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Abstract: MXenes are a family of two-dimensional nanomaterials. Titanium carbide MXene (Ti3C2Tx-
MXene), reported in 2011, is the first inorganic compound reported among the MXene family. In
the present work, we report on the study of the composition and various physical properties of
Ti3C2Tx-MXene nanomaterial, as well as their temperature evolution, to consider MXenes for space
applications. X-ray diffraction, thermal analysis and mass spectroscopy measurements confirmed
the structure and terminating groups of the MXene surface, revealing a predominant single OH
layer character. The temperature dependence of the specific heat shows a Debye-like character in the
measured range of 2 K–300 K with a linear part below 10 K, characteristic of conduction electrons of
metallic materials. The electron density of states (DOS) calculations for Ti3C2OH-MXene reveal a
significant DOS value at the Fermi level, with a large slope, confirming its metallic character, which is
consistent with the experimental findings. The temperature dependence of electrical resistivity of
the MXene samples was tested for a wide temperature range (3 K–350 K) and shows a decrease on
lowering temperature with an upturn at low temperatures, where negative magnetoresistance is ob-
served. The magnetoresistance versus field is approximately linear and increases its magnitude with
decreasing temperature. The magnetization curves are straight lines with temperature-independent
positive slopes, indicating Pauli paramagnetism due to conduction electrons.

Keywords: MXenes; titanium carbide; low temperature; thermal; magnetoresistance; space applications

1. Introduction

In recent years, with the advent of new nanomaterials, technological developments
using material science studies have attained greater focus. Carbon-based nanomateri-
als [1] dominated such technological developments initially, but with the reporting of
new nanomaterials like boron nitride, molybdenum disulfide and MXenes, the scope for
technology development has enlarged. The unique physical properties of these nanomate-
rials are being utilized for sensing various quasi-static and dynamic phenomena of field
variables like temperature, strain, pressure and magnetic flux. Such sensing devices based
on nanomaterials are being designed for the next phase of human aspiration—outer space.
The challenges of human exploration of outer space involve not just exposure to harsh
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environments compared to Earth, but also a need for new technologies to function in such
environments. Sensor development also needs to catch up with this growing aspiration [2].
And the foundation for any such technological development would be understanding how
the nanomaterials work for a wide operating range of field variables (first in ground-based
studies) such that they can measure and be sustained in outer space. With this motivation,
the present paper focuses on studying the temperature evolution of the composition and
low-temperature electrical, thermal and magnetic properties of an MXene nanomaterial,
namely titanium carbide MXene.

MXenes are a family of two-dimensional (2D) nanomaterials discovered in 2011 [3].
The first compound synthesized by etching aluminum from the titanium aluminum carbide
MAX (Ti3AlC2-MAX) phase compound was titanium carbide MXene (Ti3C2Tx-MXene). The
general convention used for MXenes in the literature is Mn+1XnTx, where M refers to transi-
tion metals (like Ti, V, Mo); X refers to carbides, nitrides or carbonitrides; and Tx refers to
the functional groups (like O, F, OH, Cl) that terminate the surface of MXenes (here n = 1–4).
The physical properties and chemical stability of Ti3C2Tx-MXene have been explored since
its synthesis, and a few of the impressive properties are film-forming ability, good elastic
strength [4,5], high conductivity [6], fast response to dynamic loads [7], electromagnetic
shielding [8], biocompatibility [9], low toxicity [10] and low infrared emissivity [11]. These
properties have led to many applications like sensor development for structural health
monitoring (SHM) [12], wearable health monitoring devices [13], neurobiological sens-
ing [14], multifunctional composite materials [15], antennas [16], energy harvesters [17]
and storage devices [18]. The study of various physical properties of Ti3C2Tx-MXene is still
under progress in the research community. With development of many active and passive
electronics with MXenes (also referred to as MXetronics in the literature [19]) like dielectric
capacitors [20], supercapacitors [21–23], transistors [19], memristors [24], sensors [12], tribo-
electric nanogenerators [25] and piezoelectric electronics [26], the performance of MXenes
in various operating environments is critical for their applications in space technology.
As new applications of MXenes are being envisaged for the space domain, a thorough
experimental study of their thermal and magnetic properties becomes imminent. Such a
study provides a base for tailoring the functionalities of MXene nanomaterials for various
use cases in space exploration.

