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Abstract: The development of new and high-performing electrode materials for sensing applications
is one of the most intriguing and challenging research fields. There are several ways to approach this
matter, but the use of nanostructured surfaces is among the most promising and highest performing.
Graphene and graphene-related materials have contributed to spreading nanoscience across several
fields in which the combination of morphological and electronic properties exploit their outstanding
electrochemical properties. In this review, we discuss the use of graphene and graphene-like materials
to produce gas sensors, highlighting the most relevant and new advancements in the field, with a
particular focus on the interaction between the gases and the materials.

Keywords: graphene derivatives; electrochemical sensing; graphene tailoring

1. Introduction

The production of highly sensitive materials for electrochemical sensing is a matter
of great relevance for analytic science. Actually, research is focusing on finding the best
trade-off between the performance and the toughness of electrode materials [1]. In this
field, graphene and graphene-related materials (GRMs) can play a game-changing role.

The outstanding electrical properties of graphene combined with its superior me-
chanical and optical properties have attracted great interest in electrochemical sensing
applications due to the achievable sensitivity, rapid response times, and versatility in de-
tecting a wide range of analytes never reached before [2]. The integration of graphene into
electrochemical sensors has led to significant performance improvements in several fields
of application, including environmental science [3], medical diagnostics [4] and quality
control [5]. Graphene’s astonishing performance is due to the improvement of electron
transfer at the electrode interface by a combination of electronic and chemical features [6].
Furthermore, graphene and GRMs’ high mechanical strength and flexibility further con-
tribute to their utility in electrochemical sensing, ensuring the stability and longevity of
sensors even under challenging conditions [7].

The tunability of graphene and GRMs allows their use across several types of sensors,
including amperometric, potentiometric, and impedimetric ones. In amperometric sensing,
the current generated by the electrochemical reaction at the electrode surface is measured
and correlated with the concentration of the analyte. Graphene and GRMs contribute to
sensitivity increments due to the combination of electrical conductivity and large surface
area [8,9]. Potentiometric sensors measure the potential difference between a reference
electrode and a working electrode, and the incorporation of graphene and GRMs enhance
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the stability and selectivity of the sensor, allowing them to be used in pH sensing [10]
or ion detection [11]. Impedimetric sensors exploit changes in the impedance of the
electrode interface upon interaction with the target analyte, and graphene’s conductivity
and charge transport properties increase both the response rate and the sensitivity of
impedimetric sensors [12]. Among all the possible applications, gas detection represents a
critical application of GRMs in electrochemical sensing due to the great deal of attention that
monitoring air quality [13] and ensuring workplace safety [14] have gained. GRM-based
sensors are of particular interest due to their ability to selectively interact with specific
gases that are able to induce changes in the electric signals detected [15]. This ability,
together with the other outstanding properties of GRMs, is of paramount relevance for a
new generation of highly sensitive tough materials for multiple gas sensing.

In this work, we report the most relevant achievements in the GRM-based electrodes
field, focusing on pristine graphene, graphene oxide (GO) and reduced graphene oxide
(rGO) and their tailored derivatives. We summarize the key electronic properties of graphene
and GRMs and diffusely discuss their applications in gas sensing applications, focusing
on CO2, CO, H2, NH3, NOx, H2S and SO2. We provide a concise and easy-to-be-exploited
overview aimed to represent a reference point for researchers interested in approaching
electrochemical sensing using neat and tailored graphene and GRMs in gas sensing.

2. Graphene and GRM Electrical Properties

In agreement with the International Union for Pure and Applied Chemistry Golden
Book, graphene is defined as “a single carbon layer of the graphite structure, describing
its nature by analogy to a polycyclic aromatic hydrocarbon of quasi infinite size” [16].
A pristine graphene layer is composed of a planar arrangement of carbon atoms bonded
through three σ bonds with the p orbitals perpendicular to the sp2 plane, allowing a full
delocalization of the π bonds [17–19]. This is the reason behind graphene’s exceptional
electrical properties, particularly its in-plane electron mobility. At room temperature, the
electron mobility in graphene can reach up to 15,000 cm2 V−1s−1 [20] due to a peculiar
band organization formed by two conical points in the electronic band diagram known as
Dirac points, as shown in Figure 1.

Materials 2024, 17, x FOR PEER REVIEW 3 of 22 
 

 

 
Figure 1. Three-dimensional schematic diagram of band structure near the Fermi level of graphene 
with Dirac points K and K′ highlighted. Reproduced, adapted and reprinted with permission from 
Lavagna et al. [21]. 
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pronounced Hall effect, while multilayer samples show a much weaker gate dependence 
due to the electric field screening promoted by the other layers [23]. Interestingly, the use 
of a high magnetic field combined with cryogenic temperatures induces a quantum Hall 
effect for both holes and electrons [24,25]. The superb electrical properties of graphene are, 
however, counterbalanced by the absence of a band gap. A great effort has been devoted 
to creating graphene-like materials with a proper band gap [26], and solutions such as 
graphene nanoribbons have been developed [27]. Graphene nanoribbons can be shrunk 
by modifying the charge carrier momentum in the transverse direction, resulting in a band 
gap opening based on the ribbon width [28]. Alternatively, graphene can be doped with 
nanostructures and heteroatoms [29]. 

The most popular and useful procedure to dope graphene is oxidation with the 
formation of GO. GO is rich in oxygen functionalities such as epoxide and hydroxyl 
groups on its basal lattice, while carbonyl and carboxylic residues are more abundant on 
the edges, as described by the Lerf-Klinowski model [30]. The electronic properties of GO 
are strictly related to the degree of oxidation, as reported by Krishnamoorthy et al. [31]. 
The increment of GO oxidation induced a reduction of electron mobility [32] as a 
consequence of the introduction of more defects in the lattice structure of graphene. These 
defects act as scattering centers for charge carriers, hindering the smooth movement of 
electrons through the material. Nevertheless, the relationship between oxidation degree 
and electron mobility is a complex mix of factors, such as the oxygen functional groups 
and their distribution on the graphene lattice. Interestingly, GO shows a band gap due to 
the presence of the same defect that reduces the charge carrier’s mobility. The oxygen 
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The linear dispersion around Dirac points contributes to the massless nature of charge
carriers in graphene, allowing them to travel at incredibly high speeds without any sig-
nificant scattering due to the eventual topological disorder due to the temperature [22].
Furthermore, graphene is characterized by a relevant Hall effect, with the plateaus oc-
curring at half integers of 4 e2/h rather than 4 e2/h. Near-ideal graphene sheets show a
pronounced Hall effect, while multilayer samples show a much weaker gate dependence
due to the electric field screening promoted by the other layers [23]. Interestingly, the use
of a high magnetic field combined with cryogenic temperatures induces a quantum Hall
effect for both holes and electrons [24,25]. The superb electrical properties of graphene are,
however, counterbalanced by the absence of a band gap. A great effort has been devoted
to creating graphene-like materials with a proper band gap [26], and solutions such as
graphene nanoribbons have been developed [27]. Graphene nanoribbons can be shrunk by
modifying the charge carrier momentum in the transverse direction, resulting in a band
gap opening based on the ribbon width [28]. Alternatively, graphene can be doped with
nanostructures and heteroatoms [29].

The most popular and useful procedure to dope graphene is oxidation with the
formation of GO. GO is rich in oxygen functionalities such as epoxide and hydroxyl groups
on its basal lattice, while carbonyl and carboxylic residues are more abundant on the edges,
as described by the Lerf-Klinowski model [30]. The electronic properties of GO are strictly
related to the degree of oxidation, as reported by Krishnamoorthy et al. [31]. The increment
of GO oxidation induced a reduction of electron mobility [32] as a consequence of the
introduction of more defects in the lattice structure of graphene. These defects act as
scattering centers for charge carriers, hindering the smooth movement of electrons through
the material. Nevertheless, the relationship between oxidation degree and electron mobility
is a complex mix of factors, such as the oxygen functional groups and their distribution
on the graphene lattice. Interestingly, GO shows a band gap due to the presence of the
same defect that reduces the charge carrier’s mobility. The oxygen functionalities alter
the electronic configuration of the graphene plane, disrupting the π-conjugated system
and forming localized states within the energy band structure of GO, giving rise to a band
gap [33]. The presence of a band gap in GO promotes a semiconducting behavior contrary
to pristine graphene that shows metallic conductivity [34]. This semiconducting behavior
makes graphene oxide well-suited for applications in electronic devices where a controllable
on/off state is essential [35]. An interesting compromise between the conductivity of
pristine graphene and the properties of GO is the reduced form of GO, named rGO. rGO is
produced using harsh reductive processes [36] for decreasing the oxygen residues of GO
and trying to find a balance between pristine graphene and GO with a carbon/oxygen ratio
ranging from 0.4 up to 13 wt% [37]. The electrical properties of rGO are far higher than
those of GO but considerably inferior to graphene, while dispersibility showed an opposite
trend [38].

3. Graphene and Graphene-Related Materials’ Electrochemical Sensing Performance

Graphene and GRMs show several key features that allowed the spread of their use in
electrochemical sensing applications. Firstly, GRMs are highly sensitive to the surrounding
chemical and physical environment [39–41]. This is of particular interest considering the
interaction with gas molecules that are adsorbed on GRMs’ surface [42] that are able to
alter the electronic conductivity [43]. The conductivity alteration induced by adsorbed
gas prevents the correct interaction between the dangling π-orbitals and neighboring
atom orbitals, altering the conduction bands and reducing the charge carrier’s mobility.
This phenomenon can be used to quantify the number of adsorbed molecules through
simple electrochemical measurements in which GRMs represent the working electrode.
Furthermore, the interactions between gaseous molecules and GRMs can be easily tuned
by tuning the graphene functionalization, increasing both the electrochemical performance
and the selectivity of the system. These features, together with a fast response and recovery
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of the electrodes, have boosted the use of GRMs as electrochemical gas sensing platforms,
as summarized in Table 1.

