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Abstract: Power electronics are becoming increasingly more important, as electrical energy constitutes
40% of the total primary energy usage in the USA and is expected to grow rapidly with the emergence
of electric vehicles, renewable energy generation, and energy storage. New materials that are better
suited for high-power applications are needed as the Si material limit is reached. Beta-phase gallium
oxide (β-Ga2O3) is a promising ultra-wide-bandgap (UWBG) semiconductor for high-power and RF
electronics due to its bandgap of 4.9 eV, large theoretical breakdown electric field of 8 MV cm−1, and
Baliga figure of merit of 3300, 3–10 times larger than that of SiC and GaN. Moreover, β-Ga2O3 is the
only WBG material that can be grown from melt, making large, high-quality, dopable substrates at low
costs feasible. Significant efforts in the high-quality epitaxial growth ofβ-Ga2O3 andβ-(AlxGa1−x)2O3

heterostructures has led to high-performance devices for high-power and RF applications. In this
report, we provide a comprehensive summary of the progress in β-Ga2O3 field-effect transistors
(FETs) including a variety of transistor designs, channel materials, ohmic contact formations and
improvements, gate dielectrics, and fabrication processes. Additionally, novel structures proposed
through simulations and not yet realized in β-Ga2O3 are presented. Main issues such as defect
characterization methods and relevant material preparation, thermal studies and management, and
the lack of p-type doping with investigated alternatives are also discussed. Finally, major strategies
and outlooks for commercial use will be outlined.

Keywords: gallium oxide; wide-bandgap semiconductor; field-effect transistors (FETs); high power;
RF; defects

1. Introduction

The power semiconductor market observed a 30% growth in 2022, and continual
growth is expected as more electrical energy passes through power electronics, approxi-
mately 30% in 2019 and up to 80% in the next decade [1,2]. High-power semiconductor
applications are classified into high-power (low-frequency) or high-frequency, RF. As sili-
con power devices reach their limit at breakdown voltages up to 6.5 kV and have a high
temperature capability up to 200 ◦C [3], wide-bandgap (WBG) materials offer improved
efficiency, large power ratings, high switching speeds, and RF performance. While SiC and
GaN have been the dominant WBG semiconductors with commercially available devices,
ultra-wide-bandgap (UWBG) beta-phase gallium oxide (β-Ga2O3) is emerging as a material
for next-generation high-power and RF electronics.

With its bandgap of 4.7–4.9 eV, large theoretical breakdown field of 8 MV cm−1, and
high electron saturation velocity of 2 × 107 cm s−1, β-Ga2O3 has a Baliga figure of merit
(BFOM), indicating DC conduction losses, as well as a Johnson figure of merit (JFOM)
for RF performance, higher than those of GaN and SiC [4–7]. Additionally, the ability to
grow bulk substrates from the melt gives β-Ga2O3 a significant cost advantage over SiC
and GaN [8]. However, difficult challenges face β-Ga2O3 in the form of a lack of shallow
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p-type dopants and low thermal conductivity, which is especially difficult for high-power
applications where heat dissipation is essential. Heterostructures with p-type oxides have
been fabricated with high performance; however, most of the research on β-Ga2O3 has
focused on unipolar devices.

Great strides have been made in both high-power and RF β-Ga2O3 field-effect transis-
tors (FETs) with continually improving material quality and fabrication processes. High-
power lateral FETs have reported breakdown voltages up to 10 kV and BFOMs near
1 GW cm−2, while vertical devices have yet to achieve similar performance. The factors
limiting vertical FETs are largely the lack of p-type dopants, which minimizes current-
blocking capabilities, gate dielectric quality, stability, and robustness [9]. Many of the FET
structural and material improvements, discussed in Section 3, that have been tested on
lateral FETs can similarly be applied to vertical devices. Most β-Ga2O3 FETs are depletion-
mode (D-mode), or normally on, due to the unipolar nature of β-Ga2O3 devices. The
off-state leakage in D-mode FETs is more prominent than in enhancement-mode (E-mode),
or normally off, FETs; however, their fabrication is more difficult and often requires band
bending a heterointerface to deplete the existing channel. RF FETs are predominantly
lateral devices with thin channel layers and highly scaled gate lengths for strong gate
control and reduced parasitics. Techniques such as delta-doping and modulation doping
are used to form a two-dimensional electron gas (2DEG) with a high carrier concentration
and mobility. Maximum oscillating frequencies near 50 GHz with high breakdown electric
fields have been reported, showing potential for high-power RF β-Ga2O3 FETs in the future.
With the tremendous progress that has already been accomplished in the field, β-Ga2O3
presents itself as a strong candidate for high-power and high-frequency applications, but
not without its challenges to overcome.

Previous review articles on β-Ga2O3 FETs have reported the chronological develop-
ment in device design and performance [10], or focused specifically on RF FETs [7], E-mode
FETs [11], or vertical GaN and β-Ga2O3 FETs [9]. Other review papers have covered FETs
designed for both high-power and RF applications [12,13]. This review is formatted to aid
current and future β-Ga2O3 high-power and RF FET researchers by separately discussing
the different steps of FET fabrication, ranging from structures, materials, ohmic contacts,
gate dielectrics, and material preparation. An overview of various material and FET defect
characterization techniques is presented as well.

This article presents a comprehensive overview of the progress in β-Ga2O3 FETs,
current challenges, and potential strategies to overcome them. Section 2 discusses the
crystal structure and material properties, including FOM comparisons, bulk and epitaxial
growth, and the doping of β-Ga2O3. Section 3 reviews many of the recent transistor designs
for both high-power and RF applications. Section 3.1 focuses on structures that have
been implemented, as well as proposed structures through technology computer-aided
design (TCAD). Section 3.2 summarizes FETs with different channel and substrate materials
such as semi-insulating homoepitaxial or heterostructure layers in the channel, and high
thermally conductive substrates. Section 3.3 reviews metals and processes for high-quality
ohmic contact formation and Section 3.4 gives an overview of different gate dielectrics
used in β-Ga2O3 FETs. Section 4 discusses the importance of defect engineering, various
characterization methods, and material preparation to improve interface quality. Section 5
gives a high-level overview of the current challenges and steps needed to add β-Ga2O3
devices to the market. Section 6 briefly summarizes the most promising applications and
trends of β-Ga2O3 FETs. Section 7 then summarizes the advancements in β-Ga2O3 and
provides an outlook of the future of β-Ga2O3.

2. Crystal Growth and Material Properties of β-Ga2O3

2.1. Different Phases

In 1952, Roy et al. discovered five polymorphs of Ga2O3 (α, β, γ, δ, and ε) using a
gallia gel–water system, and determined that the β phase is the stable form [14]. Using
first-principles calculations, Yoshioka et al. found that the theoretical formation energies of
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the different phases are in the order of β < ε < α < δ < γ, confirming that β-Ga2O3 is stable,
while the other polymorphs show metastable behavior and transform into β-Ga2O3 at high
temperatures [15]. In 2013, Playford et al. discovered another metastable phase (κ) via the
thermal decomposition of Ga5O7(OH) above 500 ◦C [16]. The phase transitions compiled
from Roy et al. and Playford et al. are shown in ref. [17].

The crystal structure of β-Ga2O3 is monoclinic and belongs to the C2/m space group
with lattice constants of a = 12.2 Å, b = 3.0 Å, c = 5.8 Å, α = 90◦, β = 104◦, and γ = 90◦

(Figure 1a). The unique structure has two Ga sites, one with a tetrahedral geometry and
one with an octahedral geometry, as well as three O sites, leading to high anisotropy in
many of its material properties [18–21].
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Figure 1. (a) β-Ga2O3 unit cell. Reproduced from [22]. © IOP Publishing. Reproduced with permission.
All rights reserved. (b) β-Ga2O3 band diagram. Reprinted with permission from [19]. Copyright
2017 by the American Physical Society.

2.2. Material Properties

The band structure of β-Ga2O3, calculated using first-principles density functional
theory (DFT) (Figure 1b), shows an indirect gap of 4.84 eV and a direct gap of 4.88 eV;
however, β-Ga2O3 is largely considered a direct-gap semiconductor because of the close
proximity of the gaps. The conduction band dispersion estimates an electron effective
mass of ≈0.28 me, where me is the rest electron mass. The valence band, however, exhibits
almost no dispersion and, therefore, exhibits a very large hole effective mass due to the
localized self-trapping of holes [19,23].

Experimentally observed bandgaps range between 4.7 and 4.9 eV [19,24], projecting
a critical breakdown electric field, Ebr, of 6–8 MV cm−1. Various figures of merit (FOM),
discussed below, have been developed to compare semiconductors for high-power applica-
tions. The Baliga FOM (BFOM) is an estimate of DC conduction losses in a material and
is defined as both ε·µ·Ebr

3, where ε is the material dielectric constant and µ is the carrier
mobility, and as Vbr

2 Ron,sp
−1 for devices, where Vbr is the breakdown voltage and Ron,sp is

the specific on-resistance. The theoretical BFOM of β-Ga2O3 is approximately 28 GW cm−2

and ≈3214 times larger than that of Si. Other power device metrics include the Johnson
FOM (JFOM), which represents the power–frequency capability; the Baliga high-frequency
FOM (BHFFOM), which is a measure of switching losses; the Keyes FOM for thermal
capability for power density and speed; and the Huang chip area manufacturing FOM
(HCAFOM) as an indicator of chip area requirements. The material properties and FOMs
of β-Ga2O3 compared to other materials are summarized in Table 1 [6,12,25].

It is important to note the low and anisotropic thermal conductivity in β-Ga2O3 of
27.0 W m−1 K−1 in the [010] direction and 10.9 W m−1 K−1 in [100] [26]. The difference in
thermal conductivity of [010]β-Ga2O3 and [100]β-Ga2O3 might not seem large compared to
those of other (ultra)-wide-bandgap ((U)WBG) materials; however, simulations have shown
that the max temperature rise in devices has a decreasing rate dependence on thermal
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conductivity, and that ≈105 ◦C and ≈61 ◦C max temperature rises are simulated for [100]
and [010] β-Ga2O3, respectively. On the other hand, the simulated max temperature rises
for SiC and diamond are ≈34 ◦C and ≈30 ◦C, respectively [27].

At low doping densities below 1018–1019, electron interactions with polar longitudinal
optical (LO) phonons is identified as the dominant scattering mechanism, limiting the
theoretical bulk mobility to ≤250 cm2 V−1 s−1, while at higher doping concentrations,
impurity scattering is dominant [28–30]. Even though β-Ga2O3 has a low mobility, β-Ga2O3
maintains higher FOMs than GaN and SiC because of the square or cubic dependence on
breakdown voltage and only a linear dependence on mobility.

Table 1. Material properties and FOMs, relative to Si, of β-Ga2O3 compared to other semiconduc-
tors [6,12,31].

Material Properties Si GaAs 4H-SiC GaN β-Ga2O3 Diamond

Bandgap, Eg (eV) 1.1 1.4 3.3 3.4 4.9 5.5
Dielectric Constant, ε 11.8 12.9 9.7 9 10 5.5

Breakdown field, Ebr (MV cm−1) 0.3 0.4 2.5 3.3 8 10
Electron mobility, µ (cm2 V−1 s−1) 1480 8400 1000 1250 200–250 2000

Saturation velocity, vsat (107 cm s−1) 1 1.2 2 2.5 1.8–2 1
Thermal conductivity, λ (W m−1 K−1) 150 55 270 210 10.9–27 1000

BFOM = εrµE3
br 1 14.7 317 846 3214 24,660

JFOM = E2
brv2

s /4π2 1 1.8 278 1089 2844 1100
BHFFOM = µE2

br 1 10.1 46.3 100.8 142.2 1501
Keyes FOM = λ[(c·vs)/(4πε)]1/2 1 0.3 3.6 1.8 0.2 41.5

HCAFOM = εµ0.5E2
br 1 5 48 85 279 619

2.3. Crystal Growth

One of the greatest advantages of β-Ga2O3 is the potential for ultra-low-cost, large-size
(diameter 100–150 mm), high-quality substrates made possible via melt growth. β-Ga2O3
is the only WBG semiconductor that can be grown from the melt, and therefore, the cost
of a β-Ga2O3 wafer is expected to be approximately 80% cheaper than that of SiC [8]. The
different bulk crystal growth techniques are edge-defined film-fed growth (EFG) [32,33],
Czochralski (CZ) [34], vertical Bridgman (VB) [35,36], floating zone (FZ) [37,38], and
Verneuil [39,40]. From all the methods, EFG has so far grown larger-diameter substrates
with high quality, low defect densities, and a relatively wide doping range [22,41].

2.4. Epitaxial Growth

The main methods of β-Ga2O3 thin film growth that have been developed include
molecular beam epitaxy (MBE), plasma-assisted MBE (PAMBE), metal–organic chemical va-
por deposition (MOCVD), halide vapor-phase epitaxy (HVPE), and low-pressure chemical
vapor deposition (LPCVD). MBE has the advantage of growing very high-quality thin films
with less impurities and precise control over the growth rate and doping (1016–1020 cm−3).
It suffers, however, from low growth rates of 0.05–0.18 µm h−1 that make it impractical
for thick epitaxial layers used in vertical devices, but ideal for lateral thin-channel devices.
PAMBE uses an activated oxygen source to help the growth of β-Ga2O3 thin films, and
has been shown to reduce background (unintentional) impurity concentrations [42–44].
MOCVD, also called metal–organic vapor-phase epitaxy (MOVPE), also produces high-
purity thin films with controlled doping (1017–8 × 1019 cm−3) at higher growth rates
of 0.8 µm h−1 and less costly than MBE, making MOCVD conducive for large-scale pro-
duction. HVPE has a minimum doping concentration at the order of 1015 cm−3 and a
significantly higher growth rate, with the maximum reported rate of 250 µm h−1. It is
therefore used in thick epi layer growth for vertical devices [45]. The tradeoff for the
higher growth rates in HVPE is lower-quality thin films with rougher surfaces and more
defects. LPCVD is a scalable and lower-cost method that produces high-quality thin
films with growth rates ranging from 0.5 to 10 µm h−1, controlled doping in the range of
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1017–1019 cm−3, and a heterostructure capability [46,47]. LPCVD is the least used of the
three growth techniques, but can provide a path for scalable, production-level β-Ga2O3
wafers. Additionally, MBE, MOCVD, and LPCVD can grow heterostructures, unlike HVPE.
More detail on these growth methods can be found in refs. [17,48,49].

2.5. Doping Strategies

DFT calculations have been used to find the energy levels of various impurities, oxygen
vacancies (VO), and gallium vacancies (VGa) in the β-Ga2O3 bandgap. Oxygen vacancies
act as deep donors more than 1 eV below the conduction band (EC), and gallium vacancies
act as deep acceptors more than 1 eV above the valence band (EV) [50,51]. These vacancies
do not contribute to conduction, but only act as doping compensation. Shallow donors
found via DFT include SiGa(I) (Si impurity in GaI site), GeGa(I), SnGa(II), ClO(I), and FO(I),
with energy levels very near EC [52]; however, the majority of experimentally used donors
are Si, Sn, and Ge [53,54]. Acceptor impurities such as N, Sr, Zn, Cd, Ca, Be, Mg, and Fe all
have levels more than 1.3 eV above EV, indicating that p-type doping is not possible, and is
a major challenge in the development of β-Ga2O3 devices [50,55]. Deep acceptors are used
to form highly resistive semi-insulating layers.

The donor levels of Si and Ge in MBE, LPCVD, CZ, and EFG samples, calculated
using temperature-dependent Hall and conductivity measurements, ranged from 15 to
31 meV below EC, indicating shallow donors, while the Mg and Fe levels were located
at EC—0.86 eV and EC—1.1 eV, respectively [53]. Mobility dependence on carrier concen-
tration is expected to flatten at 250 cm2 V−1 s−1 as the carrier concentration approaches
1015 cm−3, and drops significantly as it increases above 1017 cm−3 (Figure 2) [31].
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While p-type behavior is not available when using conventional methods, some
groups have observed hole conduction when compensating donors are reduced [56]. The
p-type conductivity of thin-film β-Ga2O3 by reducing the mean free path of carriers using
amphoteric Zn doping was able to achieve ultra-high breakdown fields of 13.2 MV cm−1,
beyond that of the theoretical β-Ga2O3 [57]. Another technique to modulate between high
n-type and p-type conductivity was developed via controlled H incorporation, where
p-type conductivity with an acceptor state 42 meV above EV was observed after direct H
diffusion, and n-type conductivity with a donor state 20 meV below EC was observed after
filling up oxygen vacancies by annealing in O2 [58].
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3. β-Ga2O3 FET Designs

The following section reviews many of the current FET designs, including their struc-
ture, channel materials, substrate materials, ohmic contact formation, and gate dielectrics.
Their process steps, use cases, advantages, and disadvantages are discussed. The tables be-
low compare the many different device designs for D-mode high-power (Table 2), E-mode
high-power (Table 3), and D-/E-mode RF applications (Table 4). Table 4 also includes
the RF performance of mature GaN HEMTs and emerging hydrogen-terminated diamond
HEMTs to illustrate the differences in performance of other material systems to β-Ga2O3.

Table 2. Performance comparison of D-mode high-power FETs.

Ref. FET Design On/Off ID,max
(mA mm−1) Vbr (V) Ebr

(MV cm−1)
Ron,sp

(Ω cm2)
µ

(cm2 V−1 s−1)
BFOM

(MW cm−2)

[59] MESFET, T-gate + SFP, OA 106 3.3 10 k 1 2.92 NR >34.2

[60] Delta-doped MESFET
w/GFP 107 180 315 2.3 NR 73 118

[61] Delta-doped SAG 103 560 NR NR NR 65 NR
[62] Recessed and T-gate 109 49 1.80 k 1.8 20.9 m 128 155
[63] Tri-gate lateral FinFET 1010 187 1.13 k 4.2 1.34 m 184 950
[64] Composite + SU8 GFP 109 40 7.16 k 1.79 8.98 NR 5.71

[65] SFP, T-gate, Al2O3/HfO2
gate oxide 109 230 1.40 k 2.90 7.08 m NR 277

[66] Scaled T-gate MESFET 104 60 2.45 k 2.08 17.3 m 84 347
[67] SOI on sapphire 108 232 800 NR 7.41 m 137 86.3
[68] Back-gate SOI on SiO2/Si 1010 1500 NR NR NR NR NR
[69] CAVET, N++ ion implant 108 420 A cm−2 25 NR 31.5 m 140 NR
[70] AlGO/GO w/GFP 108 NR 1.37 k 0.86 120 m 101 15.6
[71] SOI on AlN/Si 109 580 118 1.04 1.44 m 82.9 9.70
[72] SiC/GO composite wafer 108 NR 2.37 k 1.23 18.4 m 94 303
[73] SOI on Diamond NR 980 NR NR NR NR NR
[74] p-NiO gate oxide 1010 450 1.12 k 2.48 3.19 m NR 390
[75] p-NiO gate oxide 1010 282 2.15 k 3.5 6.24 m 130 740
[76] p-NiO/SiO2 gate oxide 109 300 1.32 k 1.47 4.30 m NR 405
[77] p-SnO gate oxide 106 100 750 1.9 3.15 m 100 178
[78] BTO (ε≈235) gate oxide 105 359 640 1.5 1.08 m 72 376
[79] Al2O3/BTO gate oxide 107 220 840 4.10 1.72 m 85 408

Table 3. Performance comparison of E-mode high-power FETs.

Ref. FET Design On/Off ID,max
(mA mm−1) Vbr (V) Ebr

(MV cm−1)
Ron,sp

(Ω cm2)
µ

(cm2 V−1 s−1)
BFOM

(MW cm−2)

[80] Recessed gate 109 40 505 0.84 17.2 m 106 14.8
[81] Multi-fin vertical FET 108 230 A cm−2 2.66 k NR 25.2 m 40 280
[82] SOI on SiO2/Si 1010 450 185 2 20 Ω mm 55.2 NR
[83] Mg-diffused CAVET 109 150 A cm−2 72 NR NR 7.5 NR
[84] Vertical U-trench w/CBL 6.4 × 104 11 A cm−2 102 NR 1.48 NR 0.007
[76] p-NiO/SiO2 gate oxide 108 NR 2.96 k 0.985 115 m NR 76
[75] p-NiO gate oxide 107 43.2 1.98 k 3.3 13.8 m 140 284

[85] Back-gate SOI on SiO2/Si
p-SnO on top 2.26 × 106 14.1 NR NR NR 191 NR

[86] SOI on SiO2/Si
HfO2 gate oxide 105 11.1 80 0.16 82 m 81 0.078

[87] Multi-stack gate:
HZO/Al2O3/HfO2/Al2O3

108 23.2 2.14 k 3.45 24 m 97 193
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Table 4. Performance comparison of D-/E-mode RF FETs.

Ref. Type Structure On/Off ID,max
(mA mm−1)

Vbr
(V)

Ebr
(MV cm−1)

µ
(cm2 V−1 s−1) fT (GHz) fmax

(GHz) Gp (dB) GT
(dB)

Pout
(mW mm−1)

PAE
(%)

fT Vbr
(THz V)

vsat (fT Lg 2π)
(cm s−1)

[88] D-M
T-gate

delta-doped
MESFET

108 260 150 1.07 70 27 16 NR NR NR NR 4.05 2.01 × 106

[89] D-M SAG 108 Pulsed ≈ 300 NR NR 74 NR NR NR 13 715 23.4 NR NR

[90] D-M Recessed gate
SiO2 passivation 106 150 NR NR 96 3.3 12.9 5.1 1.8 230 6.3 NR 1.45 × 106

[91] D-M Tri-gate FinFET NR 88 NR NR NR 5.4 11.4 NR NR NR NR NR 1.19 × 106

[92] D-M SiO2 GFP NR 58 NR NR NR NR NR 4.81 NR 130 22.4 NR NR

[93] D-M
T-gate, SiNx
passivation

SiO2 gate oxide
1.23 × 105 285 192 5.4 80 11 48 NR NR NR NR 2.112 2.45 × 106

[94] D-M
T-gate, shallow
ion-implanted

channel
108 165 193 2.09 23 29 35 7 NR 11.2 dBm 11.6 5.597 2.73 × 106

[95] D-M

OA, SiNx T-gate
Multi-stack gate

oxide:
Al2O3/HfO2

109 200 NR NR 75 1.8 4.2 3.6 NR 430 6.42 NR 1.13 × 106

[96] D-M AlGO/GO HFET NR Pulsed ≈ 80 NR NR NR 14 22 NR NR NR NR NR 1.76 × 106

[97] E-M AlGO/GO HFET 1.55 × 105 74 23 1.35 NR 30 37 NR NR NR NR NR 3.02 × 106

GaN and Diamond RF FETs
[98] D-M GaN HEMT 103 1000 60 0.4 1900 104 205 8 NR 5100 43.6 6.24 9.80 × 106

[99] D-M GaN HEMT 3 × 105 Pulsed 1300 50 NR 1423 156 308 15 NR 2500 70 7.8 5.89 × 106

[100] D-M Diamond HEMT NR 500 121 0.81 101 6.2 17 12.2 NR 4200 21.5 0.75 3.51 × 106
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3.1. β-Ga2O3 FET Structures
3.1.1. MESFETs and Delta Doping

The metal–semiconductor field-effect transistor (MESFET) in Figure 3a, fabricated
by Higashiwaki et al., was the first demonstrated single-crystal β-Ga2O3 transistor [101].
Many of the following MESFETs, reported by the Rajan group, incorporated delta dop-
ing [60,88,102–106]. The delta-doping technique was first developed in 2017 by Krish-
namoorthy et al. [102] in attempts to improve Si doping during PAMBE epi layer growth.
The Si source oxidized quickly, reducing the Si doping level in the β-Ga2O3, creating
doping spikes. Pulsing the Si shutter for 1 s over a period of 1 min removed the oxide
and created uniform, highly doped regions with UID spacers (Figure 3b), leading to the
delta-doping method for β-Ga2O3 devices. This resulted in a 2D electron gas (2DEG), high-
electron-mobility transistor (HEMT) behavior with an increased carrier sheet concentration
and mobility, as well as reduced contact and sheet resistances. These improvements and
lower gate capacitance of MESFETs compared to MOSFETs lend delta-doped MESFETs
more for RF applications. Regrown ohmic contacts, discussed in the Section “Regrown
Layers”, are required for delta-doped FETs to reach the 2DEG because it is surrounded by
UID β-Ga2O3. The Rajan group fabricated delta-doped MESFETs using regrown contacts,
gate-connected field plates (GFP), and highly scaled T-gate structures with gate lengths
(LG) down to 120 nm to improve their low- and high-frequency performance, with a BFOM
of 118 MW cm−2 [60], a mobility of 95 cm2 V−1 s−1 [104], and a current gain cutoff fre-
quency (fT) of 27 GHz (Figure 3c) [88]. The GFP and T-gate structures are also discussed in
Sections 3.1.5 and 3.1.7, respectively.
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Figure 3. (a) First MESFET reported in 2013. Reproduced from [101], with the permission of AIP
Publishing. (b) Shutter pulsing scheme and doping variation showing alternating UID and uniformly
doped layers. Reproduced from [102]. © The Japan Society of Applied Physics. Reproduced with the
permission of IOP Publishing Ltd. All rights reserved. (c) Highly scaled T-gate delta-doped MESFET
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with high cutoff and maximum frequencies. © (2019) IEEE. Reprinted with permission from [88].
(d) Tri-gate MESFETs with low-temp/high-temp grown layers resulting in ultra-high mobilities and
negligible I-V hysteresis. © (2022) IEEE. Reprinted with permission from [63].

Bhattacharyya et al. reported high-performing, non-delta-doped lateral MESFETs using a
combination of regrown ohmic contacts for a low contact resistivity of 8.3 × 10−7 Ω cm2 [107],
GFP for a Vbr up to 4.4 kV [108,109], and a fin-shaped channel design surrounded by
variable-temperature MOCVD-grown layers, achieving a mobility of 184 cm2 V−1 s−1,
negligible hysteresis, and a BFOM of 0.95 GW cm−2 [63]. Passivating layers such as Al2O3
and SiNx can also be used to improve both low-frequency BFOMs and high-frequency
Huang’s Material Figure of Merit (HMFOM) [63,66]. The current highest-reported FET
breakdown voltage of 10 kV was achieved using a MESFET design with a T-gate structure,
source-connected field plates (SFPs), SiNx passivation, oxygen annealing (OA), Si ion
implantation, UID buffer layers surrounding the channel region, and B implantation for
device isolation [59]. These device improvements will be discussed in more detail in
later sections.

3.1.2. Self-Aligned Gate (SAG) FETs

The self-aligned gate (SAG) FET design is a well-known process developed to reduce
series resistance and aggressively scale devices by reducing the source–gate spacing (LSG),
essentially eliminating the source–gate access region. The earliest β-Ga2O3 SAG FETs,
developed by AFRL, were designed by first depositing the Al2O3 gate dielectric using
plasma-assisted atomic layer deposition (PA-ALD), which acts as the ion implantation cap.
A refractory metal gate of W or W/Cr, able to withstand the high ion activation temperature,
is patterned to protect the gate and drift regions. The source–gate and drain–gate access
regions are then very highly doped via Si ion implantation and activated at 900 ◦C using
rapid thermal annealing (RTA) for 2 min in N2 ambient conditions [89,110]. The gate metal
is then etched via reactive ion etching (RIE) from the drift region and the ohmic contacts
are formed (Figure 4a). A low contact resistance (RC) of 1.5 Ω mm, a sheet charge density
(ns) of 4.96 × 1012 cm−2, and a Hall mobility of 48.4 cm2 V−1 s−1 were measured in these
devices [110]. RF load–pull continuous wave (CW) power measurements were reported
for these early SAG FETs, with a high output power (Pout), transducer gain (GT), and
power-added efficiency (PAE) of 715 mW mm−1, 13 dB, and 23.4%, respectively, at 1 GHz
(Figure 4a) [89,111].

A recent PAMBE-grown delta-doped SAG FET structure incorporated delta doping,
in situ Ga etching for gate recess, and in situ Al2O3 gate dielectric growth, achieving
sub-100 nm source–gate and gate–drain access regions [61]. A 30 nm Mg-doped layer was
initially grown to compensate the Si impurities at the substrate/epi interface, followed
by a 500 nm UID buffer layer. Then, two delta-doping layers, 5 nm apart, another 40 nm
UID layer, and a 45 nm n++ cap layer were grown. The n++ cap layers were used as an
alternative to ion implantation, enabling SAG. The SAG fabrication process (Figure 4b)
began with ohmic contact fabrication and the plasma-enhanced chemical vapor deposition
(PECVD) of SiNx with patterning to expose the gate region. The sample was placed into an
MBE system, where in situ Ga etching of the n++ cap layer was performed at a substrate
temperature of 550 ◦C and Ga flux of 1.5 × 10−7 Torr. Ga droplets were removed at a
temperature of 600 ◦C, followed by 10 nm in situ Al2O3 deposition at a temperature of
400 ◦C. Conformal ex situ ALD was used to uniformly deposit 60 nm of Al2O3 in the gate
and sidewall regions. Anisotropic RIE and isotropic BOE wet-etching of the Al2O3 reduced
the gate and sidewall dielectric thickness to 20 nm and 50 nm, respectively. This FET
outperformed the initial SAG FETs, with a source–gate access resistance of 1.3 Ω mm, an ns
of 2.8 × 1013 cm−2, and a mobility of 65 cm2 V−1 s−1, leading to record peak DC and pulsed
drain currents of 560 mA mm−1 and 895 mA mm−1, respectively, for a lateral FET on a
native β-Ga2O3 substrate. The FET exhibited a high gate leakage and low current on/off
ratio due to a low-quality gate dielectric or remaining Ga droplets at the interface. A drain
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current droop was observed in the DC measurements, indicating excessive self-heating,
as shown by the red dashed line in Figure 4b. The use of SAG FETs has not yet been
translated to vertical devices but is expected to improve performance for both low- and
high-frequency operation.
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Figure 4. (a) SAG FET using refractory metal gate W and Si ion implantation for self-alignment
with an LSG of 0 µm. The RF Pout, GT, and PAE as a function of input power at 1 GHz are plotted.
Reproduced from [89]. CC BY 4.0. (b) SAG process enabled by using an n++ grown cap layer
as opposed to ion implantation. High gate leakage and low on/off ratio are indicative of a leaky
dielectric due to its deposition or residual Ga droplets at the interface. Reproduced from [61], with
the permission of AIP Publishing.

3.1.3. Trench/Recessed-Gate FETs

Another FET design, first implemented by AFRL in 2017 [90], is the trench or recessed
gate to scale devices down to sub-µm gate lengths for improved RF performance. The FET
in ref. [90] was fabricated on an n+ 180 nm channel layer with an n++ 25 nm ohmic cap layer
grown via MOVPE. Post-ohmic contact formation, the n++ cap layer was etched and 200 nm
of SiO2 was deposited via PECVD as the passivation and field-plate dielectric. A 0.7 µm
gate region was patterned on the SiO2 and etched via RIE nearly halfway into the epi layer,
followed by ALD-Al2O3 deposition as the gate dielectric, Ni/Au gate stack evaporation,
and the evaporation of interconnects (Figure 5a). The measured cutoff frequency (fT) and
maximum oscillating frequency (fMAX) were 3.3 GHz and 12.9 GHz [90].

E-mode FETs are useful in reducing off-state power loss; however, they are difficult to
fabricate in β-Ga2O3 due to the lack of p-type doping, large hole effective mass, and hole
self-trapping. The recessed-gate approach is among the few early methods used to achieve
E-mode operation by etching into the channel region, such that the remaining channel is
fully depleted due to band bending at the oxide/epi and epi/substrate interfaces [112,113].
Chabak et al. [80] studied the band bending of a 200 nm Si-doped 5.5 × 1017 cm−3 epi due
to 5.5 × 1012 cm−2 surface states at the SiO2/β-Ga2O3 interface, noting an approximately
100 nm depletion, and 34 nm of depletion due to the Fe-doped substrate. The E-mode FET
with a threshold voltage (Vth) of +2 V was realized due to a gate recess of 140 nm (Figure 5b).
E-mode recessed-gate FETs with an epi thickness of 200 nm, etch depth of 180 nm, and
an LG of 2 µm were also reported to have high switching characteristics, with turn-on/off
delay times of 4.0 ns/11.8 ns and rise/fall times of 24.6 ns/82.2 ns (Figure 5c). The longer
fall time is attributed to low electron mobility and slow discharging from interface states.
While switching losses are reduced with higher switching speeds, a high on-resistance
(Ron), identified based on the VDS of ≈5 V in the top plot of Figure 5c, results in high



Materials 2023, 16, 7693 11 of 45

on-state power losses that might be more limiting than switching losses [114]. A high Ron
and increased power losses are observed for many trench FETs; however, further LG scaling
by incorporating SAG can reduce the channel resistance contribution.
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Figure 5. (a) First recessed-gate FET reported with sub-µm LG. Reprinted with permission from [90].
(b) First E-mode recessed-gate FET and respective transfer and output curves. © (2018) IEEE. Reprinted
with permission from [80]. (c) Switching characteristics of a recessed-gate lateral FET where turn-on
delay time, td(on), is defined as the time between 0.1Vgs and 0.1Ids. Likewise, td(off) is the time between
0.9Vgs and 0.9Ids. Similarly, the rise time, tr, is the time between 0.1Ids and 0.9Ids, and the fall time, tf,
is the time between 0.9Ids and 0.1Ids. © (2019) IEEE. Reprinted with permission from [114].

Various TCAD studies have been reported on the effects of doping and recess depth
in E-mode recessed-gate FETs. The band diagram variation, electron concentration, and
Vth at different channel thicknesses (epi thickness–recess depth) is shown in Figure 6a. At
zero gate and drain bias, the electron concentration drops off very quickly as the channel
thickness drops below 80 nm, down to ≈108 cm−3 at 50 nm, because of the oxide/epi and
substrate/epi depletion. A threshold voltage near 0 V is observed for a 75 nm channel
thickness going up to +4 V for 50 nm [115]. Decreasing the doping concentration in the
channel layer is observed to both decrease the peak drain current and increase the Vth, such
that a doping of 1 × 1016 cm−3 causes E-mode behavior (Figure 6b). A larger recess depth
(smaller channel thickness) increased the Vth from ≈−50 V to near 0 V from the I-V transfer
curves but decreased the drain current in the I-V output curves (Figure 6b) [116]. At high
VGS and VDS, however, the drain current is nearly equal, indicating that the recess depth
has little actual effect on the peak drain current. A slightly different trench FET design
using body and epitaxial drift layers with different dopings, as well as recess through
the entire drift layer, is shown in Figure 6c [117]. From I-V transfer curves with a drift
layer doping of 3 × 1017 cm−3 and varying body doping from 1 × 1013 to 1 × 1017 cm−3,
E-mode operation was only realizable for a body doping of 1 × 1015 cm−3 or less, showing
a larger current and more negative Vth for higher doping concentrations. A 2D view of the
electron concentration at a VGS of 0 V, NBody of 1 × 1015 cm−3, and NDrift of 3 × 1017 cm−3

(Figure 6c) shows normally off conditions due to the full depletion of the body layer from
band bending at the oxide/body interface.
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Figure 6. (a) TCAD model of a recessed-gate FET studying variations in fermi level, Vth, and electron
concentration with channel thickness. Reproduced from [115]; licensed under a Creative Commons
Attribution (CC BY) license. (b) TCAD model of a recessed-gate FET studying variations in Vth

and current density with doping and recess depth. Reprinted from [116], Copyright (2023), with
permission from Elsevier. (c) A novel recessed-gate FET design with different body and drift layers
recessing fully through the drift layer. Body-doping effects on E-/D-mode operation as well as a
2D cross-section of band bending through the body layer at low dopings. Reproduced from [117].
CC BY 4.0.

3.1.4. FinFETs

The first FinFET structures were lateral devices designed by Chabak et al. in 2016 using
inductively coupled plasma (ICP) over-etching into the substrate to create thin 300 nm
triangular-shaped fins as the channel (Figure 7a) [113]. E-mode operation was enabled
by channel depletion due to the gate, with the I-V transfer curve shown in Figure 7a.
Substrate conduction, shown by the red curve in Figure 7a, was observed and attributed to
uncompensated carriers at the substrate surface. Hu et al. fabricated various vertical single-
fin E-mode FETs [118–120] with current densities reaching 1 kA cm−2, a Vbr of 1.6 kV, and
a low subthreshold slope (SS) of 80 mV dec−1, giving an interface trap state density (Dit) of
>6 × 1011 cm−2 eV−1. Interface traps were observed to reduce the field-effect mobility and
current density by depleting the channel, as well as limiting breakdown by exacerbating
drain-induced barrier lowering (DIBL) [118]. Single- and multi-fin E-mode FETs were later
fabricated by Li et al. with single/multi-fin current densities of 2 kA cm−2/230 A cm−2, a
Ron,sp of 35.2 mΩ cm2/25.2 mΩ cm2, and BFOMs of 172 MW cm−2/280 MW cm−2 for a fin
width (Wfin) of 0.15 µm. Another advantage of multi-fin FETs is that, unlike single-fin FETs,
current spreading does not drastically change the active area, making the BFOM and Ron,sp
less ambiguous. The fabrication was performed on a 10 µm HVPE epi layer with doping of
2 × 1015 cm−3 grown on a conductive substrate. First, the epi layer was Si-ion implanted
and activated at 1000 ◦C for the source ohmic contact, followed by e-beam lithography and
dry etching to form sub-µm fin channels. A Ti/Au stack was deposited on the backside as
the drain contact and a 35 nm ALD-Al2O3 was used as the gate dielectric. A sputtered Cr
gate metal and 120 nm ALD-Al2O3 spacer were patterned with an SAG process. Finally, a
Ti/Al/Pt stack was sputtered, forming the source and source-connected field plate. The
devices were measured before and after post-deposition annealing (PDA) at 350 ◦C in N2,
resulting in significant improvements (Figure 7b) [81]. It has been shown that Vth strongly
decreases with increasing Wfin and ND (Figure 7c), giving a small window for normally off
devices. The previously mentioned FinFETs were fabricated with sub-0.5 µm Wfin and ND
below 1 × 1016 cm−3, enabling a positive Vth. Because Si doping below 3 × 1015 is difficult
in epi growth, a resistive layer via nitrogen doping of 1 × 1016 cm−3 during HVPE growth
was shown to significantly minimize the Vth dependence on Wfin and achieve normally off
operation for Wfin up to 2 µm (Figure 7c) [121].
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Figure 7. (a) Lateral E-mode FinFETs and transfer curves with observed substrate conduction due to
free carriers at the semi-insulating substrate. Reproduced from [113]. CC BY 4.0. (b) Cross-section
of vertical multi-fin FETs, I-V curves of a single-fin FET showing significant improvement through
PDA, and multi-fin FET I-V curves. © (2019) IEEE. Reprinted with permission from [81]. (c) Nitrogen
doping mitigating the Vth dependence on Wfin and maintaining E-mode operation for large Wfin.
Reproduced from [121]. © The Japan Society of Applied Physics. Reproduced by permission of IOP
Publishing Ltd. All rights reserved.

Other vertical FinFETs have been reported on (100) oriented substrates to potentially
reduce intrinsic growth defects, even though the majority are fabricated on (001) sub-
strates [122]. Lateral tri-gate FinFETs have also reported high RF performance [91], high
BFOMs of 0.95 GW cm−2, and mobilities of 184 cm2 V−1 s−1 using high/low temperature
MOCVD growths [63], as mentioned in Section 3.1.1.

A highly selective wet-etching technique, metal-assisted chemical etching (MacEtch),
is an attractive, damage-free alternative to dry etching that is typically used in FinFET fabri-
cation [123]. More details on the MacEtch techniques and chemical reactions can be found in
Ref. [124]. Lateral FinFETs fabricated via MacEtch have recently been reported (Figure 8a),
with an aspect ratio of 4.2:1, an Ron,sp of 6.5 mΩ cm2, and a BFOM of 21 MW cm−2 [125].
The lowest SS, Vth, and hysteresis of 87.2 mV dec−1, −6.9 V, and 24 mV, respectively,
were measured on FinFETs with a 90◦ orientation from the [102] direction (Figure 8a). A
previous study showed that fins perpendicular to [102] had the most vertical sidewalls and
lowest Dit of 2.73 × 1011 cm−2 eV−1 [126]. DC I-V measurements of these FinFETs at high
temperatures up to 298 ◦C (Figure 8b) reported increasing off-state currents and a lower
on/off ratio, attributed to thermionic emission from source to drain, a decrease in Vth by
≈20 V due to trapping/de-trapping at the gate metal/oxide and oxide/semiconductor
interfaces, and increasing hysteresis up to 4.29 V and SS up to 1.35 V dec−1, indicating
thermal degradation of the interface or dielectric [127].

3.1.5. Gate-Connected Field Plates

It is widely known that field plates can improve device breakdown by reducing the
peak electric field near the contact edges. The gate-connected field plate (GFP) extends
into the gate–drain access region, where most of the voltage drop occurs, “spreading” the
electric field. The first β-Ga2O3 GFP FET was reported by Wong et al., using SiO2 as the FP
dielectric (Figure 9a). TCAD simulations of the peak electric field for various field-plate
heights, hFP, and field-plate drain lengths, LFP,D, at the drain edge of the gate (top), depicted
by the symbol x in the diagram, and drain edge of FP (bottom), depicted by the symbol *
in the diagram, are shown in Figure 9a. Increasing the LFP,D is seen to quickly reduce the
electric field at the gate edge, while having little effect on the field at the FP edge. However,
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as the hFP increases, the field at the gate edge rises while the field at the FP edge falls,
indicating an ideal window for hFP [128].
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Figure 8. (a) FinFETs fabricated via MacEtch with process and TEM image. I-V curves as well as SS
and hysteresis dependence on channel angle relative to [102] are shown. Channels perpendicular
to [102] show the best performance. Reproduced from [125], with the permission of AIP Publishing.
(b) Temperature dependence of Vth, hysteresis, on/off ratio, and SS in MacEtch FinFETs indicating
thermal degradation of the interface and/or dielectric. Reprinted from [127], with the permission of
AIP Publishing.

Since then, other SiO2 FPs, SiO2 composite FPs with polymer passivation, and SiNx
FPs passivated with SiO2 have been reported [64,92,108,109,129–131] with some of the
highest breakdown voltages and BFOMs of 8.56 kV and 355 MW cm−2, respectively. SiNx
is better suited both to spread electric fields due to its higher dielectric constant and in
mitigating virtual gate effects originally discovered in AlGaN/GaN HEMTs [132], but is
also mentioned as a possible mechanism of current dispersion [133] and series resistance
increases [134] in β-Ga2O3 FETs.
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Figure 9. (a) GFP FET cross-section with the symbols x and * indicating peak electric fields in the
channel. Plots of simulated breakdown electric field dependence on LFP,D and hFP are shown at
the location of symbol x (top plot) and * (bottom plot). © (2016) IEEE. Reprinted with permission
from [128]. (b) FET with composite PECVD-SiO2/ALD-SiO2 GFP and SU8 passivation used to
increase Vbr. © (2020) IEEE. Reprinted with permission from [131]. (c) GFP FET similar to that in (b)
but with SU8 as part of the FP and vacuum annealing, increasing Vbr and reducing Ron. © (2022)
IEEE. Reprinted with permission from [64].
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Zeng et al. in the Singisetti group used a composite FP composed of a thick 350 nm
PECVD-SiO2 below a denser, high-quality 50 nm ALD-SiO2 layer to improve break-
down [129,130]. Sharma et al., also in the Singisetti group, then improved on the GFP
design by adding a polymer, SU8, passivation layer on the composite FP and S/D regions,
reaching some of the highest reported breakdown voltages of 8.03 kV (Figure 9b) and
8.56 kV (Figure 9c) [64,131]. The high Ron led to low BFOMs, but vacuum annealing before
FP deposition resulted in a ×10 reduction in Ron, with little change in Vbr (Figure 9c) [64].

3.1.6. Source-Connected Field Plates

Source-connected field plates (SFPs) are another viable FP strategy where the source
metal extends past the gate, and can be considered a better field-spreading method across
the gate region and at the drain side of the gate [135,136]. One of the first SFP FETs
measured a BFOM of 50.4 MW cm−2 in 2019 (Figure 10a) [137]. Simulated electric field
profiles in Figure 10a show field spreading and a reduced peak electric field using an SFP.
A T-gate structure can be used in conjunction with SFPs for further field management,
achieving higher BFOMs of 277 MW cm−2 (Figure 10b [65]) and a record Vbr of 10 kV
(Figure 10c [59]).
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Figure 10. (a) Lateral MOSFET with SFP and simulated TCAD electric field profiles clearly showing
field spreading and reduction in overall peak field value. © (2019) IEEE. Reprinted with permission
from [137]. (b) FET with SFP and T-gate structure, breakdown I-V, and benchmark plot. © (2020)
IEEE. Reprinted with permission from [65]. (c) FET with SFP, T-gate, oxygen annealing (OA), and B-
implantation for device isolation. The blue/red lines represent an LGD of 40/100 µm and solid/open
symbols represent without/with SFP. A breakdown of 10 kV is observed. © (2023) IEEE. Reprinted
with permission from [59].

3.1.7. T-Gates

T-gates, as mentioned previously, are unique in that they not only improve break-
down as a field-plate structure [59,62], but also improve RF results in thin-channel FETs
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by decreasing the LG while maintaining a large cross-section. This reduces the gate access
resistance and decreases the electron transport time, but does not degrade the noise fig-
ure [138]. Various T-gate RF FET structures are shown in Figure 11a–e that incorporate
recessed gates with SiO2 FP dielectrics (Figure 11a [139]), air FP dielectrics with implanted
channels (Figure 11b,c [94,140]), MESFET with Al2O3 passivation (Figure 11d [66]), and
SiO2 gate dielectrics with SiNx passivation (Figure 11e [93]). The FET in Figure 11e has the
highest-reported fmax to date of 48 GHz and a high breakdown field of 5.4 MV cm−1. A T-
gate MESFET with an fT of 27 GHz was also discussed and shown in Figure 3b [88]. RF FETs
with a T-gate structure must use highly scaled LG, typically in the range of 100–300 nm, for
peak RF performance.
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Figure 11. A variety of RF T-gate FETs are shown. (a) FET incorporates a recessed-gate architecture.
Reprinted with permission from [139]. (b) FET uses air as the FP dielectric. Reprinted from [140],
with the permission of AIP Publishing. (c) FET uses both an air FP dielectric and an ultra-thin
implanted channel [94]. (d) FET incorporating Al2O3 surface and gate metal passivation. Reprinted
from [66]. CC BY-NC-ND 4.0. (e) T-gate RF FET with SiNx passivation with highest-reported fmax

and high breakdown field of 48 GHz and 5.4 MV cm−1, respectively. Reproduced from [93], with the
permission of AIP Publishing.

3.1.8. Semiconductor-on-Insulator (SOI)

Another important property of β-Ga2O3 is the anisotropic cleavage planes, making
the (100) plane easy to exfoliate as a nanomembrane, similar to graphene. This makes
the fabrication of β-Ga2O3 devices on different substrates, or heterojunctions with uncon-
ventional materials such as transition metal dichalcogenides (TMDs), much simpler. The
first SOI β-Ga2O3 FET was reported in 2014, with an exfoliated β-Ga2O3 layer placed on
a p+ Si wafer with 285 nm of thermally grown SiO2 acting as the gate oxide [141]. The
SOI FET was then fabricated via back-gate metal and top-source/drain ohmic contact
deposition. The corresponding I-V curves proved that channels could be created using
the mechanical exfoliation of β-Ga2O3. Other p+ back-gate SOI FETs have been fabricated
and studied [68,82,142–151]. One advantage of SOI FETs compared to non-SOI FETs is that
more devices can be fabricated from β-Ga2O3 wafers and, therefore, studies on transport,
irradiation, thermal effects, etc., can be more cheaply and readily performed. Different
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methods of tuning the Vth have been implemented, such as by varying the β-Ga2O3 channel
layer thickness [82,145], fluorine plasma [147], adding a p-type material such as p-SnO on
the channel of back-gate FETs [85], and using a fixed back-gate bias (VBG) on top-gate FETs.
A top-gate FET with VBG shows variation in transconductance (gm) and Vth with VBG, ob-
taining a Vth of 0 V for VBG ≈ 6 V (Figure 12a) [152]. Other studies about defect impacts on
current dispersion [148], proton irradiation [144], scattering mechanisms [153], and device
improvement using thermal management via different thermally conductive substrates
have been reported using SOI FETs [71,73,154–159]. These will be discussed more in the
Sections “AlN/GO”, “SiC/GO”, and “Diamond/GO”. High-performing SOI FETs have
also been realized, with the highest reported mobility of 191 cm2 V−1 s−1 (Figure 12b [85]),
high current densities reaching 1.5 A mm−1 (Figure 12c [68]), an SS of 61 mV dec−1 very
near the thermionic limit using a TMD-TaS2/β-Ga2O3 heterojunction (Figure 12d [160]), a
Vbr up to 800 V [67], and BFOMs of 100 MW cm−2. The high BFOM of 100 MW cm−2 is
achieved by a β-Ga2O3-on-SiC FET using ion cutting, a novel heterogenous wafer-scale
integration technique for β-Ga2O3 on SiC [156,159].
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Figure 12. (a) SOI FET with Vth modulation using constant back-gate voltage to accumulate or
deplete the channel, while the top gate controls the device. © (2019) IEEE. Reprinted with permission
from [152]. (b) SOI FET obtaining a record mobility of 191 cm2 V−1 s−1 using a floating p-SnO layer
in the channel [85]. (c) SOI FET with a p++ back gate and doping of 8 × 1018 cm−3, measuring record
currents of 1.5 A mm−1. Reprinted from [68], with the permission of AIP Publishing. (d) TMD high
Schottky barrier gate with near-ideal SS of 61 mV dec−1 when using TaS2. Reprinted with permission
from Kim et al. [160] © 2023 Wiley-VCH GmbH.

Other SOI FETs have integrated β-Ga2O3 nanomembranes with various p-type 2D
materials such as WSe2 [161,162], MoTe2 [162], and black phosphorus (BP) [163] to act
as p-type gates, and large work function materials such as NbS2 and TaS2 to improve SS
(61 mV dec−1) and off-state behavior [160]. Double-gate FETs using top-gate dielectrics
such as HfO2 [152], h-BN [164], and bottom-gate dielectrics as the SiO2 on p-Si wafers have
been utilized for improved gate control and Vth tuning. Monolithically integrated top and
bottom graphene gates with both E-mode and D-mode FETs on the same layer are one of
the first mentions of a β-Ga2O3 logic circuit with both E-mode and D-mode FETs [165].

3.1.9. Other Novel Structures

Most of the designs discussed in the previous sections were first developed in the
early stages of β-Ga2O3 devices and iteratively improved upon. With the help of TCAD
simulation, novel structures with high potential can be initially proposed. One of the
recently proposed structures (2022–2023) includes a lateral field-plated MOSFET with a
self-aligned trench vertical gate (Figure 13a [166]). The channel from source to drain starts
with a UID β-Ga2O3 buffer layer with ion implantation in the source region. The UID
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buffer layer separates the ion-implanted source to the n+ horizontal channel, reaching the
drain. The trench portion of the gate falls below the n+ channel into the UID buffer layer.
The dominant channel becomes the vertical UID portion, which is highly controlled and
not restricted by high-resolution photolithography. This structure has been proposed for
AlGaN/GaN HEMTs and shown to improve drain current and transconductance [167].
The similar β-Ga2O3 device incorporates a GFP with a SiO2 FP dielectric to improve Vbr
and current uniformity in the channel.

1 
 

 
Figure 13. TCAD simulations of novel, not yet realized β-Ga2O3 FETs. (a) An FP self-aligned trench
vertical gate with variable Vth based on gate trench thickness into the UID layer, tUID. © (2023) IEEE.
Reprinted with permission from [166]. (b) SFP with air gap dielectric to better mitigate electric fields
at device edges. Reprinted with permission from [168], Copyright Elsevier (2022). (c) GAA FET
with 2DEG to improve Pout and fT. Reprinted with permission from [169], Copyright Elsevier (2021).
(d) Band diagram and current gain of npn HBT using p-CuO2, but limited by p-oxide bandgap,
interface traps, and CBO between emitter and base. Reproduced from [170]. © IOP Publishing.
Reproduced with permission. All rights reserved.

Another proposed device is a lateral MOSFET with an SFP, where the FP dielectric is
air/SiNx and the FP makes contact with the SiNx in the gate–drain drift region (Figure 13b [168]).
The electric field plot (Figure 13b) mentions device 1 (the proposed device), device 2
incorporating a GFP, and device 3 with no FP. The proposed device exhibits a higher BFOM
of ≈2.2 GW cm−2 compared to 1.6 GW cm−2 for device 2 and 106 MW cm−2 for device 3.
The capacitances, Cgd and Cgs, of the air gap device were slightly higher than the non-FP
device, resulting in a slightly lower BHFOM, but an overall much larger JFOM of 7.8 THz V.

Gate-all-around (GAA) FETs are another newer FET used to scale below 10 nm in Si,
but has not yet been realized in β-Ga2O3. A proposed β-(AlGa)2O3/Ga2O3 GAA FP HEMT
is simulated with a high Pout of ≈22 kW and an fT of 2.4 GHz, showing potential for future
GAA β-Ga2O3 FETs (Figure 13c [169]).

The lack of p-doping and very low hole mobility in β-Ga2O3 has limited most devices
to unipolar operation. However, recently, there has been a TCAD investigation of potential
β-Ga2O3 heterojunction bipolar transistors (HBTs) using p-type oxides. An npn with
p-CuO2 showed HBT behavior and current gain (Figure 13d), but both the current gain and
the breakdown electric field are strongly limited by interface traps and the low bandgap
of CuO2 (2.1 eV) [170]. They mention that other p-oxides like NiO could apply, and that
an (AlxGa1−x)2O3 layer could be used as the emitter to reduce the electron barrier into
the base. For future designs, they propose specifications for minority carrier transport,
emitter-base CBO, and a threshold for interface trap state density.
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3.2. Channel and Substrate Materials

This section will mainly discuss β-Ga2O3 FETs designed by using different materials
and processes as opposed to, in the previous section, FET structures and patterning.

3.2.1. Current Aperture Vertical Transistors and U-Shaped Trench MOSFETs

Vertical FETs are more suited for high-power applications than lateral FETs due to
their higher power densities and smaller size, because breakdown voltage scales with drift
layer thickness, as opposed to lateral devices where it scales with LGD, sacrifice the chip
area. Current aperture vertical transistors (CAVETs), motivated by their counterparts in
Si [171], SiC [172], and GaN [173], use current-blocking layers (CBLs) to reduce off-state
drain currents and improve on/off ratios. The CBLs can either surround the source from
the drift layer for E-mode purposes (Figure 14a [83]), or leave an opening/aperture for
carriers to access the channel. For the later type, E-/D-modes are dependent on the doping
of the channel [69,83,174–176]. CAVETs with only the channel doping, nch, varying from
5 × 1017 to 1.5 × 1018 cm−3 show E-mode behavior for a doping of 5 × 1017 cm−3 and
D-mode behavior for the other dopings (Figure 14b [174]). Varying the aperture length, Lap,
creates diode-like behavior with increasing on-voltage, Von, as the Lap decreases, possibly
due to a fixed sheet charge of 1011–1012 cm−2 originating from defects diffused from the
CBL (Figure 14c [176]). Semi-insulating CBLs using Mg2+ ion implantation were first
used, but resulted in high leakage currents due to large Mg diffusion during the activation
anneal [175]. The nitrogen thermal diffusivity in β-Ga2O3 is much lower compared to
Mg [177], and therefore, CBL layers formed via N2+ ion implantation have exhibited less
leakage [69,174,176,178].
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Figure 14. (a) Cross-section and transfer I-V curve of E-mode CAVET with CBL surrounding source.
Copyright (2022) IEEE. Reprinted with permission from [83]. (b) E-/D-mode CAVETs implemented
via nch variation [174]. (c) I-V output curves of CAVETs with different Lap showing diode-like turn-on
behavior. Reproduced from [176], with the permission of AIP Publishing. (d) U-MOSFET with CBL.
Reproduced from [84], with the permission of AIP Publishing.

The U-shaped trench-gate MOSFETs (UMOSFETs) are known to increase the packing
density and reduce input capacitance when compared to planar vertical FETs. They have
only recently been studied in the β-Ga2O3 material system using CBLs (Figure 14d), with
both oxygen annealing, discussed in the following section, and N ion implantation [84,179].
Oxygen annealing formed an insulating CBL but increased the contact and sheet resistance
in the n+ layers used for source ohmic contacts, while N implantation did not have these
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setbacks and showed higher current densities. One major drawback of these devices so far
is the low on/off ratio of ≈7 × 104.

3.2.2. Oxygen Annealing

Oxygen annealing (OA), mentioned in the previous sections, increases the resistivity
of n-type β-Ga2O3. The intended mechanism is reducing oxygen vacancies, which act
as deep donors, thereby increasing acceptor compensation [180]. However, there is still
some uncertainty in the true mechanism due to the multiple Ga and O sites in the unit
cell, and complex substitutions that can occur at high temperatures [181,182]. OA was
first observed to reduce the effect of a secondary conducting channel due to the UID layer,
improving the pinch-off, output power density, and high-speed performance [95]. While
there are few reports of OA FETs, there is potential for the future incorporation of OA
(Figure 10c) [59,84,183].

3.2.3. Heterostructures
(AlxGa1−x)2O3/β-Ga2O3 Modulation-Doped FETs

The (AlxGa1−x)2O3/β-Ga2O3 (AlGO/GO) heterostructure has been studied inten-
sively because of the observed carrier confinement near the AlGO/GO interface due to
the conduction band offset (CBO) of ≈0.6 eV [184,185]. The first modulation-doped FETs
(MODFETs) used a Ge-doped AlGO layer between two UID-AlGO layers to generate a
2DEG below UID-β-Ga2O3 [186]. However, the majority of later MODFETs incorporated
delta doping in the AlGO layer which, along with the AlGO/GO CBO, generated a 2DEG
inside the UID-β-Ga2O3 near the AlGO/GO interface. This avoids reductions in mobility
due to the dopants of the 2DEG (Figure 15a) [187,188]. Like delta-doped FETs, regrown
ohmic contacts are typically used to reach the 2DEG.
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Figure 15. (a) Cross-section band diagram showing 2DEG and measured mobility up to 180 cm2 V−1 s−1

at room temperature of an AlGO/GO MODFET using delta doping. Reproduced from [187], with
the permission of AIP Publishing. (b) Cross-section of a double-heterostructure MODFET. Repro-
duced from [189], with the permission of AIP Publishing. (c) Cross-section of a heterostructure FET.
Reproduced from [96], with the permission of AIP Publishing.

Various enhancements—such as double-heterostructure MODFETs with a UIDβ-Ga2O3
quantum well (Figure 15b [189]) and reduced spacer lengths, defined as the distance be-
tween the β-Ga2O3 and delta doping, down to 1 nm [190,191]—are used to increase carrier



Materials 2023, 16, 7693 21 of 45

concentration. The 2DEG charge density typically is in the range of 1 × 1012–5 × 1012 cm−2,
while the highest of 1.1 × 1013 cm−2 was measured in a double heterostructure, 1 nm spacer,
high-k gate dielectric MODFET [79]. Field plates [70] and high-k gate dielectrics have shown
to improve breakdown up to 5.5 MV cm−1 [79].

A modification of the MODFET, named the heterostructure FET (HFET), uses a heavily
doped AlGO spacer as opposed to a delta-doping layer with a UID spacer (Figure 15c).
E-beam lithography scaled LSG down to 55 nm, reducing the parasitic resistance, reporting
near-record fT and fmax values of 30 GHz and 37 GHz, respectively, and minimal RF
degradation at temperatures up to 250 ◦C [96,97].

AlN/GO

AlN is potentially a better alternative to AlGO/GO MODFETs with its higher CBO to
β-Ga2O3 of ≈1.7–1.86 eV and polarization-induced charge, leading to larger 2DEG concen-
trations of 3 × 1013–5 × 1013 cm−2 [192–194]. Currently, no AlN/β-Ga2O3 HEMTs have
been fabricated and reported; however, multiple TCAD simulations show promise, with
much higher frequency operations up to an fT of 166 GHz and fmax of 142 GHz [195–197].

The thermal heat sink advantages of AlN, with a thermal conductivity of
≈320 W m−1 K−1 [25], to β-Ga2O3 has also been studied in SOI MOSFETs on an AlN/Si
substrate for heat dissipation, showing little-to-no current dispersion between DC and
pulsed I-V (Figure 16a [71]).

SiC/GO

SiC, with its high thermal conductivity of 370 W m−1 K−1, is mainly used for heat
dissipation when forming a heterostructure with β-Ga2O3 [25]. TCAD simulations of p-SiC
replacing the semi-insulating substrate in β-Ga2O3 FETs reduced peak temperatures by
100 ◦C. High breakdown voltages and on-currents were maintained by increasing the
SiC thickness and the β-Ga2O3 doping to avoid premature breakdown in SiC [198,199].
Both the growth [200] and process/integration methods [156,201] have been developed
for β-Ga2O3/SiC heterojunctions. Fabricated transistors have used the SiC layer only as a
thermal heat sink (Figure 16b) [72,159], while others have used p-SiC to also behave as a
back gate [158]. Figure 16b shows a composite SiC/β-Ga2O3 MOSFET formed via fusion
bonding [201] with a large reduction in the temperature rise with a SiC substrate compared
to a β-Ga2O3 substrate [72].

Diamond/GO

Diamond has one of the highest, if not the highest, thermal conductivity of any semi-
conductor at approximately 2290 W m−1 K−1. For this reason, diamond is commonly used
in high-power applications for heat dissipation, such as cooling mechanisms with micro
channels demonstrated in GaN [5]. TCAD simulations have confirmed the advantages
of using a nanocrystalline diamond (NCD) substrate compared to β-Ga2O3 or SiC sub-
strates [202]. In β-Ga2O3, thermal studies of both exfoliated nanomembranes on diamond
substrates and the ALD growth of polycrystalline β-Ga2O3 on diamond substrates have
been realized, with the nanomembrane reporting better thermal boundary conductance
(TBC) due to the low thermal conductivity of polycrystalline β-Ga2O3 [157,203]. SOI MOS-
FETs on diamond exhibited higher drain currents of 980 mA mm−1 and a 60% reduction in
temperature rise compared to similar devices on a sapphire substrate (Figure 16c) [73,154].
Additionally, a study on various device thermal-cooling methods concluded that the best
performing solution in terms of the lowest temperature rise and thermal resistance con-
sisted of cooling devices from the top contact nearest to the junction, named junction-side
cooling, through flip-chip hetero-integration via thermal bumps to a diamond carrier,
and NCD passivation with a thermal conductivity of 400 W m−1 K−1, labeled as FC3 in
Figure 16d [204].
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Figure 16. Thermal studies using AlN, SiC, and diamond. (a) SOI FET on an AlN/Si substrate show-
ing effective heat dissipation when comparing DC and pulsed I-V. Reprinted from [71]. (b) SiC/GO
composite wafer MOSFET with significant reduced temperatures at high power densities. Reprinted
with permission from [72]. Copyright 2023 American Chemical Society. (c) MOSFET with diamond
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sion caused by self-heating. Reproduced from [73]. CC BY 4.0. (d) Simulation and comparison of
device-level cooling methods. © (2019) IEEE. Reprinted with permission from [204].

3.3. Source and Drain Ohmic Contacts

This section covers the design of ohmic contacts, including metals, processes, and
techniques, to decrease contact resistance and improve ohmic behavior.

3.3.1. Metals and Processes

By far, the most common metal stacks for ohmic contact formation are Ti/Au or
Ti/Al/Ni/Au due to the low metal work function of Ti (≈4.3 eV) [101,205]. In the earliest
reports of β-Ga2O3 devices, BCl3 RIE was performed following metal evaporation and
lift-off [206], but more recent reports use RTA at 400–500 ◦C for 1 min in N2. Comprehensive
studies on the Ti/Au interfacial reactions found that the interdiffusion of Ti and Au, as
well as a thin Ti-TiOx interlayer partially lattice-matched to β-Ga2O3, is responsible for
ohmic contact formation (Figure 17a) [207,208]. Additionally, Si ion implantation and
RIE improved the thermal stability and lowered resistivity in Ti/Au ohmic contacts [209].
Ti/Au ohmic contacts were observed to perform better in the (001) and (−201) orientations
compared to (010), potentially due to more dangling bonds and higher surface energy in
the (001) and (−201) directions [210].

Yao et al. investigated the capability of forming ohmic contacts with various metals
such as Ti, In, Ag, Sn, W, Mo, Sc, Zn, and Zr, with and without an Au capping layer,
concluding that Ti/Au with RTA at 400 ◦C for 1 min in Ar resulted in ohmic behavior
with the lowest contact resistance [211]. Temperatures at 500+ ◦C degraded the Ti/Au
contact and increased the resistivity. In, with its work function of 4.1 eV, also showed ohmic
behavior after annealing at 600 ◦C for 1 min in Ar, but is not practical due to its low melting
point. All other metals exhibited pseudo-ohmic or non-ohmic behavior, concluding that
Ti/Au is the ideal metal stack of the nine used.

Other metals that have been found to form ohmic contacts on β-Ga2O3 are Mg/Au,
with a work function of 3.8 eV [212]. The electrode resistance was found to increase with
increasing annealing temperature from 300 to 500 ◦C due to Mg oxidation. Annealing
at 300 ◦C and 500 ◦C found that the current density was not consistent 37 days later,
while that at 400 ◦C was the same, indicating long-term stability. In order to withstand
high temperatures, a refractory metal alloy TiW ohmic contact is feasible to highly doped
(1 × 1019 cm−3) β-Ga2O3 [213].
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Figure 17. (a) Formation of a defective β-Ga2O3 and TiOx layer enabling ohmic contacts. Reproduced
from [207]; licensed under a Creative Commons Attribution (CC BY) license. (b) Effective doping
vs. annealing temperatures of Si implantation and I-V curves for various Si concentrations after
annealing at 950 ◦C. Reproduced from [214]. © The Japan Society of Applied Physics. Reproduced
with the permission of IOP Publishing Ltd. All rights reserved. (c) Regrown ohmic contacts reducing
contact resistance as shown through TLM measurements of the regrown layer (TLM-A) and to the
channel layer (TLM-B). Reproduced from [107]. © The Japan Society of Applied Physics. Reproduced
with the permission of IOP Publishing Ltd. All rights reserved.

3.3.2. Improvements

Decreasing the ohmic contact resistance improves both low- and high-frequency
performance and is thus a critical component of FET design.

Ion Implantation

Si ion implantation was the first technique, starting in 2013 [214,215], to reduce con-
tact resistance, and has been used in many future FET designs to form n+ layers in the
source/drain regions before metal evaporation. In β-Ga2O3, ion implantation is achieved
by first depositing a thick cap layer and patterning to expose the implant regions. Secondly,
the implant depth and dose must be determined iteratively, followed by ion activation.
For Si implantation, ions are typically activated at 900–950 ◦C for 30 min in N2 [66,216].
Figure 17b shows the annealing temperature effects on Si ion implant concentrations rang-
ing from 1019 to 1020 cm−3, with an ideal temperature window in the range of 900–1000 ◦C.
The I-V curves show the least resistance at a Si concentration of 5 × 1019 cm−3 for annealing
at 950 ◦C [214]. Some use various implant steps for either more conductive regions or
for semi-insulating dopants, like N or Mg, such as in CBL formation or some E-mode
FETs [112,128,174,175]. Ge ion implantation for n+ regions has recently been investigated
with pulsed RTA from 900 to 1200 ◦C for dopant activation. While one of the lowest
specific contact resistivity (ρC) values of 4.8 × 10−7 Ω cm2 was reported at 1100 ◦C, a strong
redistribution of the ions was observed along with an increased surface roughness [217].

Regrown Layers

Regrown layers are an alternative to ion implantation that avoid damage caused
by the high-energy ions and high annealing temperatures. The fabrication process for
regrown layers is outlined as follows: a sacrificial layer (typically SiO2) is patterned,
followed by etching through the SiO2 and a portion of the epitaxial layer in the exposed
source/drain regions. The sample is then placed in a growth chamber, and an n+ layer for
ohmic contact evaporation is grown, followed by wet-etching the sacrificial layer to lift-off
the regrown layers outside the source/drain regions [104,107–109,187,189,218]. Besides
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avoiding the damage caused by ion implantation, regrown layers are commonly used to
contact a 2DEG in a delta-doped FET or MODFET. Initial Si delta doping before regrowth
is used to neutralize any F− ions, incorporated during dry etching, that could deplete the
channel, confirmed to have low contact resistance using the transfer length method (TLM)
(Figure 17c [107]). Recently, ultra-low ρC values for both β-Ga2O3 and β-(AlxGa1−x)2O3 of
1.62 × 10−7 Ω cm2 and 5.86 × 10−6 Ω cm2, respectively, have been reported, using dopings
up to 3.2 × 1020 cm−3 [219].

Intermediate Layers

In WBG semiconductors, adding intermediate layers with lower bandgaps and/or
higher doping concentrations can reduce the barrier for carrier transport to and from the
contact. In β-Ga2O3, the most common intermediate layers are indium–tin–oxide (ITO)
and aluminum–zinc–oxide (AZO). Both ITO and AZO, deposited via sputtering, have been
used to form ohmic contacts. The ohmic contacts were formed on a 2 × 1017–3 × 1017 cm−3

doped β-Ga2O3 epi with varying annealing temperatures of 900–1150 ◦C and 500–600 ◦C
for ITO [220,221], and 400–600 ◦C for AZO [222].

Diffusion Doping (Spin-on-Glass)

Diffusion doping, or spin-on-glass (SOG) doping, is one of the least common ways
to both dope β-Ga2O3 and improve ohmic contact resistance. It provides a lower-cost
and simpler fabrication process than the typical ion implantation or regrowth methods,
as well as more predictable diffusion during activation and peak doping at the surface,
ideal for ohmic contacts. The process begins with Sn-doped SOG spin-coated on a β-Ga2O3
epi layer and RTA at 1200 ◦C for 3–5 min in N2 to activate the dopants, followed by the
removal of the SOG layer via dipping in buffered HF (BFH) for 10 min. A low ρC of
2.1 × 10−5 Ω cm2 was reported, and lateral MOSFETs reported improved peak current
density and transconductance as well as a high thermal stability up to 200 ◦C using
SOG [223,224].

3.4. Gate Dielectrics
3.4.1. Materials and Processes

The choice of gate dielectric material is vital to high-performing β-Ga2O3 FETs. The
main material used is (PA)-ALD Al2O3 because of its large bandgap of 6.4–6.9 eV, with
both electron- and hole-blocking capabilities, and similar composition to β-Ga2O3 [225].
The first MOSFETs, as well as many of the MOSFETs discussed previously, use Al2O3 as
their gate dielectric [205,215]. While the main deposition method is (PA)-ALD, some initial
reports of using in situ MOCVD-grown Al2O3 immediately after β-Ga2O3 epi growth have
garnered attention, measuring lower interface defect densities and higher-quality Al2O3 to
improve breakdown characteristics [226,227].

The second most common gate dielectric is SiO2, with the advantage of a higher
bandgap around 9 eV but a lower dielectric constant, which becomes important in dis-
tributing electric field profiles, discussed later. The deposition of SiO2 can be performed
either via PECVD or ALD [129,130].

Low defect densities have been reported for Al2O3 using solvent, O2 plasma, piranha,
and BHF surface cleaning before ALD deposition and in situ forming-gas post-deposition
annealing (PDA) at 250 ◦C [228], as well as SiO2 with a solvent only [229] or both solvent
and piranha cleaning [230].

3.4.2. p-Gates

The more recently investigated gate dielectrics are p-type materials. The main ma-
terials used are p-NiO, p-GaN, and p-SnO. P-gated FETs, referred to as heterojunction
FETs (HJ-FETs), are unique in that they provide vertical channel depletion for pinch-off
while also increasing Vbr due to the pn junction between the gate and channel. This allows
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for thicker and higher doped channel regions, leading to higher currents and lower Ron,
without a reduction in Vbr.

p-NiO

P-NiO has gained significant attention as a candidate for pn heterojunctions, with
a wide bandgap of 3.7–4.0 eV and controllable p-doping in the range of 1016–1019 cm−3.
Additionally, the highest-recorded BFOM of 13.2 GW cm−2 in β-Ga2O3 was recently
reported on p-NiO/n-β-Ga2O3 heterojunction diodes [231]. P-NiO is typically sputtered
at room temperature with a hole concentration modulated using the Ar/O2 ratio [75,232].
The theoretical CBO and VBO of p-NiO to β-Ga2O3 is expected to be 2.2 eV and 3.3 eV,
respectively, while experimentally observed values vary greatly due to the polycrystalline
p-NiO from sputtering [74,233]. P-NiO gated FETs have reported BFOMs of 0.39 GW
cm−2 [74], and with incorporated recessed-gate p-NiO bi-layers, a T-gate structure with
a SiO2 FP, and piranha treatment, a negligible hysteresis of 4 mV, an SS of 66 mV dec−1,
and a BFOM of 0.74 GW cm−2 were realized (Figure 18a [75]). The recessed gate is also
useful in creating E-mode FETs [234]. One difficulty, however, is the increased gate leakage
which occurs when the pn junction becomes forward-biased. A proposed solution, studied
initially through TCAD simulations and verified using fabricated devices, is the addition
of a dielectric layer between the p-NiO and gate metal to suppress gate leakage when the
pn junction is forward-biased [76,235]. A 20 nm ALD-SiO2 interlayer reduced the gate
leakage by six orders of magnitude, maintained an on/off ratio of 106, and improved the
gate swing from 3 V to 13 V compared to the non-interlayer FET (Figure 18b).

As an aside, FETs using reduced surface electric field (RESURF) and superjunction (SJ)
techniques incorporating p-NiO have shown to increase breakdown, although more work
is required to improve their BFOMs [236,237].

p-GaN

P-GaN is another material that can be used as a p-gate to β-Ga2O3; however, it has
only been studied in TCAD simulations. Similar to p-NiO, it is primarily to improve Ron
without sacrificing Vbr, as well as to enable normally off operation by depleting the channel
underneath. Increasing the doping and/or thickness of the p-GaN layer increases the Vth,
as more charge is available to deplete the channel [194,238]. Increased p-GaN doping is
shown to have little effect on gm, while an increase in p-GaN thickness reduces gm due
to reduced gate control. In a vertical FinFET, the addition of p-GaN as the gate metal
also improves Vbr when compared to Schottky gate metals such as Ni/Au because of the
higher work function of GaN, leading to a vertical electron barrier of ≈5 eV for p-GaN
gates compared to ≈2.5 eV for a Ni/Au gate metal (Figure 18c). Additionally, the Vbr of
the p-GaN-gate FinFET is more resistant to Wfin increases compared to the Ni/Au-gate
FinFET [239].

p-SnO

MBE-grown p-SnO is reported to have a low bandgap of 0.7 eV and a type-I band
alignment to β-Ga2O3, with CBO and VBO values of 0.49 eV and 3.70 eV, respectively.
However, HJ-FETs have reported breakdown electric fields of ≈2 MV cm−1, possibly due
to the high-quality MBE-grown SnO (Figure 18d) [77,240]. Another report of p-SnO was in
an SOI FET using sputtered p-SnO as a back depletion layer, but not as a gate. This shifted
the Vth to +40 V, and resulted in record high mobilities of 191 cm2 V−1 s−1 (Figure 12b [85]).

3.4.3. High-k Gate Dielectrics

High-k dielectrics are a heavily studied field in β-Ga2O3 devices, particularly for their
incredible field-spreading capability [241]. HfO2, BaTiO3 (BTO), and SrTiO3 (STO) are the
most used high-k dielectrics, where BTO and STO are considered extreme-k dielectrics
because their dielectric constants can be on the order of 300. Early reports of high-k FETs
used ALD-HfO2, but both FETs suffered from high interface trap densities [86,242]. A
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later report of SOI FETs with ALD-HfO2 gate dielectrics reported near-ideal behavior, with
negligible hysteresis, an SS of 64 mV dec−1, and an on/off ratio of 108. This result was
attributed to the high-temperature HfO2 deposition of 350 ◦C, forming a high-quality
polycrystalline layer (Figure 12a [152]).
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Figure 18. (a) P-NiO-gated HJ-FET with BFOM of 0.74 GW cm−2, ultra-low SS, and negligible
hysteresis due to piranha treatment. Reproduced from [75], with the permission of AIP Publishing.
(b) Addition of SiO2 between gate metal and p-NiO increases pn turn-on and enables larger gate
swing. © (2023) IEEE. Reprinted with permission from [76]. (c) EC electron barrier of FinFET with
conventional (Con., blue) Ni/Au gate contact compared with proposed (pro., red) device using
p-GaN as the gate metal, simulated through TCAD. Reproduced from [239]. © IOP Publishing.
Reproduced with permission. All rights reserved. (d) HJ-FET with p-SnO-gate dielectric grown via
PAMBE. Reproduced from [77]. CC BY 4.0.

Xia et al. discuss the ability of extreme-k dielectrics in reducing the peak electric field
and premature breakdown due tunneling by increasing the barrier length in heterojunction
diodes [243]. Kalarickal et al. developed an electrostatic model of extreme-k dielectrics in
FETs using the polarization of the charge to create highly uniform electric field profiles in
the channel and enable both a high sheet charge density and an average breakdown field
(Figure 19a). The modeled FET was then fabricated to show the improvement in the average
breakdown field up to 4 MV cm−1 and a high sheet charge density of 1.6 × 1013 cm−2 using
extreme-k dielectric BTO with a dielectric constant of 235 [78]. Kalarickal et al. improved on
their FET design by first adding a 12.5 nm low-k dielectric of ALD-Al2O3 on the epitaxial
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layer to reduce interface traps and protect the surface during the sputtering of extreme-k
BTO, resulting in an average breakdown field of 5.5 MV cm−1 and a BFOM of 408 MW cm−2

(Figure 19b [79]).

3.4.4. Multi-Stack Gate Dielectrics

As previously mentioned, multi-stack gates can provide the advantages of both ma-
terials, such as in ref. [79], with a low-k Al2O3/extreme-k BTO multi-stack gate dielectric.
Comparisons between the Al2O3/HfO2 and HfO2/Al2O3 gate stacks indicates reduced
gate leakage in the HfO2/Al2O3/β-Ga2O3 because of the better carrier-blocking capability
of the Al2O3. Both stacks show increased dielectric constants and similar Dit [244]. An-
other study comparing polycrystalline (p-)/amorphous (a-) HfO2 with p-HfO2/a-Al2O3
gate stacks showed that the p-HfO2/a-HfO2 stack had a lower Dit, as evidenced by a
distorted energy band in p-HfO2/a-Al2O3, a larger effective barrier height of 1.62 eV, and a
hard breakdown field of 9.1 MV cm−1 compared to 4.9 MV cm−1 of the p-HfO2/a-Al2O3
stack (Figure 19c). The HfO2 bilayer stack also outperforms the single-layer p-HfO2 in
breakdown because of better leakage suppression [245]. Similarly, the higher bandgap
of SiO2 reduced gate leakage by 800× and increased the breakdown electric field by
1.7× when added as an interlayer between Al2O3/β-Ga2O3 [230]. Multi-gate stacks have
also been used for ferroelectric charge storage via Al2O3/Hf0.5Zr0.5O2 (Al2O3/HZO) and
Al2O3/HfO2/Al2O3/HZO, where the HZO polarization traps charge at the Al2O3/HZO
interface for the first stack and in the HfO2 in the second stack (Figure 19d) [87,246].
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© (2021) IEEE. Reprinted with permission from [245]. (d) Ferroelectric charge storage due to multi-
stack gates and polarization trapping by Hf0.5Zr0.5O2. Reproduced from [87], with the permission of
AIP Publishing.
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4. Defect Engineering
4.1. Defects

Defects can severely degrade device performance and reliability and are thus an
important area of study for any semiconductor device. WBG and UWBG semiconductors
such as β-Ga2O3 require somewhat different characterization methods to study deep traps,
since room-temperature and high-temperature measurements still only observe a small
portion of the bandgap, and therefore photon excitation is typically used to obtain trap
information throughout the bandgap. The following discusses many of the various trap
characterization methods for β-Ga2O3, as well as the material preparations used to reduce
traps in β-Ga2O3.

4.1.1. Characterization

Deep-level transient spectroscopy (DLTS) and deep-level optical spectroscopy (DLOS)
are powerful techniques to determine the energies and concentrations of deep-level traps.
DLTS and DLOS are based on the principle that the capture and emission of carriers
from traps in the space charge region (SCR) varies the measured capacitance. Therefore,
capacitance transients are typically used to determine trap energy levels and their capture
and emission rates at a specific energy level, determined by the temperature in DLTS and
photon energy in DLOS. DLOS is required for (U)WBG semiconductors because most
DLTS systems are limited to ≈1 eV below EC or above EV, which is insufficient to fully
characterize (U)WBG materials. The traps found in β-Ga2O3 via DLTS and DLOS are
shown in Figure 20a. More details on the DLTS/DLOS principle and deep-level defects in
β-Ga2O3 are reported in ref. [247].

While DLTS/DLOS mainly characterize bulk traps, photo-assisted C-V (PCV) can be
used for extracting deep-level interface and dielectric bulk traps at β-Ga2O3/dielectric
interfaces. Two main PCV methods have been reported, where the first uses above-bandgap
light and compares ∆V the dark and UV C-V curves vs. surface potential to calculate Dt,
which is the sum of the interface trap state density (Dit) and the dielectric bulk trap density
(nbul). An average Dit is found from the y-intercept of Dt vs. tox (Figure 20b). Note that the
dark CV curve is measured from accumulation to depletion after being held in accumulation
for 10 min for all interface traps to fill. In depletion, the device is exposed to UV light to
excite electrons from all interface traps, and held in depletion for 10 min in the dark after
UV exposure so that the generated holes move to the Al2O3/β-Ga2O3 interface [248]. The
second method uses at least two sub-bandgap light sources to empty interface traps at
two energies below EC. The resulting flatband voltage shift (∆Vfb) determines the Dit. The
second method has the advantage that no e–h pairs are generated, which can be a source of
error, and a more precise Dit can be found as opposed to an average value [249].

A photo I-V characterization method was developed to determine donor and acceptor
interface trap state densities by comparing the subthreshold drain current in dark and UV
conditions, attributing the range Von < VGS < Vfb due to donor traps and Vfb < VGS < Vth
due to acceptor traps [250].

Stress measurements are another trapping-characterization method, where stress I-V
determines the Vth instability and stress C-V quantifies the trapped charge. A study of
stress measurements on a β-Ga2O3 MOSFET observed a logarithmic dependence of Vth
on stress time, as well as full recovery after 365 nm of UV illumination. The stress C-V at
various temperatures also indicated that the trapping followed an inhibition model, where
a trapped electron inhibits neighboring charge trapping due to coulombic repulsion [251].
Monitoring Vth shifts and Ron under positive bias stress (PBS) and negative bias stress
(NBS) can help to identify traps contributing to the FET instability and degradation. This
has been studied in recessed-gate [252], p-NiO-gate [253], and β-Ga2O3/SiC FETs [254].
PBS-induced instability is primarily caused by border traps in the gate oxide, while NBS-
induced instability is attributed to both interface states and border traps [252]. In p-NiO
gated FETs, a high VGS or long stress time permanently negatively shifted the Vth by
ionizing interface dipoles, which neutralized ionized charges in the depletion region [253].
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The PBS of β-Ga2O3/SiC FETs fabricated via H+ ion implantation, as described in [156],
positively shifted the Vth for short stress times due to electron trapping by the interface
and border traps. For longer stress times, however, negative Vth shifts and an increase in
carrier concentration were observed and attributed to the generation of shallow donors by
H+ interstitials or the H passivation of deep-acceptor gallium vacancies [254].
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Figure 20. (a) Bulk trap levels found via DLTS and DLOS. Reproduced from [247]. © IOP Publishing.
Reproduced with permission. All rights reserved. (b) PCV method using above-gap light for Dt and
extrapolation to obtain an average Dit. Reproduced from [248], with the permission of AIP Publishing.
(c) Photo I-V to obtain donor and acceptor interface trap state densities. © (2018) IEEE. Reprinted
with permission from [250]. (d) Stress I-V and trapped charge from stress C-V. Reproduced from [251],
with the permission of AIP Publishing. (e) Pulsed I-V showing current dispersion (left) without
passivation and significant improvement after SiNx passivation (right). (f) Fitted I-V transient to
variable range-hopping mechanism for time constant and temperature-dependent measurements for
activation energy. © (2021) IEEE. Reprinted with permission from [133].

Pulsed I-V, studied in nearly all material systems including SiC and GaN, is useful
in that it can isolate the effects of buffer traps (in the case of drain pulsing) and sur-
face/interface traps (in the case of gate pulsing) [255]. In some β-Ga2O3 studies, the drain
lag had no DC-RF dispersion, while the gate lag exhibited significant current dispersion,
indicating that surface traps near the β-Ga2O3/Al2O3 interface under the gate and in the
drain–gate access region heavily impacted the RF performance, while buffer traps had
minimal effects [96,133]. SiNx passivation is seen to improve current dispersion in gate-lag
measurements. Additionally, the fitting of the drain current transient provides information
on the trap time response and trapping/de-trapping mechanism (Shockley–Read–Hall,
variable range hopping, etc.), and temperature-dependent pulsed measurements can give
trap activation energies.
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4.1.2. Material Preparation

It is widely known in β-Ga2O3 that there is Si contamination at the substrate/epi
interface (Figure 21a), which can create a parasitic secondary channel, adding parasitic
resistance and capacitance [216]. Additionally, the band bending at the substrate/epi inter-
face depletes the channel [109], and semi-insulating impurities can diffuse into the channel
region. Therefore, the growth of a buffer layer is useful in mitigating both the parasitic
channels from Si contamination and channel depletion from the substrate. In delta-doped
MESFETs, Fe-doped semi-insulating substrates reduced both the charge density and mobil-
ity with decreasing buffer thickness as well as increased RF dispersion (Figure 21b [103]). A
secondary-ion mass spectroscopy (SIMS) depth profile showed that Fe impurities diffused
nearly 200 nm into the epi layer, making the buffer thickness a critically important feature
in lateral β-Ga2O3 FETs. To mitigate the effects of the second parasitic channel, a Mg delta-
doping layer was grown at 420 ◦C using a 10 s open/30 s close/10 s open pulsing shutter
scheme near the substrate/epi interface to compensate any Si impurity concentrations
and reduce device leakage. An improved leakage current by six orders of magnitude and
negligible hysteresis in transfer I-V curves was reported (Figure 21c [106]).
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Figure 21. (a) Si concentration peak at the substrate/epi interface. Reproduced from [216]. © The
Japan Society of Applied Physics. Reproduced with the permission of IOP Publishing Ltd. All rights
reserved. (b) Negative effects of impurities from semi-insulating substrates and back depletion on
mobility, charge density, and current dispersion. Reproduced from [103], with the permission of AIP
Publishing. (c) Mg delta doping at substrate/epi interface to compensate Si impurities and reduce
leakage current. Reproduced from [106], with the permission of AIP Publishing. (d) Buffer traps at
EC—0.77 eV only for a 100 nm buffer, and at EC—0.70 eV for both a 100 nm and 600 nm buffer using
CID-DLTS. Reproduced from [105], with the permission of AIP Publishing.

In another study, two buffer trap levels at EC—0.7 eV and EC—0.8 eV, associated
with Fe-doped substrates, were observed using isothermal constant drain current DLTS
(CID-DLTS) (Figure 21d). The former was observed in MESFETs with buffer layers of both
100 nm and 600 nm, while the latter was not seen in the 600 nm buffer layer MESFET,
leading to the conclusion that the trap at EC—0.8 eV is correlated with Fe diffusion into the
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buffer layer, while the trap at EC—0.7 eV is consistent with a point defect source observed
in β-Ga2O3. The RF dispersion was not significantly reduced and an increased Vth variation
was observed in the MESFET with the 600 nm buffer, indicating that the EC—0.7 eV trap
was dominant in Ron degradation and Vth instability [105].

Techniques to reduce defect densities and their effects on device performance in-
clude pre-dielectric deposition cleans, post-deposition (PDA) and post-metallization an-
nealing (PMA), in situ dielectric growth, and MacEtch device fabrication. Piranha treat-
ment has shown to reduce the surface roughness and interface trapped charge, Qit,
from 1.4 × 1012 cm−2 to 3.2 × 1011 cm−2. PDA at 500 ◦C in O2 or N2/O2 after piranha
treatment showed a highly improved interface quality and lowered the average Dit to
2.3 × 1011 cm−2 eV−1 (O2 PDA) [256]. A study of PDA and PMA temperatures on in-
terface quality observed that PMA at 300 ◦C in N2 after low-temperature PDA from
300 ◦C to 600 ◦C shifted the Vfb to near-ideal values and fixed the charge to the order of
1 × 1011 cm−2; however, PMA had little effect when the PDA temperature was increased
from 700 to 900 ◦C due to Ga and Al interdiffusion. PMA significantly reduced the shallow
Dit states for all PDA temperatures (lowest for PDA at 300 ◦C), but had no effect on the
deep Dit. The deep Dit states decreased only with increasing PDA from 300 to 900 ◦C, in
contrast to the increasing density of shallow Dit states with increasing PDA temperature
(Figure 22a [249]). Islam et al. recently reported on a solvent (S), O2 plasma, and piranha
(P) surface-cleaning method, followed by BHF (B) surface etch, PE-ALD Al2O3, and in
situ forming-gas PDA (FG-PDA) at 250 ◦C to achieve a ∆Vfb of 300 mV and 80 mV for
the first and second C-V cycle, respectively, as well as stable accumulation at positive VG,
while other comparative samples showed large first- and/or second-cycle hysteresis and no
accumulation (Figure 22b [228]). Another study on surface damage removal after ICP used
post-tetramethyl ammonium hydroxide (TMAH) and self-reaction etching (SRE) using Ga
flux in an MBE chamber at 900 ◦C, after an observed reduced and negative growth rate with
increased Ga flux, reducing Dit to 7.3 × 1011 cm−2 eV−1 [257]. The SRE method removed
surface damage and improved C-V characteristics (Figure 22c). SRE can be useful when
performing in situ gate dielectric growth, as initially reported by another group, achieving
high breakdown fields of 5.8 MV cm−1 and an average Dit of 6.4 × 1011 cm−2 eV−1 [226].

MacEtch is not quite a material preparation method, but an alternative to FinFET
fabrication that avoids dry-etch-induced damage, with hysteresis of only 9.7 mV and SS of
87.2 mV dec−1 [125].

A negligible hysteresis of 4 mV, µs switching, and a near-record low SS of 66 mV dec−1 was
recently achieved in recessed p-NiOx-gated FETs using only piranha surface treatment [75].
This provides a potential path for maximizing β-Ga2O3 FET performance while maintaining
ultra-low interface defect densities.
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Figure 22. (a) Effects of PDA and PMA on Vfb and Dit. PMA shows improvement in both reducing
fixed charge and shallow Dit, while having little effect on deep Dit. Reproduced from [249], with
the permission of AVS: Science & Technology of Materials, Interfaces, and Processing. (b) First and
second C-V sweeps of MOSCAPs with different surface cleans. SPB with FG-PDA introduces the least
interface defects relative to the others. Reprinted with permission from [228]. (c) PCV comparing SRE
to TMAH for removing ICP damage. Reproduced from [257], with the permission of AIP Publishing.

5. Current Challenges and Major Strategies
5.1. Lack of p-Type Doping

The unavailability of shallow acceptors in β-Ga2O3 prevents the fabrication of ho-
moepitaxy pn diodes, guard rings, and superjunction devices. Heterojunction devices with
p-type materials such p-NiO, p-GaN, p-SnO, and p-CuO2 have been investigated with
some of the highest reported BFOMs, as discussed in the previous sections. Additionally,
the interface properties in p-NiO-gate FETs reveal no hysteresis, low SS, and large mobility,
indicating a high-quality interface and minimal trap scattering. While p-NiO is currently
the most promising of the p-type materials for heterojunctions, its deposition via sputtering
and polycrystallinity can result in nonuniformity and a low yield, which needs further
investigation.

Some groups have reported p-doping using amphoteric Zn and H diffusion (see
Section 2.5); however, such devices have yet to be reported. The feasibility of these tech-
niques in high-performing diodes and FETs need to be verified for these techniques to be
readily adopted in the high-power and RF markets.

5.2. Low Thermal Conductivity

The low thermal conductivity is a major issue in β-Ga2O3 devices, especially for
high-power applications where self-heating is unavoidable. Various thermal studies using
high-thermally conductive substrates have been reported and are discussed in the GO/AlN,
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GO/SiC, and GO/Diamond sections, and illustrated in Figure 16. There seem to be
promising solutions using the hetero-integration of thermally conductive substrates via
SiC ion-cutting technology or via flip-chip to a diamond carrier, thermal bumps, and
NCD passivation.

5.3. Monolithic and Heterogeneous Integration

So far, most β-Ga2O3 devices have been stand-alone; however, it is imperative to
incorporate them within circuitry to fully realize the potential of β-Ga2O3. Monolithic inte-
gration refers to circuitry designed on the same sample, which has so far been demonstrated
with an inverter with SOI D-/E-mode graphene-gated FETs. The amplifier capability of RF
FETs, obtained by determining their gain, output power, and power-added-efficiency using
CW power measurements, highlights the utility of these FETs in integrated circuits (Table 4).
Heterogeneous integration has mainly been realized with SOI FETs on high-thermally
conductive substrates.

While the mechanical exfoliation of β-Ga2O3 nanomembranes is used in most devices,
it is best-suited for proof of concept, and not for large-scale production. For β-Ga2O3,
two methods of wafer-to-wafer bonding have been demonstrated, including ion cutting
using H+ implantation, tested on SiC and Si substrates, [156] and low-temperature fusion
bonding on SiC using a SiNx interlayer [201]. Another heterogeneous integration method
for improved temperature reduction is flip-chip bonding to a diamond carrier, with the
downside that, currently, diamond cannot be supplied in large wafers [204].

5.4. Packaging

Packaging is essentially the next step after device-level thermal management. Experi-
mentally verified cooling methods need to translate accordingly for large-area, packaged
devices. Additionally, both the device-level and package-level thermal management must
be co-designed. One limitation is that device software and package software are difficult to
integrate because each simplifies the results of the other [258].

5.5. Optical Effects and Remote Switching

The large, near-direct bandgap of β-Ga2O3 creates potential for solar-blind deep-
UV (DUV) photodetectors, which is an ongoing area of research in β-Ga2O3-based de-
vices [6,259–261]. The absorption anisotropy due to the complex crystal structure [262], as
well as the strong sub-gap absorption from the conduction band to oxygen and gallium
vacancies [263], remains a challenge for DUV β-Ga2O3 photodetectors. The optical charac-
teristics of β-Ga2O3 may have potential advantages in the remote switching of high-power
RF amplifier circuits. Remote switching is a cost-effective technique that can improve
switching speeds while reducing or eliminating electrical noise. This has been discussed in
GaN-based systems [264–267] and could likewise apply in β-Ga2O3-based systems.

5.6. Requirements in Real Applications

In high-power applications, Ebr and Ron,sp matter less than breakdown voltage and
on-current. Small-area devices with high BFOMs should mainly be used as an in-between
step to fabricate an equivalent large-area device to meet specific current and voltage ratings
for real applications. This can provide further insight into what device optimizations are
needed if the large-area device underperforms.

6. Applications and Trends

β-Ga2O3 FETs are not expected to replace their SiC and GaN counterparts because they
are already commercially available. While this might occur in the future, the current trend
is that high-power β-Ga2O3 FETs, with voltage and current ratings beyond those of GaN
and SiC devices, will be used for ultra-high-power applications such as electric vehicles,
rails, power grids, renewable energy storage, etc. High-power RF FETs can also find use
in electric vehicles, power converters, data centers, and communication applications. The
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emergence of β-Ga2O3 RF FETs is difficult, with their performance still being below that of
GaN HEMTs and newer diamond HEMTs. However, the low-cost melt growth technique,
compared to the high cost of diamond, as well as the higher theoretical vsat than GaN,
both show a promising future for high-frequency β-Ga2O3 devices. High-power β-Ga2O3
FETs have shown higher breakdown fields surpassing the GaN theoretical limit, and so a
potentially more accessible market for RF β-Ga2O3 FETs is mid-frequency (≈tens of GHz),
high-power RF FETs that can outperform high-power GaN RF FETs.

7. Conclusions and Outlook

In conclusion, considerable advancements in β-Ga2O3 FET designs have been made to
push both their high-power and RF capabilities. High-power FETs have shown breakdown
voltages up to 10 kV, current densities of >1 kA cm−2 and 1.5 mA mm−1, and BFOMs of
0.95 GW cm−2. RF FETs have reported high breakdown fields of 5.4 MV cm−1, operating
frequencies up to 48 GHz fmax, and saturation velocities up to 3 × 106 cm s−1. While many
FETs have surpassed the theoretical FOMs of Si, they are still far from those of β-Ga2O3.
From the overview of β-Ga2O3 FETs, the key takeaways are as follows:

(1) The importance of high-quality epitaxial growth and buffer layers cannot be under-
stated. The highest BFOM FET to date also reports one of the highest mobilities of
184 cm2 V−1 s−1, realized through MOCVD varied low/high temperature layers;

(2) The SAG is vital to both high power and RF in that it is used to scale device geometries
and reduce source–gate series resistance. It should be implemented, if possible, in
both lateral and vertical FETs;

(3) For high currents, vertical transistors are preferred because the current scales with the
device area as opposed to the channel thickness, as in lateral devices. FinFETs and
CAVETs show the best results, with FinFETs offering more gate control and reduced
leakage, but increased complexity. MacEtch FinFETs are a non-dry-etching alternative;

(4) Normally off (E-mode) FETs are crucial for power electronics because of their reduced
off-state power loss, fail-safe high-voltage operation, and simplified circuitry for
power switching. The lack of p-type doping, and therefore inversion, in β-Ga2O3 re-
quires approaches such as recessed gates (Section 3.1.3), low-doped channels and CBLs
(Section 3.2.1), small-width FinFETs (Section 3.1.4), oxygen annealing (Section 3.2.2),
and p-gate materials for normally off operation (Section 3.4.2);

(5) FP structures (GFP, SFP) including T-gates are vital to any high-power device. High-k
or extreme-k FP dielectrics are an attractive option to improve breakdown;

(6) SOI FETs can be very useful in conducting studies on thermal, transport, novel gate
dielectrics, etc. However, they are limited in their breakdown voltage and small
sample size. SOI FETs should be considered as a proof of concept with the intent to
apply successful designs into bulk devices;

(7) Novel structures simulated through TCAD, such as vertical trench gates, GAA, air-gap
FPs, HBTs, and others, should be used to evaluate the potential of a design before
fabrication;

(8) RF FETs have been realized in delta-doped MESFETs, AlGO/GO MODFETs, and
HFETs, forming a 2DEG with Si-doped AlGO/UID-GO;

(9) One commonality of RF FETs is their T-gate structure, allowing highly scaled LG while
maintaining low noise figures;

(10) RF FETs have reported high operating frequencies at ≥27 GHz with and without
FP dielectrics;

(11) Ohmic contacts should always utilize some improvements, such as regrowth, ion
implantation, or interlayers;

(12) P-NiO-gate dielectrics show promise in increasing the BFOM, while maintaining high-
quality/low-defect density interfaces. A high-bandgap dielectric should be added to
increase the gate swing beyond the pn turn-on voltage;
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(13) Thermal management is crucial, and the intention to use wafer-bonding techniques or
flip-chips with high-thermally conductive substrates must be implemented to further
enhance device performance;

(14) For high-power applications, an appealing FET design with high FOM(s) should be
fabricated as a large-area device to meet current and breakdown voltage ratings.

Defect characterization is vitally important in β-Ga2O3, and techniques need to be
adapted or invented for UWBG materials. Material preparation is essential to improve
peak performance and must be considered in each step of fabrication.

Device-level and package-level thermal management and modeling is critical in taking
β-Ga2O3 devices to the market. Thermally conductive substrates have experimentally
shown significant drops in peak temperatures, and modeling has indicated that wafer
bonding via flip-chip and junction-side cooling can reduce thermal effects. The device and
package must be designed and optimized simultaneously; however, co-design modeling is
still limited.

Overall, the rapid progress in material quality, fabrication, defect characterization and
mitigation, and thermal management indicates tremendous potential for β-Ga2O3 devices
to quickly enter the power electronics application space once the presented challenges
are addressed.
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