In this study, Ti3C2Tx-MXene nanomaterial was synthesized using the widely followed
etching method with the combination of lithium fluoride and hydrogen chloride. This was
followed by a minimally intensive layer delamination process that allowed delaminated
Ti3C2Tx-MXene monolayers to be obtained [27,28]. The complete synthesis and processing
method is described in Section 2.1. The colloidal solution of delaminated Ti3C2Tx-MXene
was then vacuum-filtered and vacuum-dried to form MXene films or powders that were
used for investigations in this study. Following this, various methods were employed to
study the material characteristics and various physical properties of Ti3C2Tx-MXene.

The structure of the paper is as follows: Initially, the Ti3C2Tx-MXene material synthesis
and processing steps are described along with various experimental methods employed
in this paper. Then, the results of the X-ray diffraction method employed to confirm
the successful obtaining of Ti3C2Tx-MXene are presented. This is followed by the first
experimental reporting of the temperature dependence (2 K to 300 K) of specific heat of
Ti3C2Tx-MXene. These experimental studies are complemented by theoretical calculations
of the electronic density of states to validate some of the crucial physical properties. Then,
the thermal analysis data along with quadrupole mass spectroscopy results are presented
and discussed. Also, the thermal analysis of aged MXene material, which is new in the
literature, is shown. Then, the temperature dependence of electrical resistivity of the MXene
material is analyzed. A wide range of magnetic fields (−90 kOe to 90 kOe) was applied to
study the magnetoresistance behavior and magnetization curves of the material. Finally,
the impact of these physical properties of Ti3C2Tx-MXene on space technology applications
is discussed. The experimental studies of the physical properties of Ti3C2Tx-MXene in this
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paper are a precursor for the exploration of new technology development for outer space
exploration and for SHM of space structures.

2. Materials and Methods
2.1. Ti3C2Tx-MXene Synthesis and Processing

Ti3C2Tx-MXene was synthesized by in situ hydrogen fluoride formation with a mixture
of lithium fluoride (LiF) and hydrogen chloride (HCl) and using the minimally intensive
layer delamination (MILD) method. This is similar to the guidelines provided in the
literature works [7,27]. First, 1 g of titanium aluminum carbide (Ti3AlC2-MAX compound;
≤40-micron particle size; supplier: Materials Research Center, Kiev, Ukraine) was added
slowly over 5 min into the etchant solution (with the addition of 9 M HCl, Honeywell
Fluka, Charlotte, NC, USA; 1.5 g of LiF, Sigma-Aldrich, Burlington, MA, USA; and 5 mL of
deionized water, Chempur, Seattle, WA, USA) to etch aluminum from Ti3AlC2-MAX phase
compound. The etching reaction was allowed to continue for 24 h with a stirring speed of
350 rpm at 35 ◦C [29,30]. Once the reaction was complete, the suspension was washed with
deionized water by centrifugation at 4500 rpm to cause the powder to settle and decant
the clear supernatant. The washing cycles were repeated until the supernatant reached a
neutral pH value. This MXene suspension contained multilayer Ti3C2Tx-MXene. The MILD
method was employed, involving vigorous shaking for 10 min to obtain a delaminated
Ti3C2Tx-MXene suspension. The suspension then vacuum-filtered to form Ti3C2Tx-MXene
films or powder with a vacuum drying process at 60 ◦C for 24 h before being used for the
experiments presented in this paper. The process diagram of the material synthesis steps is
presented in Figure 1.
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2.2. X-ray Diffraction Study

X-ray diffraction (XRD) was applied to determine the crystal structure of the material.
It was performed in Bragg–Brentano geometry on a Panalytical Empyrean X-ray diffrac-
tometer with Cu Kα radiation on the Ti3AlC2-MAX and Ti3C2Tx-MXene to confirm the
etching of aluminum from the MAX phase compound to form a 2D MXene.

2.3. Specific Heat Measurements

The heat capacity measurements were carried out by a two-tau relaxation method with
the heat capacity option of a Quantum Design PPMS-9 during heating in the temperature
range of 1.85 K–280 K. The Ti3C2Tx-MXene samples were attached and thermally coupled
to addenda with Apiezon N grease. A background signal from the addenda and grease
was recorded versus temperature as a control result after each other measurement was
carried out.

