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Abstract: Noise manipulation at the subwavelength scale remains a challenging problem. To obtain
better broadband sound isolation within the subwavelength range, a class of asymmetric acoustic
metamaterials (AAMs) based on rotation is proposed, and this class of AAMs can further improve
subwavelength sound isolation performance by introducing multi-orders. The influences of changing
the alternate propagation length of the coiled channel and the square cavity in the unit cell on the
band frequency distribution and the omnidirectional band structure were investigated. The effective
parameters are calculated with the S-parameter retrieval method, and the generation and change
mechanisms of the bandgaps were elucidated. The calculation of sound transmission characteristics
showed that, in the asymmetric mode, the overall sound isolation performance of the structure was
greatly improved, and the relative bandwidth expanded as the alternate propagation length of the
coiled channel and square cavity increased. The omnidirectional bandgaps from the first-order to the
third-order AAMs occupied 63.6%, 75.96%, and 76.84% of the subwavelength range, respectively. In
particular, the first bandgap moves to the low frequency and becomes wider. Both the experimental
results and numerical analyses consistently showed that disrupting structural symmetry enhances
acoustic metamaterials for superior broadband sound isolation, inspiring broader applications for
asymmetry in this field.

Keywords: broad bandgap; multi-order; asymmetric; acoustic metamaterials

1. Introduction

Acoustic metamaterials are artificial composite materials composed of subwavelength
units, which have attracted extensive attention from and research by scientists due to
their unusual physical parameters and extraordinary acoustic properties [1]. For example,
various physical effects, such as noise control [2], vibration control [3], superfocusing [4],
negative refraction [5], and acoustic black holes [6], have very broad application prospects,
among which vibration and noise reduction are the most prominent exploration direc-
tions [7,8]. However, controlling deep subwavelength scale sound waves and realizing
low-frequency broadband sound isolation are still challenging problems at present [9]. This
is because reducing the resonant frequency for better low-frequency sound isolation comes
at the cost of a narrower resonant bandwidth [10]. Therefore, better design methods and
structures are urgently needed for low-frequency broadband noise control.

In terms of broadening the subwavelength sound isolation design, some effective
design methods have been developed [11]. Research has found that when a sound wave
propagates in the curled/coiled channel inside the material, the effective speed is much
lower than the propagation speed in the background medium, and acoustic Mie resonance
will be generated under this condition [12–14]. Mie resonant acoustic metamaterials have
high refractive indexes [15]. This unique acoustic characteristic can effectively prevent
the wave propagation of the corresponding frequency and increase the sound isolation
bandwidth while meeting low-frequency sound isolation requirements, which opens up
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a new way through which to conduct sound field manipulation and design new acoustic
functional devices. Xiang [16] designed a spatial spiral acoustic metamaterial with quasi-
fractal geometric characteristics using a self-similar fractal. The results showed that the
maximum percentage of omnidirectional bandgaps was over 33% across the considered
spectrum, but each bandgap was discrete and narrow. For ideal bandgap materials, a wide
bandgap at a low frequency is usually required because discrete and narrow bandgaps
severely limit their potential applications. Liang [17] proposed a vibro-acoustic concurrent
topology optimization approach, and an extended multiscale multimaterial interpolation
model was developed. However, the final structure of topology optimization will lead to a
dramatic increase in the structure’s complexity, and this complexity will not be convenient
to manufacture. If the manufacturing constraints are not considered in the optimal design
of the structure, to meet the expected requirements, the final structure with topology opti-
mization may have complex perforation patterns and lead to more difficult fabrication [18].
Xu [19] proposed a novel acoustic metamaterial structure composed of resonators and mul-
tiple channels to isolate low-frequency broadband noises, which led to the impracticality of
the large-scale periodic systems required for low-frequency sound isolation applications in
most cases. Moreover, these optimization systems are challenging for practical applications
due to their complex structures. Therefore, realizing a practical acoustic metamaterial with
a simple structure, broadband attenuation capability, and practicality is still a challenge.

