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Abstract: We demonstrate the growth of 3C-SiC with reduced planar defects on a micro-scale compli-
ant substrate. Heteroepitaxial growth of 3C-SiC on trenches with a width and separation of 2 µm,
etched into a Si(001) substrate, is found to suppress defect propagation through the epilayer. Stacking
faults and other planar defects are channeled away from the center of the patterned structures, which
are rounded through the use of H2 annealing at 1100 ◦C. Void formation between the columns
of 3C-SiC growth acts as a termination point for defects, and coalescence of these columns into a
continuous epilayer is promoted through the addition of HCl in the growth phase. The process
of fabricating these compliant substrates utilizes standard processing techniques found within the
semiconductor industry and is independent of the substrate orientation and offcut.
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1. Introduction

Silicon carbide (SiC) is a wide-bandgap compound semiconductor with high electrical
field breakdown and thermal conductivity, which makes it ideal for high-voltage power
electronics and other applications in harsh environments [1]. SiC can exist in a number
of different crystalline forms due to the stacking sequence of the C-Si bilayers; these are
known as polytypes. The hexagonal structured 4H-SiC is highly mature and is available as
single crystal substrates, which when paired with high-temperature homoepitaxial growth,
form the basis for commercially available power electronic devices. The cost of this material,
however, both in terms of the starting substrate and epitaxy, is extremely high and limits
its uptake in mass markets [2].

The cubic form of SiC (3C-SiC) has a zinc-blende (diamond) structure and stabilizes
at lower temperatures than other polytypes, allowing it to be grown on silicon (Si). The
heteroepitaxial growth of 3C-SiC offers many advantages such as low-cost, large-diameter
and high-quality starting Si substrates as well as low epitaxial growth temperatures [3,4].
3C-SiC is of particular importance to power electronics in the 600–1200 V range, as it has a
low built-in voltage [5], which accounts for the low specific on-resistance (Ron.sp) losses
and large 3C-SiC/SiO2 barrier, which potentially support devices’ reliability [6].

However, the heteroepitaxial growth of 3C-SiC on Si is plagued by two main dif-
ficulties. First, the large lattice mismatch (19.7%) between 3C-SiC and Si introduces a
high density of misfit dislocations at the interface and stacking faults that propagate up
throughout the epilayer [7]. Stacking faults and other planar defects including micro-twins
and anti-phase domains are electrically active and cause high levels of leakage currents in
rectifying devices [8,9]. The second issue with heteroepitaxial growth is the high thermal
mismatch (8–20%) between 3C-SiC and the Si substrate, which can lead to high levels of
thermal stress and wafer bow, which increase with epilayer thickness and can leave epi
wafers unsuitable for device fabrication processes [10].
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Defect densities can be reduced in 3C-SiC through the epitaxial growth of thicker
films, due to the self-annihilation of planar defects; however, this increases epitaxy costs
and often increases wafer bow. In addition, this method only reduces the defect density of
the 3C-SiC at the surface and does not improve the crystallinity of the epilayer near the
interface with the substrate.

More novel processes have been explored to reduce the defectiveness of 3C-SiC, such
as the production of substrates suitable for homoepitaxy [11]. Other options include
modifying the structure of the starting Si substrate to suppress defect formation and
promote the annihilation process. Additionally, there are techniques such as patterning the
growth on undulant silicon using diamond slurry [12], growing 3C-SiC on fine-structured
nm-scale hexagonal pillars [13] and trapping defects within inverted Si pyramids [14]. The
growth of 3C-SiC on porous Si has also been explored to improve adhesion and reduce
lattice mismatch between the thin film and substrate [15]. The use of compliant substrates
such as these offers a reduction in defects and also the potential to suppress wafer bow;
however, several of these methods rely on precise fabrication techniques that are dependent
on the substrate’s crystal orientation. Any growth on isolated structures also suffers from
issues with coalescence of the islands into a continuous film and the introduction of further
defects such as anti-phase boundaries [13].

