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Abstract: Modeling and predicting the long-term performance of Li-ion batteries is crucial for the
effective design and efficient operation of integrated energy systems. In this paper, we introduce a
comprehensive semi-empirical model for Li-ion cells, capturing electrothermal and aging features.
This model replicates the evolution of cell voltage, capacity, and internal resistance, in relation to
the cell actual operating conditions, and estimates the ongoing degradation in capacity and internal
resistance due to the battery use. Thus, the model articulates into two sub-models, an electrothermal
one, describing the battery voltage, and an aging one, computing the ongoing degradation. We
first propose an approach to identify the parameters of both sub-models. Then, we validate the
identification procedure and the accuracy of the electrothermal and aging models through an ex-
perimental campaign, also comprising two real cycle load tests at different temperatures, in which
real measurements collected from real Li-ion cells are used. The overall model demonstrates good
performances in simulating battery characteristics and forecasting degradation. The results show
a Mean Absolute Percentage Error (MAPE) lower than 1% for battery voltage and capacity, and a
maximum absolute error on internal resistance that is on par with the most up-to-date empirical
models. The proposed approach is therefore well-suited for implementation in system modeling, and
can be employed as an informative tool for enhancing battery design and operational strategies.

Keywords: Li-ion battery degradation; semi-empirical model; parameter identification; performance
and lifetime prediction

1. Introduction

The relentless pursuit of sustainable energy solutions has led to the widespread adop-
tion of lithium-ion batteries (LiBs) as a primary energy storage technology in numerous
applications, ranging from portable electronics to transportation and renewable energy
systems [1–4]. The energy landscape is transitioning from traditional fossil fuel-based
systems to distributed solutions powered by renewable sources, notably wind and pho-
tovoltaic energy [5]. Nevertheless, the intermittent nature of renewable sources presents
challenges to the reliable and stable operation of energy grids.

The primary drivers behind the LiBs being widespread are their exceptional technical
characteristics, which include high energy and power densities, impressive efficiency, and
minimal self-discharge rates in comparison to their counterparts, such as NiCd, NiMH,
and Lead Acid batteries [6–8]. To harness these advantages effectively, LiBs must operate
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under the supervision of a battery management system (BMS). The BMS plays a crucial
role in ensuring that the battery operates safely within its designated temperature and state
of charge (SOC) parameters. For LiBs, the temperature of the cells is not only influential
in affecting the open circuit voltage (OCV), internal resistance, and available capacity, but
it can also cause rapid battery degradation and even thermal runaway if the battery is
operated beyond a specified temperature threshold. To maintain the battery within its
safe operational range under all conditions, an electrothermal battery model is crucial.
Such a model must comprehensively represent both the electrical and thermal behaviors
of Li-ion cells, guaranteeing that the battery temperature remains well within acceptable
limits throughout its operation [9–11].

While LiBs have undoubtedly revolutionized the way we store and utilize energy,
their long-term performance and reliability remain central challenges [5]. Over time,
LiBs inevitably degrade due to a multitude of complex factors, collectively referred to
as aging phenomena. Understanding and identifying the key mechanisms behind LiB
aging is fundamental to extend their lifespan, enhance their safety, and optimize their
performance. Battery aging models can be classified according to the methodology adopted
into three groups hereby listed in descending order of physical–chemical knowledge
and computational effort, and in ascending order of experimental test requirement and
applicability: electrochemical models, semi-empirical models, and data-driven models.

Electrochemical aging models require the knowledge of several physical and chemical
parameters of the cell, different for each type of LiBs and very difficult to measure. How-
ever, they need a few experimental tests as the model is very detailed. In [12], an aging
formulation for NCA/graphite Li-ion cells that include heterogeneous dual-layer solid
electrolyte interphase and lithium-plating aging mechanisms with porosity evaluation is
proposed. The implemented model belongs to the category of electrochemical ones and
requires an extensive knowledge of the chemical and physical aspects of the cell. More
than 60 parameters are required to model the aging of the cell, of which 14 were not known
and have been estimated bringing to End of Life (EoL) only one cell. The model captures
the cell capacity fade with an accuracy of 98% goodness-of-fit error. Another example of
an electrochemical aging model is [13] which develops a single particle-based degrada-
tion model [14] by including the physics of capacity and voltage degradation phenomena.
The model has 35 parameters, and it captures the capacity fade and voltage profile as
functions of cycle number with a Root Mean Square Error (RMSE) of 1.03%.

Data-driven aging models, on the contrary, do not require any physical and chemical
knowledge of the battery, and can be extended to every type of LiB. Their major drawback
is the extensive experimental campaign that has to be made in order to develop the model,
which degrades several batteries, thus increasing the operational costs. In a set of two
papers [15,16], a data-driven model to estimate the capacity degradation of lithium-ion
cells is presented. The papers investigate calendar and cycling aging, and introduce a data-
driven aging model for Li-ion batteries under the Gaussian process framework. To build
the calendar aging model, 32 cells were tested, while the cycling aging model was built on
the results of experiments on 124 cells. The calendar and cycling aging models returned
a Mean Absolute Error (MAE) of 0.58% and 1.04%, respectively. In [17], a feed-forward
migration neural network is proposed to predict LiBs’ aging trajectories. First, a base
model that describes the capacity decay over time is established from the existing battery
aging data set. Then, the base model is transformed by an input–output slope and bias
correction method structure to capture the degradation of the target cell. To enhance the
model’s nonlinear transfer capability, the model is further integrated into a four-layer
neural network. A total of eight batteries were utilized and brought to their EoL, and
the model always returned a RMSE lower than 2.5%. In [18], a multivariable fractional
polynomial regression approach is proposed to model the degradation of LiBs. In [19], a
data-driven approach is proposed to forecast LiBs’ state of health (SOH) and SOC under
constant current discharge conditions.
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Semi-empirical aging models stand in the middle between electrochemical and data-
driven models, balancing complexity, computational effort, applicability, and data re-
quirements; furthermore, they can be applied to different types of LiBs [20]. In [21], a
method to estimate the battery SOH and SOC with a semi-empirical approach is proposed.
The developed model uses three parameters, two of which are time-variant. One battery is
repeatedly charged and discharged till its EoL and three others undergo a dynamic stress
test protocol, each one at a different temperature. The validation results show a correlation
coefficient of 0.9. In [22], a semi-empirical LiB degradation model assessing the battery
cell life loss from operating profiles is proposed. The model takes as input the battery
Depth of Discharge (DoD), SOC, and temperature, and provides an offline estimation of
the SOH. Experiments were run on a total of eight batteries and the results showed a SOH
estimation error near 3%. In [20], a semi-empirical model for battery capacity and resistance
degradations is proposed, based on physical equations from fatigue theory and equivalent
cycle counting. The model takes as input the ambient temperature, the battery SOC, and
current, and it is interfaced with an electrochemical model of a LiB that evaluates the bat-
tery temperature evolution from the working conditions and the ambient temperature [11].
The model is validated using two types of Li-ion cells (LFP and NMC) and simulation
results show an error within ±1.5% compared to experimental results.

Semi-empirical and data-driven aging models can be integrated to create hybrid
models. An example of a semi-empirical/data-driven aging model is [23], where a robust
SOH estimation method is proposed. The developed model presents four parameters,
of which two are estimated through curve fitting, one is predicted by training a neural
network, and one is obtained through Gaussian process regression. Tests are run on
five batteries (three LFPs with 32 cells each and two NMCs with 40 cells each) cycled
according to four different categories of tests, i.e., (1) standard cycling at different C-rates
and temperatures, (2) standard calendar at different SOCs, (3) combination of cycling and
calendar, and (4) combination of realistic working conditions. For standard cycling tests,
the RMSE is below 4% for most of the groups of batteries; for the standard calendar, the
RMSE is lower than 2%; for the combination of cycling and testing, the average RMSE
is 1.21%; for the combination of realistic working conditions, the average RMSE is 1.53%.

In this paper, we present a LiB electrothermal model (EM) that returns the battery
voltage and capacity as functions of the battery temperature, and interfaces with a LiB
semi-empirical aging model (AM) that forecasts online the battery capacity and resistance
evolution. Moreover, we propose a method to identify the parameters of the two models
and validate the results on cross-validating tests. The main contributions of this work can
be summarized as follows:

1. Development of a comprehensive LiB model able to represent the battery voltage,
capacity, and resistance according to battery temperature and degradation, to forecast
their evolution over time and/or to be easily integrated with a BMS.

2. A suitably developed method to identify the parameters of the electrothermal and
aging parameters of the LiB model.

3. An extensive experimental validation realized by using measurements collected from
real Li-ion cells and real battery-use profiles.