Table 1. Overview of the key features of graphene and GRMs in electrochemical gas sensing.

Gas Material Highlights References

CO2

Chemical vapor-deposited single-layer graphene

■ Poor responsivity.
■ Negligible sensitivity in presence of water.
■ Linear range up 2000 ppm.

[44]

Exfoliated graphite nanoplatelet
■ Good sensitivity in presence of water.
■ Linear range 10–200 ppm. [45]

Double-layer graphene
■ No cross-sensitivity with H2O up to 3% relative

humidity. [46]

GO
■ Cheap.
■ Robust.
■ Linear range 400–4000 ppm.

[47]

rGO
■ Response of up to 71% in N2.
■ Response of up to 15% in air. [48]

Inorganics (zinc, titanium, molybdenum)-tailored
graphene

■ Operating from 10 to 60 ◦C.
■ Operating up to 97% of relative humidity.
■ Linear range 300–1100 ppm.

[49]

CO

Palladium-tailored rGO
■ Operating at 150 ◦C.
■ Operating up to 71% of relative humidity.
■ Linear range 200–1100 ppm.

[50]

Palladium and tin oxide-tailored rGO

■ Slow response rate of 70 s.
■ Operating up to 85% of relative humidity due to

the formation of surface channels.
■ Linear range up to 400 ppm.

[51]

Zinc oxide-tailored rGO

■ Fast response up to 9 s.
■ Response of up to 82%.
■ Recovery time of 14 s.
■ Linear range 1–1000 ppm.

[52]

Manganese oxide-tailored rGO
■ Fast response up to 3 s.
■ Response up to 70 s.
■ Linear range 1–1000 ppm.

[53]

Tin oxide-tailored rGO
■ Good selectivity over ammonia, hydrogen, and

water at 25 ◦C. [54]

Nickel manganate rod-tailored rGO
■ Ultra-low detection limit (0.6–1 ppm).
■ Linear range 20–250 ppm. [55]

Copper oxide-tailored rGO
■ Ultra-low detection limit (0.3 ppm).
■ Slow response rate up to 76 s.
■ Slow recovery up to 247 s.

[56]

Cobalt and iron oxide-tailored rGO
■ Fast response up to 0.5 s.
■ Linear range 10–40,000 ppm. [57]

rGO
■ Response up to 71% with 30 ppm of CO.
■ Sensitivity 10 ppm.
■ Recovery time of up to 30 s.

[58]

Poly(3,4-ethylenedioxythiophene)-tailored GO
■ Recovery of up to 42 s.
■ Linear range 20–270 ppm. [59,60]

Poly(N-methyl pyrrole)-tailored rGO
■ Recovery of up to 36 s.
■ Detection limit of 1 ppm.
■ Linear range 10–275 ppm.

[61]

Metal organic framework-tailored rGO

■ Fast response up to 30 s.
■ Fast recovery up to 70 s.
■ Great durability in CO atmosphere for over

30 days.
■ Sensitivity of 25 ppm.

[62]
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Table 1. Cont.

Gas Material Highlights References

H2

Palladium nanoparticles onto single-layer graphene
■ Response of 33% in 1000 ppm of at H2 25 ◦C.
■ Sensitivity of 20 ppm. [63]

Palladium nanoparticles onto 3D-GRMs
■ Response of 41.9% under 3% H2 at 25 ◦C.
■ Easy to produce. [64]

Platinum nanoparticle-decorated rGO
■ Response of 8% under 0.5% H2 at 50 ◦C.
■ Fast recovery up to 104 s. [65]

Platinum nanoparticles onto 3D-GRMs

■ High sensitivity.
■ Fast response up to 9 s.
■ Fast recovery up to 10 s.
■ Good linearity in the range from 1 to 100 ppm.

[66]

Tin oxide onto platinum nanoparticle-decorated rGO

■ Enhanced response compared with
palladium-decorated rGO.

■ Enhanced sensitivity compared with
palladium-decorated rGO.

[67]

Tungsten-decorated GO
■ Response of 50 mV in presence of H2 (100 ppm).
■ Use in air atmosphere.
■ Detection limit of 11 ppm.

[68]

Zinc oxide-decorated GO
■ Fast response up to 114 s.
■ Short recovery time up to 30 s.
■ Detection limit of 4 ppm.

[69]

H2O

Vertically aligned graphene arrays
■ Sensitivity related to relative humidity.
■ Improved performance for relative humidity over

70%.
[70]

GO
■ Fastest response reported of up to 0.18 s.
■ Recovery time of 0.3 s.
■ Operativity from 37% up to 98% relative humidity.