2.4. Thermal Analysis Experiments

The thermal analysis was performed with the use of differential scanning calo-rimetry
DSC-TG using two simultaneous thermal analyzer (STA) models: STA 449 F3 Jupier
(Netzsch company, Selb, Germany) at the Faculty Laboratory of Thermophysical Research
at Faculty of Material Science and Ceramics AGH University of Krakow and STA 449 F3
Jupiter equipped with quadrupole mass spectrometer QMS 403 C Aelos (Netzsch). The
measurement was carried out in an alumina crucible with a lid. The heating rate was
10 K/min from RT to 1073 K in argon flow. Three types of data were recorded: thermal
effect heat flow, thermogravimetry and released gases from the sample. The OH, H2O, H2,
F and Cl released from the sample were analyzed as a result of MAX phase chemical etching
and liquid composition for 2D material preparation. The results were interpreted in terms
of MXene terminating groups and their influence on the physical properties of MXenes.

2.5. Electrical Resistivity and Magnetoresistance Measurements

The temperature dependence of electrical resistivity was studied with a Quantum
Design Physical Property Measurement system (QD PPMS), San Diego, CA, USA, with
the Thermal Transport and Resistivity option. The system is equipped with a 90 kOe
superconducting magnet, and it can reach temperatures from 2 K up to 400 K for these
options. The sample was powdered and pressed into a Teflon tube with two copper
rods providing continuous compressive force and therefore good thermal and electrical
conductivity. The copper rods were pressed into the Teflon tube at a kilobar pressure
until the resistance between them dropped to the range of hundred ohms. Also, the
magnetoresistance, i.e., the dependence of the electrical resistivity on the applied magnetic
field up to 90 kOe, was studied at selected temperatures.

2.6. Magnetometric Measurements

The magnetometric experiments were carried out on the QD PPMS with the Vibrating
Sample Magnetometer (VSM) option in the temperature range from 3 K to 300 K. The
magnetic hysteresis loop measurements were carried out in the magnetic field range from
−90 to 90 kOe.

3. Results
3.1. X-ray Diffraction Study

The experimental details of the X-ray diffraction (XRD) measurements are provided
in Section 2.2. The confirmation of the successful etching of the Ti3AlC2-MAX to form
Ti3C2Tx-MXene is discussed based on the XRD analysis and with reference to literature
studies [3]. Figure 2 shows the XRD results for both Ti3AlC2-MAX and Ti3C2Tx-MXene.
Line (dotted) 3 indicates the 39◦ peak of the Al-containing plane of the Ti3AlC2-MAX which
vanishes upon etching as described in Section 2.1. Along with the removal of Al, the (002)
peak of Ti3AlC2-MAX shifts from 9.50◦ to 7.10◦ for Ti3C2Tx-MXene, indicated by line 2 and
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line 1 (both dotted), respectively. The shifting of the peak also indicates the intercalation
of water (OH groups) within delaminated Ti3C2-MXene, and for the present case of 7.10◦,
the presence of one hydroxyl layer (monohydrated with d-spacing ~12.4 Å) within the
delaminated Ti3C2Tx-MXene is considered [31]. The (002) peak might vary its position
between 5◦ and 7◦ depending on the relative humidity of the MXene samples after being
subjected to the vacuum-filtration and vacuum-annealing process [31]. This confirms the
successful synthesis of Ti3C2Tx-MXene [27,28]. The XRD analysis of these Ti3C2Tx-MXene
films resulted in only (00l) peaks (where l = 2, 4, 6, etc.) (as per the convention followed by
the MXene research community), as shown in Figure 2.
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Figure 2. XRD results of Ti3AlC2-MAX phase and Ti3C2Tx-MXene. Line 1 represents the shift of peak
(002) of Ti3C2-MXene after the etching of Ti3AlC2-MAX shown by line 2. Line 3 indicates the removal
of Al from the Ti3AlC2-MAX after etching.

3.2. Specific Heat Measurements

The details of the specific heat measurement experiment are provided in Section 2.3.
The temperature dependence of the specific heat (Cp) for the Ti3C2Tx-MXene compound is
shown in Figure 3a,b. The smooth curve indicates that no phase transition occurs through
the temperature range of measurement. To determine the Debye temperature (ΘD) and
Sommerfeld (γ) coefficient conveniently, we approximated the Cp/T versus T2 plot shown
in Figure 3b. A comparison between the Ti3C2Tx-MXene and Ti3AlC2-MAX compounds
is made by also placing the results of specific heat measurements of the Ti3AlC2-MAX
compound in this figure. The electronic specific heat (Sommerfeld) coefficient of Ti3C2Tx-
MXene is non-zero (coordinate of black line crossing the vertical axis in Figure 3b). This
confirms its metallic nature, as predicted theoretically in [32], but the surface termination
will affect its properties, and this in turn is dependent on the synthesis and processing
methods employed [33]. The values of ΘD and γ parameters, namely ΘD = 160.1(3) K and
γ = 2.62(4) J/(mol·K2) obtained in our study, are compared to those determined for Ti3AlC2-
MAX compound, ΘD = 484.2(1.6) K and γ = 4.848(6) J/(mol·K2) [34], respectively. The
much lower Debye temperature of Ti3C2Tx-MXene indicates a much softer lattice structure
of this 2D nanomaterial than that of the parent MAX phase compound. The quantitative
value of specific heat obtained in our study for Ti3C2Tx-MXene (~142 J mol−1K−1) at 273 K
is more than an order of magnitude higher than that of graphene (~7 J mol−1K−1) [35,36].
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3.3. Density of States Calculations

The density of states (DOS) calculations were performed in full-potential WIEN2K
code [37] based on density functional theory (DFT) [38,39] and the generalized gradient
approximation (GGA) [40]. Based on the results presented in the next paragraphs, the
Ti3C2OH stoichiometry was assumed. This is supported by the mass spectroscopy study
showing an order of magnitude higher content of OH groups than other terminating groups
and a single-layered termination resulting from the XRD study. The graphs in Figure 4
present the total and the projected ‘d’ DOS of Ti3AlC2-MAX and Ti3C2OH (structure shown
in Figure 5 [41]) utilizing P63/mmc (ITC 194) and Pnnm (ITC 58) accordingly. The sum
of ‘d’ states for Ti3C2OH was obtained by substitution of the OH group in place of Al in
the MAX phase, and both structures were adjusted by minimizing energy as a function of
volume and lattice parameters. Some Wyckoff positions with free parameters are calculated
as minima of forces on their nuclei. As a result, we can notice a significant difference in
the slope of the total DOS at the Fermi level and similar main ‘d’ states’ contribution to
the total DOS. These calculations also are confirmed by the theoretical literature work
on DOS in [32]. Comparing the resistivity and magnetoresistance of the Ti3AlC2-MAX
phase and the Ti3C2OH-MXene, we realize that despite the similar DOS values, due to the
two-dimensionality of the MXene, the mean free path of the conduction electrons can be
much shorter, corresponding to a much higher resistivity. This would also correspond to a
smaller positive magnetoresistance related to the “curling” of the conduction electrons in
the applied magnetic field than in the respective MAX phase. As the “slopy” shape of DOS
at the Fermi level in the Ti3C2OH-MXene can result in a considerable spin polarization,
which can cause a negative contribution to the magnetoresistance; this tentatively explains
its overall negative sign observed for our Ti3C2Tx-MXene.
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3.4. Thermal Analysis