In the study of elastic waves, breaking structural symmetry can reduce the frequency
of the bandgap and broaden the bandgap. Tian [20] proposed a design method with which
to achieve geometric symmetry breaking by rotating the orientation of the hole, which
can effectively create and enlarge the bandgaps. On this basis, Tian [21] proposed a novel
type of perforated elastic metamaterial with two bandgap formation mechanisms (i.e.,
Bragg scattering and local resonance). By introducing four concentric spiral holes into each
matrix material with mutually orthogonal rectangular holes, the symmetry of the structure
was reduced, resulting in low-frequency and broadband wave attenuation. Therefore,
introducing structural asymmetry is an efficient approach through which to create and
enlarge the bandgaps in elastic wave metamaterials. However, in the study on controlling
subwavelength scale acoustic waves, there are fewer studies on reducing structural symme-
try. Shen [22] designed acoustic waveguides with two different winding branch pipes. The
coupling effects of the two different winding branch pipes generated resonant vibrations,
which constructed an impedance-matching layer and produced sound transmission with
a wide band at lower frequencies. Tong [23] reduced structural symmetry by introduc-
ing a gradient of channel spacing in the design of gradient space-coiling metamaterials,
and this feature opens up possibilities for tuning the equivalent constitutive properties
in a more flexible fashion. The bandgap of acoustic metamaterials can be created and
enlarged by breaking structural symmetry because destructive interference will change the
mode shapes and frequencies of the periodic architected materials, and the Mie resonances
state of superposition caused by multipole oscillators will appear [24], thus reconstructing
the modal sound pressure distribution and changing the resonant frequency of the unit
cells, opening the low-frequency bandgap and expanding the bandgaps. Therefore, it is
necessary to conduct further in-depth investigations on the bandgap creation and enlarge-
ment mechanisms by breaking the structural symmetry of acoustic metamaterials via basic
structure rotation.

In this paper, aiming at the design requirements of subwavelength broadband and
the simple unit cell structure of acoustic metamaterials, a class of multi-order asymmet-
ric acoustic metamaterials (AAMs) based on rotation is proposed and demonstrated to
improve subwavelength broadband noise suppression performance. In particular, the
asymmetric unit cell is directly constructed by rotating the basic structure, and the left–
right and up–down symmetry inside of the unit cell are destroyed at the same time to
reconstruct the modal sound pressure distribution, change the resonance frequency, and
realize subwavelength broadband sound isolation. From the first order to the third or-
der, the overall sound isolation performance of the structure was greatly improved, and
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the sound isolation bandwidth was expanded from the original narrow frequency to a
wider frequency. Firstly, first-order, second-order, and third-order AAMs were constructed
by rotating the three basic structures. Secondly, the simplest Brillouin region and the
dispersion relation of the asymmetric units were studied, and the effective parameters
and acoustic transmission characteristics of the asymmetric units were calculated. Finally,
the sound isolation performance of the fabricated model was experimentally tested. The
experimental results verified the correctness and effectiveness of the numerical analysis
method and calculation results of the AAMs proposed in this study. This study provides a
theoretical and technical basis for the development of asymmetric acoustic metamaterials
and establishes a promising way to further expand the low-frequency broadband sound
isolation applications of acoustic metamaterials.

2. Model and Method
2.1. Structural Design of Two-Dimensional Asymmetric Acoustic Metamaterials

Compared with the traditional zigzag channel, self-similar fractal structure, and coiled
structure, we introduce the alternating arrangement of the coiled structure and square
cavity in the unit design, and the sound wave can propagate along the coiled channel and
the square cavity alternately. This alternate arrangement design allows sound waves to
enter the square cavity after passing through the coiled channel and produces rich bandgap
characteristics. To explore the effect of the transmission path on the acoustic properties
of the asymmetric structure, first-order, second-order, and third-order asymmetric units
are designed, as shown in Figure 1c,f,i. The sound wave propagates alternately along
the coiled channel and the square cavity in the asymmetric structure, and the propaga-
tion path is several times longer than the straight path, resulting in the high equivalent
refractive index of the asymmetric structure, meaning that the structure has extraordinary
acoustic properties.