[71]

Zinc oxide-tailored graphene foam
■ High stability.
■ High regenerability.
■ Linearity from 20% up to 95% relative humidity.

[72]

Zinc oxide-tailored GO
■ Response of up to 1 s.
■ Linearity from 20% up to 95% relative humidity. [73]

Silver nanoparticle-tailored GO
■ Sensitivity of 26 nF/% RH.
■ Linear range from 11% up to 87% relative

humidity.
[74]

N-[4-morpholinecarboximidamidoyl]
carboximidamidoylated GO

■ Response of up 20.
■ Recovery time of 2 s. [75]

NH3

Chemical vapor-deposited graphene ■ Properties related to graphene layer numbers. [76]

GO

■ Properties related to graphene layer numbers.
■ Linear range from 10 to 100 ppm.
■ Single-layer performed better than double- and

multilayer electrodes.

[77]

Fluorinated GO
■ Improvement over 7% performance compared

with GO. [78]

Phosphorous-doped graphene
■ Limit of detection of 69 ppb.
■ Improvement over 70% of electrochemical

performance compared with pristine graphene.
[79]

Aniline-tailored graphene
■ Easy fabrication.
■ Response of 37% in 50 ppm of NH3. [80]

Zinc oxide on rGO
■ Fast response up to 2 s.
■ Fast recovery up to 13 s in 350 ppm of NH3.
■ Detection limit of 10 ppm.

[81]

CuFe2O4-tailored rGO

■ Fast response up to 3 s.
■ Fast recovery up to 6 s.
■ High selectivity (over 5 times) for NH3 in presence

of CH3OH, CO2, benzene.
■ Limit of detection of 5 ppm.

[82]
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Table 1. Cont.

Gas Material Highlights References

NO2

Multilayered porous graphene
■ Selective for NO2 in presence of NH3.
■ Detection limit of 25 ppb.
■ Response independent from relative humidity.

[83]

Silicon-doped graphene

■ High response value of up to 22 in 50 ppm of NO2.
■ Fast response up to 126 s.
■ Fast recovery up to 378 s.
■ Linear range from 18 ppb up to 300 ppm.
■ Good selectivity.

[84]

Phosphorous-doped graphene
■ High response value of up to 59% in 50 ppm

of NO2.
■ Detection limit 1 ppm.

[85]

Metal frameworks on rGO
■ Detection limit 0.7 ppm.
■ Selective for NO2 in presence of NH3.
■ Nonselective for NO2 in presence of NO.

[86]

Cobalt hydroxide-tailored rGO
■ High sensitivity of 70% exposed to 100 ppm

of NO2.
■ Detection limit of 1 ppm.

[87]

Mixed iron and cobalt oxide-tailored graphene
■ Good response of up to 50 s.
■ Detection limit of 1 ppm. [88]

Copper nanoparticle-tailored graphene
■ Great reproducibility.
■ Detection limit of 30 ppb.
■ Slow response.

[89]

H2S

Zinc oxide onto rGO
■ Poor selectivity in presence of NO.
■ Detection limit of 8 ppm. [90]

Tin oxide onto rGO
■ Fast response in 2 s using 50 ppm of H2S.
■ Response up to 30%.
■ Regenerable.

[91]

Cobaltite supported on graphene nanospheres
■ Response of 30% in presence of 50 ppm of H2S.
■ Linear range from 1 to 70 ppm. [92]

SO2

Annealed rGO
■ Stability over 30 days in sulphur dioxide

atmosphere.
■ Detection limit 5 ppm.

[93]

Sheets of GO
■ Moderate response up to 65 s.
■ Fast recovery up to 100 s.
■ Detection limit of up to 15 ppm.

[94]

rGO
■ Response of up to 47% in 50 ppm of SO2.
■ Detection limit of up to 5 ppm. [95]

GRMs showed some key advantages over other 2D materials such as MXenes, mostly
focused on their preparation and tailoring. The synthesis of MXenes is a complex multistage
process that should operate in well-controlled conditions [96] for the production of a
high-quality material, similar to the single-layer graphene process. Nevertheless, GRM
production has been developed and optimized for scalability, as proven by the production
of GO and rGO from a wide range of cheap feedstocks under mild conditions through
robust processes [97–99]. Furthermore, the carbonaceous low-dimensional materials can
exploit a wide range of reactivity, fostering an easy chemical tailoring and preserving their
properties [100].