After the filtration process, the samples of MXenes were subjected to DSC-TG analysis
in argon flow to check the mass change of the samples as a function of temperature.
The results are presented in Figure 6. The thermogravimetric curves of three different
Ti3C2Tx-MXene samples confirm two steps of material mass loss that correspond to water
desorption at low temperatures up to 450 K and the release of OH (hydroxyl) groups at
higher temperatures, 450–750 K. The mass loss proceeds as follows: the first step is 3.5%,
and the second step is up to 5.3%. At temperatures between 550 and 750 K, it is clearly
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visible that there is mostly OH group release and probably hydrogen as well, which is
indicated by the first derivative of the TG curve (Figure 6). It was also confirmed in [42]. It
was found in [42] that the first step is 2.7% mass loss, which relates to physically adsorbed
water release. The second step, 1.4%, and third step, 2.3%, were explained by the release of
CO2, OH groups and F. In the third step, for two samples in our experiments, it is observed
that there is an increase in the sample mass even by 1.2%—Figure 4. This sample behavior
at high temperatures can be explained by [43,44]. Liu [43], who measured the material in air
conditions, describes this effect as a reaction of titanium with oxygen above 750 K and the
generation of CO2. This process accelerates above 870 K, which correlates with our data [43].
In our case, oxygen can come from terminating OH groups. Li [44] divided the whole TG
curve of analysis in argon flow into three stages: first concerning 0.38% mass loss up to
473 K, second 4.48% for the 473–1073 K range and third 2.47% for 1073–1273 K. He showed
only a decrease in sample mass (TG curve) and stated that from 473 K, quasi-2D MXene
structures are formed, which was confirmed by XRD/SEM analysis [44]. Above 1273 K,
this 2D material can react with oxygen impurities coming from argon or OH groups to form
titanium oxide [44]. Li [44] also mentioned that if there is oxygen and F termination, the
TiOF2 compound can be formed in the range of 473–1273 K. This compound could originate
from Ti3C2F2OH formed in the reaction with absorbed H2O and F coming from HF etching
agent [44], which degrades above 473 K first to Ti3C2F2O0.5 due to water removal and in
the second step to Ti3C2F2 with the release of oxygen and fluorine.
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Figure 6. TG-DTG analysis of various MXene samples.

In order to determine what is happening during the heating of the MXene, the gases
coming from the sample were analyzed by quadrupole mass spectroscopy (QMS). The
QMS data of as-received samples are presented in Figures 7 and 8. The removed water
effect is visible as inflection in Figure 7, and OH groups are gradually removed from
the sample with increasing temperature (higher current signal). The data presented in
Figure 8 indicate a release of hydrogen and CO2 at around 700 K. This correlates with
Feng’s experiments [42] and, also importantly, with a small amount of CO2 evolved at 650 K
recorded by QMS (Figure 8b) (above 300 K in Liu paper). The QMS analysis also shows a
signal of Cl and F evolved gases at temperatures above 800 K, and these gases are related
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to remnants of the lithium fluoride and hydrogen chloride etching agents (Figure 8a,b).
The fluorine detected in our measurements was also reported by other researchers [42–44],
but no QMS results were presented. The literature work [44] indicates that the release
of oxygen is easier than that of fluorine due to bond energy, which suggests that in our
case, it can have an influence on CO2 (Figure 8b) and TiO2 formation (Figure 7). In our
case, we record F release (QMS data, Figure 8a) at about 220 K lower temperature than
in the study of Li [44]. A comparison of the overall release intensities for the individual
species shows the predominance of H2O and OH by two orders of magnitude in our MXene
material, so the assumption of the Ti3C2OH structure for the DFT-GGA calculations seems
to be justified, and this can be further used for theoretical calculations of the density of
states. The mass loss at temperatures above 450 K, which is mostly connected with H2O
and OH group release, explains the change in electrical resistivity of MXenes heated to the
temperature 350 K in the cyclic measurement program with heating up and cooling down
steps presented in figure in Section 3.5.
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Figure 8. QMS results for gases released from the sample: (a) F and H2; (b) Cl and CO2. Pecular
regions are marked and discussed in the text.

The thermogravimetric analysis illustrated in Figure 6 in the case of one sample
showed a 1.3% mass gain above 800 K. In order to check what occurs in MXene material
upon aging, the sample was thermally analyzed after 6 months of aging under room
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conditions, and the DSC/TG-QMS results are shown in Figure 9. There is visible evolved
Cl gas but also large quantities of CO2, which is an effect of MXene oxidation. Oxidation
was also recorded on the thermogravimetric curve above 700 K. A pronounced two-step
oxidation can be assigned to the aging process and the corresponding water adsorption.
There are mainly two strong peaks observed in both the CO2 and Cl current signals, but
the first CO2 peak is slightly shifted in temperature towards that of Cl. This means that
the first mass gain and second mass gain correspond to TiO2 formation from MXene with
CO2 gas release—as reported by Liu [43]. During oxidation, Li [44] observed the formation
of anatase, then rutile, and CO2. He proposed a reaction scheme where Ti3C2F2OH with
O2 gives products TiO2 and CO2. Those literature data confirm our mass spectroscopy
analysis results presented in Figure 9. The only difference is that Li observed a decrease in
the sample mass, and we have a mass gain above 700 K. The adsorption of water and the
effect of oxygen on the MXene samples could result in the detection of relative humidity
levels as well as water content in an environment where measurement is performed. This
makes a case for the possibility of humidity sensors and water presence detectors with
MXene sensors in the future.
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3.5. Electrical Resistivity Measurements