The surface profile of the structures on compliant substrates has been found to have
an important impact on the control of defect propagation, as evidenced by growth on
pyramids or an undulant surface. Flat surfaces and vertical sidewalls may not offer the
ideal template for 3C-SiC growth; however, even with extremely fine patterning processes
such as electron-beam lithography, it is often impossible to eliminate the flat regions of the
substrate in compliant substrates. Additional processing steps may be necessary to further
modify the structure of the patterned silicon prior to epitaxy. One method for achieving this
is through annealing processes. The thermal annealing of Si structures in a H2 atmosphere
causes the surface diffusion of Si atoms and can be used to smooth and round Si patterns.
The extent of this rounding can be controlled with both the annealing temperature and
time [16]. This study investigates the impact that such surface modification has on the
heteroepitaxial growth of 3C-SiC on a patterned Si substrate.

2. Materials and Methods

Trenches of 2 µm width and 2 µm separation (defined as 4 µm pitch) were etched to a
depth of approximately 4 µm into on-axis 100 mm diameter Si(001) substrates using UV
photolithography and reactive ion etch (RIE) processing, with an SF6 and O2 plasma. The
trenches were aligned to the <110> crystal plane directions. Photoresist was removed by
solvent cleaning in acetone before being subjected to an RCA clean. The wafers were then
loaded into an epitaxial reactor, ensuring no contamination was introduced into the growth
system, and the substrate surface was primed for epitaxy.

Epitaxial growth and thermal annealing were performed within an LPE ACIS-M8
reduced-pressure chemical vapor deposition (RP-CVD) reactor at the University of Warwick.
3C-SiC films were grown at a temperature of 1325 ◦C using trichlorosilane (TCS, SiHCl3)
and ethylene (C2H4) with a C/Si ratio of 1.4, within a H2 carrier gas at a growth rate
of ~6 µm/h. A carbonization process was used to initiate the growth of the 3C-SiC,
which involved the deposition of a thin seed layer using C2H4 at a temperature range
starting at 900 ◦C and ramping up to 1140 ◦C. On selected samples, the surface profile
of the trench walls was modified using H2 annealing at 1100 ◦C for 10 min prior to a
carbonization process.

The grown 3C-SiC epilayers were characterized by scanning electron microscopy (SEM)
and cross-sectional transmission electron microscopy (TEM), with transparent electron
cross-sections extracted and polished using a focused ion bean scanning electron microscope
(FIB-SEM). The FIB-SEM process was necessary to extract cross-sections from specific
locations on the epi wafers.
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3. Results
3.1. Annealing of Si Trenches

Dry etching of silicon can lead to unwanted features such as striations along trench
walls and micro-trenches in the base of a trench due to limitations in UV photolithography
and imperfect dry etching processes [17]. Annealing the trenches in H2 modifies the
imperfect profile of the mesa walls, giving them a smooth surface, and thereby eliminates
these features. Annealing at a sufficiently high temperature can facet and round the surfaces
of the Si mesas. Samples not exposed to this baking retain their flat (001)-orientation surface
and base and {110} sidewalls (see Figure 1). In this study, the H2 annealing process was
found to have a minimal effect on the trench depth, with the sample depths measured at
4.2 µm and 4.1 µm before and after annealing, respectively.
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Figure 1. Cross-sectional SEM micrographs highlighting the rounding of the Si trench profile before
and after being subject to 1100 ◦C H2 annealing.

3.2. 3C-SiC Epitaxy

Conformal epitaxial growth of thin layers of 3C-SiC was found in the Si trenches
and on the sidewalls for thin epilayers; however, as the epilayer thickness increased, the
sidewall growth was suppressed and voids formed within and above the trenches (see
Figure 2). We speculate that this was due to the shadowing effect of the epilayers growing
on top of the structures, preventing the flow of precursors into the underlying trenches.
Growth on the Si structures that were rounded through thermal annealing appeared more
disordered than on the unannealed structures and, in either case, no fusion of the separated
epilayers was observed at a growth thickness of 3 µm.
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Figure 2. Cross-sectional SEM micrographs of 500 nm and 3 µm 3C-SiC heteroepitaxially grown on Si
trench structures without annealing (a,b) and after 1100 ◦C H2 annealing (c,d).