3.1. Pristine Graphene and GRM Sensing Performance in Electrochemical Gas Detection: CO2
and CO

Monitoring the asphyxiating gases produced from combustion, such as CO2 and CO,
is a relevant safety issue [101]. The main issue of detecting CO2 through electrochemical
sensing is the interference of other species in the atmosphere, such as water, CO and
oxygen. Smith et al. [44] investigated the cross-sensitivity of a capacitive CO2 sensor in the
presence of several residual atmospheres (Ar, H2O, N2) using a chemical vapor-deposited
single-layer graphene. Particularly, the authors investigated the effect of humidity on the



Materials 2024, 17, 303 7 of 20

sensor performance, showing the absence of sensitivity towards CO2 in the presence of
atmospheric-level humidity. The authors simulated through density functional theory
(DFT) calculations the effect of H2O and CO2, showing that the reduction in sensitivity
towards CO2 was due to the electronic alteration of graphene induced by the adsorbed
water molecule. The study of CO2 with GRMs is of great interest for producing high-
performance gas sensors, and it is affected by several key factors, such as doping, as
reported in Figure 2.
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Figure 2. Computational simulation of the interaction between CO2 and graphene or GRMs at 25 ◦C
(carbon atoms were reported as black, oxygen atoms were reported as red and nitrogen ones as blue).
Reprinted with all permission from del Castillo et al. [102].

Castillo et al. [102] investigated the role of heteroatom-doped graphene in sensing
CO2, proving that the presence of nitrogen graphitic sites can alter the local morphology of
graphene sheets and improving the sensitivity towards CO2 over that achievable by using a
Pt-decorated electrode. The authors suggested that this was due to the very same nature of
nitrogen graphitic sites that act as p-type doping agents. This induced a pullout of electrons
from CO2, improving the electrocatalytic activity of the nitrogen-doped graphene.

Deji et al. [103] evaluated the effect of boron and phosphorous co-doping of graphene
nanoribbons for direct CO2 detection using first-principle DFT simulation. The authors
reported that phosphorous-doped graphene showed an adsorption energy eight times
higher than pristine material, while the boron-doped one outperformed it. This study is
of particular significance as it assesses the relevance of the doping agent. Additionally,
Elgammal et al. [104] also proved that the support onto which graphene is deposited
affects the sensing process, even if not in such a relevant way. The authors modelled the
performance of graphene supported on silica or sapphire substrates for detecting both CO2
and H2O molecules using DFT simulations. The results showing the differences between
the substrates are in the range of 1 to 10 meV. Interestingly, authors reported that H2O
molecules prefer to be adsorbed onto hollow sites in the center of the graphene hexagonal
moieties, while CO2 molecules prefer sites bridging carbon–carbon bonds or directly on
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top of carbon atoms. Also, the authors reported that the adsorption energy of CO2 was up
to 0.17 eV, while H2O showed values close to 0.09 eV.

The weak interactions between CO2 and graphene are a relevant issue, but several stud-
ies reported the possibility of using GRMs as solid materials for CO2 sensing. Yoon et al. [45]
assembled a CO2 sensor fabricated by mechanical cleavage of nanographite plates. The
authors were able to detect CO2 at room temperature in the presence of water (humid con-
ditions), observing a linear response of conductance in the range between 10 and 100 ppm.
Fan et al. [46] used a double-layer impedimetric electrode for the detection of CO2 without
observing any significant influence of H2O for relative humidity (RH) up to 3%. The
authors also proved that double-layer graphene performed better than single-layer due to
the different spatial distribution of the electronic density.

GRMs have also been diffusely used for improving the interaction with CO2.
Akhter et al. [47] designed a low-cost, low-power, miniature, highly sensitive and selective
impedimetric CO2 sensor using GO. The authors reported a linear range from 400 ppm to
4000 ppm with good performance in reproducibility and stability. Furthermore, they also
achieved a very negligible cross-sensitivity with H2O and a fast response and recovery rate.
Muhammad Hafiz et al. [48] used rGO produced by hydrogen plasma as an impedimetric
sensor. The authors reported a CO2 gas-sensing response of 71% (calculated as resistance
variation of the electrode) in the presence of a CO2 concentration up to 1500 ppm in N2 and
37% RH, while the performance decreased down to a response of 15% in air environment
with 68% RH. Nevertheless, the sensor showed a fast response and a good recovery rate.
Alternatively, GRMs that include metal species can be used, as reported by Miao et al. [49].
The authors developed a platform system able to operate from 10 up to 60 ◦C with 97% RH
and a CO2 linear response ranging from 300 up to 1100 ppm.

CO showed a different interaction geometry with graphene, as reported by the com-
putational study of Dindorkar et al. [105] and summarized in Figure 3.
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While CO2 preferentially interacts with carbon atoms, the CO preferential interaction
is with the edges of graphene sheets (Figure 2). The authors also found that CO interacts
directly with carbon atoms but only in highly doped fragments containing silicon carbide
or boron nitride domains. Similar effects were reported in the presence of GO by Deji and
co-workers [106] that also proved the effectiveness of the tailoring process, with metal
nanoparticles decreasing the adsorption energy up to 40 times compared with pristine
graphene [107]. Metal oxides combined with graphene and GRMs are able to form p-n
junctions, increasing the conductivity and improving sensing performance [108]. When
it comes to CO sensing, Pd has shown the most remarkable performance, as reported
by Kashyap et al. [50], using palladium-tailored rGO as an impedimetric sensor. The
authors tested the response to CO in the presence of both CH4 and H2, suggesting that
the interaction mechanism of CO was lying between the sole interactions with electron
withdrawing or electron donating. As reported by Shojaee et al. [51], the combination
of Pd with a metal oxide such as SnO2 could be particularly beneficial for both response
and recovery, improving, at the same time, the specific surface area of the material. The
authors also provided an overview of the effect of RH on a 400 ppm CO sample analysis,
reporting a decrement of response for RH up to 60%. They ascribed this behavior to the
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competitive adsorption of CO and water molecules on the Pd and SnO2. A further RH
increment of up to 85% induced a considerable increment of electrode response due to the
formation of surface conductive channels [67]. The surface porosity was also investigated
by Ha et al. [52] using ZnO nanoparticles onto rGO. The authors achieved an electrode
response value of 85% for 1000 ppm CO at 200 ◦C, with a recovery time of 9 s. Similarly,
the response value, response time, and recovery time of the sensor at room temperature
were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to
various CO concentrations in the range of 1–1000 ppm and good selectivity towards CO gas.
In addition, the sensor exhibited good repeatability in multicycle and long-term stability.
Neetha et al. [53] decorated rGO with Mn3O4, achieving a response time of only 3 s at 25 ◦C
using 50 ppm of CO. Similar results were obtained using SnO2 on graphene [54], CuO on
rGO [56] and mixed metal oxide over rGO [55,57].

Nevertheless, inorganic tailoring is not a mandatory condition for detecting CO. rGO
by itself can act as an active material for the detection of CO, as reported by Panda et al. [58].
The authors achieved a 71% sensitivity using 30 ppm CO at room temperature (RT),
with a recovery time of up to 30 s and a remarkable sensitivity of up to 10 ppm. The
authors suggested that the performance was due to the in situ production of atomic,
ionic, and radical oxygen sites, which play a relevant role in both the adsorption of CO and
electronic density rearmament. Furthermore, GRMs can be functionalized with polymers, as
reported by Farea and co-workers [59,60] and by Mohammed et al. [61], or by metal organic
frameworks boosting the overall CO sensing performance, as reported by More et al. [62].

3.2. Pristine Graphene and GRM Sensing Performance in Electrochemical Gas Detection: H2

H2 is among the most elusive gases to be detected, and neat graphene cannot be used
for direct sensing of it. The most common strategy for H2 sensing is tailoring the GRM
surface with metal nanoparticles, activating a mechanism known as spillover, as reported
in Figure 4.
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H2 spillover is a complex phenomenon occurring when H2 molecules dissociate onto
a metal particle and diffuse as atomic hydrogen to the graphene support, while the second
spillover involves a further transportation towards the carbon support. This behavior can
be modulated by the introduction of layered GRMs, as reported by Kumar et al. [110], who
modelled H2 sensing in a GRM containing a layer of antimonene. DFT calculations showed
the presence of a Bader charge transfer mechanism from the antimonene layer towards the
graphene one that was able to change the potential barrier from the Ohmic to the Schottky
type. Moving to tailored GRMs, Pd and Pt are the higher-performing metals due to their
ability to interact with hydrogen through adsorption and release processes [111–118]. As
reported by Kishnani et al. [119], palladium-doped or -decorated graphene is very effective
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in sensing H2. Particularly, the authors reported a higher electrochemical activity and
conductivity for palladium-decorated graphene compared with the palladium-doped one,
while the charge transfer and recovery time showed an opposite trend. Chung et al. [63]
decorated a single-layer graphene sheet with palladium nanoparticles of 3 nm of average
size. The authors reported a response of 33% using 1000 ppm of H2 at 25 ◦C and a
remarkable detection limit of 20 ppm. The effect of palladium active centers was also
observed by Lange et al. [120] using cyclic voltammetry without providing any highlights
on the mechanism. Lee et al. [64] incorporated palladium nanoparticles into a 3D-GRM
structure, reaching a response of 41.9% under 3% H2 residual atmosphere.

Platinum has also been investigated as a viable alternative to palladium. Lu et al. [65]
decorated rGO with platinum nanoparticles by using freeze-drying-assisted techniques,
reaching a sensitivity toward 0.5% hydrogen up to 8% and a recovery time of 63 s. Similarly,
Lee et al. [64] and Phan and co-workers [66] produced a highly porous 3D-GRM contain-
ing platinum nanoparticles, achieving good linearity from 1 to 100 ppm. As reported
by Russo et al. [67], the addition of SnO2 to palladium-decorated rGO was particularly
beneficial, enhancing the response of palladium-decorated GRMs over four times. The
authors suggested that the enhancement of sensing performance was due to the formation
of a heterojunction between the n-type SnO2 and the p-type rGO in the heterostructure,
boosting the catalytic effect of platinum in promoting the dissociation of H2.