The two-dimensional units of the first-order, second-order, and third-order AAMs are
shown in Figure 1, respectively. In the design process of AAMs, firstly, the three kinds
of basic structures composed of solids (white parts in Figure 1a,d,g) are rotated and then
arranged periodically in a mutually orthogonal manner (Figure 1b,e,h), and finally, the
first-order, second-order, and third-order AAMs formed by the air medium between the
solids (Figure 1c,f,i) are obtained. The asymmetric unit cell is directly constructed by
rotating the basic structure, which not only breaks the left–right symmetry but also breaks
the up–down symmetry so that the unit cell structure becomes a 180◦ rotational symmetry.
By studying the effect of the asymmetry of the units on the dispersion relation, we can
guide the design of new configurations characterized by breaking the symmetry.

The lengths of the solids of the three basic structures are defined by l0, l1, and l2, the
height is defined by h, and the width is defined by b. The gap between the solids is the
channel for sound wave propagation. In this paper, the width of the sound wave propa-
gation channel of each unit is equal, as defined by w. Let the lattice constant a = 40 mm,
solid width b = 2 mm, solid height h = 32 mm, l0 = 16 mm, l1 = 10 mm, l2 = 4 mm, and the
gap width w = 1 mm. The first-order (Figure 1c), second-order (Figure 1f), and third-order
(Figure 1i) AAM unit cells in Figure 1 are obtained.

The upper left and lower right corners of the first-order, second-order, and third-
order AAM units are all coiled structures, and the propagation path of sound waves in
the units can be extended with an increase in the spatial coiled curve. Therefore, using
the low effective sound velocity effect in the highly coiled space structure in the acoustic
metamaterial to construct a fluid unit with an ultraslow sound velocity can be equivalent
to an artificial medium with a higher refractive index. In the proposed AAMs, the sound
wave propagates alternately along the coiled channel and the square cavity, so the total
propagation length of the sound waves is multiplied. Therefore, the proposed asymmetric
unit structure is expected to realize the low frequency of the bandgap, reconstruct the modal
sound pressure distribution, change the resonant frequency, and broaden the bandgap.
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Figure 1. (a,d,g) Construction methods of first-order, second-order, and third-order AAMs. The red
arrow is the direction of rotation. (b,e,h) Proposed first-order, second-order, and third-order AAMs
with 3 × 3 units. (c,f,i) Key geometric parameters of the first-order, second-order, and third-order
unit cells.

2.2. The Simplest Brillouin Zone of Two-Dimensional Asymmetric Acoustic Metamaterials

To further study the effect of the structural parameters on the acoustic properties
and determine the frequency at which the bandgaps occur, the dispersion relation of the
asymmetric unit was calculated by the finite element method using the pressure acoustics
(acpr) of the commercial software, COMSOL Multiphysics 6.0. The background fluid
medium is the air (ρ0 = 1.21 kg/m3, c0 = 343 m/s) in the coiled channel inside the structure,
while the solid material is photosensitive resin (ρ = 1130 kg/m3, longitudinal elastic wave
cp = 1545.76 m/s) with high hardness. Therefore, the shear modes within solid structures
can be safely ignored during acoustic propagation [25,26]. Specifically, it can be assumed
that solids are very hard so that sound waves only propagate in the air channel of two-
dimensional acoustic metamaterials. The phonon dispersion relation ω = ω(k) is obtained
by solving for the characteristic frequency of the unit cell, where ω is the angular frequency
and k is the wave vector. Without considering viscosity, the governing equations for sound
wave propagation in two-dimensional acoustic metamaterials can be written as follows:

∇
(

1
ρ0
∇p
)
+

1
ρ0c2

0
ω2 p = 0 (1)

In Equation (1), ρ0 and c0 are the air density and sound velocity, and p is the sound
pressure. The Floquet–Bloch periodic boundary condition is applied to the opposite edges
of the unit cell along the x and y directions, and other boundaries are left free. The sound
field p0 (r) must satisfy the following conditions:

p0(r + a) = p0(r)e−ka (2)
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In Equation (2), the wave vector k = [kx, ky], kz = 0, and the position vector r = [x, y], a
is the lattice constant.