Cross-sectional TEM showed that the 3C-SiC grown on both rounded and non-rounded
structures was crystalline; however, a clear difference in defect density could be observed
between the samples (see Figure 3). The rounded surface of the annealed structure was
observed to direct stacking faults away from the center of the peak, resulting in an almost
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defect-free region above the Si structure (see Figure 3e). The selective area electron diffrac-
tion (SAED) patterns showed that while the material close to the Si structure had elements
of hexagonality caused by the high density of stacking faults within the epilayer, the 3C-SiC
growing above the Si structure was monocrystalline in both cases. A clear interface could
be observed between adjacent structures, showing that the layers had not coalesced, and,
in both cases, the sides of the 3C-SiC growth columns were highly disordered.
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3.3. Improving Coalescence with HCl 

Figure 3. Cross-sectional TEM micrographs of 3 µm 3C-SiC grown on Si trench sidewalls without
(a) and with 1100 ◦C H2 annealing (e). SAED patterns of 3C-SiC grown on both structures confirm
that the material above the sidewall profile is monocrystalline (b,f) while 3C-SiC on the surfaces and
sidewalls of the structures shows elements of polycrystallinity and defectiveness (c,d,g,h). 3C-SiC
grown directly on a Si(001) substrate is shown in (i) for comparison.

The stacking fault density in the region above the pillars of each sample was estimated
from TEM images and compared to that of the growth on non-patterned Si (see Figure 4).
The density of stacking faults, based on these local measurements, was found to decrease
for the patterned structures, with a further significant reduction after H2 annealing through
the channeling of planar defects away from the center of the mesa.
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Figure 4. Linear stacking fault density calculated from TEM micrographs at varying depths. The
density of defects for patterned wafers is taken directly above the Si structures.

3.3. Improving Coalescence with HCl

One key limitation of the method described so far is the inability of individual 3C-SiC
columns to fuse with their neighbors and create a coherent epilayer. It has been proposed
that the lack of coalescence of these 3C-SiC films may be due to their thinness; however,
increasing the growth of 3C-SiC to 10 µm did not trigger any fusion. Instead, separate
individual columns of 3C-SiC grew upon each of the Si structures (see Figure 5a). In another
idea, the disordered structure of 3C-SiC is thought to cause the lack of coalescence, and so
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500 sccm of HCl was introduced into the growth process of 3C-SiC to assess the impact of
this etching agent. At typical growth temperatures of 3C-SiC, HCl is found to etch highly
dislocated regions of material faster than ordered crystal areas and, hence, can be used to
promote the faceted growth of 3C-SiC [18]. In the case of growth on Si(001), the addition
of sufficient HCl increased the prevalence of the 3C(001) and 3C(111) surfaces. When
these regions met, they were observed to coalesce much more effectively (see Figure 5b).
Al doping markers were grown in situ during the epitaxial growth of the 10 µm 3C-SiC
epilayer with additional HCl at every 2 µm of growth to highlight the growth evolution of
the film when observed by SEM. Even with the H2 annealing process, the growth fronts
were found to be the (001) and (111) crystal planes, and the length of (001) was found to
increase as the epilayer increased in thickness, indicating the fusion of the (111) planes.
Were this epilayer to be grown up to >10 µm, a flat epilayer surface may be achieved, as
the (111) planes may fuse together entirely.
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1100 ◦C H2 annealing without HCl (a) and with additional HCl (b) during epitaxy. The growth fronts
of one column are highlighted in red to show the growth evolution.

Further optimization of this growth process is required to improve the coalescence of
these columns and to improve the surface morphology of the layer. Increasing the flow of
HCl will impact the prevalence on different 3C-SiC growth fronts; however, improvement
could also be achieved by modifying the aspect ratio of the mesas and trench separation.
Chemical mechanical polishing (CMP) could be employed to give a smooth top surface,
making the material suitable for further epitaxy, wafer bonding or device fabrication, as
well as producing a high density of voids at the 3C-SiC/Si interfaces on the patterned
structures due to the increased Si surface area.

4. