), a(2)3 (j1; x), a(2)4 (j1; x)
]†

∈ H2, j1 = 1, . . . , TF, corresponding to each
distinct indirect-effect term, will be needed for constructing each corresponding 2nd-LASS
as follows:

1. For each j1 = 1, . . . , TP, form the inner product in the Hilbert space H2 of Equation (60)
with an as-yet-undefined function a(2)

(
22; j1; x

)
to obtain the following relation:{〈

a(2)
(
22; j1; x

)
, V(2)[22 × 22; x; f

]
v(2)(22; x

)〉
22

}
α0

=
{〈

a(2)
(
22; j1; x

)
, q(2)

V

[
22; u(2)(22; x

)
; f; δf

]〉
22

}
α0

; x ∈ Ω
(
α0). (68)
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2. Using the definition of the adjoint operator in the Hilbert space H2, recast the left-side
of Equation (68) as follows:

{〈
a(2)

(
22; j1; x

)
, V(2)[22 × 22; x; f

]
v(2)(22; x

)〉
22

}
α0

=
{〈

v(2)(22; x
)
, A(2)[22 × 22; x; f

]
a(2)

(
22; j1; x

)〉
22

}
α0

+
{

P(2)
[
v(2)(22; x

)
; a(2)

(
22; j1; x

)
; f; δf

]}
α0

,

(69)

where
{

P(2)
[
v(2)(22; x

)
; a(2)

(
22; j1; x

)
; f; δf

]}
α0

denotes the bilinear concomitant defined

on the phase-space boundary x ∈ ∂Ωx
(
α0) and A(2)[22 × 22; x; f

]
≜
[
V(2)[22 × 22; x; f

]]∗
is the operator formally adjoint to V(2)[22 × 22; x; f

]
.

3. The first term on right-side of Equation (69) is now required to represent the indirect-

effect term
{

δR(1)
[

j1; u(2)(22; x
)
; v(2)(22; x

)
; f
]}

ind
defined in Equation (56). This

requirement is satisfied by recalling Equation (57) and imposing the following relation
on each function a(2)

(
22; j1; x

)
, j1 = 1, . . . , TF:{

A(2)
[
22 × 22; x; f

]
a(2)

(
22; j1; x

)}
α0

=
{

s(2)
(

22; j1; u(2); f
)}
α0

, j1 = 1, . . . , TF, (70)

4. The definition of the vector a(2)
(
22; j1; x

)
will now be completed by selecting boundary

conditions, which will be represented in operator form as follows:{
b(2)

A

[
u(2)

(
22; x

)
; a(2)

(
22; j1; x

)
; f
]}
α0

= 0, x ∈ ∂Ω
(
α0
)

, j1 = 1, . . . , TF. (71)

5. The boundary conditions represented by Equation (71) are selected so as to satisfy the
following requirements: (a) these boundary conditions together with Equation (70)
constitute a well-posed problem for the functions a(2)

(
22; j1; x

)
; (b) the implementa-

tion in Equation (69) of these boundary conditions together with those provided in
Equation (61) eliminates all of the unknown values of the functions v(2)(22; x

)
and

a(2)
(
22; j1; x

)
in the expression of the bilinear concomitant {P(2)[v(2)(22; x

)
; a(2)

(
22; j1;

x) ; f; δf]}α0 . This bilinear concomitant may vanish after these boundary conditions
are implemented, but if it does not, it will be reduced to a residual quantity, which
will be denoted as P̂(2)

[
u(2)(22; x

)
; a(2)

(
22; j1; x

)
; f; δf

]
and will comprise only known

values of u(2)(22; x
)
, a(2)

(
22; j1; x

)
, f, and δf.

The system of equations represented by Equation (70) together with the boundary
conditions represented by Equation (71) constitute the Second-Level Adjoint Sensitivity System
(2nd-LASS). The solution of the 2nd-LASS, i.e., the four-component vector a(2)

(
22; j1; x

)
,

j1, . . . , TP, will be called the second-level adjoint sensitivity function. It is important to note
that the 2nd-LASS is independent of any variations, δf, in the components of the feature
function and, hence, is independent of any parameter variations, δα, as well.

The equations underlying the 2nd-LASS, represented by Equations (70) and (71), to-
gether with the equations underlying the 2nd-LVSS, represented by Equations (60) and (61),
are now employed in Equation (69) in conjunction with Equation (56) to obtain the follow-
ing expression for the indirect-effect term

{
δR(1)

[
j1; u(2)(22; x

)
; v(2)(22; x

)
; f
]}

ind
in terms

of the second-level adjoint sensitivity functions a(2)
(
22; j1; x

)
for j1 = 1, . . . , TP:{

δR(1)
[

j1; u(2)(22; x
)
; v(2)(22; x

)
; f
]}

ind
=
{〈

a(2)
(
22; j1; x

)
, q(2)

V

[
22; u(2)(22; x

)
; f; δf

]〉
2

}
α0

−
{

P̂(2)
[
u(2); a(2); f; δf

]}
α0

≡
{

δR(1)
[

j1; u(2)(22; x
)
; a(2)

(
22; j1; x

)
; f; δf

]}
ind

.
(72)

As the last equality (identity) in Equation (72) indicates, the second-level variational
sensitivity function v(2)(22; x

)
has been eliminated from appearing in the expression of the
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indirect-effect term, having been replaced by the second-level adjoint sensitivity function
a(2)

(
22; j1; x

)
for each j1 = 1, . . . , TF.

Inserting the expressions that define the vector q(2)
V

[
22; u(2)(22; x

)
; f; δf

]
from

Equations (63)–(65) into Equation (72) and adding the resulting expression for the indirect-
effect term to the expression of the direct-effect term given in Equation (54) yields the fol-
lowing expression for the total second-order G-differential of the response R[φ(x),ψ(x); f]:{

δR(1)
[

j1; u(2)(22; x
)
; a(2)

(
j1; 22; x

)
; f; δf

]}
α0

=
TF
∑

j2=1

{
R(2)

[
j2; j1; u(2)(22; x

)
; a(2)

(
j1; 22; x

)
; f
]}
α0

δ f j2 ,
(73)

where R(2)
[

j2; j1; u(2)(x); a(2)(j1; x); f
]

≡ ∂2R[φ(x),ψ(x); f]/∂ f j1 ∂ f j2 denotes the second-
order partial sensitivity of the response R[φ(x),ψ(x); f] with respect to the components
f j2(α) of the feature function f(α), evaluated at the nominal parameter values α0, and has
the following expression for j1, j2 = 1, . . . , TP:

R(2)
[

j2; j1; u(2)(22; x
)
; a(2)

(
j1; 22; x

)
; f
]

=

{
∂

∂ f j2

ω1(α)∫
λ1(α)

dx1 . . .
ωTI(α)∫
λTI(α)

dxTIS(1)
[

j1; u(2)(22; x
)
; f(α)

]}
α0

+

{〈
a(2)1 (j1; x), ∂[Q(f)−L(f)φ(x)]

∂ f j2

〉
0

}
α0

+

{〈
a(2)2 (j1; x), ∂[Q∗(f)−L∗(f)ψ(x)]

∂ f j2

〉
0

}
α0

+

{〈
a(2)3 (j1; x),

∂2S(u(1)(x);f)
∂ f j2 ∂φ −

∂
[
L∗(f)a(1)1

]
∂ f j2

〉
0

}
α0

+

{〈
a(2)4 (j1; x),

∂2S(u(1)(x);f)
∂ f j2 ∂ψ −

∂
[
L(f)a(1)2

]
∂ f j2

〉
0

}
α0

−
{

∂
∂ f j2

P̂(2)
[
u(2)(x); a(2)(j1; x); f(α)

]}
α0

.

(74)

Since the 2nd-LASS is independent of variations in the components of the feature func-
tions (and, hence, variations in the model parameters), the exact computation of all of the par-
tial second-order sensitivities R(2)

[
j2; j1; u(2)(22; x

)
; a(2)

(
j1; 22; x

)
; f
]
≡ ∂2R[φ(x),ψ(x); f]

/∂ f j1 ∂ f j2 requires at most TF large-scale (adjoint) computations using the 2nd-LASS. When
the 2nd-LASS is solved TF-times, the “off-diagonal” second-order mixed sensitivities
∂2R/∂ f j1 ∂ f j2 will be computed twice, in two different ways, using two distinct second-
level adjoint sensitivity functions, thereby providing an independent intrinsic (numerical)
verification that the first- and second-order response sensitivities with respect to the compo-
nents of the feature functions are computed accurately. In component form, the equations
comprising the 2nd-LASS are solved for each j1 = 1, . . . , TF in the following order:

L(f)a(2)3 (j1; x) =
∂S(1)

(
j1; u(2); f

)
∂a(1)1

, (75)

L∗(f)a(2)4 (j1; x) =
∂S(1)

(
j1; u(2); f

)
∂a(1)2

, (76)

L∗(f)a(2)1 (j1; x) =
∂2S
(

u(1); f
)

∂φ∂φ
a(2)3 (j1; x) +

∂2S
(

u(1); f
)

∂ψ∂φ
a(2)4 (j1; x) +

∂S(1)
(

j1; u(2); f
)

∂φ
, (77)



Energies 2024, 17, 2263 20 of 45

L(f)a(2)2 (j1; x) =
∂2S
(

u(1); f
)

∂φ∂ψ
a(2)3 (j1; x) +

∂2S
(

u(1); f
)

∂ψ∂ψ
a(2)4 (j1; x) +

∂S(1)
(

j1; u(2); f
)

∂ψ
. (78)

Dirac-delta functionals may need to be used in Equation (74) in order to express in integral
form the eventual non-zero residual terms in the residual bilinear concomitant and/or the terms
containing derivatives with respect to the lower- and upper-boundary points. Ultimately, the
expression of the partial second-order sensitivities R(2)

[
j2; j1; u(2)(22; x

)
; a(2)

(
22; j1; x

)
; f
]

ob-
tained in Equation (74) is written in the following integral form, which mirrors Equation (48):

R(2)
[

j2; j1; u(2)(22; x
)
; a(2)

(
22; j1; x

)
; f(α)

]
≜

ω1(α)∫
λ1(α)

dx1 . . .
ωTI(α)∫
λTI(α)

dxTIS(2)
[

j2; j1; u(2)(22; x
)
; a(2)

(
22; j1; x

)
; f(α)

]
.

(79)

The computation of the partial second-order sensitivities R(2)
[

j2; j1; u(2)(22; x
)
;

a(2)
(
22; j1; x

)
; f
]

using Equation (74) requires quadratures for performing the integrations

over the four components of the second-level adjoint sensitivity function a(2)
(
22; j1; x

)
,

which are obtained by solving the 2nd-LASS for j1 = 1, . . . , TF. Thus, obtaining all of
the second-order sensitivities R(2)

[
j2; j1; u(2)(22; x

)
; a(2)

(
22; j1; x

)
; f
]
≡ ∂2R/∂ f j1 ∂ f j2 with

respect to the components f j1 of the feature function f(α) requires performing at most TF
large-scale computations for solving the 2nd-LASS.

In comparison, if the 2nd-CASAM-L [27] had been applied to compute the second-
order sensitivities of the response directly with respect to the model parameters, TP (instead
of TF) large-scale computations for solving the corresponding 2nd-LASS would have been
required, where TP denotes the total number of primary model parameters. Since TF < TP,
fewer large-scale computations are needed when using the 2nd-FASAM-L rather than the
2nd-CASAM-L. Notably, the left-sides of the 2nd-LASS to be solved within the 2nd-FASAM-
L are the same as those to be solved within the 2nd-CASAM-L. However, the source terms
on the right-sides of these 2nd-LASS are different from each other: there are as many
source-terms on the right-sides as there are components of the feature function within
the 2nd-FASAM-L, and there are as many right-side sources as there are primary model
parameters within the 2nd-CASAM-L.

5. Illustrative High-Order Feature Adjoint Sensitivity Analysis of Energy-Dependent
Particle Detector Response

The application of the nth-FASAM-L methodology will be illustrated in this section by
considering the simplified model of the distribution in the asymptotic energy range of neu-
trons produced by a source of neutrons placed in an isotropic medium comprising a homo-
geneous mixture of “M” non-fissionable materials with constant (i.e., energy-independent)
properties. For simplicity, but without diminishing the applicability of the nth-FASAM-L
methodology, this medium is considered to be infinitely large. The simplified neutron
transport equation that models the energy-distributions of neutrons in such materials is
called the “neutron slowing-down equation” and is written using the neutron lethargy
(rather than the neutron energy) as the independent variable, which is denoted as “u”
and is defined as follows: u ≜ ln(E0/E), where E denotes the energy-variable and E0
denotes the highest energy in the system. Thus, the neutron slowing-down model [32–34]
for the energy-distribution of the neutron flux in a homogeneous mixture of non-fissionable
materials of infinite extent takes on the following drastically simplified form of the neutron
transport balance equation:

dφ(u)
du

+
Σa

ξΣt
φ(u) =

S(u)
ξΣt

; 0 < u ≤ uth; (80)
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φ(0) = 0; at u = 0. (81)

The quantities that appear in Equation (80) are defined below:

(1) The lethargy-dependent neutron flux is denoted as φ(u); uth denotes a cut-off lethargy,
usually taken to be the lethargy that corresponds to the thermal neutron energy (ca.
0.0024 electron-volts).

(2) The macroscopic elastic scattering cross section for the homogeneous mixture of “M”
materials is denoted as Σs and defined as follows:

Σs ≜
M

∑
i=1

N(i)
m σ

(i)
s ; (82)

where σ
(i)
s , i = 1, . . . , M denotes the elastic scattering cross section of material “i” and the

atomic or molecular number density of material “i” is denoted as N(i)
m , i = 1, . . . , M and de-

fined as follows: N(i)
m ≜ ρiNA/Ai, where NA is Avogadro’s number

(
0.602 × 1024nuclei/mole

)
,

while Ai and ρi denote each material’s mass number and density.

(3) The average gain in lethargy of a neutron per collision is denoted as ξ and defined as
follows for the homogeneous mixture:

ξ ≜
1

Σs

M

∑
i=1

ξi N
(i)
m σ

(i)
s ; ξi ≜ 1 +

ai ln ai
1 − ai

; ai ≜
(

Ai − 1
Ai + 1

)2
. (83)

(4) The macroscopic absorption cross section is denoted as Σa and defined as follows for
the homogeneous mixture:

Σa ≜
M

∑
i=1

N(i)
m σ

(i)
γ , (84)

where σ
(i)
γ , i = 1, . . . , M, denotes the microscopic radiative-capture cross section of mate-

rial “i”.

(5) The macroscopic total cross section is denoted as Σt and defined as follows for the
homogeneous mixture:

Σt ≜ Σa + Σs. (85)

(6) The source S(u) is considered to be a simplified “spontaneous fission” source stem-
ming from fissionable actinides, such as 239Pu and 240Pu, emitting monoenergetic
neutrons at the highest energy (i.e., zero lethargy). Such a source is comprised within
the OECD/NEA polyethylene-reflected plutonium (PERP) OECD/NEA reactor physics
benchmark [21,22], which can be modeled via the following simplified expression:

S(u) = S0δ(u); S0 ≜
2

∑
k=1

λS
k NS

k FS
k νS

k WS
k (86)

where the superscript “S” indicates “source”; the subscript index k = 1 indicates material
properties pertaining to the isotope 239Pu; the subscript index k = 2 indicates material
properties pertaining to the isotope 240Pu; λS

k denotes the decay constant; NS
k denotes the

atomic densities of the respective actinides; FS
k denotes the spontaneous fission branching

ratio; νS
k denotes the average number of neutrons per spontaneous fission; WS

k denotes a
function of parameters used in Watt’s fission spectrum to approximate the spontaneous
fission neutron spectrum of the respective actinide. The detailed forms of the parameters
WS

k are unimportant for illustrating the application of the nth-FASAM-L methodology. The
nominal values for these imprecisely known parameters are available from a library file
contained in SOURCES4C [26].
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The response considered for the above neutron slowing-down model is the reaction
rate, denoted as R, of neutrons of energy u = ud that would be measured using a detector
characterized by the interaction cross section Σd ≜ Ndσd, where Nd denotes the atomic
or molecular number density of the detector’s material, while σd denotes the detector’s
microscopic interaction cross section. Mathematically, the detector’s reaction rate can be
represented by the following functional of the neutron flux φ(u):

R = Σd φ(ud) = Σd

uth∫
0

φ(u)δ(u − ud)du; Σd = Ndσd. (87)

For this “source-detector” model, the following primary model parameters are subject to
experimental uncertainties:

(i) The atomic number densities N(i)
m , the microscopic radiative-capture cross section

σ
(i)
γ ; the scattering cross section σ

(i)
s , for each material “i”, i = 1, . . . , M, included in the

homogeneous mixture;
(ii) The source parameters λS

k ,NS
k , FS

k , νS
k , and WS

k for k = 1, 2;
(iii) The atomic density Nd and the microscopic interaction cross section σd that char-

acterize the detector’s material.
These above primary parameters are considered to constitute the components of a

“vector of primary model parameters” defined as follows:

α ≜
(

N(1)
m , σ

(1)
γ , σ

(1)
s , . . . , N(M)

m , σ
(M)
γ , σ

(M)
s , λS

1 , λS
2 , NS

1 , NS
2 , FS

1 , FS
2 , νS

1 , νS
2 , WS

1 , WS
2 , Nd, σd

)†

≜ (α1, . . . , αTP)
†; TP ≜ 3M + 12.

(88)

On the other hand, the structure of the computational model comprising Equations (80),
(81) and (87) suggests that the components fi(α) of the feature function f(α) can be defined
as follows:

f(α) ≜ [ f1(α), f2(α), f3(α)]
†;

f1(α) ≜
Σa(α)

ξ(α)Σt(α)
; f2(α) ≜

S0(α)

ξ(α)Σt(α)
; f3(α) ≜ Σd(α).

(89)

Solving Equations (80) and (81) while using the definitions introduced in Equation (89)
yields the following expression for the flux φ(u) in terms of the components fi(α) of the
feature function f(α):

φ(u) = H(u) f2(α) exp[−u f1(α)]; H(0) = 0; H(u) = 1, i f u > 0. (90)

In terms of the components fi(α) of the feature function f(α), the model’s response
takes on the following expression:

R(α) = f3(α) f2(α) exp[−ud f1(α)]. (91)

As Equation (91) indicates, the model’s response can be considered to depend directly
on TP ≜ 3M + 12 primary model parameters. Alternatively, the model response can
be considered to depend directly on three feature functions and only indirectly (through
the three feature functions) on the primary model parameters. In the former considera-
tion/interpretation, the response sensitivities to the primary model parameters will be ob-
tained by applying the nth-CASAM-L methodology. In the later consideration/interpretation,
the response sensitivities to the primary model parameters will be obtained by applying
the nth-FASAM-L methodology, which will involve two stages as follows: the response
sensitivities with respect to the feature functions will be obtained in the first stage, while
the subsequent computation of the response sensitivities to the primary model parameters
will be performed in the second stage by using the response sensitivities with respect to
the feature functions obtained in the first stage. The computational distinctions that stem
from these differing considerations/interpretations within the nth-CASAM-L methodology
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versus the nth-FASAM-L methodology will become evident in the remainder of this section
by means of the illustrative neutron slowing-down model, which is representative of the
general situation for any linear system.

According to the “reciprocity relation” for linear systems highlighted in Equation (8),
the detector response defined in Equation (87) can be alternatively expressed in terms of
the solution of the “adjoint slowing-down model”, i.e., the model that would be adjoint
to the forward slowing-down model represented by Equations (80) and (81). The “adjoint
slowing-down model” is constructed in the Hilbert space HB of all the square-integrable
functions φ(u) ∈ HB, ψ(u) ∈ HB endowed with the following inner product, denoted as
⟨φ(u), ψ(u)⟩B:

⟨φ(u), ψ(u)⟩B ≜

uth∫
0

φ(u)ψ(u)du. (92)

Using the inner product ⟨φ(u), ψ(u)⟩B defined in Equation (92), the adjoint slowing-
down model is constructed via the usual procedure, namely the following: (i) construct
the inner product of Equation (80) with the function ψ(u) ∈ HB; (ii) integrate by parts the
resulting relation so as to transfer the differential operation from the forward function φ(u)
onto the adjoint function ψ(u); (iii) use the initial condition provided in Equation (81) and
eliminate the unknown function φ(uth) by choosing the final-value condition ψ(uth) = 0;
(iv) choose the source for the resulting adjoint slowing-down model so as to satisfy the
reciprocity relation shown in Equation (8). The result of these operations is the following
adjoint slowing-down model for the adjoint slowing-down function ψ(u):

−dψ(u)
du

+ f1(α)ψ(u) = f3(α)δ(u − ud), (93)

ψ(uth) = 0, atu = uth. (94)

In terms of the adjoint slowing-down function ψ(u), the detector response takes on
the following alternative expression:

R = f2(α)

uth∫
0

ψ(u)δ(u)du. (95)

The correctness of the alternative expression for the detector response provided in
Equation (95) can be readily verified by solving the adjoint slowing-down equation to
obtain the following closed form expression for the adjoint slowing-down function ψ(u):

ψ(u) = H(ud − u) f3(α) exp[(u − ud) f1(α)], (96)

and subsequently inserting the above expression into Equation (95) to obtain the same final
result as obtained in Equation (91) in terms of the forward slowing-down flux φ(u).

5.1. First-Order Adjoint Sensitivity Analysis: 1st-FASAM-L versus 1st-CASAM-L

In this subsection, the computation of the first-order sensitivities of the response R(α)
with respect to the primary model parameters will first be demonstrated by using the
1st-FASAM-L. Subsequently, the same first-order sensitivities will be obtained by using the
1st-CASAM-L and the two alternative paths will be compared to each other, showing that
the same expressions are obtained for the respective sensitivities, as expected. Although
the computational efforts are not identical, they are comparable in terms of efficiency, with
a slight advantage for the 1st-FASAM-L methodology.
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5.1.1. Application of the 1st-FASAM-L

The 1st-FASAM-L will be applied to the neutron slowing-down paradigm illustrative
model by following the principles outlined in Section 3. In this case, the model response is
written in terms of the feature functions as follows:

R(φ, f) = f3

uth∫
0

φ(u)δ(u − ud)du, (97)

where the flux φ(u) is the solution of the First-Level Forward/Adjoint System (1st-LFAS)
comprising Equations (80) and (81), where Equation (80) is written in terms of the feature
functions as follows:

dφ(u)
du

+ f1 φ(u) = f2δ(u); 0 < u ≤ uth. (98)

The first-order sensitivities of the response R(φ, f) with respect to the components of the
feature function f(α) are provided by the first-order Gateaux (G)-variation δR

(
φ0, f0; v(1), δf

)
of R(φ, f), for variations v(1)(u) ≜ δφ(u) and δ f3 around the phase-space point

(
φ0, f0

)
, as

shown in Equation (18), to obtain the following:

δR
(

φ0, f0; v(1), δf
)
≜

{
d
dε

[(
f 0
3 + εδ f3

)uth∫
0

(
φ0 + εv(1)

)
δ(u − ud)du

]}
ε=0

≜
{

δR
(

φ0, f0; δ f3

)}
dir

+
{

δR
(

φ0, f0; v(1)
)}

ind
,

(99)

where the “direct-effect” term
{

δR
(

φ0, f0; δ f3

)}
dir

and the “indirect-effect” term
{

δR
(

φ0,

f0; v(1) )}ind are, respectively, defined as follows:

{
δR
(

φ0, f0; δ f3

)}
dir

≜ (δ f3)

uth∫
0

φ0(u)δ(u − ud)du, (100)

{
δR
(

φ0, f0; v(1)
)}

ind
≜ f 0

3

uth∫
0

v(1)(u)δ(u − ud)du. (101)

The “1st-level variational sensitivity function” v(1)(u) is obtained as the solution of
the “1st-Level Variational Sensitivity System (1st-LVSS)” obtained by taking the first-order
G-differentials of the 1st-LFAS defined by Equations (98) and (81), which are derived, as
shown in Equations (28) and (29), to obtain the following: d

dε

d
(

φ0 + εv(1)
)

du
+
(

f 0
1 + εδ f1

)(
φ0 + εv(1)

)
ε=0

= δ(u)
{

d
dε

(
f 0
2 + εδ f2

)}
ε=0

, (102)

{
d
dε

[
φ0(u) + εv(1)(u)

]}
ε=0

= 0; at u = 0. (103)

Carrying out the differentiations with respect to ε in the above equations and setting
ε = 0 in the resulting expressions yields the following 1st-LVSS:

dv(1)(u)
du

+ f1

(
α0
)

v(1)(u) = (δ f2)δ(u)− (δ f1)φ0(u), (104)

v(1)(u) = 0; at u = 0. (105)
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For further reference, the closed-form solution of the above 1st-LVSS has the follow-
ing expression:

v1(u) = {[(δ f2)− (δ f1)u f2]H(u) exp(−u f1)}α0 . (106)

In principle, the above expression for v(1)(u) could be used in Equation (101) to ob-
tain the value of the indirect-effect term. In practice, however, the 1st-LVSS cannot be
solved analytically so the closed form expression of v(1)(u) is not available. Consequently,
rather than (numerically) solve repeatedly the 1st-LVSS for every possible variation in-
duced by the primary parameters in the component feature functions, the alternative route
for determining the expression of the indirect-effect term is to develop the First-Level
Adjoint sensitivity System (1st-LASS) by following the procedure described in Section 3.
The Hilbert space, denoted as H1, appropriate for this illustrative model is the space of
all square-integrable functions endowed with the following inner product, denoted as〈

χ(1)(u), θ(1)(u)
〉

1
between two elements, χ(1)(u) ∈ H1, θ(1)(2; x) ∈ H1, belonging to this

Hilbert space: 〈
χ(1)(u), θ(1)(u)

〉
1
≜

uth∫
0

χ(1)(u)θ(1)(u)du. (107)

In this particular instance, the Hilbert space H1 coincides with the original Hilbert
space HB used for the original forward and adjoint slowing-down models. More generally,
similar situations occur when the response depends either just on the forward or just on
the adjoint state function(s).

Using Equation (107), construct in the Hilbert space H1 the inner product of Equa-
tion (104) with a square-integrable function a(1)(u) ∈ H1 to obtain the following relation:

uth∫
0

a(1)(u)

[
dv(1)(u)

du
+ f1v(1)(u)

]
du


α0

=


uth∫
0

a(1)(u)[(δ f2)δ(u)− (δ f1)φ(u)]du


α0

. (108)

Using the definition of the adjoint operator in the Hilbert space H1, which, in this case,
amounts to integration by parts of the left-side of Equation (108), obtain the following relation:{

uth∫
0

a(1)(u)
[

dv(1)(u)
du + f1v(1)(u)

]
du

}
α0

=

{
uth∫
0

v(1)(u)
[
− da(1)(u)

du + f1a(1)(u)
]

du

}
α0

+
{

a(1)(uth)v(1)(uth)− a(1)(0)v(1)(0)
}
α0

.
(109)

Require the first term on the right-side of Equation (109) to represent the indirect-effect
term defined in Equation (101) to obtain the following relation:{

−da(1)(u)
du

+ f1a(1)(u)

}
α0

= { f3δ(u − ud)}α0 ; 0 < u ≤ uth. (110)

Implement the boundary conditions represented by Equation (105) into Equation (109)
and eliminate the unknown boundary-value v(1)(uth) from this relation by imposing the
following boundary condition:

a(1)(uth) = 0, at u = uth. (111)

The system of equations comprising Equation (110) together with the boundary condi-
tion represented Equation (111) is the First-Level Adjoint Sensitivity System (1st-LASS), and
its solution a(1)(u) is the first-level adjoint sensitivity function.
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Using Equation (101) together with the equations underlying the 1st-LASS and 1st-
LVSS in Equation (108) reduces the latter to the following expression for the indirect-
effect term:

{
δR
(

φ0, f0; a(1)
)}

ind
=


uth∫
0

a(1)(u)[(δ f2)δ(u)− (δ f1)φ(u)]du


α0

. (112)

Adding the expression obtained in Equation (112) with the expression for the direct-
effect term defined in Equation (100) yields the following expression for the total first-order
variation δR

(
φ0, f0; v(1), δf

)
in the response R[φ(u); f(α)] with respect to the components

of the feature function f(α):

δR
(

φ0, f0; v(1), δf
)
=

{
uth∫
0

a(1)(u)[(δ f2)δ(u)− (δ f1)φ(u)]du

}
α0

+

{
(δ f3)

uth∫
0

φ(u)δ(u − ud)du

}
α0

≡
{

δR
(

φ, f; a(1), δf
)}
α0

.
(113)

The identity that appears in Equation (113) emphasizes the fact that “1st-level varia-
tional sensitivity function” v(1)(u), which is expensive to compute, has been eliminated
from the final expression of the first-order total variation

{
δR
(

φ, f; a(1), δf
)}
α0

, being

replaced by the dependence on the first-level adjoint sensitivity function a(1)(u), which
is independent of variations δf(α) in the components of the feature function and, con-
sequently, independent of any variations δα in the primary model parameters. Hence,
the 1st-LASS needs to be solved only once to determine the first-level adjoint sensitivity
function a(1)(u), which requires the same amount of computational effort as solving the
original forward system for the function φ(u).

The expressions of the sensitivities of the response R[φ(u); f(α)] with respect to the
components of the feature function f(α) are given by the expressions that multiply the
respective components of f(α) in Equation (113), namely the following:

∂R(φ; f)
∂ f1

= −
uth∫
0

a(1)(u)φ(u)du; (114)

∂R(φ; f)
∂ f2

=

uth∫
0

a(1)(u)δ(u)du, (115)

∂R(φ; f)
∂ f3

=

uth∫
0

φ(u)δ(u − ud)du. (116)

The above expressions are to be evaluated at the nominal parameter values α0, but
the indication { }α0 has been omitted for simplicity.

Solving the 1st-LASS yields the following closed-form expression for the first-level
adjoint sensitivity function a(1)(u):

a(1)(u) = H(ud − u) f3(α) exp[(u − ud) f1(α)], (117)

where the Heaviside functional has the usual meaning, namely H(ud − u) = 0 i f u > ud
and H(ud − u) = 1 i f u < ud.
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Inserting the expression obtained in Equation (117) into Equations (114)–(116) yields
the following closed-form expressions for the sensitivities of the response R[φ(u); f(α)]
with respect to the components of the feature function f(α):

∂R(φ; f)
∂ f1

= −ud f2(α) f3(α) exp[−ud f1(α)]; (118)

∂R(φ; f)
∂ f2

= f3(α) exp[−ud f1(α)], (119)

∂R(φ; f)
∂ f3

= f2(α) exp[−ud f1(α)]. (120)

The correctness of the expressions obtained in Equations (118)–(120) can be verified by
directly differentiating the closed-form expression given in Equation (91).

Alternatively, the 1st-FASAM-L methodology could have been applied to the alterna-
tive expression, in terms of the adjoint slowing-down function, for the detector response
provided in Equation (95). It can be verified that the final expressions for the response
sensitivities with respect to the feature functions fi(α), i = 1, 2, 3, obtained by using
Equation (95) as the starting point in conjunction with the adjoint slowing-down model are
the same as those obtained in Equations (118)–(120).

The expressions of the first-order sensitivities of the response R[φ(u); f(α)] with
respect to the primary model parameters αj, j = TP ≜ 3M + 12, as defined in Equation (88),
are obtained by using the expressions obtained in Equations (118)–(120) in conjunction
with the chain rule of differentiation of the compound functions fi(α), i = 1, 2, 3. Note that
the feature function f3(α) ≜ f3(Nd, σd) depends only on the parameters that characterize
the detector, so the first-order sensitivities of the response R[φ(u); f(α)] with respect to
the primary model parameters Nd and σd can be readily obtained by using Equation (120)
as follows:

∂R(φ; f)
∂Nd

=
∂R(φ; f)

∂ f3

∂ f3

∂Nd
= σd f2(α) exp[−ud f1(α)] (121)

∂R(φ; f)
∂σd

=
∂R(φ; f)

∂ f3

∂ f3

∂σd
= Nd f2(α) exp[−ud f1(α)] (122)

Similarly, the primary model parameters
(
λS

1 , λS
2 , NS

1 , NS
2 , FS

1 , FS
2 , νS

1 , νS
2 , WS

1 , WS
2
)

that
characterize the neutron source distribution only appear through the definition of the
feature function f2(α) ≜ S0(α)/ξ(α)Σt(α). It, therefore, follows that the first-order sensi-
tivities of the response R[φ(u); f(α)] with respect to these primary model parameters are
obtained as follows:

∂R(φ; f)
∂λS

i
=

∂R(φ; f)
∂ f2

∂ f2

∂λS
i
=

NS
k FS

k νS
k WS

k

ξ(α)Σt(α)
f3(α) exp[−ud f1(α)], k = 1, 2; (123)

∂R(φ; f)
∂NS

k
=

∂R(φ; f)
∂ f2

∂ f2

∂NS
k
=

λS
i FS

k νS
k WS

k

ξ(α)Σt(α)
f3(α) exp[−ud f1(α)], k = 1, 2; (124)

∂R(φ; f)
∂FS

k
=

∂R(φ; f)
∂ f2

∂ f2

∂FS
k
=

λS
i NS

k νS
k WS

k

ξ(α)Σt(α)
f3(α) exp[−ud f1(α)], k = 1, 2; (125)

∂R(φ; f)
∂νS

k
=

∂R(φ; f)
∂ f2

∂ f2

∂νS
k
=

λS
i NS

k FS
k WS

k

ξ(α)Σt(α)
f3(α) exp[−ud f1(α)], k = 1, 2; (126)

∂R(φ; f)
∂WS

k
=

∂R(φ; f)
∂ f2

∂ f2

∂WS
k
=

λS
i NS

k FS
k νS

k

ξ(α)Σt(α)
f3(α) exp[−ud f1(α)], k = 1, 2. (127)

On the other hand, the primary model parameters
(

N(1)
m , σ

(1)
γ , σ

(1)
s , . . . , N(M)

m , σ
(M)
γ , σ

(M)
s

)
that characterize the composition of the homogenized material in which the neutrons slow
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down appear through the definitions of both feature functions f1(α) ≜ Σa(α)/ξ(α)Σt(α)
and f2(α) ≜ S0(α)/ξ(α)Σt(α). It, therefore, follows that the first-order sensitivities of
the response R[φ(u); f(α)] with respect to these primary model parameters are obtained
as follows:

∂R(φ; f)

∂N(i)
m

=
∂R(φ; f)

∂ f1

∂ f1

∂N(1)
m

+
∂R(φ; f)

∂ f2

∂ f2

∂N(1)
m

; i = 1, . . . , M; (128)

∂R(φ; f)

∂σ
(i)
γ

=
∂R(φ; f)

∂ f1

∂ f1

∂σ
(i)
γ

+
∂R(φ; f)

∂ f2

∂ f2

∂σ
(i)
γ

; i = 1, . . . , M; (129)

∂R(φ; f)

∂σ
(i)
s

=
∂R(φ; f)

∂ f1

∂ f1

∂σ
(i)
s

+
∂R(φ; f)

∂ f2

∂ f2

∂σ
(i)
s

; i = 1, . . . , M; (130)

The explicit differentiations in Equations (128)–(130) are straightforward to perform
but are too lengthy to be presented here and are not material to applying the principles of
the 1st-FASAM-L methodology.

In summary, the application of the 1st-FASAM-L to compute the first-order sensi-
tivities of the response R[φ(u); f(α)] with respect to the primary model parameters αj,
j = 1, . . . , TP ≜ 3M + 12 requires the following computations:

1. One “large-scale” computation to solve the 1st-LASS to obtain the first-level adjoint
sensitivity function a(1)(u).

2. Three “quadratures”, as indicated in Equations (114)–(116), involving the first-level
adjoint sensitivity function a(1)(u) to obtain the three sensitivities of the response
R[φ(u); f(α)] with respect to the components fi(α), i = 1, 2, 3, of the feature function
f(α). These computations are inexpensive.

3. Chain-rule-type differentiations using the definitions of fi(α), i = 1, 2, 3, of the feature
function f(α), and the three sensitivities obtained in Equations (114)–(116). These
computations are inexpensive.

5.1.2. Application of the 1st-CASAM-L

The application of the 1st-CASAM-L methodology will yield the first-order response
sensitivities directly with respect to the primary model parameters. These sensitivities will
be obtained by determining the same first-order Gateaux (G)-variation δR

(
φ0,α0; v(1), δα

)
of the response R(φ,α) as for variations v(1)(u) ≜ δφ(u) and δα around the phase-space
point

(
φ0,α0), using the definition provided in Equation (87), to obtain the following:

δR
(

φ0,α0; v(1), δα
)
≜
{

δR
(

φ0,α0; δα
)}

dir +
{

δR
(

φ0,α0; v(1)
)}

ind

≜

{{
d
dε

[
(Nd + εδNd)(σd + εδσd)

uth∫
0

(
φ0 + εv(1)

)
δ(u − ud)du

]}
ε=0

}
α0

,
(131)

where the “direct-effect” term
{

δR
(

φ0,α0; δα
)}

dir and the “indirect-effect” term
{

δR
(

φ0,α0;
v(1) )}ind are, respectively, defined as follows:

{
δR
(

φ0,α0; δ f3

)}
dir

≜

[(δNd)σd + (δσd)Nd]

uth∫
0

φ(u)δ(u − ud)du


α0

, (132)

{
δR
(

φ0,α0; v(1)
)}

ind
≜

Ndσd

uth∫
0

v(1)(u)δ(u − ud)du


α0

. (133)
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The “1st-level variational sensitivity function” v(1)(u) is obtained as the solution of
the “1st-Level Variational Sensitivity System (1st-LVSS)” obtained by taking the first-order
G-differentials of the 1st-LFAS defined by Equations (80) and (81) to obtain the following:{

d
dε

[
d(φ0+εv(1))

du +
Σa(α0+εδα)

ξ(α0+εδα)Σt(α0+εδα)

(
φ0 + εv(1)

)]}
ε=0

= δ(u)
{

d
dε

S0(α0+εδα)
ξ(α0+εδα)Σt(α0+εδα)

}
ε=0

,
(134)

{
d
dε

[
φ0(u) + εv(1)(u)

]}
ε=0

= 0; at u = 0. (135)

Carrying out the differentiations with respect to ε in the above equations and setting
ε = 0 in the resulting expressions yields the following 1st-LVSS:

dv(1)(u)
du +

Σa(α0)
ξ(α0)Σt(α0)

v(1)(u) = δ(u)
{

TP
∑

i=1

∂
∂αi

[
S0(α)

ξ(α)Σt(α)

]
δαi

}
α0

−
{

φ(u)
TP
∑

i=1

∂
∂αi

[
Σa(α)

ξ(α)Σt(α)

]
δαi

}
α0

,
(136)

v(1)(u) = 0; at u = 0. (137)

To avoid solving the above the 1st-LVSS repeatedly, for every possible variation in
the primary parameters, the appearance of the function v(1)(u) will be eliminated for the
expression of the indirect-effect term by replacing it with the solution of the First-Level
Adjoint Sensitivity System (1st-LASS), which will be constructed in the Hilbert space H1,
as before: use Equation (107) to form the inner product of Equation (136) with a square-
integrable function a(1)(u) ∈ H1 to obtain the following relation:{

uth∫
0

a(1)(u)
[

dv(1)(u)
du + Σa(α)

ξ(α)Σt(α)
v(1)(u)

]
du

}
α0

=

{
TP
∑

i=1

∂
∂αi

[
S0(α)

ξ(α)Σt(α)

]
δαi

×
uth∫
0

a(1)(u)δ(u)du

}
α0

−
{

TP
∑

i=1

∂
∂αi

[
Σa(α)

ξ(α)Σt(α)

]
δαi

uth∫
0

a(1)(u)φ(u)du

}
α0

.
(138)

Integration by parts of the left-side of Equation (138) yields the following relation:{
uth∫
0

a(1)(u)
[

dv(1)(u)
du + Σa(α)

ξ(α)Σt(α)
v(1)(u)

]
du

}
α0

=
{

a(1)(uth)v(1)(uth)
}
α0

−
{

a(1)(0)v(1)(0)
}
α0

{
uth∫
0

v(1)(u)
[
− da(1)(u)

du + Σa(α)

ξ(α)Σt(α)
a(1)(u)

]
du

}
α0

.
(139)

Requiring the first term on the right-side of Equation (139) to represent the indirect-
effect term defined in Equation (133) yields the following relation:{

−da(1)(u)
du

+
Σa(α)

ξ(α)Σt(α)
a(1)(u)

}
α0

= {Ndσdδ(u − ud)}α0 . (140)

Eliminate the unknown boundary-value v(1)(uth) from Equation (139) by imposing
the following boundary condition:

a(1)(uth) = 0, at u = uth. (141)

The system of equations comprising Equations (140) and (141) is the First-Level Adjoint
Sensitivity System (1st-LASS) and its solution a(1)(u) is the first-level adjoint sensitivity function.
As already shown in the general 1st-FASAM methodology presented in Section 3, the 1st-
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LASS that arises within the framework of the 1st-CASAM-L is identical to the 1st-LASS that
arises within the 1st-FASAM methodology, which is the reason underlying the use of the
same notation for the first-level adjoint sensitivity function, namely a(1)(u), in both cases.

Implementing the equations underlying the 1st-LASS and 1st-LVSS using Equa-
tion (138) and recalling the expression of the indirect-effect term provided in Equation (133)
yields the following expression for the indirect-effect term:

{
δR
(

φ0,α0; a(1)
)}

ind
=

{
TP
∑

i=1

∂
∂αi

[
S0(α)

ξ(α)Σt(α)

]
δαi

uth∫
0

a(1)(u)δ(u)du

}
α0

−
{

TP
∑

i=1

∂
∂αi

[
Σa(α)

ξ(α)Σt(α)

]
δαi

uth∫
0

a(1)(u)φ(u)du

}
α0

.
(142)

Adding the expression obtained in Equation (142) with the expression for the direct-
effect term defined in Equation (132) yields the following expression for the total first-order
variation δR

(
φ0, f0; v(1), δf

)
of the response R[φ(u); f(α)] with respect to the components

of the feature function f(α):

δR
(

φ0,α0; v(1), δα
)
=

{
TP
∑

i=1

∂
∂αi

[
S0(α)

ξ(α)Σt(α)

]
δαi

uth∫
0

a(1)(u)δ(u)du

}
α0

−
{

TP
∑

i=1

∂
∂αi

[
Σa(α)

ξ(α)Σt(α)

]
δαi

uth∫
0

a(1)(u)φ(u)du

}
α0

+

{
[(δNd)σd + (δσd)Nd]

uth∫
0

φ(u)δ(u − ud)du

}
α0

≡
{

δR
(

φ,α; a(1), δα
)}
α0

.

(143)

The identity that appears in Equation (143) emphasizes the fact that “1st-level varia-
tional sensitivity function” v(1)(u), which is expensive to compute, has been eliminated
from the final expression of the first-order total variation

{
δR
(

φ,α; a(1), δα
)}
α0

, being

replaced by the dependence on the first-level adjoint sensitivity function a(1)(u), which is
independent of any variations δα in the primary model parameters. Hence, the 1st-LASS
needs to be solved only once to determine the first-level adjoint sensitivity function a(1)(u),
which requires the same amount of computational effort as solving the original forward
system for the function φ(u).

The expressions of the first-order sensitivities of the response R[φ(u);α] with respect
to the primary model parameters are the expressions that multiply the corresponding
parameter variations δαi in Equation (143). In particular, the (two) first-order sensitivities
of the response R[φ(u);α] with respect to the primary model parameters underlying the
detector’s interaction cross section arise solely from the direct-effect term and have the
following expressions:

∂R(φ;α)
∂Nd

= σd

uth∫
0

φ(u)δ(u − ud)du = σd φ(ud); (144)

∂R(φ;α)
∂σd

= Nd

uth∫
0

φ(u)δ(u − ud)du = Nd φ(ud). (145)

The above expressions are to be evaluated at the nominal parameter values α0, but the
indication { }α0 has been omitted for simplicity. As expected, the above expressions are
identical to the corresponding expressions obtained using the 1st-FASAM-L, as determined
using Equations (121) and (122).

The first-order sensitivities of the response R[φ(u);α] with respect to the primary
model parameters underlying the spontaneous fission source arise solely from the first
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term on the right-side of Equation (143) and have the following expressions in terms of the
first-level adjoint sensitivity function a(1)(u):

∂R(φ;α)
∂λS

k
=

NS
k FS

k νS
k WS

k

ξ(α)Σt(α)

uth∫
0

a(1)(u)δ(u)du, k = 1, 2; (146)

∂R(φ; f)
∂NS

k
=

λS
i FS

k νS
k WS

k

ξ(α)Σt(α)

uth∫
0

a(1)(u)δ(u)du, k = 1, 2; (147)

∂R(φ; f)
∂FS

k
=

λS
i NS

k νS
k WS

k

ξ(α)Σt(α)

uth∫
0

a(1)(u)δ(u)du, k = 1, 2; (148)

∂R(φ; f)
∂νS

k
=

λS
i NS

k FS
k WS

k

ξ(α)Σt(α)

uth∫
0

a(1)(u)δ(u)du, k = 1, 2; (149)

∂R(φ; f)
∂WS

k
=

λS
i NS

k FS
k νS

k

ξ(α)Σt(α)

uth∫
0

a(1)(u)δ(u)du, k = 1, 2. (150)

As expected, the above expressions are identical to the corresponding expressions
obtained using the 1st-FASAM-L, as proved using Equations (123)–(127).

The first-order sensitivities of the response R[φ(u);α] with respect to the primary
model parameters

(
N(1)

m , σ
(1)
γ , σ

(1)
s , . . . , N(M)

m , σ
(M)
γ , σ

(M)
s

)
that characterize the composition

of the homogenized material in which the neutrons slow down arise from both the first
and second terms on the right-side of Equation (143) and have the following expressions in
terms of the first-level adjoint sensitivity function a(1)(u):

∂R(φ;f)

∂N(i)
m

=

[
uth∫
0

a(1)(u)δ(u)du

]
∂

∂N(i)
m

[
S0(α)

ξ(α)Σt(α)

]

−
[

uth∫
0

a(1)(u)φ(u)du

]
∂

∂N(i)
m

[
Σa(α)

ξ(α)Σt(α)

]
; i = 1, . . . , M;

(151)

∂R(φ;f)

∂σ
(i)
γ

=

[
uth∫
0

a(1)(u)δ(u)du

]
∂

∂σ
(i)
γ

[
S0(α)

ξ(α)Σt(α)

]

−
[

uth∫
0

a(1)(u)φ(u)du

]
∂

∂σ
(i)
γ

[
Σa(α)

ξ(α)Σt(α)

]
; i = 1, . . . , M;

(152)

∂R(φ;f)

∂σ
(i)
s

=

[
uth∫
0

a(1)(u)δ(u)du

]
∂

∂σ
(i)
s

[
S0(α)

ξ(α)Σt(α)

]

−
[

uth∫
0

a(1)(u)φ(u)du

]
∂

∂σ
(i)
s

[
Σa(α)

ξ(α)Σt(α)

]
; i = 1, . . . , M.

(153)

As expected, the above expressions are identical to the corresponding expressions
obtained using the 1st-FASAM-L, as proved using Equations (128)–(130).

In summary, the application of the 1st-CASAM-L to compute the first-order sensi-
tivities of the response R[φ(u); f(α)] with respect to the primary model parameters αj,
j = 1, . . . , TP ≜ 3M + 12 requires the following computations:
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1. One “large-scale” computation to solve the 1st-LASS to obtain the first-level adjoint
sensitivity function a(1)(u). As has been already remarked, this 1st-LASS is exactly the
same as the 1st-LASS needed within the 1st-FASAM-L methodology for computing the
first-order sensitivities of the response R[φ(u); f(α)] with respect to the components
fi(α), i = 1, 2, 3 of the feature function f(α).

2. A total of TP ≜ 3M + 12 “quadratures” involving the first-level adjoint sensitiv-
ity function a(1)(u) to obtain numerically the TP ≜ 3M + 12 sensitivities of the
response R[φ(u); f(α)] with respect to the primary model parameters αj, j = 1, . . . ,
TP ≜ 3M + 12. These numerical computations are inexpensive by comparison to
solving the 1st-LASS but are more expensive than performing “chain-rule”-type
differentiation “on paper” as performed when applying the 1st-FASAM-L. Hence,
the 1st-FASAM-L methodology enjoys a slight computational advantage over the
1st-CASAM-L methodology.

5.2. Second-Order Adjoint Sensitivity Analysis: 2nd-FASAM-L versus 2nd-CASAM-L

In this subsection, the computation of the first-order sensitivities of the response R(α)
with respect to the primary model parameters will first be demonstrated by using the
2nd-FASAM-L. Subsequently, the same first-order sensitivities will be obtained by using
the 2nd-CASAM-L, and the two alternative paths will be compared to each other, showing
that the same expressions are obtained for the respective sensitivities, as expected. Both the
2nd-FASAM-L and the 2nd-CASAM-L methodologies obtain the second-order sensitivities
by considering the first-order G-differential of each of the first-order sensitivities. Therefore,
the 2nd-FASAM-L methodology will provide significant computational advantages by
comparison with the 2nd-CASAM-L methodology the since it will require at most three
large-scale computations, i.e., the same number of large-scale computations as the number
of components fi(α), i = 1, 2, 3, of the feature function f(α). In contradistinction, the
2nd-CASAM-L methodology will require one large-scale (adjoint) computation for each
primary model parameter αj, j = 1, . . . , TP ≜ 3M + 12, amounting to a total of number of
TP ≜ 3M + 12 large-scale computations.

5.2.1. Application of the 2nd-FASAM-L

As has been shown in Section 4, the 2nd-FASAM-L methodology generically deter-
mines the second-order sensitivities ∂2R

[
u(1)(2; x); f(α)

]
/∂ f j2 ∂ f j1 of the response with

respect to the components of the “feature” function f(α) by conceptually considering that
the first-order sensitivities R(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
≜ ∂R

[
u(1)(2; x); f(α)

]
/∂ f j1

are “model responses”. Consequently, the second-order sensitivities are obtained as the
“1st-order sensitivities of the 1st-order sensitivities” by applying the concepts underlying
1st-FASAM to each first-order sensitivity R(1)

[
j1; u(1)(2; x); a(1)(2; x); f(α)

]
, j1 = 1, . . . , TF.

Second-Order Sensitivities Stemming from ∂R(φ; f)/∂ f1

The above principles will be applied to the first-order sensitivity R(1)
[
1; φ(u); a(1)(u); f(α)

]
≜ ∂R(φ; f)/∂ f1 expressed by Equation (114) to obtain the second-order sensitivities of the
form ∂2R(φ; f)/∂ fj∂ f1, j = 1, 2, 3. The argument “1” in the notation R(1)

[
1; φ(u); a(1)(u); f(α)

]
indicates that this sensitivity is with respect to the first component, namely f1(α), of the
feature function f(α), while also depending on the functions φ(u) and a(1)(u). These
functions are the solutions of the “2nd-Level Forward/Adjoint System (2nd-LFAS)” which
is obtained by concatenating the original First-Level Forward/Adjoint System (1st-LFAS)
with the First-Level Adjoint Sensitivity System (1st-LASS), cf. Equations (98), (81), (110)
and (111), as reproduced below:

dφ(u)
du

+ f1 φ(u) = f2δ(u); 0 < u ≤ uth; (154)
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−da(1)(u)
du

+ f1a(1)(u) = f3δ(u − ud); 0 < u ≤ uth; (155)

φ(0) = 0; at u = 0; a(1)(uth) = 0, at u = uth. (156)

The first-order G-differential of R(1)
[
1; φ(u); a(1)(u); f(α)

]
is obtained from Equation (114),

by definition, as follows:{
δR(1)

[
1; φ(u); a(1)(u); v(1)(u); δa(1)(u); f; δf

]}
α0

≜ −
{

d
dε

uth∫
0

[
a(1)(u) + εδa(1)(u)

][
φ(u) + εv(1)(u)

]
du

}
α0,ε=0

= −
{

uth∫
0

[
v(1)(u)a(1)(u) + δa(1)(u)φ(u)

]
du

}
α0

≡
3
∑

j=1

∂2R(φ;f)
∂ f j∂ f1

(
δ f j
)
.

(157)

Note that the first-order G-differential
{

δR(1)
[
1; φ(u); a(1)(u); v(1)(u); δa(1)(u); f(α)

]}
α0

consists solely of the “indirect-effect term”; there is no “direct-effect” term since there is no
explicit dependence on variations δf(α).

The variational functions v(1)(u) and δa(1)(u) are the solutions of the system of equa-
tions obtained by taking the first-G-differential of the 2nd-LFAS. Applying the definition
of the first G-differential to the equations underlying the 2nd-LFAS yields the following
Second-Level Variational Sensitivity System (2nd-LVSS)” for the second-level variational

sensitivity function v(2)(2; u) ≜
[
v(1)(u), δa(1)(u)

]†
:{

dv(1)(u)
du

+ f1v(1)(u)

}
α0

= {(δ f2)δ(u)− (δ f1)φ(u)}α0 , (158)

−
d
[
δa(1)(u)

]
du

+ f1

[
δa(1)(u)

]
α0

=
{
(δ f3)δ(u − ud)− (δ f1)a(1)(u)

}
α0

; 0 < u ≤ uth; (159)

v(1)(u) = 0, at u = 0; δa(1)(uth) = 0, at u = uth. (160)

The above 2nd-LVSS would need to be solved repeatedly for every possible variation
in the feature functions fi(α), i = 1, 2, 3. This need is circumvented by deriving an alterna-
tive expression for

{
δR(1)

[
1; φ(u); a(1)(u); v(1)(u); δa(1)(u); f(α)

]}
α0

, in which the second-

level variational function v(2)(2; u) ≜
[
v(1)(u), δa(1)(u)

]†
is replaced by a second-level

adjoint sensitivity function, which will be independent of variations in the feature functions
fi(α), i = 1, 2, 3. This second-level adjoint sensitivity function will be the solution of a
Second-Level Adjoint Sensitivity System (2nd-LASS) to be constructed below by following
the steps generally outlined in Section 5 in a Hilbert space, denoted as H2, which is endowed
with the following inner product, denoted as

〈
χ(2)(2; u),θ(2)(2; u)

〉
2
, between two ele-

ments χ(2)(2; u) ≜
[
χ
(2)
1 (u), χ

(2)
2 (u)

]†
∈ H2 and θ(2)(2; u) ≜

[
θ
(2)
1 (u), θ

(2)
2 (u)

]†
∈ H2:

〈
χ(2)(2; u),θ(2)(2; u)

〉
2
≜

uth∫
0

[
χ
(2)
1 (u)θ(2)1 (u) + χ

(2)
2 (u)θ(2)2 (u)

]
du. (161)

Using Equation (161) to form the inner product in the Hilbert space H2 of the 2nd-
LVSS, cf. Equations (158) and (159), with an as-yet-undefined function a(2)(2; 1; u) ≜[

a(2)1 (2; 1; u), a(2)2 (2; 1; u)
]†

∈ H2 yields the following relation:
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uth∫
0

a(2)1 (2; 1; u)
[

dv(1)(u)
du + f1v(1)(u)

]
du +

uth∫
0

a(2)2 (2; 1; u)
[
− d

du δa(1)(u) + f1δa(1)(u)
]
du

=
uth∫
0

a(2)1 (2; 1; u)[(δ f2)δ(u)− (δ f1)φ(u)]du

+
uth∫
0

a(2)2 (2; 1; u)
[
(δ f3)δ(u − ud)− (δ f1)a(1)(u)

]
du.

(162)

The above relation holds for the nominal parameter values, but the notation { }α0 has
been omitted for simplicity.

Using the definition of the adjoint operator in the Hilbert space H2, which amounts to
integration by parts, we recast the left-side of Equation (162) into the form below:

uth∫
0

a(2)1 (2; 1; u)
[

dv(1)(u)
du + f1v(1)(u)

]
du +

uth∫
0

a(2)2 (2; 1; u)
[
− d

du δa(1)(u) + f1δa(1)(u)
]
du

=
uth∫
0

v(1)(u)
[
− da(2)1 (2;1;u)

du + f1a(2)1 (2; 1; u)
]

du +
uth∫
0

δa(1)(u)
[

da(2)2 (2;1;u)
du + f1a(2)2 (2; 1; u)

]
du

+a(2)1 (2; 1; uth)v(1)(uth)− a(2)1 (2; 1; 0)v(1)(0)− a(2)2 (2; 1; uth)δa(1)(uth) + a(2)2 (2; 1; 0)δa(1)(0).