The experimental setup for the measurement of the temperature dependence of the
electrical resistivity of Ti3C2Tx-MXene is described in Section 2.5. Figure 10 reports the vari-
ation in the electrical resistivity of the Ti3C2Tx-MXene sample for a continuous temperature
change between 3 K and 350 K. This is compared with the measurement of the variation in
the electrical resistivity of the Ti3AlC2-MAX phase sample. The temperature dependence
of the electrical resistivity of the Ti3AlC2-MAX phase is linear above 75 K with a positive
slope indicating a metallic character of the material. For the Ti3C2Tx-MXene sample, the
slope of the temperature dependency of the electrical resistivity curve is negative below
115 K and positive above it. The downturn of the curve at about 300 K on subsequent
heating indicates the effect of temperature on the desorption of hydroxyl groups or wa-
ter molecules intercalating or terminating with delaminated Ti3C2Tx-MXene during the
vacuum-filtration process. These experimental observations also confirm and validate
the temperature-dependent electrical resistivity behavior of the Ti3C2Tx-MXene sample
reported in the literature work [45].
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Figure 10. Temperature dependence of the resistivity of the Ti3C2Tx-MXene sample (left Y-axis) (cycle
of cooling–heating–cooling) and Ti3AlC2-MAX phase sample (right Y-axis).

The sample of Ti3C2Tx-MXene was cooled down to 3 K from 300 K (points 1 to 2
in Figure 10). Then, the sample was heated to 350 K from 3 K (points 2 to 1 to 3 in
Figure 10) and again cooled down to 3 K (points 3 to 2 in Figure 10). This single-cycle
annealing process indicates a change in the slope of the curve of temperature dependency
of the electrical resistivity of Ti3C2Tx-MXene for the initial cooling and heating process. The
heating of the Ti3C2Tx-MXene sample up to 350 K in vacuum conditions in the experimental
setup results in a reduction in electrical resistivity due to the removal of hydroxyl groups.
This result confirms a similar observation made with the annealing of a Ti3C2Tx-MXene
sample in the literature in [46]. Further, the temperature cycling would follow the same
pattern of a reduction in resistivity with each annealing cycle, thereby providing possible
inputs for learning algorithms as part of new-age sensors that can be connected to real-time
data-driven learning systems for field variable measurement [47–49].

The results presented in the section are for stacked delaminated Ti3C2Tx-MXene with
a vacuum-filtration process, and the positive slope of the resistivity curve is typical for a
metal-type response above 115 K [50]. The low-temperature behavior with a negative slope
of resistivity indicates semiconductor-like behavior (below 115 K). The magnetoresistance
measurements discussed in Section 3.6 shed more light on the low-temperature behavior of
Ti3C2Tx-MXene (indicating negative magnetoresistance due to weak localization). It is also
interesting to note that the changes in the slope of the electrical resistivity curve, depending
on temperature cycling, could be employed to develop devices with switching behavior.
Sensors for cryogenic chambers and low-temperature space environments can only be
constructed from this material for a limited temperature range of operation (3 K–100 K)
due to the variation in the slope that occurs close to 115 K (indicated by the dotted line at
point 4 in Figure 10).