Non-noble metal oxides have also been used extensively coupled with GRMs for H2
detection. Ahmad Fauzi et al. [68] decorated a proton-conducting GO membrane with
WO3, producing a potentiometric H2 sensor. The authors claimed a response of 50 mV in
the presence of H2 100 ppm in air atmosphere and a detection limit of 11 ppm. ZnO was
also used with GO, with interesting results, as reported by Rasch et al. [69]. The authors
achieved a very low detection limit of 4 ppm, with a very fast response of around 114 s and
a small recovery time of 30 s.

3.3. Pristinine Graphene and GRM Sensing Performance in Electrochemical Gas Detection: H2O

Humidity sensors play a critical role in several industrial sectors, such as semiconduc-
tor production, in which moisture content in the air is a critical parameter [121]. GRMs
provide interesting solutions to detecting the moisture content of air, even at low concentra-
tions, due to the interaction occurring between the graphene surface and H2O molecules,
as sketched in Figure 5.
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Figure 5. Computational simulation of the interaction between H2O and graphene at 25 ◦C in
(a) vacancy defect, (b) 5–7 defect and (c) close to hole defect. Reprinted with all permission from
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As reported in Figure 3, H2O molecules interact with graphene sheets without bonding
and only through weak interactions with a distance of 2.5 Å and a higher deformation due
to the interaction close to hole defects (Figure 5c), while the other cases (Figure 3a,b) did not
show any significant distortion. Wang et al. [70] utilized vertically aligned graphene arrays
as a humidity sensor platform. The authors observed the rise of system current with the
increment of RH, suggesting a link to the Schottky barrier height with the junction resistance
decrement due to the adsorption of vapor molecules. The authors suggested that the water
molecules act as electron acceptors, increasing the hole density in the graphene systems.
Zeng et al. [71] produced a self-powered H2O flexible sensor with ultrafast response
and recovery time of up to 0.3 s using GO. The authors claimed to have obtained a faster
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response in the field of humidity sensors, and they were able to operate in an RH range from
33 to 98%. Interestingly, they proposed an interpretative model of H+ diffusion occurring
during the sensing process based on Grotthuss hopping [123]. Yu et al. [121] produced a
sensor based on rGO with the highest sensitivity for humidity. The authors suggested that
this exceptional behavior was due to the spherical double surfaces and small pores in the
3D structure of rGO, allowing an optimal exposure of functionalities and a magnification
of H2O interactions. Nevertheless, both GO and rGO suffer several issues, such as cross-
reactivity towards the other gas present in the analyte. Seeneevassen et al. [124] used a GO
sensor to monitor the humidity in an effluent gas, observing that the electrode must be
conditioned before use through several cycles of humidification–dehumidification.

Huang et al. [125] faced the problem of humidity quantification in the agricultural
sector, in which there are many interfering agents. The authors encapsulated rGO under a
layer of GO deposited by spray coating, observing a reduction in cross-sensitivity towards
both NH3 and ethanol and retaining a good response and high sensitivity of up to 0.4%
RH. As for the detection of other species, GRM tailoring significantly helps the sensing
process, as proven by decoration with metal oxides [70,72], metal nanoparticles or organic
fragments [75].

3.4. Pristine Graphene and GRM Sensing Performance in Electrochemical Gas Detection: NH3
and NOx

The detection of NH3 is highly interesting due to the harmfulness of this gas [126,127].
The interaction with graphene is also, in this case, the key to understanding how to optimize
the NH3 sensing process. As shown in Figure 6 [128], NH3 interaction with graphene occurs
mainly through weak hybridizations between graphene and NH3 p orbitals. Accordingly,
NH3 acts as an electron donor, but pristine graphene is not able to promote both good
adsorption and an efficient small transfer charge, resulting in poor detection ability.
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The interaction between NH3 and graphene was evaluated by Song et al. [76]. The
authors investigated the connection between sensitivity and graphene layers using single-
layer, double-layer and multilayer graphene and 12,500 ppm of NH3. The results showed
that the electron transfer is three times higher in single-layer graphene than in the other
species due to the easy rearrangement of charge density. Su et al. [77] used a similar
approach for the production of a GO layered sensor. Also, in this case, the single-layer
material showed the best performance, with a linear range from 5 to 100 ppm and a
sensitivity over 15% greater than the multilayered GO. Among GRMs, fluorinated graphene
also showed remarkable performance for NH3 sensing, showing a 7% change in the resistive
response, while pristine GO did not show any sensing ability [78]. This behavior was due
to the lower Fermi level of GO and to the increment of hole density in fluorinated GO.
Alternatively, Li et al. [79] doped graphene using phosphorous for NH3 sensing. The
authors reported an increment in performance with a reduction in both response and
recovery time up to 71% and 73%, respectively and a detection limit of 69 ppb. Furthermore,
the phosphorous-doped system showed a remarkable combination of repeatability, stability,
and selectivity. The functionalization using both organic [80] and inorganic [81,82] species
is also, in this case, a powerful tool for enhancing the electrochemical properties of GRMs.