(163)

The first two terms on right-side of Equation (163) are now required to represent the
G-differential

{
δR(1)

[
1; φ(u); a(1)(u); v(1)(u); δa(1)(u); f(α)

]}
α0

defined in Equation (157),
which yields the following relations:(

−d/du + f1 0
0 d/du + f1

)(
a(2)1 (2; 1; u)
a(2)2 (2; 1; u)

)
=

(
−a(1)(u)
−φ(u)

)
. (164)

The definition of the vector a(2)(2; 1; u) ≜
[

a(2)1 (2; 1; u), a(2)2 (2; 1; u)
]†

will now be com-

pleted by selecting boundary conditions so as to eliminate the unknown values v(1)(uth)
and δa(1)(0) in Equation (163). This is accomplished by imposing the following bound-
ary conditions:

a(2)1 (2; 1; uth) = 0; a(2)2 (2; 1; 0) = 0. (165)

The system of equations represented by Equations (164) and (165) constitute the
Second-Level Adjoint Sensitivity System (2nd-LASS) for the second-level adjoint sensitivity

function a(2)(2; 1; u) ≜
[

a(2)1 (2; 1; u), a(2)2 (2; 1; u)
]†

. It is important to note that the 2nd-LASS
is independent of any variations δf in the components of the feature function and, hence, is
independent of any parameter variations δα as well.

The equations underlying the 2nd-LASS, together with the equations underlying the 2nd-
LVSS, are now employed in Equation(162), in conjunction with Equation (163), to obtain the fol-
lowing expression for the G-differential

{
δR(1)

[
1; φ(u); a(1)(u); v(1)(u); δa(1)(u); f(α)

]}
α0

in terms of the second-level adjoint sensitivity function a(2)(2; 1; u) ≜
[

a(2)1 (2; 1; u), a(2)2 (2; 1; u)
]†

:

{
δR(1)

[
1; φ(u); a(1)(u); v(1)(u); δa(1)(u); f(α)

]}
α0

= (δ f2)
uth∫
0

a(2)1 (2; 1; u)δ(u)du

−(δ f1)
uth∫
0

a(2)1 (2; 1; u)φ(u)du + (δ f3)
uth∫
0

a(2)2 (2; 1; u)δ(u − ud)du

−(δ f1)
uth∫
0

a(2)2 (2; 1; u)a(1)(u)du ≡
3
∑

j=1

∂2R(φ;f)
∂ f j∂ f1

(
δ f j
)

≡
{

δR(1)
[
1; φ(u); a(1)(u); a(2)(2; 1; u); f(α)

]}
α0

.

(166)
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As the last equality (identity) in Equation (166) indicates, the second-level variational

sensitivity function v(2)(2; u) ≜
[
v(1)(u), δa(1)(u)

]†
has been eliminated from the final

expression of the G-differential
{

δR(1)
[
1; φ(u); a(1)(u); v(1)(u); δa(1)(u); f(α)

]}
α0

, having

been replaced by the second-level adjoint sensitivity function a(2)(2; 1; u) ≜
[

a(2)1 (2; 1; u),

a(2)2 (2; 1; u)
]†

. Identifying, in Equation (166), the expressions that multiply the variations
δ fi, i = 1, 2, 3, yields the following expressions for the second-order sensitivities of the
response R[φ(u); f(α)] with respect to the components of the feature function f(α):

∂2R(φ; f)
∂ f1∂ f1

= −
uth∫
0

a(2)1 (2; 1; u)φ(u)du −
uth∫
0

a(2)2 (2; 1; u)a(1)(u)du; (167)

∂2R(φ; f)
∂ f2∂ f1

=

uth∫
0

a(2)1 (2; 1; u)δ(u)du; (168)

∂2R(φ; f)
∂ f3∂ f1

=

uth∫
0

a(2)2 (2; 1; u)δ(u − ud)du. (169)

The 2nd-LASS can be solved to obtain the following closed-form expressions for the
components of the second-level adjoint sensitivity function a(2)(2; 1; u) ≜

[
a(2)1 (2; 1; u),

a(2)2 (2; 1; u)
]†

:

a(2)1 (2; 1; u) = − f3(α)(ud − u)H(ud − u) exp[(u − ud) f1(α)], (170)

a(2)2 (2; 1; u) = −u f2(α) exp[−u f1(α)], (171)

Inserting the expressions obtained in Equations (170) and (171) into Equations (167)–(169)
and performing the respective integrations yields the following expressions for the respec-
tive second-order sensitivities:

∂2R(φ; f)
∂ f1∂ f1

= (ud)
2 f2(α) f3(α) exp[−ud f1(α)]; (172)

∂2R(φ; f)
∂ f2∂ f1

= −ud f3(α) exp[−ud f1(α)]; (173)

∂2R(φ; f)
∂ f3∂ f1

= −ud f2(α) exp[−ud f1(α)]; (174)

The correctness of the expressions obtained in Equations (172)–(174) can be verified by
directly differentiating the closed-form expressions provided in Equations (118)–(120).

Second-Order Sensitivities Stemming from ∂R(φ; f)/∂ f2

Applying the procedure used in the previous subsection to the first-order sensitivity
R(1)

[
2; a(1)(u); f(α)

]
≜ ∂R(φ; f)/∂ f2 expressed by Equation (115) will provide the second-

order sensitivities of the form ∂2R(φ; f)/∂ f j∂ f2, j = 1, 2, 3. The argument “2” in the notation

R(1)
[
2; a(1)(u); f(α)

]
indicates that this sensitivity is with respect to the second component,

namely f2(α), of the feature function f(α). Remarkably, this sensitivity does not depend on
the forward function φ(u) but only depends on the first-level adjoint sensitivity function
a(1)(u). As previously discussed, these functions are the solutions of the “2nd-Level
Forward/Adjoint System (2nd-LFAS)”.
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The first-order G-differential of R(1)
[
2; a(1)(u); f(α)

]
is obtained by applying its defi-

nition to Equation (115) as follows:

{
δR(1)

[
2; a(1)(u); δa(1)(u); f(α)

]}
α0

=


uth∫
0

δa(1)(u)δ(u)du


α0

≡
3

∑
j=1

∂2R(φ; f)
∂ f j∂ f2

(
δ f j
)
. (175)

As indicated in Equation (175), the first-order G-differential { δR(1) [ 2; a(1)(u); δa(1)(u);
f(α)]}α0 consists solely of the indirect-effect term, which depends on the first-level vari-
ational function δa(1)(u). As before, the need for computing this variational function is
circumvented by constructing a Second-Level Adjoint Sensitivity System (2nd-LASS) for a

second-level adjoint sensitivity function a(2)(2; 2; u) ≜
[

a(2)1 (2; 2; u), a(2)2 (2; 2; u)
]†

by imple-
menting the same steps as those outlined above for obtaining the second-order sensitivities
that stem from the first-order sensitivity ∂R(φ; f)/∂ f2, namely Equations (162)–(165). These
steps will not be repeated here in detail; they lead to the following 2nd-LASS for the

second-level adjoint sensitivity function a(2)(2; 2; u) ≜
[

a(2)1 (2; 2; u), a(2)2 (2; 2; u)
]†

:

(
−d/du + f1 0

0 d/du + f1

)(
a(2)1 (2; 2; u)
a(2)2 (2; 2; u)

)
=

(
0

δ(u)

)
. (176)

a(2)1 (2; 2; uth) = 0; a(2)2 (2; 2; 0) = 0. (177)

Solving the 2nd-LASS defined by Equations (176) and (177) yields the following
closed-form expressions for the components of the second-level adjoint sensitivity function

a(2)(2; 2; u) ≜
[

a(2)1 (2; 2; u), a(2)2 (2; 2; u)
]†

:

a(2)1 (2; 2; u) = 0; a(2)2 (2; 2; u) = H(u) exp[−u f1(α)] (178)

The alternative expression of the G-differential
{

δR(1)
[
2; a(1)(u); a(2)(2; 2; u); δf(α)

]}
α0

in terms of the second-level adjoint sensitivity function a(2)(2; 2; u) ≜
[

a(2)1 (2; 2; u), a(2)2 (2; 2; u)
]†

has the following form (which is obtained by implementing the same steps as those leading
to Equation (166), as detailed above):

{
δR(1)

[
2; a(1)(u); a(2)(2; 2; u); δf(α)

]}
α0

= (δ f3)
uth∫
0

a(2)2 (2; 2; u)δ(u − ud)du

−(δ f1)
uth∫
0

a(2)2 (2; 2; u)a(1)(u)du ≡
3
∑

j=1

∂2R(φ;f)
∂ f j∂ f2

(
δ f j
)
.

(179)

Identifying, in Equation (179), the expressions that multiply the variations δ fi, i = 1,
2, 3, yields the following second-order sensitivities of the response R[φ(u); f(α)] with
respect to the components of the feature function f(α):

∂2R(φ; f)
∂ f1∂ f2

= −
uth∫
0

a(2)2 (2; 2; u)a(1)(u)du; (180)

∂2R(φ; f)
∂ f2∂ f2

= 0; (181)

∂2R(φ; f)
∂ f3∂ f2

=

uth∫
0

a(2)2 (2; 2; u)δ(u − ud)du. (182)
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Inserting the expression obtained for a(2)2 (2; 2; u) in Equation (178) into Equations (180)
and (182) and performing the respective integrations yields the following expressions for
the respective second-order sensitivities:

∂2R(φ; f)
∂ f1∂ f2

= −ud f3(α) exp[−ud f1(α)]; (183)

∂2R(φ; f)
∂ f3∂ f2

= exp[−ud f1(α)]; (184)

The correctness of the expressions obtained in Equations (183) and (184) can be verified by
accordingly directly differentiating the closed-form expressions given in Equations (118)–(120).

Second-Order Sensitivities Stemming from ∂R(φ; f)/∂ f3

Applying the above principles to the first-order sensitivity R(1)
[
3; φ(u); a(1)(u); f(α)

]
≜

∂R(φ; f)/∂ f3 obtained in Equation (116) will provide the second-order sensitivities of the form
∂2R(φ; f)/∂ f j∂ f3, j = 1, 2, 3. The argument “3” in the notation R(1)

[
3; φ(u); a(1)(u); f(α)

]
indicates that this sensitivity is with respect to the third component, namely f3(α), of the
feature function f(α). Notably, this sensitivity depends on the forward function φ(u) but
does not depend on the first-level adjoint sensitivity function a(1)(u).

The first-order G-differential of R(1)
[
3; φ(u); a(1)(u); f(α)

]
is obtained, by definition,

as follows:

{
δR(1)

[
3; φ(u); v(1)(u); f; δf

]}
α0

=


uth∫
0

v(1)(u)δ(u − ud)du


α0

≡
3

∑
j=1

∂2R(φ; f)
∂ f j∂ f3

(
δ f j
)
. (185)

Note that the first-order G-differential
{

δR(1)
[
3; φ(u); v(1)(u); f; δf

]}
α0

consists solely

of the indirect-effect term. As before, the need for computing the variational function v(1)(u)
is circumvented by constructing a Second-Level Adjoint Sensitivity System (2nd-LASS)

for a second-level adjoint sensitivity function a(2)(2; 3; u) ≜
[

a(2)1 (2; 3; u), a(2)2 (2; 3; u)
]†

by implementing the same steps as were used for obtaining the previous second-order
sensitivities. These steps lead to the following 2nd-LASS for the second-level adjoint

sensitivity function a(2)(2; 3; u) ≜
[

a(2)1 (2; 3; u), a(2)2 (2; 3; u)
]†

:

(
−d/du + f1 0

0 d/du + f1

)(
a(2)1 (2; 3; u)
a(2)2 (2; 3; u)

)
=

(
δ(u − ud)

0

)
. (186)

a(2)1 (2; 2; uth) = 0; a(2)2 (2; 2; 0) = 0. (187)

Solving the 2nd-LASS defined by Equations (186) and (187) yields the following
closed-form expressions for the components of the second-level adjoint sensitivity function

a(2)(2; 3; u) ≜
[

a(2)1 (2; 3; u), a(2)2 (2; 3; u)
]†

:

a(2)1 (2; 3; u) = H(ud − u) exp[(u − ud) f1(α)]; a(2)2 (2; 3; u) = 0 (188)

In terms of the second-level adjoint sensitivity function a(2)(2; 3; u) ≜
[

a(2)1 (2; 3; u),

a(2)2 (2; 3; u)
]†

the alternative expression of the G-differential { δR(1)[3; φ(u); a(2)(2; 3; u); f;
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δf]}α0 has the following form (which is obtained by implementing the same steps as those
leading to Equation (166), as detailed above):

{
δR(1)

[
3; φ(u); a(2)(2; 3; u); f; δf

]}
α0

= (δ f2)
uth∫
0

a(2)1 (2; 3; u)δ(u)du

−(δ f1)
uth∫
0

a(2)1 (2; 3; u)φ(u)du ≡
3
∑

j=1

∂2R(φ;f)
∂ f j∂ f3

(
δ f j
)
.

(189)

Identifying, in Equation (189), the expressions that multiply the variations δ fi, i = 1,
2, 3, yields the following second-order sensitivities of the response R[φ(u); f(α)] with
respect to the components of the feature function f(α):

∂2R(φ; f)
∂ f1∂ f3

= −
uth∫
0

a(2)1 (2; 3; u)φ(u)du; (190)

∂2R(φ; f)
∂ f2∂ f3

=

uth∫
0

a(2)1 (2; 3; u)δ(u)du; (191)

∂2R(φ; f)
∂ f3∂ f3

= 0. (192)

Inserting the expression obtained for a(2)1 (2; 3; u) in Equation (188) into Equations (190)
and (191) and performing the respective integrations yields the following expressions for
the respective second-order sensitivities:

∂2R(φ; f)
∂ f1∂ f3

= −ud f2(α) exp[−ud f1(α)] (193)

∂2R(φ; f)
∂ f2∂ f3

= exp[−ud f1(α)] (194)

The correctness of the expressions obtained in Equations (193) and (194) can be verified
by directly differentiating the closed-form expressions given in Equations (118)–(120).

Summarizing the results obtained in Section 5.2.1 leads to the following conclusions:

1. The second-order sensitivities ∂2R(φ; f)/∂ fi∂ f j, i, j = 1, 2, 3, of the model response
with respect to the three features components fi(α), i = 1, 2, 3, of the feature function
f(α) are obtained by performing three “large-scale” computations to solve the three
corresponding 2nd-LASS, which all have the same left-side but have differing sources
on their right-sides. The source-term for each of these 2nd-LASS corresponds to one
of the three first-order sensitivities. Thus, computing the second-order sensitivities
∂2R(φ; f)/∂ fi∂ f j requires as many “large-scale” computations as there are non-zero
first-order sensitivities, i.e., at most as many “large-scale” computations as there are
components fi(α), i = 1, 2, 3, of the feature function f(α).

2. The mixed second-order sensitivities ∂2R(φ; f)/∂ fi∂ f j, i ̸= j = 1, 2, 3, are computed
twice, involving distinct second-level adjoint sensitivity functions. Therefore, the sym-
metry property ∂2R(φ; f)/∂ fi∂ f j = ∂2R(φ; f)/∂ f j∂ fi provides an intrinsic mechanism
for verifying the accuracy of the computations of the respective second-level adjoint
sensitivity functions.

3. The unmixed second order sensitivities ∂2R(φ; f)/∂ fi∂ fii = 1, 2, 3, are computed
just once.

5.2.2. Application of the 2nd-CASAM-L

The principles underlying the application of the 2nd-CASAM-L methodology are the
same as those underlying the 2nd-FASAM-L methodology: both methodologies obtain the
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second-order sensitivities by considering the first-order G-differential of each of the first-
order sensitivities. As has been shown in the foregoing, the 2nd-FASAM-L methodology
requires at most three large-scale computations (i.e., the same number of large-scale compu-
tations as the number of components fi, i = 1, 2, 3, of the feature function f) for solving the
three Second-Level Adjoint Sensitivity Systems that arise by considering the three first-order
sensitivities of the detector response with respect to the three components of the feature
function f(α). In contradistinction, the 2nd-CASAM-L methodology requires one large-
scale (adjoint) computation for each primary model parameter αj, j = 1, . . . , TP ≜ 3M + 12,
amounting to a total of number of TP ≜ 3M + 12 large-scale computations. The specific
computations are described below.

Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to the
Medium’s Material Properties

The expressions of the first-order sensitivities of the detector response with respect to
the material properties (i.e., microscopic cross sections and atomic number densities) of
the medium in which the neutrons are slowing down (i.e., losing energy or, equivalently,
gaining lethargy) are provided in Equations (151)–(153). These expressions have the
following generic form:

∂R(φ; f)

∂a(i)j

= g(i)j (α)

uth∫
0

a(1)(u)δ(u)du − h(i)j (α)

uth∫
0

a(1)(u)φ(u)du; i = 1, . . . , M; j = 1, 2, 3, (195)

where a(i)1 ≜ N(i)
m , a(i)2 ≜ σ

(i)
γ , and a(i)3 ≜ σ

(i)
s and

g(i)1 (α) ≜
∂

∂N(i)
m

[
S0(α)

ξ(α)Σt(α)

]
; h(i)1 (α) ≜

∂

∂N(i)
m

[
Σa(α)

ξ(α)Σt(α)

]
; (196)

g(i)2 (α) ≜
∂

∂σ
(i)
γ

[
S0(α)

ξ(α)Σt(α)

]
; h(i)2 (α) ≜

∂

∂σ
(i)
γ

[
Σa(α)

ξ(α)Σt(α)

]
; (197)

g(i)3 (α) ≜
∂

∂σ
(i)
s

[
S0(α)

ξ(α)Σt(α)

]
; h(i)3 (α) ≜

∂

∂σ
(i)
s

[
Σa(α)

ξ(α)Σt(α)

]
. (198)

The second-order sensitivities stemming from the first-order sensitivities represented
by Equation (195) are obtained from the first G-differential of this equation, which has the
following expression, by definition, for each i = 1, . . . , M; j = 1, 2, 3:

δ
[
∂R(φ; f)/∂a(i)j

]
≜

{
uth∫
0

a(1)(u)δ(u)du

}
α0

{
d
dε

[
g(i)j
(
α0 + εδα

)]}
α0,ε=0

+

{
g(i)j
(
α0) d

dε

uth∫
0

[
a(1)(u) + εδa(1)(u)

]
δ(u)du

}
α0,ε=0

−
{

uth∫
0

a(1)(u)φ(u)du

}
α0

{
d
dε

[
h(i)j
(
α0 + εδα

)]}
α0,ε=0

−
{

h(i)j
(
α0) d

dε

uth∫
0

[
a(1)(u) + εδa(1)(u)

][
φ(u) + εv(1)(u)

]
du

}
α0,ε=0

=
{

δ
[
∂R(φ; f)/∂a(i)j

]}
dir

+
{

δ
[
∂R(φ; f)/∂a(i)j

]}
ind

=
TP
∑

n=1

{
∂2R(φ;f)

∂αn∂a(i)j

δαn

}
α0

,

(199)
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where {
δ
[
∂R(φ; f)/∂a(i)j

]}
dir

≜

{
uth∫
0

a(1)(u)δ(u)du

}
α0

TP
∑

n=1

{
∂g(i)j (α)

∂αn

}
α0

δαn

−
{

uth∫
0

a(1)(u)φ(u)du

}
α0

TP
∑

n=1

{
∂h(i)j (α)

∂αn

}
α0

δαn,
(200)

{
δ
[
∂R(φ; f)/∂a(i)j

]}
ind

≜

{
g(i)j
(
α0)uth∫

0
δa(1)(u)δ(u)du

}
α0

−
{

h(i)j
(
α0)uth∫

0

[
a(1)(u)v(1)(u) + φ(u)δa(1)(u)

]
du

}
α0

.
(201)

The direct-effect term can be computed immediately, since all quantities are known.
The indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain

the second-level variational sensitivity function v(2)(2; u) ≜
[
v(1)(u), δa(1)(u)

]†
. As has

been repeatedly discussed in the foregoing, solving the 2nd-LVSS is expensive compu-
tationally, so this variational function is replaced in the expression of the indirect-effect
term by a second-level adjoint sensitivity function by following the same steps, as out-
lined in Section 5.2.1. Since there are 3M first-order sensitivities of the form ∂R(φ; f)/∂a(i)j ,
i = 1, . . . , M; j = 1, 2, 3, there will be 3M distinct second-level adjoint sensitivity functions,
one corresponding to each first-order sensitivity. These 3M distinct second-level adjoint
sensitivity functions will be the solutions of the corresponding 3M distinct Second-Level
Adjoint Sensitivity Systems (2nd-LASS). Each of these 3M 2nd-LASS will have a distinct
source-term on the right-side (each distinct source stemming from the corresponding first-
order sensitivities of the form ∂R(φ; f)/∂a(i)j ), but all of these 3M 2nd-LASS will have the
same left-sides, which will have the same form as those of the left-side of the Second-LASS
needed previously in Section 5.2.1 for the computations of the second-order sensitivities of
the response with respect to the components of the feature functions, cf. Equation (164),
(176) and (186). Since the left-sides of these 2nd-LASS represent the (differential) operators
that need to be inverted, the actual inversion of these operators needs to be performed only
once, and the inverted operator should be stored; subsequently, the inverted operator can
be used 3M times, operating on 3M distinct source terms, to compute the respective 3M
distinct second-level adjoint sensitivity functions.

Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to the
Source Properties

The expressions of the first-order sensitivities of the detector response with respect to
the parameters that characterize the source that emits the neutrons into the medium are
provided in Equations (146)–(150). These expressions have the following generic form:

∂R(φ; f)

∂b(i)k

= ω
(i)
k (α)

uth∫
0

a(1)(u)δ(u)du; i = 1, . . . , 5; k = 1, 2, (202)

where

b(1)k ≜ λS
k ; ω

(1)
k (α) ≜

NS
k FS

k νS
k WS

k

ξ(α)Σt(α)
; k = 1, 2; (203)

b(2)k ≜ NS
k ; ω

(2)
k (α) ≜

λS
i FS

k νS
k WS

k

ξ(α)Σt(α)
; k = 1, 2; (204)

b(3)k ≜ FS
k ; ω

(3)
k (α) ≜

λS
i NS

k νS
k WS

k

ξ(α)Σt(α)
; k = 1, 2; (205)
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b(4)k ≜ νS
k ; ω

(4)
k (α) ≜

λS
i NS

k FS
k WS

k

ξ(α)Σt(α)
; k = 1, 2; (206)

b(5)k ≜ νS
k ; ω

(5)
k (α) ≜

λS
i NS

k FS
k νS

k

ξ(α)Σt(α)
; k = 1, 2. (207)

The second-order sensitivities stemming from the first-order sensitivities represented
by Equation (202) are obtained from the first G-differential of this relation, which has the
following expression, by definition, for each i = 1, . . . , 5 and k = 1, 2:

δ
[
∂R(φ; f)/∂b(i)k

]
≜

{
uth∫
0

a(1)(u)δ(u)du

}
α0

{
d
dε

[
ω
(i)
k
(
α0 + εδα

)]}
α0,ε=0

+

{
ω
(i)
k
(
α0) d

dε

uth∫
0

[
a(1)(u) + εδa(1)(u)

]
δ(u)du

}
α0,ε=0

==
{

δ
[
∂R(φ; f)/∂b(i)k

]}
dir

+
{

δ
[
∂R(φ; f)/∂b(i)k

]}
ind

=
TP
∑

n=1

{
∂2R(φ;f)

∂αn∂b(i)k

δαn

}
α0

,

(208)

where

{
δ
[
∂R(φ; f)/∂b(i)k

]}
dir

≜


uth∫
0

a(1)(u)δ(u)du


α0

TP

∑
n=1

{
∂ω

(i)
k (α)

∂αn

}
α0

δαn, (209)

{
δ
[
∂R(φ; f)/∂b(i)k

]}
ind

≜

ω
(i)
k

(
α0
) uth∫

0

δa(1)(u)δ(u)du


α0

. (210)

The direct-effect term can be computed immediately, since all quantities are known.
The indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain

the second-level variational sensitivity function v(2)(2; u) ≜
[
v(1)(u), δa(1)(u)

]†
, but this

path is expensive computationally, so this variational function is replaced in the expression
of the indirect-effect term by a second-level adjoint sensitivity function by following the
same steps as those outlined in Section 5.2.1. Since there are 10 first-order sensitivities of
the form ∂R(φ; f)/∂b(i)k , i = 1, . . . , 5; k = 1, 2, there will be 10 distinct second-level adjoint
sensitivity functions, one corresponding to each first-order sensitivity. Thus, there will be
10 distinct Second-Level Adjoint Sensitivity Systems (2nd-LASS) to be solved, each with a
distinct source-term on the right-side, but all of them will have the same left-sides as the
left-side of the 2nd-LASS needed previously in Section 5.2.1 for the computations of the
second-order sensitivities of the response with respect to the components of the feature
functions, namely Equations (164), (176) and (186).

Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to the
Detector Properties

The expressions of the first-order sensitivities of the detector response with respect
to the detector’s material properties (i.e., microscopic cross section and atomic number
density) are provided in Equations (144) and (145). These expressions have the following
generic form:

∂R(φ; f)
∂ζ(i)

= c(i)(α)
uth∫
0

φ(u)δ(u − ud)du; i = 1, 2, (211)

where
ζ(1) = Nd; ζ(2) = σd; c(1)(α) = σd; c(2)(α) = Nd. (212)
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The second-order sensitivities stemming from the first-order sensitivities represented
by Equation (211) are obtained by determining the first G-differential of this relation, which
has the following expression, by definition, for each i = 1, 2:

δ
[
∂R(φ; f)/∂ζ(i)

]
≜

{
uth∫
0

φ(u)δ(u − ud)du

}
α0

{
d
dε

[
c(i)
(
α0 + εδα

)]}
α0,ε=0

+

{
c(i)
(
α0) d

dε

uth∫
0

[
φ0(u) + εv(1)(u)

]
δ(u − ud)du

}
α0,ε=0

=
{

δ
[
∂R(φ; f)/∂ζ(i)

]}
dir

+
{

δ
[
∂R(φ; f)/∂ζ(i)

]}
ind

=
TP
∑

n=1

{
∂2R(φ;f)
∂αn∂ζ(i)

δαn

}
α0

,

(213)

where

{
δ
[
∂R(φ; f)/∂ζ(i)

]}
dir

≜


uth∫
0

φ(u)δ(u − ud)du


α0

TP

∑
n=1

{
∂c(i)

(
α0)

∂αn

}
α0

δαn, (214)

{
δ
[
∂R(φ; f)/∂ζ(i)

]}
ind

≜

c(i)
(
α0
) uth∫

0

v(1)(u)δ(u − ud)du


α0

. (215)

The direct-effect term can be computed immediately, since all quantities are known.
The indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain

the second-level variational sensitivity function v(2)(2; u) ≜
[
v(1)(u), δa(1)(u)

]†
, but this

path is expensive computationally. As before, this variational function is replaced in the
expression of the indirect-effect term by a second-level adjoint sensitivity function by
following the same steps as those outlined in Section 5.2.1. Since there are two first-order
sensitivities of the form ∂R(φ; f)/∂ζ(i), i = 1, 2, there will be two distinct second-level
adjoint sensitivity functions, one corresponding to each first-order sensitivity. As before,
the two 2nd-LASS to be solved have distinct source-terms on their right-sides, but both
have the same left-sides as the left-side of the 2nd-LASS needed previously, as shown in
Equations (164), (176) and (186).

In summary, the results discussed in Section 5.2.2 indicate that computing the second-
order sensitivities of the model response directly with respect to the TP ≜ 3M + 12 primary
model parameters, αj, by applying the 2nd-CASAM-L methodology requires one large-
scale (adjoint) computation for each primary model parameter αj, amounting to a total of
number of TP ≜ 3M + 12 large-scale computations for solving the respective 2nd-LASS.
All of these 2nd-LASS have the same left-side (which is also the same as needed for comput-
ing the second-order sensitivities of the response with respect to the feature functions by
applying the 2nd-FASAM-L) but have differing sources on their right-sides. The unmixed
second order sensitivities ∂2R(φ; f)/∂αi∂αii = 1, . . . , TP ≜ 3M + 12, are computed just
once. The mixed second order sensitivities ∂2R(φ; f)/∂αi∂αj, i ̸= j, are computed twice,
involving distinct second-level adjoint sensitivity functions. Therefore, the symmetry prop-
erty ∂2R(φ; f)/∂αi∂αj = ∂2R(φ; f)/∂αj∂αi provides an intrinsic mechanism for verifying the
accuracy of the computations of the respective second-level adjoint sensitivity functions.

6. Concluding Discussion

This work has presented the mathematical framework of the “2nd-Order Feature
Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear
Systems (2nd-FASAM-L)”, along with an illustrative application to a paradigm model of the
energy slowing down of neutrons in an infinitely large homogeneous mixture of materials,
as found in many energy-related systems. It has been shown that the 2nd-FASAM-L is the
most efficient methodology for exactly computing the first- and second-order sensitivities
of model responses with respect to the features (functions) of model parameters and,
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subsequently, to the primary model parameters themselves. This efficiency stems from
the maximal reduction in the number of adjoint computations (which are “large-scale”
computations) that are needed for obtaining these sensitivities. In the extreme case when
the model presents no features (functions) of the primary model parameters, the 2nd-
FASAM-L reduces to the 2nd-CASAM-L (Second-Order Comprehensive Adjoint Sensitivity
Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems) developed
by Cacuci [27]. Comparing the mathematical framework of the 2nd-FASAM-L methodology
to the framework of the 2nd-CASAM-L methodology indicates the following commonalities
and distinctions:

1. The components fi(α), i = 1, . . . , TF, of the “feature function” f(α) ≜ [ f1(α), . . . ,
fTF(α)]

† play within the 2nd-FASAM-L the same role as played by the components
αj, j = 1, . . . , TP, of the “vector of primary model parameters” α ≜ (α1, . . . , αTP)

†

within the framework of the 2nd-CASAM-L. Notably, the total number of model
parameters is always larger (usually by wide margin) than the total number of com-
ponents of the feature function f(α), i.e., TP ≫ TF. The formulation of the “feature
functions” in terms of the primary model parameters is at the discretion of the user
and usually indicated by the overall model itself, especially in the form of correlations
involving primary parameters that are incorporated into the model. Theoretically,
one could use any function of parameters as a “feature function”, but there would
be no advantage to using an arbitrary function that does not appear in the formula-
tion of the overall model itself. For the same analysis problem/model, changing the
formulation of the feature functions would of course change the sensitivities of the
response with respect to the feature functions themselves but would not change the
sensitivities of the response with respect to the primary parameters after using the
sensitivities to all of the chosen feature functions in conjunction with the “chain rule of
differentiation” of the feature functions with respect to the primary model parameters.
The sensitivities of the response with respect to the primary model parameters are
invariant to the expressions of the chosen feature functions. Thus, the “features func-
tions” can be thought of as “intermediaries” for reducing the number of computations
needed for determining the response sensitivities to the primary parameters, which
are actually the quantities of ultimate interest. Consequently, the uncertainty induced
in the response by uncertainties in the primary model parameters is also invariant to
the choice of feature functions.

2. The 1st-FASAM-L and the 1st-CASAM-L methodologies require single large-scale “ad-
joint” computations for solving the 1st-LASS (First-Level Adjoint Sensitivity System),
so they are similarly efficient for computing the exact expressions of the first-order
sensitivities of a model’s response to uncertain parameters, boundaries, and inter-
nal interfaces, with a slight computational advantage towards the 1st-FASAM-L,
which requires only TP quadratures, as opposed to TF quadratures required by the
1st-CASAM-L methodology.

3. For computing the exact expressions of the second-order response sensitivities with
respect to the primary model’s parameters, the 2nd-FASAM-L methodology requires
as many large-scale “adjoint” computations as there are “feature functions of parame-
ters” fi(α), i = 1, . . . , TF, for solving the left-side of the 2nd-LASS with TF distinct
sources on its right-side. By comparison, the 2nd-CASAM-L methodology requires
TP large-scale computations for solving the same left-side of the 2nd-LASS but with
TP distinct sources. Since TF ≪ TP, the 2nd-FASAM-L methodology is considerably
more efficient than the 2nd-CASAM-L methodology for computing the exact expres-
sions of the second-order sensitivities of a model’s response to the model’s uncertain
parameters, boundaries, and internal interfaces.

4. Both the 2nd-FASAM-L and the 2nd-CASAM-L methodologies are formulated in
linearly increasing higher-dimensional Hilbert spaces, as opposed to exponentially
increasing parameter-dimensional spaces, thus overcoming the curse of dimensional-
ity in the sensitivity analysis of nonlinear systems. Both the 2nd-FASAM-L and the
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2nd-CASAM-L methodologies are incomparably more efficient and more accurate
than any other methods (statistical, finite differences, etc.) for computing exact ex-
pressions of response sensitivities (of any order) with respect to the model’s uncertain
parameters, boundaries, and internal interfaces. Both the 2nd-FASAM-L and 2nd-
CASAM-L methodologies are incomparably more efficient and more accurate than the
“perturbation theory” methods that have been used in nuclear engineering [35–37],
including the so-called “higher-order perturbation theory” methods [38–40].

Ongoing work aims at generalizing the 2nd-FASAM-L methodology to enable the
exact and most efficient computation of response sensitivities of arbitrarily high (nth-) order
with respect to the features (functions) of model parameters, thus becoming the companion
for—and most efficient alternative to—the nth-CASAM-L methodology [27], whenever the
model comprises the features (functions) of model parameters.
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