3.6. Magnetoresistivity and Magnetization Measurements

The details on the experimental setup for the magnetoresistance measurement are
provided in Section 2.6. The Ti3C2Tx-MXene sample shows a negative magnetoresistance
behavior below 100 K. This is in contrast with Ti3AlC2-MAX phase material [51], as shown
in Figure 11a,b. An increase in the magnitude of MXene magnetoresistance with decreasing
temperature is observed, indicating its possible origin linked to spin-dependent effects. The
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present results are provided for various temperatures below 300 K, while only a single 10 K
magnetoresistance measurement has been reported in the literature [45]. It also indicates a
negative magnetoresistance of Ti3C2Tx-MXene.
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The magnetization curves obtained for Ti3C2Tx-MXene are shown in Figure 12. They
are straight lines with positive, temperature-independent slopes and no coercivity. This
reveals temperature-independent magnetic susceptibility, characteristic of Pauli paramag-
netism, attributed to conduction band electrons (similarly to the Ti3AlC2 Max phase that
also shows Pauli paramagnetism; see the inset of Figure 12). This indicates the metallic-
ity of our Ti3C2Tx-MXene, confirming the specific heat results and the observation made
in the literature as well [52]. The available theoretical study shows that pure MXenes
could be ferromagnetic [31], but this literature paper neglected the surface termination of
Ti3C2Tx-MXene naturally present after chemical synthesis.
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The presence of impurities due to magnetic stirrer usage during the etching process
might lead to ferromagnetic behavior of Ti3C2Tx-MXene, and for this reason, care should
be taken during the synthesis and processing stage of Ti3C2Tx-MXene. The effect of surface
termination on this electrical property needs more explorations for better control of sensor
devices envisaged using MXenes, although initial work has already been conducted in
the literature [46]. Interestingly, the annealing of Ti3C2Tx-MXene above 773 K may induce
ferromagnetism, as noted by another literature work [53]. It is envisaged to continue the
present studies for higher temperatures (above 300 K) to observe the possible changes in
magnetic properties and behavior of Ti3C2Tx-MXene.

The magnetoresistance properties of Ti3C2Tx-MXene show repeatability for use as
sensors that can measure space environment magnetic fields. A direct use case for such
sensors would be ambient magnetic field sensing for onboard electronics and systems or
for surrounding environment monitoring on space missions where the temperatures may
drop well below 273 K; e.g., on the surface of Europa (moon of Jupiter), the temperature
can be as low as 93 K [54].

4. Conclusions

The significant outcomes of the present paper are the extensive experimental studies
of the composition, structure, magnetization and thermal and magnetoresistive properties
of Ti3C2Tx-MXene and their temperature evolution. These outcomes include the first exper-
imental reporting of the temperature dependence of the specific heat of Ti3C2Tx-MXene,
which reveals a metallic character of this material. The thermal analysis and mass spec-
troscopy data revealed the predominance of hydroxyl-like terminating groups, and the XRD
study showed that the MXene material obtained is a single OH-layer terminated Ti3C2OH.

The temperature dependence of the specific heat of the Ti3C2Tx-MXene studied in-
dicates no phase transition in the measurement region of 2 K to 300 K and reveals a
metallic character of the material with a Debye temperature about three times smaller than
that for the parent MAX phase compound, Ti3AlC2. Also, the Sommerfeld coefficient of
the electronic contribution to the specific heat is nearly two times smaller than that for
the parent Ti3AlC2 material. The specific heat value of Ti3C2Tx-MXene, close to room
temperature, is more than an order of magnitude higher than that of the prominent 2D
nanomaterial graphene.
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The temperature variation of electrical resistivity shows a metallic-like behavior, i.e., a
decrease with decreasing temperature, with an upturn at low temperatures, below 100 K,
where a magnetoresistance of negative sign appears. The temperature cycling studies show
a reduction in the electrical resistivity after the heating of the sample to 350 K and the
subsequent cooling.

The straight-line magnetization curves obtained for various temperatures reveal
the Pauli paramagnetism of the material, which is consistent with our specific heat re-
sults and the observations reported in the literature. The negative magnetoresistance
of Ti3C2Tx-MXene observed for low temperatures is attributed to spin-dependent phe-
nomena. This could be expected as the calculations revealed a large slope of DOS at the
Fermi level, which tentatively explains the negative sign of magnetoresistance as related to
spin-dependent effects.

The presence of water molecules or hydroxyl groups during the synthesis and process-
ing of Ti3C2Tx-MXene affects its properties and their evolution with temperature, which
was observed in the measurements. Water-free methods of synthesis reported in the litera-
ture might help to avoid such influence on the physical properties of Ti3C2Tx-MXene in
future work. Nevertheless, the physical properties measured in the presence of hydroxyl
groups can still provide repeatable patterns for making observations (low-temperature
electrical resistivity), possibly allowing Ti3C2Tx-MXenes to be used for space applications
in the near future.
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