When using the finite element method to solve the dispersion relation, the analysis
can be performed for a unit cell, as shown in Figure 2. In the numerical calculation, the
model mesh is a free-division triangular mesh. The maximum mesh size is equal to 1/6
of the minimum wavelength, and the mesh size meets the convergence requirement. The
wave equation is solved by scanning the wave vector k in the simplest Brillouin region
after the unit cell finite element mesh is divided. The characteristic equation in discrete
form is as follows:

(K−ω2M)U = 0 (3)

where U is the amplitude vector of the sound pressure or displacement of the node, ω is
the angular frequency of the sound wave or elastic wave propagation, K is the effective
stiffness matrix, and M is the effective mass matrix.
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Figure 2. (a–c) The first Brillouin zone of the square lattice (red dashed box). (d–f) The dispersion
relation curve obtained by scanning the simplest Brillouin zone.

The irreducible Brillouin zone can usually be determined according to the lattice
symmetry, but when the shape of the scatterer in the unit cell is irregular, the determination
of the irreducible zone also needs to consider the symmetry of the scatterer. If the periodic
deviation caused by defects or detuning is small, it is still possible to take a sufficiently large
cell, also known as a supercell, assuming the theorem holds and calculates its energy band
structure. The computational results still provide a good characterization of the acoustic
wave propagation behavior in the structure. The computational results still provide a
good characterization of the sound wave propagation behavior in the structure. As shown
in Figure 2a–c, because the symmetry of the unit cell structure is broken, the irreducible
Brillouin zone is the ΓMXY region, so it is necessary to verify the dispersion curves obtained
by wavevector scanning along the ΓMX and ΓMY boundaries for acoustic metamaterials
to determine the boundary of the irreducible Brillouin zone. Firstly, this section analyzes
the dispersion relationship of the first-order, second-order, and third-order AAMs unit
cells in the entire first Brillouin zone shown in Figure 1c,f,i and determines the irreducible
Brillouin zone of the AAMs. Secondly, the wave vectors of the first-order, second-order,
and third-order unit cells were scanned along the ΓMXΓYX boundary line of the simplest
Brillouin zone, and the results are shown in Figure 2d–f. The green and pink shades in



Materials 2023, 16, 7587 6 of 15

the figure represent the dispersion relation obtained by scanning along the ΓXM and ΓYM,
respectively. The ordinates in the figure all use the normalized frequency Ω = fa/c0, where f
is the sound wave frequency corresponding to the Bloch eigenvalue, c0 is the sound speed
of air, and the value c0 = 343 m/s for this paper. To characterize the acoustic properties
of AAMs on the subwavelength scale, the normalized frequency range is restricted to
the subwavelength range, that is, 0 < Ω < 1. In Figure 2a–c, the wave vectors in the
dispersion curve in the green shade and the pink shade are consistent with the change in
frequency. Finally, the dispersion curve obtained by scanning the boundary line along the
simplest Brillouin zone is compared with the dispersion surface obtained by scanning the
omnidirectional band structure to determine the simplest Brillouin zone of the AAMs. In
conclusion, the dispersion diagram of these AAMs can be obtained by scanning along the
boundary of the simplest Brillouin zone, and only the dispersion relationship obtained by
scanning along the MΓXM boundary is shown below.

2.3. Calculation of Effective Parameters

When sound waves propagate in subwavelength scale acoustic metamaterials, their
microstructures cannot be distinguished, which conforms to the dynamic effective medium
theory [27]. At this time, the acoustic metamaterial can be regarded as an isotropic homo-
geneous medium, and its properties can be described by the effective mass density and
effective bulk modulus; when the dynamic modulus or density of the material is negative,
bandgaps will occur. To deeply understand the mechanism of bandgap generation, it is
necessary to determine the resonance mode of Mie resonant acoustic metamaterial in the
frequency band where the bandgap appears. Using the “S-parameter retrieval method”
to obtain the equivalent parameters of the metamaterial, the resonance mode of the Mie
resonant acoustic metamaterial can be determined based on “The monopole resonance can
produce a negative bulk modulus, while the dipole resonance can generate a negative mass
density [13]”. To verify the negative physical properties of generating bandgaps in AAMs,
the effective parameters of AAMs are systematically calculated using the S-parameter
retrieval method [27], as shown in Figure 3. A plane wave pin = p0eiωt with unit amplitude
p0 = 1 Pa is applied at the left entrance of the waveguide. To simulate a metamaterial with
infinite size in the y direction, periodic boundary conditions are applied at the upper and
lower ends of the first-order, second-order, and third-order units, and the solid wall is set
as a hard boundary condition [28,29]. Perfectly matched layers (PML) are set at the front
and back ends of the waveguide to eliminate the influence of reflected waves.

The effective mass density ρeff and bulk modulus Beff of AAMs are given by
Equations (4) and (5):

ρe f f = ε× n (4)

Be f f =
ε

n
(5)

The effective refractive index ε and the effective impedance n of AAMs are given by
Equations (6) and (7):

ε =
r

1− 2R + R2 − T2 (6)

n =
−i log x + 2πm

kd
(7)

where
r = ∓

√
(R2 − T2 − 1)− 4T2 (8)

x =
1− R2 + T2 + r

2T
(9)

In the above formulation, R is the reflection coefficient of the structure, T is the
transmission coefficient of the structure, and k = ω/c0 is the acoustic wave number, d = a.
There is no periodic structure in the direction of sound propagation, m = 0. The calculation
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results are shown in Figure 4. The effective parameters of AAMs can be calculated by
combining Equations (4)–(9), and the results are shown in Figure 5.
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The frequency response curves of the normalized ρeff and Beff in the ΓX direction of
the first-order to third-order unit cells are compared with the dispersion relationship in
the ΓX direction, as shown in Figure 5a–c. The vertical axis represents the normalized
frequency Ω, and the omnidirectional bandgaps are marked with BG-1~BG-4 in the figure.
In comparison, it is found that the frequency band where the effective parameter of the
material has a negative value was the same as the frequency band where the bandgaps
appear in the dispersion relation. In the normalized frequency ranges [0.1470, 0.2097] and
[0.2668, 0.8401] of the first-order unit cell in Figure 5a, the effective parameters are negative.
In the normalized frequency range [0.1190, 0.2483], [0.2949, 0.5990], [0.6443, 0.7737], and
[0.8032, 1] of second-order unit cell in Figure 5b, the effective parameters are negative. In the
normalized frequency range [0.1134, 0.2732], [0.3203, 0.5515], [0.5927, 0.8217], and [0.8516, 1]
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of the third-order unit cell in Figure 5c, the effective parameters are negative. By comparing
and analyzing the effective parameters of the first-, second-, and third-order AAM units,
the effectiveness of the AAMs for broadband sound isolation in the subwavelength range
is demonstrated.
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2.4. Calculation of Transmission Properties

The calculated results of the band structure show that the AAMs have good low-
frequency and broadband properties. Because the width of the winding channel is small,
the sound wave propagates in the small-sized coiled channel, and the heat loss and viscous
friction loss in the air will cause sound wave attenuation in the channel. The influence
of thermal viscous losses on acoustic wave propagation needs to be considered when
performing simulation calculations [13,30].

To further study the acoustic properties of the designed AAMs, thermoviscous acous-
tics (ta) were used to calculate the sound transmission loss of the first-order, second-order,
and third-order AAMs in the ΓX direction, and the dispersion relation was compared with
that of the AAMs. The greater the number of structural units, the better the transmission
of loss characteristics [28,31,32]. To obtain better sound isolation while avoiding being
too large in the transmission direction, we calculated the transmission properties of three
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identical structural units. The physical field settings are shown in Figure 6. Rectangular
waveguides with a length of 80 mm and a width of 40 mm are set at both ends of the
acoustic metamaterials. The periodic boundary conditions applied in the y-direction of the
waveguide simulate the infinite periodic domain, and perfectly matched layers (PML) are
set at the front and back ends of the waveguide to eliminate the influence of the reflected
waves. The background pressure field is a plane wave of 1 Pa, which is placed on the
left side of the waveguide. Considering that the hardness of the photosensitive resin is
much higher than that of the air medium, the hard boundary condition is adopted for the
solid boundary. The thermoviscous acoustic module in COMSOL is used to describe the
air domain inside the material, and the Helmholtz equation is solved considering finite
element discretization. For a given frequency, once the sound pressure field is obtained, the
corresponding sound transmission loss (STL) can be obtained from Equation (10):

STL(ω) = −10 log10

∣∣∣∣∣
∫

Γt
ptdΓ∫

Γi
pbdΓ

∣∣∣∣∣
2

(dB) (10)

where Γi and Γt represent the incident edge and the transmission edge, respectively, as
shown by the green dotted line in Figure 6. pb = 1 Pa is the amplitude of the background
sound pressure at the incident edge, and pt is the amplitude of the total sound pressure
measured at the transmission edge, which is the sum of the scattered sound pressure and
the background sound pressure. However, on the transmission side, the background sound
pressure is equal to 0.
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To deeply understand the formation mechanism of the bandgap, the sound wave
transmission properties of the omnidirectional bandgap and the deaf band in the subwave-
length frequency band were compared. Figure 7a–c shows the dispersion relation and the
acoustic transmission properties along the ΓX direction of the first-order to third-order
AAMs. By comparing the frequency bands with sound transmission loss in Figure 7a and
the frequency bands with negative effective parameters in Figure 5a, it was found that they
match well. By comparing the frequency bands with sound transmission loss in Figure 7b
and the frequency bands with negative effective parameters in Figure 5b, it is found that
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they match each other well. By comparing the frequency bands with sound transmission
loss in Figure 7c and the frequency bands with negative effective parameters in Figure 5c,
it was found that they match well. In the frequency bands with large values of effective
parameters, the transmission loss is higher. Among them, the frequency distribution of the
omnidirectional bandgaps in the subwavelength range is shown in Table 1.
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Table 1. Omnidirectional bandgaps of the AAMs with the square lattice.

AAMs Frequency Ranges of
Omnidirectional Bandgaps

Proportion of Bandgaps in the
Subwavelength Range

The first-order AAMs
BG-1 [0.1470, 0.2097] 6.27%

63.6%BG-2 [0.2668, 0.8401] 57.33%

The second-order AAMs

BG-1 [0.1190, 0.2483] 12.93%

75.96%
BG-2 [0.2949, 0.5990] 30.41%
BG-3 [0.6443, 0.7737] 12.94%
BG-4 [0.8032, 1] 19.68%

The third-order AAMs

BG-1 [0.1134, 0.2732] 15.98%

76.84%
BG-2 [0.3203, 0.5515] 23.12%
BG-3 [0.5927, 0.8217] 22.9%
BG-4 [0.8516, 1] 14.84%
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In Figure 7, except for the area of pink shade markers, the sound transmission loss
shows an obvious wave attenuation trend in the omnidirectional bandgaps marked by
green and blue shading; that is, the frequency with bandgaps and the frequency with
higher transmission loss are very consistent with each other. In addition, there is no
directional bandgap in the pink shaded area of the energy band structure diagram, but the
acoustic wave in this region is attenuated. This phenomenon is called the deaf band [33].
The resonance modes on the deaf band all show an antisymmetric sound pressure field
distribution, that is, when the incident wave propagates in the x direction, it cannot excite
the resonance mode, and it appears as a deaf band in the band structure.