NOx species represent the other great family of hazardous nitrogen-based gases [129].
Matatagui et al. [83] faced the issue represented by the detection of NO2 in the presence of
NH3 using a multilayered porous graphene electrode. After photoactivation, the authors
reported a change in resistance of 16% in the presence of 0.5 ppm NO2, with a detection
limit of around 25 ppb. Interestingly, the response to both NH3 (50 ppm) and H2O (TH 33%)
is negligible. The graphene decoration allowed for further improvement in the performance
of the sensor by including silicon [84] or phosphorus [85], reaching a response of up to 22%
and 59% resistance change using 50 ppm of NO2.

Duy et al. [86] deeply explored the tailoring of the rGO surface with metal frameworks,
including TiO2 nanoparticles and WO3, WS2, and MoS2 nanoflakes using cellulose as a
binder. The authors reported a sensitivity boost towards NO2, improving the detection limit
up to 0.7 ppm using MoS2 nanoflakes. ZnO oxide nanoparticles have also been diffusely
used for the same scope [130–132] with poor results if compared with other nanostructures,
such as cobalt supported on rGO [87], chromium-tailored graphene [133], and mixed iron
and cobalt oxide [88] or copper [89] onto graphene.

3.5. Pristine Graphene and GRM Sensing Performance in Electrochemical Gas Detection: H2S
and SO2

As previously described for NH3, the interaction between GRMs and H2S or SO2 oc-
curs mainly by p-orbital interactions with the π graphene system. As shown in Figure 7a,b,
H2S or SO2 interact with different geometry and distances due to the differences in the elec-
tron acceptor behavior of SO2, while H2S acts as an electron donor. Nevertheless, pristine
graphene is only poorly able to detect them as a consequence of very weak interactions
with them [134].

As reported in the computational research carried out by Liu et al. [87], the insertion of
a dopant agent such as aluminum atoms together with Stone–Wales defects can be beneficial
for boosting the adsorption of SO2, and a similar result was reported for H2S [135].

Ugale et al. [90] approached the detection of H2S using ZnO-tailored rGO fibers, reach-
ing a detection limit of 8 ppm but a poor selectivity in the presence of NO. Song et al. [91]
obtained better performance using SnO2 supported on rGO, achieving a 33% response in
2 s using 50 ppm of H2S. Furthermore, this system was totally reversible at 22 ◦C, allow-
ing for long-time use. Similar results were obtained by using Co3O4-tailored graphene
nanospheres [92] or by using copper or WO3 supported on rGO [92]. Even if the H2S and
SO2 sensing using GRMs is a field of great interest for both health and safety, the majority
of the published research is currently focused more on the computational point of view
rather than the applicative process, creating a perilous gap in the research [135].
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It is noteworthy that Kumar et al. [93,95] deeply investigated the utilization of rGO for
the detection of SO2, achieving a limit of detection of up to 5 ppm by using annealed rGO.
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3.6. Future Outlook for Pristine Graphene and GRM Gas Sensors: Wearable Devices

GRM-based gas sensors are still far from being affordable, but they show interesting
perspectives for application in the production of wearable devices [136]. Wearable GRM
gas sensors combine flexibility and light weight, enabling the creation of sensors integrated
into clothing or into accessories and providing a non-intrusive solution for continuous gas
monitoring [137,138].

This sensor family will allow for real-time monitoring, enabling continuous tracking of
environmental and personal exposure to gases [139] and promoting healthcare for several
activities, including those in which workers can be exposed to hazardous gases. As reported
in Figure 8, Peng et al. [140] produced a humidity sensor based on laser-induced graphene
that is stretchable and able to operate in real industrial environments.

The wearable GRM gas sensor has another key feature, i.e., high energy efficiency, that
allows for prolonged usage without the need for frequent recharging [141]. As shown in
Figure 9, Sun et al. produced a GRM-based platform able to exploit several functions, such
as real-time monitoring of temperature, hydration and sweat due to the remarkable water
vapor permeability.

Monitoring using high-performance electrodes will allow a significant improvement
in the safety of operation in vulnerable environments such as the semiconductor and food
industries, where the atmosphere should be continuously monitored, and for chemical
industries operating with complex gas mixtures at high temperatures and pressures.
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4. Conclusions

The field of gas sensors is of paramount relevance for both health and safety. The
development of new high-performance materials is the key to the future of the field, and
GRMs can play a relevant and active role. Nowadays, their superior performance is
counterbalanced by their high cost, but a great effort has been devoted to making their
industrial production more economically feasible. Nevertheless, the usage of GRM-based
gas sensors can easily reach all those applications in which performance is more important
than economics. Furthermore, the field of wearable gas sensors for monitoring both
people’s metabolism and the surrounding environment is a field of application where
GRMs represent the state of the art.

We believe in the near-future scenario in which these materials will reach and improve
other key sectors of daily life.
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