It is worth noticing that the proposed LiB model is an enhanced version of existing
electrothermal and aging models. Specifically, the EM is formulated based on the models
in [11,24,25], while the AM starts from the one presented in [20]. However, as we will
specifically clarify in Sections 3.3 and 4.3, in this paper we introduce two main improve-
ments: the formal inclusion of the relation between the maximum theoretical discharge
capacity, used in the EM, and the battery nominal capacity, used in the AM; and the general-
ization of the aging parameter identification procedure to the case of multiple experimental
measurements for each aging condition.

The remainder of this paper is organized as follows: Section 2 introduces the problem
and the experimental dataset, Section 3 describes the LiBs models, Section 4 presents
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the parameter identification methodology, Section 5 presents the results, and Section 6
summarizes the paper conclusions.

2. Problem Statement and Experimental Dataset

The principal objective of this paper is to experimentally validate a model able to repro-
duce the operation due to aging of LiBs. Among the observable aging-related phenomena,
we focus on two aspects: capacity fade and internal resistance increase, two phenomena
that lead to reduced availability of energy storage, power fade, and reduced round trip
efficiency. To model these phenomena, we will introduce and validate a semi-empirical AM.
In order to obtain a complete representation of the battery behavior, the AM has to face an
EM that returns the battery voltage, capacity, and internal resistance in the function of the
current and temperature. Therefore, we will also introduce and validate an EM. The final
result will be the Whole Battery Model (WBM) obtained by coupling the EM and the AM.

The purpose of developing the WBM lies in several potential practical applications.
Indeed, the WBM can be used in electric vehicles [26,27] or in stationary applications,
such as microgrids [28,29] and grid-level storage systems [30], to allow the real-time
monitoring of the battery SOH or to be integrated into optimal battery management
algorithms. Moreover, the WBM can also be used to perform simulations in the design
phase of new devices employing LiBs.

Regardless of the final use of the WBM, this paper focuses on the offline preliminary
phase, where the WBM is identified and validated using a properly defined set of experi-
mental measurements on the same battery type that will be used in the real application.
Any stage after the WBM validation is beyond the scope of the paper.

The proposed procedure to identify and validate the WBM is shown in Figure 1. We
design three sets of experimental tests: Experiment 1, to identify the parameters of the EM;
Experiment 2, to identify the parameters of the AM; Experiment 3, to realize the validation.
In Section 2.1 we detail the three experiments. The EM and AM parameter identification
procedures are described in Section 4.1 and Section 4.2, respectively. Finally, validation
results are reported in Section 5.

Data Collection Whole Battery Model

Experiment 1

Section 2.1.1

Experiment 2

Section 2.1.2

Experiment 3

Section 2.1.3

Electrothermal Model

Parameters Identification

Section 4.1

Ageing Model

Parameters Identification

Section 4.2

Electrothermal Model

Section 3.1

Ageing Model

Section 3.2

Cross Validation

Section 5

Figure 1. Flowchart of the adopted procedure to identify and validate the parameters of the WBM.

2.1. Experiment Description

To properly define the set of experimental tests, we considered that the following
operating conditions have an impact on the LiBs’ electrothermal behavior and on the
capacity fade and internal resistance growth [31]:

• Charge rate;
• Discharge rate;
• Battery temperature;
• DoD.
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The current rate affects the terminal voltage and internal potential, leading to side
reactions that reduce battery life. Excessive current accelerates active material fatigue,
damages the structure, and disrupts current distribution, potentially causing local lithium
plating. Fast charging, in particular, can lead to lithium deposition, further affecting battery
life. Temperature affects various reactions within the battery, with higher temperatures
increasing side reactions and potentially causing thermal runaway (the optimal working
range for most commercial LiBs is typically in the range of 15–35 °C). Finally, in LiBs, cycling
within a certain DoD range is critical. Initially, increasing DoD improves battery life by
lowering the average SOC and anode potential. However, high DoD leads to phase changes
in cathode and anode materials, causing structural and volume changes and significantly
reducing battery life.

Therefore, the three experimental tests detailed in the following have been designed
and carried out taking into account the above-listed four operating conditions. During all
tests, battery temperature, current, and voltage were constantly monitored and logged with
a corresponding timestamp. Tests were carried out on Samsung INR21700-50E (Samsung
SDI Co. Ltd., Yongin, Gyeonggi-do, Republic of Korea.) lithium-ion cells [32], assuming
as given from the datasheet the cut-off voltage Vcut-o f f (V), the full capacity voltage Vf ull
(V), and the nominal capacity Q (Ah) in fresh battery conditions. However, it should be
pointed out that the experimental discharge curves performed on these cells showed a
lower capacity than the one declared in [32].

It is finally worth remarking that all experimental data have been provided by Yanmar
Holdings Co., Ltd. (Maibara, Japan) [33] based on their experience in using LiBs in off-road
vehicles and industrial applications.

2.1.1. Experiment 1

The purpose of Experiment 1 is to characterize the battery EM. To this end, a fresh
battery was discharged three times from full capacity at constant current (CC) to reach the
cut-off voltage (Vcut-o f f ) with the same C-rate. Each discharge was carried out at a different
temperature, i.e., 0 °C, 25 °C, 50 °C, and at the 0.5C rate. Before discharging at CC, the
battery was brought to 100% SOC (which the full capacity voltage Vf ull is related to) and
the test temperature was set. Then, the battery was discharged at the 0.5C rate, meaning
that in two hours the whole battery nominal capacity Q was transferred and the output
voltage was registered with a sampling time of 1 s. Once the cut-off voltage Vcut-o f f was
reached, the battery was rested for 10 min before being charged at 0.5C to 100% SOC. Then,
the temperature was updated for the following discharge (the second and the third ones).

2.1.2. Experiment 2

Experiment 2 is a set of cycle tests, detailed in Table 1, suitably designed to investigate
the effects of the four stress factors (charge rate, discharge rate, battery temperature, and
DoD) on capacity fade and internal resistance increase. A cycle test consisted of repeating
charge/discharge cycles at specific battery temperature conditions, with established charge
and discharge rates, and within a specific SOC range. Every time the top and bottom ends
of the SOC range were reached, the battery was rested for 10 min. To define the tests listed
in Table 1, a test matrix was organized with two charge rates (0.5C and 1C), two discharge
rates (1C and 2C), two battery temperatures (25 °C and 40 °C), and two DoDs (100% and
80%). Considering one of the two test values for each of the four stress factors as reference,
five cycle tests were carried out: one setting all stress factors at the reference values (cycle
test #1) and four by setting one stress factor at a non-reference value (cycle tests #2–#5).
Then, to further investigate the effect of the DoD at different starting SOCs, a sixth cycle
test was realized (cycle test #6).
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Table 1. Cycle aging tests composing the Experiment 2 set. For the stress conditions, bold values are
the non-reference values.

Test # Battery Cells Temp. Charge Rate Discharge Rate SOC Range

1 3 25 °C 0.5C 1C 0-100%
2 3 40 °C 0.5C 1C 0–100%
3 1 25 °C 1C 1C 0–100%
4 1 25 °C 0.5C 2C 0–100%
5 1 25 °C 0.5C 1C 10–90%
6 1 25 °C 0.5C 1C 20–100%

To monitor the battery degradation, at the beginning and every 50 cycles a capacity
measurement and a resistance measurement were conducted during each cycle test. Fur-
thermore, cycle tests #1 and #2 were conducted on three different battery cells each, while
all the other cycle tests were conducted on just one battery cell. The data of one each of the
three cells subject to cycle tests #1 and #2 were used for the validation, namely cycle test #1-3
and cycle test #2-3, whereas the data of the other two cells were used for the identification
of the parameters. Each test was suspended after the battery hit the EoL, which in this work
is defined as the condition at which the battery capacity reaches 80% of the battery capacity
at the Beginning of Life (BoL). The capacity measurement consists of repeating the same
discharge procedure of Experiment 1 with a discharge current of 0.98 A (approximately
0.2C rate) and monitoring the amount of extracted capacity to reach a voltage of Vcut-o f f
from a voltage of Vf ull .

Figure 2 illustrates how the internal resistance was computed. Two discharge current
steps were applied to the cell, i.e., I1 at 1C for 1 s and I2 at 0.2C for 5 s, such that the extracted
capacity was the same. The steady-state values of the terminal voltage were measured after
the two current steps, i.e., V1 after I1 and V2 after I2. Then, the resistance was estimated
as the ratio between the differences between voltage values and the difference between
current values in the two testing conditions as follows:

R =
V1 −V2

I2 − I1
(1)

𝑹𝒐𝒉𝒎 =
𝑽𝟏 − 𝑽𝟐
𝑰𝟏 − 𝑰𝟐

voltage [V]

current [A]

𝑉2

𝑉1

I2 I1

time [s]

closed circuit voltage [V]

5±0.1

𝐼2 = 0.2 [C]

𝑉2

time [s]1±0.1

𝐼1 = 1 [C]

𝑉1

closed circuit voltage [V]

Figure 2. Description of tests for ohmic resistance measurement. Left: steady-state voltage measure-
ments: V1 after a current discharge step I1 at 1C for 1 s (top), V2 after a current step at 0.2C for 5 s
(bottom). Right: the ohmic resistance is computed as the ratio between the differences of the voltage
measurements and the difference of the current step magnitudes.
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2.1.3. Experiment 3

Experiment 3 is a set of tests used to validate the WBM. To this end, two real load cycles
were designed, namely Pattern A, at 0 and 25 °C, and Pattern B, at 25 °C, to validate the AM
model. Moreover, as anticipated in Section 2.1.2, one each of the three cycle tests #1 and #2,
i.e., #1-3 and #2-3, were also used to validate the battery AM parameters, together with a
test that we referred to as Append 5, which consists of the same operations of cycle test #5
run at 40 °C. The validation of the EM was carried out using discharge tests identical to
those in Experiment 1 and on discharge tests for battery capacity measurements performed
during the Pattern A test, Pattern B test, cycle test #1-3, cycle test #2-3, and Append 5 test.
In particular, the discharge tests identical to those of Experiment 1 were conducted at 0, 10,
25, 40, and 50 °C on fresh batteries at the 0.5C rate, while the other tests were also used to
validate the battery EM parameters at different levels of battery age and to cross-validate
the WBM. As previously mentioned in Section 2.1.2, the capacity measurements consist of
full discharge test at 0.98 A.

Regarding the validation of the AM, the details of Pattern A and Pattern B are given
in the following. Figure 3 shows the diagram of Pattern A: the top graph is the profile
current applied to the battery, with positive values meaning charging; on the bottom the
estimated evolution of the battery SOC is shown. Each timestamp lasts 1 h, except for the
12th that lasts the time needed to reach the voltage Vf ull , and for the 24th timestamp that
lasts the necessary time to discharge 840 mAh along the 22nd, 23rd, and 24th timestamps.
Pattern B is shown in Figure 4. Figure 4a describes the general cycle that lasts around 19 h:
on top we have the current applied to the battery cell, with positive values referring to
charge operations; on the bottom the estimated SOC evolution is given. The discharges
highlighted in Figure 4a are not operated under CC conditions and consist of the repetition
of the pattern detailed in Figure 4b; in particular, the same pattern, lasting 20 min, is
repeated along test Pattern B once for 2.5 h and, later, once for the necessary time to reach
Vcut-o f f . The cycle composing Pattern B ends with a full CC-CV charge to be repeated.

© Yanmar Holdings CO., LTD. All rights reserved. 2022 Page: 2

Current

SOC

Move on to the next cycle
when the Q (=∫idt)

in ↔ span reaches 840 mAh.

Charge until SOC reaches the 4.2V
(equivalent SOC 100%)

0A

100%

0%

1 hour/div

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ ⑳ ㉑ ㉒ ㉓ ㉔

Charge

Discharge

Figure 3. Pattern A validation test; on the top there is the current profile (positive value corresponds
to charging, negative value to discharging) and on the bottom the estimated SOC profile. The test
lasts around 24 h.
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Current

SOC

Rest 4hours

Discharge
2.5h

Rest 30min
Rest 6min

Rest 30min

Charge
CC-CV until SOC

reaches 100%.

Charge
54min

Discharge until
𝑉

Rest 30min

0A

100%

0%

Detailed in (b)
The current is not constant.

Charge

Discharge

CC Charge

(a)

(b)

Figure 4. Pattern B validation test. (a) shows the general profile; on the top there is the current profile
(positive value refers to charge) and on the bottom the estimated SOC profile; (b) details the discharge
profile that lasts 20 min and is repeated to cover 2.5 h (first discharge in (a)) and to reach Vcut-o f f
(second discharge in (a)). The test lasts around 19 h.

3. Battery Model

This section presents the WBM, whose basic diagram is shown in Figure 5. It consists
of two sub-models, the EM and the AM. The EM in turn consists of two main blocks:
Block E1 and Block E2.

Block E2 is the electrothermal sub-model, which computes the battery voltage Vb
(V), given the battery current i (A), positive if charging, and the actual values of: battery
maximum capacity Qb (Ah); battery resistance R (Ω); and three other model parameters,
E0, K, and Ab, introduced in the following.

Block E1 is the thermal sub-model, which computes the battery maximum capacity
and resistance at BoL, QBoL

b , and RBoL, and the values of E0, K, and Ab, in the function of
the battery temperature T.
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𝑄

Block E1
(EM)

Block E2
(EM)

𝑇

𝐸 𝑇

𝐾 𝑇

𝐴 𝑇

𝑉
AM

𝑅

𝑄 𝑇

𝑅 𝑇

𝑖

𝑆𝑜𝐶

𝑇

Figure 5. Basic block scheme of the WBM.

The AM quantifies the ongoing battery degradation and returns Qb and R from their
corresponding values at BoL, as functions of the four stress variables: charge rate, discharge
rate, battery temperature, and DoD.

3.1. Battery Electrothermal Model

The proposed EM model is based on the modified Shepherd curve fitting mode [34,35],
where an additional term (voltage polarization) is added to the battery voltage formulation
to better represent the effect of SOC on the battery open circuit voltage. Also, to represent
the battery dynamics, the battery current is delayed through a low-pass filter accounting
for the polarization resistance. As mentioned before and shown in Figure 5, the EM is
composed of Block E1 and Block E2. In the following, we detail these two blocks, starting
with Block E2.

3.1.1. Block E2

For a LiB type, the battery voltage Vb is expressed as follows:

Vb = E0 − K
Qb

Qb − q(t)
q(t) + Ri + Abe−Bq(t) + Polresi f − Cq(t) (2)

where

• E0 is the battery thermodynamics voltage (V);
• K is the polarization constant (V/Ah);
• Qb is the battery maximum capacity (Ah);
• i f is the filtered battery current (A);

• q(t) denotes the time integral of the extracted current (Ah), i.e., q(t) = −
∫ t

0 idt,
meaning that Qb − q(t) is the actual battery charge (Ah);

• Ab is the exponential zone amplitude (V);
• B is the exponential zone time constant inverse 1/(Ah);
• C is the polarization voltage slope V/(Ah);
• R is the battery internal resistance (Ω);
• Polres is the polarization resistance (Ω).

The polarization resistance changes if the battery is discharging or charging according
to the next relation:

Polres = K
Qb

Qb − q(t)
(1− u) + K

Qb
q(t) + 0.1Qb

u (3)
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where u is a binary variable, equal to one when i > 0, i.e., charging, and K is intended as a
polarization resistance constant with the same value as the one in the second term in (2)
but measured in Ω.

Model (2) in discharging mode is valid for q(t) ∈ [0, Qb). At q(t) = Qb, there is a
vertical negative asymptote. Moreover, given a (negative) discharge current idis, we have
that, at fully charged condition (q(t) = 0):

Vb = E0 + Ridis + Ab = Vf ull (4)

where Vf ull is the fully charged voltage.
The battery maximum capacity Qb is the maximum theoretical discharge capacity.

However, batteries are operated in a range of voltage that goes from Vf ull to the cut-off
voltage Vcut-o f f (V), which are parameters usually provided on the battery datasheet. Let
us indicate with Q (Ah) the battery nominal capacity, which corresponds to the discharged
capacity from Vf ull to Vcut-o f f at the nominal discharge current inom

dis (A). Figure 6 helps to
make clear the difference between Qb and Q.

௨

௨௧ି





Figure 6. Example of discharge curve at nominal discharge current.

The battery cut-off voltage Vcut-o f f and Q are related by the following equation:

Vb = E0 − K
Qb

Qb −Q
(Q− inom

dis ) + Rinom
dis + Abe−BQ − CQ = Vcut-o f f (5)

From (5), it is possible to find a direct relation between Qb and Q:

Qb(Q) = Q
z

z− 1

z =
E0 + Rinom

dis + Abe−BQ − CQ−Vcut-o f f

K(Q− inom
dis )

(6)

Note that the capacity that can be measured with an experimental full discharge cycle
is actually Q; then, the battery capacity Qb can be computed using (6). Hereafter, we will
refer to Q simply as the battery capacity. As demonstrated in Appendix A, relation (5) can
also be solved with respect to Q and the relation Q(Qb) obtained.

The filtered battery current is computed as follows:

i f (t) = L−1
(

1
1 + s · Td

· I(s)
)

(7)
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where L−1 is the inverse Laplace transform, I(s) is the Laplace transform of the battery
current, and Td (s) is the battery response time.

3.1.2. Block E1

In Block E1, to account for the impact of the battery temperature on the EM, the
thermodynamics voltage E0, the polarization constant K, the internal resistance R, and the
exponential zone amplitude Ab are calculated according to Nernst and Arrhenius laws
as follows [36]:

E0(T) = E0 |Tre f
+

∂E
∂T

(
T − Tre f

)
(8)

K(T) = K |Tre f
exp

(
α

(
1
T
− 1

Tre f

))
(9)

R(T) = R |Tre f
exp

(
β

(
1
T
− 1

Tre f

))
(10)

Ab(T) = Ab |Tre f
+

∂Ab
∂T

(
T − Tre f

)
(11)

where T (K) is the battery temperature, Tre f (K) is the reference battery temperature, ∂E/∂T
is the open circuit temperature coefficient (V/K), α and β are the Arrhenius constants for
the polarization resistance and internal resistance, respectively, and ∂Ab/∂T is a parameter
that models the linear dependence of the exponential zone amplitude from the temperature.
In the literature, it is common to find battery models such as the one in (2); however, none
of them considers a temperature dependence of the parameter Ab. The choice of modeling
the exponential zone amplitude Ab as a temperature-linear function was made by carefully
looking at the experimental results. This alternative turned out to outperform the option
in which Ab is constant. In Block E2 the impact of the battery temperature on the battery
maximum capacity at BoL QBoL

b is also accounted for as follows:

QBoL
b (T) = Qb |Tre f

+
∆Qb
∆T

(
T − Tre f

)
(12)

where ∆Qb/∆T is the battery capacity temperature coefficient (Ah/K).

3.2. Battery Aging Model

The battery AM modifies the battery capacity Qb and resistance R based on ongoing
aging and consists of four main blocks:

1. Block A1, which determines the DoD, and average C-rates and battery temperature
during each cycle;

2. Block A2, which evaluates the battery stress arising during any cycle in the function
of DoD, C-rates, and temperature;

3. Block A3, which computes the aging index ε, based on the concept of equivalent
number of cycles;

4. Block A4, which adjusts the battery capacity and resistance according to the actual
value of the aging index.

The interconnections among these four blocks are highlighted in Figure 7, which
shows the detailed WBM scheme.
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Block A2 𝑄

Block E1 Block E2𝑇

𝐸 𝑇

𝑖

𝐾 𝑇

𝐴 𝑇
𝑉

Block A1

𝑆𝑜𝐶

𝑖

𝐼 ̅ 𝑛
Block A3

𝐼 ̅ 𝑛

𝜃 𝑛

𝐷𝑜𝐷 𝑛

Block A4

𝜀 𝑛
𝑅

𝑅 𝑇

𝑇 𝑛

𝑄 𝑄
𝑄 𝑇

𝑄 𝑄 𝑇

𝜃 𝑛

𝜀 𝑛

Figure 7. Detailed block scheme of the WBM (exploded version of Figure 5). Blue blocks compose
the electrothermal model; orange blocks compose the aging model.

3.2.1. Block A1

Block A1 works on a discrete time base, assuming that SoC(k) and i(k) are the mea-
sures of SOC (p.u.) and battery current at the discrete time step k · ∆t, k = 1, 2, . . . . Using
these measurements, Block A1 updates the DoD, the average C-rates Īdis and Īch during
discharge and charge, respectively, and the average battery temperature T̄, when the battery
transits from charge to discharge or vice versa. These updates are therefore indexed by the
transition number n. A new transition is detected by monitoring the change in sign of the
variation of the SOC defined as

∆SoC(k) = SoC(k)− SoC(k− 1) (13)

Therefore, the update of the DoD and the average C-rates and battery temperature is
carried out by executing Algorithm 1.

Algorithm 1 DoD, C-rates and battery temperature update.

1. initialize the transition number, n = 1, the DoD, DoD(1) = 1− SoCinit, where SoCinit
is the battery initial SOC, the C-rates, Īdis(1) = iinit, Īch(1) = iinit, where iinit is the
battery initial current, and the previous transition time step kp = 0;

2. at every time step k,
3. evaluate ∆SoC(k) as in (13);
4. if ∆SoC(k) · ∆SoC(k− 1) < 0:
5. n = n+1;
6. calculate DoD as DoD(n) = 1− SoC(k− 1);
7. calculate Īdis(n) and Īch(n) using (14) and (15);
8. calculate T̄(n) using (16);
9. kp = k;
10. end if

Īdis(n) =

{
1

k−kp
∑k−1

j=kp
|i(j)| ∆SoC(k) > 0

Īdis(n− 1), ∆SoC(k) ≤ 0
(14)

Īch(n) =

{
Īch(n− 1), ∆SoC(k) > 0

1
k−kp

∑k−1
j=kp
|i(j)|, ∆SoC(k) ≤ 0 (15)

T̄(n) =
1

k− kp

k−1

∑
j=kp

T(j) (16)
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3.2.2. Block A2

In Block A2, the battery stress factor at transition n is computed. This factor must
measure the degradation of the battery due to its use between transition n− 1 and transition
n. Such a battery use is characterized by the DoD, the average C-rates, and the average
temperature, computed by Block A1, which influence the battery stress as modeled in
the following.

The stress factor θT due to temperature is computed using the Arrhenius equation:

θT(n) = exp

[
−ψ

(
1

T̄(n)
− 1

Tre f

)]
(17)

where Tre f is the model reference temperature and ψ is the Arrhenius rate constant. By
analogy with Miner’s rule, using Wöhler approximation, the stress factors associated with
the discharge and charge currents are computed as follows:

θIdis(n) =

(
Īdis(n)

Ire f
dis

)1/γd

(18)

θIch(n) =

(
Īch(n)

Ire f
ch

)1/γc

(19)

where Ire f
dis and Ire f

ch are the peak stress amplitudes for the discharge and charge current,
respectively, and both are positive; γd and γc are the stress exponents for the discharge and
charge current, respectively.

Similarly, the stress factor θDoD associated with a given DoD can be computed as follows:

θDoD(n) = (DoD(n))1/ξ (20)

where ξ is the stress exponent for the DoD.
The final combined stress factor is given by

θ(n) = θDoD(n) · θIdis(n) · θIch(n) · θT(n) (21)

Based on the experimental results, the accuracy of the overall AM drops if the same
stress factor is used for both capacity and resistance, as usually carried out in literature
papers such as [20]. Therefore, in this paper, we define two different stress factors θQ(n)
and θR(n) for capacity and resistance, respectively. This means that the relations in (17)–(21)
must be considered as defined twice, one for capacity and one for resistance. In particular:

• θQ(n) is obtained by applying (21) starting from (17)–(20) with ψ = ψQ, γd = γdQ,
γc = γcQ, and ξ = ξQ;

• θR(n) is obtained by applying (21) starting from (17)–(20) with ψ = ψR, γd = γdR,
γc = γcR, and ξ = ξR.

3.2.3. Block A3

Block A3 computes the aging index ε(n). Such an index represents the contribution of
the battery use between transition n− 1 and transition n to the total aging of the battery.

Let us define first Nre f
c as the number of cycles from BoL to EoL in reference use

conditions, i.e., when the battery use is with DoD = 1 and with reference C-rates and battery
temperature. Under reference conditions, the aging index after one cycle (two transitions)
is given by

ε =
1

Nre f
c

(22)
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Knowing that, in real load profiles, charging and discharging cycles do not always
cover the entire battery capacity (DoD < 1), the equivalent number of full cycles Neq is
computed at each transition n as follows:

Neq(n) =

{
1− DoD(n−2)+DoD(n)

2DoD(n−1) , ∆SoC(k) > 0
0, otherwise

(23)

Then, given Neq(n), the aging index ε(n) is updated as follows:

ε(n) = ε(n− 1) +
Neq(n)

Nre f
c

θ(n− 1) (24)

Since we have two different stress factors for capacity and resistance, we also have
two different aging indices εQ(n) and εR(n) computed by applying (24) with θQ(n) and
θR(n), respectively.

3.2.4. Block A4

Finally, in Block A4, the battery capacity and internal resistance are updated based on
ongoing degradation through the computation of the aging index εQ/R. In particular, the
maximum capacity Q and the internal resistance R are expressed as

Q(n) = QBoL − εQ(n)
λQ · (QBoL −QEoL) (25)

R(n) = RBoL + εR(n)
λR · (REoL − RBoL) (26)

where

• QBoL and QEoL are the battery capacity (Ah) at BoL and EoL, respectively;
• RBoL and REoL are the battery resistance (Ω) at BoL and EoL, respectively;
• λQ and λR are the aging exponents for the battery maximum capacity and internal

resistance, respectively.

3.3. Novelty Aspects

We remark that the battery models introduced in this section build upon existing
electrothermal and aging Li-ion cell models. Specifically, the EM is formulated based on
the models in [11,24,25], while the AM originates from the framework presented in [20].
However, in this paper, we formalize the integration of the EM and the AM, depicted in
Figure 7, by including the relation between the maximum theoretical discharge capacity
Qb and the battery nominal capacity Q. Indeed, in [20], this relation is not explicitly taken
into account. Moreover, differently from [20] and from other literature approaches, in this
paper we differentiate the computation of the aging index for capacity and resistance.

4. Parameter Identification

In this section, the method to estimate the EM and AM parameters is presented.

4.1. Battery Electrothermal Model Parameter Identification

Based on the experimental data set described in Section 2.1.1, we assume to be pro-
vided with the measurements of the trajectories of the battery output voltage during a
series of discharges at a constant rate and at r different temperatures T = T1, T2, . . . , Tr,
denoted as

{
VT(t)

}Tr
T=T1

.
The proposed identification procedure consists of three steps, detailed in the flowchart

in Figure 8, and it was developed to cope with the complexity of battery voltage
representation (2).
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Step 1: Identify the parameters on each single
discharge curve by solving (28) and get the set of

parameters 𝜑

Step 2: Estimate the parameters for initial
condition by solving (32) and get the set 𝜑

Step 3: Use the set 𝜑 as initial condition to
estimate the battery parameters 𝜑 on all the
discharge curves by solving (33)

Figure 8. Flowchart of the battery electrothermal model parameter identification algorithm.

Let us indicate with ϕ a vector composed of the 12 EM parameters:

ϕ = [E0 |Tre f
, ∂E/∂T, K |Tre f

, α, R |Tre f
, β, Q |Tre f

, ∆Q/∆T, Ab |Tre f
, ∂Ab/∂T, B, C] (27)

The idea is to first identify a collection of r temperature-dependent estimates
{

ϕT
in
}Tr

T=T1

of the vector ϕ, one from each voltage trajectory
{

VT(t)
}Tr

T=T1
(Step 1). Then, these esti-

mates are used to define a single initial estimate ϕin, independent of the temperature, by
adopting a fitting procedure on suitably defined functions (Step 2). Finally, ϕin is used
as the initial conditions to compute the final estimate ϕ̂ using least-square minimization
(Step 3). The details of each step of the identification algorithm are given in the following.

4.1.1. Step 1

Given one of the voltage trajectories VT(t) the temperature-dependent estimate ϕT
in is

computed by solving the following problem:

ϕT
in = arg min

ϕ

EoD

∑
t=0

(
VT(t)−Vϕ

b (t, T)
VT(t)

)2

(28)

where EoD is the time duration of the discharge, and Vϕ
b (t, T) is given by (2) with E0=E0(T),

R=R(T), K=K(T), Qb=Qb(T), Ab=Ab(T), according to (8)–(12), and given a value for the
set of parameters in ϕ. We remark that, in solving (28), the following initial conditions for
Ab |Tre f

, B, and C can be used [11,25]:

Ab |Tre f
= Vf ull −Vexp (29)

B =
3

Qexp
(30)

C =
V11 −V12

Q12 −Q11
(31)

where Vexp is the voltage at the end of the exponential zone in the battery discharge profile;
Qexp is the charge extracted from Vf ull to Vexp; V11 and V12 are the voltages at the end of
the exponential zone and at the end of the linear zone when the battery is discharged at
25 ◦C; and Q11 and Q12 are the extracted charges from Vf ull to V11 and from Vf ull to V12,
respectively, at 25 ◦C.
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4.1.2. Step 2

The collection
{

ϕT
in
}Tr

T=T1
is used to define the unique initial condition ϕin for the

final battery parameter identification. This is carried out by solving the following least-
square problems:

{ϕin}κ = argmin
{ϕ}κ

∑
T

(
gT

κ

({
ϕT

in

}
κ

)
− gT

κ ({ϕ}κ)
) 2

(32)

where gT
κ (·) is a function involving the battery parameters and the battery temperature.

The subscript κ determines the form of the function. Each gT
κ (·) involves the subset {ϕ}κ

of the battery parameters. For example, for κ = 1, gT
κ is given by (8) and the involved

parameters are {ϕ}κ = {E0 |Tre f
, ∂E/∂T}. The other expressions for gT

κ are given by the
second members of (9)–(12) for parameters K |Tre f

, α, R |Tre f
, β, Q |Tre f

, ∆Q/∆T, Ab |Tre f
, and

∂Ab/∂T. For parameters B and C, gk is a constant function (so that average values are
computed by (32)). The formal definition of function gT

κ is given in Appendix B.

4.1.3. Step 3

The parameter set ϕin is used as initial condition to compute the estimate ϕ̂ for the
parameter set ϕ by solving the following least-square problem:

ϕ̂ = argmin
ϕ

Tr

∑
T=T1

EoD

∑
t=0

(
VT(t)−Vϕ

b (t, T)
VT(t)

)2

(33)

that considers the entire dataset all at once.

4.2. Battery Aging Model Parameter Identification

To identify the parameters of the AM, we use the data from Experiment 2, described
in Section 2.1.2. We first identify the parameters directly involved in (25) and (26). Then,
we identify the parameters required to compute the aging indices εQ(n) and εR(n).

Let us consider first that, if we realize full cycles at reference conditions,
θQ(n) = θR(n) = 1 when n is even and θQ(n) = θR(n) = 0 otherwise (according
to (17)–(21)), Neq(n) = 1 if n is odd and Neq(n) = 0 otherwise (according to (23)). Therefore,

from (24), it follows that εQ(n) = εR(n) = bn/2c/Nre f
c , where b·c indicates the integer

floor part of a given number. We also remark that bn/2c is equal to the realized full cycles
N. Therefore, under the conditions of Experiment 2 cycle test #1, which are the reference
ones (see Table 1), (25) and (26) can be rewritten as follows:

Q(N) = QBoL − NλQ νQ (34)

R(N) = RBoL + NλR νR (35)

According to the description of Experiment 2 cycle test #1 in Section 2.1.2, we can gener-
ally assume to be provided with S experimental points (Ni, Qi) and (Ni, Ri), i = 1, 2, . . . , S.
Therefore, the parameters in (34) and (35) can be computed by fitting the experimental
results through least-square minimization:

λQ, QBoL, νQ = argmin
S

∑
i=1

(
Qi − Q̃BoL + N

λ̃Q
i ν̃Q

)2
(36)

λR, RBoL, νR = argmin
S

∑
i=1

(
Ri − R̃BoL − Nλ̃R

i ν̃R

)2
(37)

and, then, considering that QEoL = 0.8 · QBoL, it is possible to compute Nre f
c and REoL

as follows:
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Nre f
c =

(
0.2 ·QBoL

νQ

)1/λQ

(38)

REoL = νR(Nre f
c )

λR
+ RBoL. (39)

In the case we are provided with known and unique values for the BoL capacity and
resistance QBoL and RBoL, the fitting curves must be forced to start from these two values,
by applying (36) and (37) without considering Q̃BoL and R̃BoL as optimization variables. In
the results presented in this paper, we applied this case.

Once the parameters λQ, λR, QBoL, RBoL, QEoL, REoL, and Nre f
c are identified using

the experimental results from Experiment 2 cycle test #1, the parameters required to
compute εQ(n) and εR(n) have to be identified. More specifically, we need to estimate the
following vector:

ϕa =
[
ψQ, γdQ, γcQ, ξQ, ψR, γdR, γcR, ξR

]
(40)

To this end, we can use the experimental results from Experiment 2 cycle tests #2, #3,
#4, and #6. As for cycle test #1, we have that Neq(n) = 1 when n is odd and Neq(n) = 0
otherwise. Consider now that cycle tests #2, #3, #4, and #6 do not adopt reference values
just for temperature, charge and discharge rate, and DoD, respectively, as highlighted in
Table 1. Therefore, assuming that T2 is the battery temperature in cycle test #2, Ich,3 is the
charging current in cycle test #3, and Idis,4 is the discharging current in cycle test #4, we
have the following:

• For Experiment 2 cycle test #2:

θQ/R(n) = θQ/R
DoD(n)θQ/R

T (n) = e
−ψQ/R ·

(
1

T2
− 1

Tre f

)
(41)

when n is even and θQ/R(n) = 0 otherwise;
• For Experiment 2 cycle test #3:

θQ/R(n) = θQ/R
DoD(n)θQ/R

ch (n) =

(
Ich,3

Ire f
ch

) 1
γcQ/R

(42)

when n is even and θQ/R(n) = 0 otherwise;
• For Experiment 2 cycle test #4:

θQ/R(n) = θQ/R
DoD(n)θQ/R

dis (n) =

(
Idis,3

Ire f
dis

) 1
γdQ/R

(43)

when n is even and θQ/R(n) = 0 otherwise;
• For Experiment 2 cycle test #6:

θQ/R(n) = θQ/R
DoD(n) = (0.8)

1
ξQ/R (44)

when n is even and θQ/R(n) = 0 otherwise.

Using (41)–(44) and assuming that N = bn/2c is the number of realized (not necessar-
ily full) cycles at transition n, from (24), we can compute the aging index ε

j
Q/R referring to

cycle test j = 2, 3, 4, 6 as a function of N and of the relevant aging parameter as follows:

• For Experiment 2 cycle test #2:

ε2
Q/R

(
N, ψQ/R

)
=

N

Nre f
c
· e
−ψQ/R ·

(
1

T2
− 1

Tre f

)
(45)
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• For Experiment 2 cycle test #3:

ε3
Q/R

(
N, γcQ/R

)
=

N

Nre f
c
·
(

Ich,3

Ire f
ch

) 1
γcQ/R

(46)

• For Experiment 2 cycle test #4:

ε4
Q/R

(
N, γdQ/R

)
=

N

Nre f
c
·
(

Idis,4

Ire f
dis

) 1
γdQ/R

(47)

• For Experiment 2 cycle test #6:

ε6
Q/R

(
N, ξQ/R

)
=

N

Nre f
c
· (0.8)

1
ξQ/R (48)

By applying (45)–(48) to (25)–(26), we can also compute the aging expressions for
capacity and resistance referring to cycle tests #i, i = 2, 3, 4, 6 as a function of N and the
relevant aging parameter, Qi(N, ·) and Ri(N, ·).

According to the description of Experiment 2 in Section 2.1.2, we can generally as-
sume to be provided with Sj experimental points (N j

i , Qj
i) and (N j

i , Rj
i), i = 1, 2, . . . , Sj,

j = 2, 3, 4, 6. Therefore, the parameters in (40) can be identified by fitting the experimental
results through least-square minimization:

ψQ = arg min
ψ̃Q

S2

∑
i=1

(
Q2

i −Q2(N2
i , ψ̃Q)

)2
(49)

ψR = arg min
ψ̃R

S2

∑
i=1

(
R2

i − R2(N2
i , ψ̃R)

)2
(50)

γcQ = arg min
γ̃cQ

S3

∑
i=1

(
Q3

i −Q3(N3
i , γ̃cQ)

)2
(51)

γcR = arg min
γ̃cR

S3

∑
i=1

(
R3

i − R3(N3
i , γ̃cR)

)2
(52)

γdQ = arg min
γ̃dQ

S4

∑
i=1

(
Q4

i −Q4(N4
i , γ̃dQ)

)2
(53)

γdR = arg min
γ̃dR

S4

∑
i=1

(
R4

i − R4(N4
i , γ̃dR)

)2
(54)

ξQ = arg min
ξ̃Q

S6

∑
i=1

(
Q6

i −Q6(N6
i , ξ̃Q)

)2
(55)

ξR = arg min
ξ̃R

S6

∑
i=1

(
R6

i − R6(N6
i , ξ̃R)

)2
(56)

4.3. Novelty Aspects

We remark that the aging parameter identification procedure introduced in Section 4.2
builds upon the procedure presented in [20]. However, in [20], the identification process
requires the use of just six experimental points (couples composed of the number of cycles
and capacity measurements (Ni, Qi)), at specific capacity fade conditions: loss of 5% to get
five experimental points and loss of 20% to get the sixth point (see Figure 5 in [20]).

However, to obtain these specific points, very frequent capacity measurements should
be carried out in order to exactly establish the number of cycles at which the 5% and
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20% capacity fade occur. Therefore, we considered the following: (1) performing frequent
enough capacity measurements to identify exactly when the 5% and 20% decreases occur
was impractical since, according to the description provided in Section 2.1.1, an accurate
capacity measurement requires two hours; and (2) if more than six capacity measurements
are available, they should be used in the identification process to achieve higher robustness
against measurement errors.

Therefore, we decided the following: (1) to carry out an easier and more linear mea-
surement process where capacity (and resistance) measurements are acquired at regular
cycle intervals, as described in Section 2.1.2 (Experiment 2); and (2) to generalize the
identification procedure in [20] allowing the use of a general set of experimental points,
not necessarily at specific capacity fade levels and as numerous as possible, to increase
robustness with respect to measurement errors.

5. Results

In the following, the results of the parameter identification and validation of the
WBM are presented. The applied identification methodologies are the one detailed in
Section 4.1 for the EM parameters and the one detailed in Section 4.2 for the AM parameters.
The parameters of the WBM are also cross-validated on discharge curves at different aging
levels of the cells, as the results of the identification of the AM parameters directly influence
the battery voltage during the operations.

Furthermore, two sensitivity analyses are performed on the identification of the WBM
parameters. In the first one, we explored the impact of varying the sampling time δ (s) for the
measurements in the discharge curves of Experiment 1. Three different sampling times were
considered: δ = 1, 5, 10 s. In the second sensitivity analysis, we investigated the influence
of the number of capacity and resistance measurements available from Experiment 2.
In this analysis, we indicate as Case 1 the scenario where all the capacity and resistance
measurements are used to estimate the AM parameters, and as Case 2 the scenario where
only half of the capacity and resistance measurements from Experiment 2 are employed,
with one measurement employed for every two available.

5.1. Error Metrics

In the following, result performances will be analyzed in terms of maximum Absolute
Percentage Error (maxAPE) and Mean Absolute Percentage Error (MAPE). We first define
the APE for battery voltage, capacity, and resistance as follows

APEV(t) =
∣∣∣∣Vb(t)− V̂b(t)

Vnom

∣∣∣∣100%, t ∈ [0, EoD] (57)

APESoH(i) =

∣∣∣∣∣Qi − Q̂i
QBoL

∣∣∣∣∣100%, i = 1, 2, . . . , S (58)

APER(i) =
∣∣∣∣Ri − R̂i

RBoL

∣∣∣∣100%, i = 1, 2, . . . , S (59)

where Vb(t) and V̂b(t) are the battery voltages at time t measured and reproduced by the
identified model, respectively; Qi, Ri, Q̂i, and R̂i are the measured and estimated battery
capacity and resistance, respectively, at the i-th measurement within a set of carnality S.

Therefore, MAPEx and maxAPEx, with x = V, SoH, R, are defined as follows:

MAPEV =
1

EoD + 1

EoD

∑
t=0

APEV(t) (60)

maxMAPEV = max
t∈[0,EoD]

APEV(t) (61)
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MAPEQ =
1
S

S

∑
i=1

APEQ(i) (62)

maxMAPEQ = max
i∈[1,S]

APEQ(i) (63)

MAPER =
1
S

S

∑
i=1

APER(i) (64)

maxMAPER = max
i∈[1,S]

APER(i) (65)

5.2. Battery Electrothermal Model Parameters

The parameters of the EM were identified applying the methodology presented in
Section 4.1 to the experimental results of Experiment 1. After being identified, the EM
parameters were validated using the discharge curves of Experiment 3. All measurements
collected in Experiment 1 and Experiment 3 have a sampling time of 1 s. However, the
identification procedure has been applied using three different sampling time values,
namely, δ = 1, 5, 10 s, in order to analyze the performance of our approach with a sampling
time larger than 1s.

Table 2 shows the values of the identified parameters at the three investigated sampling
times. The results of the identification in terms of MAPEV and maxAPEV are listed in
Table 3, while Table 4 shows the results of the validation of the battery EM parameters on
the discharge curves of the fresh battery, evaluated on the same metrics.

The implemented methodology is not sensible to measurement sampling times in the
interval 1–10 s; indeed, the obtained error metrics are very close, both for identification
(Table 3) and validation (Table 4). The temperature returning the lowest errors is 25 ◦C and
the farther from it the larger the error. However, at every tested temperature, the voltage is
well approximated, showing the effectiveness of the proposed methodology. The MAPE on
the voltage is always well below 0.7% and the maxAPE is almost always below 5%. Figure 9
shows the measured and reproduced voltage profiles obtained in the case with δ = 1 s.
Here, we can observe that the largest errors are in the proximity of Vcut-o f f . The validation
results in the case of δ = 5, 10 s are not shown graphically as they are very similar to those
of Figure 9, as expected from Table 4. Even in these cases, the largest errors are in the
proximity of Vcut-o f f .

Table 2. Estimated values of the battery EM parameters.

δ (s) E0 |Tre f
∂E
∂T K |Tre f

α R |Tre f
β Ab |Tre f

∂Ab
∂T Qb |Tre f

∆Qb
∆T B C Td

1 4.1261 0.0014 0.0037 −2767 0.0260 3.470 0.0414 −0.0015 4.6919 0.0165 2.9660 0.1621 67.50
5 4.1268 0.0014 0.0037 −2770 0.0262 3.465 0.0412 −0.0015 4.6913 0.0165 3.0178 0.1623 67.50
10 4.1275 0.0014 0.0037 −2768 0.0263 3.459 0.0405 −0.0015 4.6911 0.0165 3.0709 0.1624 67.50

Table 3. Results of the identification of the battery EM.

δ = 1 s δ = 5 s δ = 10 s

Temperature (◦C) MAPEV (%) maxAPEV (%) MAPEV % maxAPEV (%) MAPEV (%) maxAPEV (%)

0 0.521 1.920 0.521 1.920 0.520 1.944
25 0.390 2.094 0.391 2.097 0.391 2.104
50 0.608 5.487 0.609 5.492 0.610 5.498
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Table 4. Results of the validation of the battery EM parameters on fresh battery discharge curves at
0.5C rate, and at 0, 25, 40, and 50 ◦C.

δ = 1 s δ = 5 s δ = 10 s

Temperature (◦C) MAPEV (%) maxAPEV (%) MAPEV % maxAPEV (%) MAPEV (%) maxAPEV (%)

0 0.660 3.402 0.660 3.208 0.657 2.955
10 0.406 3.696 0.405 3.498 0.403 3.326
25 0.383 1.032 0.384 0.969 0.384 0.950
40 0.507 4.070 0.507 3.929 0.509 3.932
50 0.578 5.335 0.578 5.127 0.577 4.895
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Figure 9. Results of the battery EM validation with a sampling time of 1 s on fresh battery discharge
curves at 0.5C rate, and at 0, 25, 40, and 50 ◦C: voltage profiles (top figures) and APEV (bottom figures).

The cross-validation results of the battery EM parameters on the discharge curves
of the two Pattern A tests, Pattern B test, and cycle tests #1-3, #2-3, and Append 5 are
shown in Table 5. The parameters are validated on the discharge curves of these tests at
three different levels of battery aging:

1. Pattern A, 25 ◦C, at BoL, at cycle #28 and at cycle #78;
2. Pattern A, 0 ◦C, at BoL, at cycle #39 and at cycle #75;
3. Pattern B, at BoL, at cycle #42 and at cycle #104;
4. Cycle test #1-3, at BoL, at cycle #200 and at cycle #450;
5. Cycle test #2-3, at BoL, at cycle #200 and at cycle #450;
6. Cycle test Append 5, at BoL, at cycle #284 and at cycle #654.
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In Table 5, the column titled “BoL” shows the results of the discharge curves performed
at BoL, the column titled “Mid” shows the results of the discharge curves performed at the
second level of battery aging, and the column titled “Last” shows the results of the discharge
curves performed at the third level of battery aging. The very low MAPEs obtained on these
tests prove the effectiveness of the proposed methodology and of the integration of the EM
with the AM. Furthermore, the good approximation of the battery aged voltage also indicates
the effectiveness of the AM parameter identification. However, we note that maxAPEs are
over 10%. Again, these maximal errors appear only at the end of the discharge curves.

Table 5. Results of the cross-validation of the battery EM parameters on discharge curves performed
during Pattern A tests, Pattern B test, and cycle tests #1-3, #2-3, and Append 5 at 0.98 A, and at different
levels of battery aging. “Mid” and “Last” indicate the cycle at which the discharge test was performed.

BoL Mid Last

MAPEV (%) maxAPEV (%) MAPEV (%) maxAPEV (%) MAPEV (%) maxAPEV (%)

Case 1, δ = 1 s
Pattern A, 25 ◦C 0.869 13.206 0.917 13.184 0.899 12.520
Pattern A, 0 ◦C 0.870 13.206 0.946 12.378 0.922 11.154
Pattern B 0.884 13.205 0.857 12.668 0.950 13.537
#1-3 0.978 13.205 1.013 15.288 0.990 14.391
#2-3 0.887 13.205 0.928 13.097 1.280 15.440
Append 5 0.893 13.206 1.051 13.362 1.117 12.501

Case 1, δ = 5 s
Pattern A, 25 ◦C 0.870 13.205 0.917 13.184 0.898 12.519
Pattern A, 0 ◦C 0.870 13.206 0.945 12.376 0.919 11.150
Pattern B 0.884 13.205 0.856 12.667 0.950 13.538
#1-3 0.974 13.205 1.012 15.291 0.990 14.394
#2-3 0.884 13.205 0.928 13.097 1.289 15.445
Append 5 0.891 13.206 1.050 13.362 1.117 12.450

Case 1, δ = 10 s
Pattern A, 25 ◦C 0.871 13.206 0.917 13.184 0.895 12.519
Pattern A, 0 ◦C 0.870 13.206 0.943 12.376 0.916 11.149
Pattern B 0.884 13.205 0.853 12.667 0.948 13.538
#1-3 0.971 13.205 1.010 15.292 0.989 14.395
#2-3 0.882 13.205 0.926 13.097 1.295 15.446
Append 5 0.888 13.206 1.048 13.362 1.116 12.499

Case 2, δ = 1 s
Pattern A, 25 ◦C 0.869 13.206 0.916 13.170 0.898 12.502
Pattern A, 0 ◦C 0.870 13.206 0.944 12.331 0.920 11.114
Pattern B 0.884 13.205 0.855 12.602 0.949 13.495
#1-3 0.978 13.205 1.0113 15.257 0.994 14.511
#2-3 0.887 13.205 0.931 13.152 1.269 15.697
Append 5 0.893 13.206 1.050 13.358 1.121 12.601

Case 2, δ = 5 s
Pattern A, 25 ◦C 0.870 13.206 0.917 13.170 0.897 12.500
Pattern A, 0 ◦C 0.870 13.206 0.943 12.330 0.917 11.109
Pattern B 0.884 13.205 0.853 12.601 0.948 13.496
#1-3 0.974 13.205 1.010 15.260 0.994 14.514
#2-3 0.884 13.205 0.930 13.151 1.277 15.702
Append 5 0.891 13.206 1.049 13.358 1.121 12.600

Case 2, δ = 10 s
Pattern A, 25 ◦C 0.871 13.206 0.916 13.170 0.895 12.500
Pattern A, 0 ◦C 0.870 13.206 0.941 12.329 0.914 11.109
Pattern B 0.884 13.205 0.850 12.600 0.940 13.496
#1-3 0.971 13.205 1.008 15.261 0.992 14.515
#2-3 0.882 13.205 0.929 13.151 1.283 15.704
Append 5 0.888 13.206 1.048 13.358 1.120 12.599
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Overall, it is possible to state that the voltage is very well approximated at different
temperatures and at different levels of battery aging. The higher errors only appear when
the battery cell is deeply discharged, a condition that should be avoided in all practical uses.

5.3. Battery Aging Model Parameters

The parameters of the AM were identified applying the methodology presented in
Section 4.2 using the experimental results of Experiment 2. After being identified, the AM
was validated on the Pattern A tests, on the Pattern B test, and on one of the cycle tests
#1-3, #2-3, and Append 5. Similarly to the identification of the battery EM, a sensitivity
analysis was conducted on the number of considered capacity and resistance measurements
to identify the model parameters. With Case 1, we refer to the case of AM parameter
identification conducted using all the available measurements (indicated by a black dot in
Figures 10 and 11) whereas we use Case 2 to indicate the case in which half of the available
measurements were used, one out of every two, to identify the AM parameters.
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Figure 10. Results of the battery AM validation for the cell capacity on Pattern A tests, Pattern B
test, and cycle tests #1-3, #2-3, and Append 5, for Case 1: SOH percentage levels (top figures) and
APESOH (bottom figures).
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Figure 11. Results of the battery AM validation for the cell resistance on cycle tests #1-3, #2-3, and
Append 5, for Case 1: battery resistance (top figures) and APER (bottom figures).
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Table 6 shows the values of the identified AM parameters for the battery capacity and
resistance. The results of the identification of the capacity model parameters are listed
in Table 7 in terms of MAPESOH and maxAPESOH , both for Case 1 and Case 2. Table 7
also shows the performance of the capacity AM obtained in the validation tests. Similarly,
Table 8 shows the results of the identification and validation of the resistance parameters in
terms of MAPER and maxAPER.

Table 6. Estimated values of the battery aging model parameters.

Case Nre f
c λQ λR ψQ γdQ γcQ ξQ REoL ψR γdR γcR ξR

1 1184 0.7923 1.3507 1685 48.922 48.922 0.1177 0.0830 3055 509,590 127,750 0.0047
2 1213 0.7775 1.4005 1643 38.154 38.154 0.1162 0.0897 2971 345,750 127,750 0.0016

In general, all obtained results prove the effectiveness and the robustness of the
proposed approach. Indeed, MAPEs are generally very low and maxAPEs are almost
always well below 3%. The validation of the capacity AM shows outstanding results with
values of MAPESOH significantly lower than 1% and values of max(APESOH) in the range
of 1% or lower. The errors in the validation of the resistance AM are larger. In particular,
cycle test #2-3 shows values of MAPER outside the 5% bounds. In the outcome of such
results, a big impact comes from the normalization of the error on RBoL in (59), which is a
small value and the minimum in the battery resistance evolution. Such results may be due
to some inaccuracy in the resistance measurements tests, which do not consider the battery
response dynamics in their computation.

Concerning the difference between Case 1 and Case 2, in Table 6 we can observe that
the identification procedure returned different values for the estimated parameters. In any
case, the order of magnitude of all parameters is similar and the results in terms of accuracy
in Tables 7 and 8 show that the two models have comparable performances.

Table 7. Results of the identification and validation of the battery aging model parameters for the
battery SOH.

Case 1 Case 2

Cycling Condition MAPESOH (%) maxAPESOH (%) MAPESOH (%) maxAPESOH (%)

Identification
#1 0.119 0.614 0.145 0.614
#2 0.129 0.418 0.075 0.218
#3 1.697 3.589 1.721 3.650
#4 0.123 0.370 0.117 0.189
#5 0.236 0.782 0.262 0.782
#6 0.236 0.666 0.196 0.518

Validation
Pattern A, 25 ◦C 0.442 1.043 0.215 0.526
Pattern A, 0 ◦C 0.217 0.515 0.456 1.060
Pattern B 0.318 1.014 0.328 1.034
#1-3 0.779 1.030 0.781 1.009
#2-3 0.484 1.051 0.535 1.215
Append 5 0.281 0.797 0.266 0.782

Figures 10 and 11 graphically show the results of the validation of the battery AM for
capacity and resistance, respectively, for Case 1. The same results for Case 2 are not shown,
since no significant differences can be appreciated. In Figure 10, we can observe that the
SOH evolution of the battery is well represented by the model, since the curves reproduced
by the WBM (blue lines) are almost always in the 1% error bounds. In Figure 11, we notice
that the reproduction of the battery resistance presents larger percentage errors, as already
stated, but in terms of absolute values the largest error is 0.14 mΩ.
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Table 8. Results of the identification and validation of the battery aging model parameters for the
battery resistance.

Case 1 Case 2

Cycling Condition MAPER (%) maxAPER (%) MAPER (%) maxAPER (%)

Identification
#1 0.062 0.146 0.054 0.146
#2 0.416 0.796 0.469 0.814
#3 0.301 0.606 0.288 0.590
#4 0.604 1.037 0.550 1.053
#5 0.181 0.340 0.180 0.340
#6 0.086 0.215 0.102 0.215

Validation
#1-3 4.315 7.110 4.093 6.451
#2-3 5.066 11.701 5.629 12.018
Append 5 2.077 4.520 2.077 4.563

6. Conclusions

This paper presents a comprehensive Li-ion battery semi-empirical model able to
represent the electrothermal dynamics taking into account aging degradation due to opera-
tions. Moreover, a suitable procedure to identify both electrothermal and aging parameters
is introduced. This method does not require expensive thermal test chambers and calorime-
ters, since it requires simple cycling and discharge tests. In more detail, the presented model
is an integration of two sub-models, the EM, which models the electrical and thermal behav-
ior of the battery, and the AM, which models the aging of the battery through operations.
The resulting WBM allows evaluating the battery state of health and resistance temporal
evolution as functions of battery temperature, state of charge, and current. Therefore, it
can be easily interfaced with a battery management system for the online evaluation of
battery conditions.

It is worth remarking that the WBM builds upon existing electrothermal and aging
Li-ion cell models. Specifically, the EM is formulated based on the models in [11,24,25],
while the AM originates from the framework presented in [20]. However, as already
clarified in Sections 3.3 and 4.3, in this paper we introduce two main improvements: the
formal inclusion of the relation between the maximum theoretical discharge capacity Qb,
used in the EM, and the battery nominal capacity Q, used in the AM; and the generaliza-
tion of the aging parameter identification procedure to the case of multiple experimental
measurements for each aging condition.

The proposed method is validated through experimental tests carried out on real Li-
ion battery cells, subject to real load profiles. The identified AM is validated by measuring
its capability to estimate the battery state of heath in terms of capacity decrease and
internal resistance increase. In particular, the results show a MAPE lower than 1% for
battery capacity and a maximum absolute error of 0.14 mΩ for the internal resistance.
The identified EM is validated by measuring its capability in reproducing the battery
voltage profile both in a fresh battery and at different levels of aging. The results show a
MAPE for voltage reproduction lower than 1%.

Notice that the analysis of the performance of the EM at different levels of aging
represents a validation of the integration EM-AM in the WBM. This actually addresses a gap
in the existing literature, where EM and AM are usually identified and validated separately.

Future works will consider the integration of SOH estimation with a procedure to
estimate the battery SOC. Further developments may examine the performance of an
adaptive model that updates the parameters during the actual battery operation or consider
the design of parameter identification procedures based on a digital-twin approach.
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List of Symbols

Variables
i Battery current
Vb Battery voltage
T Battery temperature
SoC Battery state of charge
i f Filtered battery current
Varying Parameters
Q Battery capacity
Qb Battery maximum capacity
R Battery resistance
E0 Battery thermodynamics voltage
K Polarization constant
Ab Battery voltage exponential zone amplitude
Polres Battery polarization resistance
θ Stress factor
ε Aging index
n Number of transitions
N Number of cycles
Fixed Parameters
B Battery voltage exponential zone time constant
C Battery polarization voltage slope
Vf ull Battery full-capacity voltage
Vcut-o f f Battery cut-off voltage
Tre f Battery reference temperature

Nre f
c Number of cycles from BoL to EoL at reference cycling conditions

Neq Equivalent number of cycles
EM parameters: E0 |Tre f

, ∂E/∂T, K |Tre f
, α, R |Tre f

, β, Q |Tre f
, ∆Q/∆T, Ab |Tre f

, ∂Ab/∂T
AM parameters: λQ, νQ, ψQ, γdQ, γcQ, ξQ, λR, νR, ψR, γdR, γcR, ξR

Appendix A

To obtain the relation Q(Qb), we need to solve (5) with respect to Q. Consider first that
the quantity Abexp(−BQ) can be neglected, since usually Q > 3/B (B is the inverse of the
exponential zone extension). Therefore, from (5), we can obtain the following equation:

Q2 +
Vcut-o f f + Rinom

dis − E0 − KQb − CQb

C
Q

−
Rinom

dis + Kinom
dis + Vcut-o f f − E0

C
Qb = 0

(A1)
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It is easy to demonstrate that, for K > 0 and Vf ull > Vcut-o f f , (A1) has two real
solutions, with at least one solution positive. Indeed, by its own definition, (A1) is satisfied
with real solutions if and only if the discharge curve in Figure 6 crosses the cut-off voltage
Vcut-o f f . It is obvious that with K > 0 and Vf ull > Vcut-o f f this is guaranteed. Nevertheless,
to obtain the relation Q(Qb), we need to select the right one among the two real solutions.
To this end, the following procedure can be followed:

If both solutions are positive, two scenarios can take place:

1. Both solutions are smaller than Qb, i.e., the discharge curve crosses the cut-off voltage
Vcut-o f f twice before the negative asymptote in Qb; that means the right solution to
consider is the largest;

2. One solution is larger and one is smaller than Qb, i.e., the discharge curve crosses
the cut-off voltage one time before the negative asymptote in Qb and one after the
asymptote; in this case, the right solution to consider is the smallest.

If one solution is positive and one is negative, the right solution to consider is the
positive one.

Appendix B

In this appendix, we provide further details on the function gT
κ (·) used in (32). This

function is used to estimate the subsets of parameters {ϕin}κ , given the sets
{

ϕT
in
}Tr

T=T1
.

The subscript κ refers to a specific subset of parameters in ϕ:

• {ϕ}1 = {E0 |Tre f
, ∂E/∂Tt};

• {ϕ}2 = {K |Tre f
, α};

• {ϕ}3 = {R |Tre f
, β};

• {ϕ}4 = {Ab |Tre f
, ∂Ab/∂T};

• {ϕ}5 = {Qb |Tre f
, ∆Q/∆T};

• {ϕ}6 = {B};
• {ϕ}7 = {C}.

For κ = 1, 4, 5, gT
k (·) is defined as follows:

gT
k (x1, x2) = x1 + x2

(
T − Tre f

)
; (A2)

for κ = 2, 3, gT
k (·) is defined as follows:

gT
k (x1, x2) = x1exp

(
x2

(
1
T
− 1

Tre f

) )
; (A3)

for κ = 6, 7, gT
k (·) is defined as follows:

gT
k (x) = x. (A4)
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