The calculation results show that, first, there are new bandgaps in the ΓX direction,
and higher transmission loss occurs in the new bandgap. Secondly, with increasing order,
the alternate propagation length of the coiled channel and the square cavity increases,
leading to an increase in the equivalent transmission path. The cause of this behavior is
attributed to the extended transmission paths of the sound waves for higher order AAMs
as opposed to the lower order AAMs; thus, the higher order AAMs possess a higher
equivalent refractive index. As a result, the frequency of the first bandgap BG-1 gradually
decreases, and the bandwidth increases. For the first-order, second-order, and third-order
AAMs, the lower bounds of the lowest normalized frequency bandgap are 0.147, 0.119, and
0.113, respectively. In particular, the bandgap of the lowest normalized frequency for the
third-order AAMs is [0.1134, 0.2732], where the lower and upper ends of this interval are
far lower than 1, thus indicating that the higher-order AAMs are capable of manipulating
sound waves with wavelengths far exceeding the size of the unit cell. Finally, from the first-
order to the third-order AAMs, the geometric distribution inside the unit cell is increasingly
asymmetric. In the asymmetric mode, the generated destructive interference causes the
resonance superposition of multipole vibrations, resulting in the proportion of bandgaps
in the subwavelength range, and the overall sound isolation performance of the structure
is greatly improved. The proportions of the omnidirectional bandgaps for the first-order,
second-order, and third-order AAMs are approximately 63.6%, 75.96%, and 76.84% in the
subwavelength frequency range, respectively. In particular, the omnidirectional bandgaps
percentage of the third-order AAMs is the largest in the subwavelength range, followed by
the second-order AAMs and the first-order AAMs. The reason for this phenomenon is that
due to the increased geometric asymmetry, high-order AAMs generate stronger resonance
at lower frequencies driven by the Mie scattering mechanism [34], thereby broadening the
bandgap at lower frequencies. In addition, the proposed AAMs have a broad bandgap and
a larger proportion of omnidirectional bandgaps in the subwavelength range compared
with the reported fractal-type acoustic metamaterials [16,35] and zigzag-type acoustic
metamaterials [36,37]. This shows that we can use AAMs with a structure size that is much
smaller than the wavelength in the required frequency range to achieve subwavelength
broadband sound isolation. Breaking the symmetry will help to expand the bandwidth
and achieve very good low-frequency broadband sound isolation performance, which has
broad application prospects in subwavelength sound wave manipulation.

3. Experimental Results and Discussion

To demonstrate the correctness and effectiveness of the proposed numerical analy-
sis method and calculation results for AAMs in this study, experimental research was
conducted. To achieve excellent sound isolation properties, each structural unit needs
to be precisely designed because the excellent sound isolation performance of acoustic
metamaterials is achieved through the ingenious design of its structure rather than the
properties of the material itself. As an artificial microstructure, the acoustic response of
metamaterials mainly depends on the size, shape, and arrangement of the micro-resonance
units. Therefore, we only fabricated the first-order AAM test sample with photosensitive
resin 3D printing. The unit geometric parameters of the sample used in the test were
a = 40 mm, b = 2 mm, w = 1 mm, h = 32 mm, l0 = 16 mm, and a cuboid structure with length
× width × height = 40 × 40 × 120 mm was adopted, as shown in Figure 8. For the cor-
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rectness of the simulation results, the material parameters and geometric parameters used
in the simulation calculation are consistent with the experimental samples, the boundary
conditions are consistent with the experimental environment, and the heat loss and viscous
loss in the coiled channel are comprehensively considered. Considering that the stiffness of
the photosensitive polymer resin structure is much higher than that of the air medium, a
hard sound field boundary condition is applied at the boundary of the model, as shown in
Figure 9b. The perfectly matched layers (PML) in the figure represent an infinite air region
that absorbs all outgoing and reflected waves. The background sound pressure field is a
plane wave sound field incident to the structure surface along the arrow direction.
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As shown in Figure 9, the experimental setup consisted of a computer with test
software installed, a 60 mm impedance tube (BSWA, Beijing, China, SW9115) with a
frequency range of 100 Hz to 2500 Hz, a 300 W power amplifier (BSWA, Beijing, China,
PA300), and a 60 mm impedance tube system with a frequency range of 100 Hz to 2500 Hz.
4 channel signal collector (BSWA, Beijing, China, MC3242A) and several connections, etc.
The built-in signal generator of the test software generates a broadband Gaussian white
noise signal, and the speaker in the impedance tube is driven by a power amplifier to emit
white noise to excite the sample placed inside the impedance tube, as shown in Figure 9a.
To prevent sound leakage, vaseline is used to seal the gap between the test sample and the
inner wall of the impedance tube.
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The numerical simulation results and experimental test results are shown in Figure 10.
This verifies that the bandgaps of the proposed AAMs are real and can achieve a good
broadband sound isolation effect at the subwavelength scale. In Figure 10b, the frequency
band (1257–1795 Hz) covered by the blue shadow represents the BG-1 bandgap frequency
position, and the amplitude of sound attenuation reaches 40 dB. The frequency band
(2284–2500 Hz) covered by the green shadow represents the BG-2 bandgap frequency
position with an acoustic attenuation amplitude of up to 60 dB. In the ranges of 100–1210 Hz
and 1800–2260 Hz, there is a certain amplitude difference between the simulation results
and the experimental results, but the peak frequencies are almost the same. The main
source of the amplitude error is the neglect of solid structure damping in the numerical
model, which will reduce the vibration energy at the resonance frequency, causing the peak
value of the resonance frequency in the experimental results to be low. This is because the
thermal viscosity of the narrow coiled channels has a greater impact on wave transmission,
which leads to a large difference. In addition, there are some manufacturing errors in the
sample manufacturing, and the sample surface is not absolutely smooth relative to the
simulated surface, which will lead to an additional increase in the actual sound energy
viscosity loss. In the frequency range marked by the blue shade, there are attenuations and
peak offsets in the experiment, and the maximum differences between the amplitude and
peak are 5 dB and 34 Hz, respectively. The attenuation in the peak value and the shift of the
peak frequency can be attributed to the reduction in the wave velocity due to dissipation
in the waveguide channel, resulting in energy loss and frequency shift. In addition, the
friction between the air vibration and the wall of the structure causes some energy loss.
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4. Conclusions

In this research work, to obtain a better low-frequency broadband sound isolation
effect in the subwavelength range, a class of multi-order AAMs generated by a rotating
basic structure is designed to manipulate sound transmission on the subwavelength scale.
The research shows that in the asymmetric mode, the overall sound isolation performance
of the structure is greatly improved, and the relative bandwidth increases with an increase
in the alternate propagation length of the coiled channel and the square cavity. The
omnidirectional bandgaps from the first-order to the third-order AAMs occupy 63.6%,
75.96%, and 76.84% of the subwavelength range, respectively. In particular, the first
bandgap moves to the low frequency and becomes wider, and higher-order AAMs show
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a larger proportion of bandgaps, which proves that the proposed multi-order AAMs can
achieve subwavelength broadband sound isolation. In this research work, the wave vector
and frequency variation of the proposed multi-order AAMs in the entire first Brillouin
zone are calculated, and it was found that the dispersion relation of these AAMs can
be obtained by scanning along the boundary of the simplest Brillouin zone. The sound
transmission properties and effective medium parameters of the first-order to the third-
order AAMs are systematically calculated and studied, which proves that the range of
higher transmission loss occurs, and the frequency range of negative effective parameters
and the bandgap range are consistent. The experimental results verify the effectiveness of
the asymmetric design for broadband sound isolation and the correctness of the simulation
calculation. This research shows that breaking the symmetry of the structure enables
the acoustic metamaterial to exhibit a better broadband sound isolation performance,
which provides new inspiration for further expanding the application field of asymmetric
acoustic metamaterials.
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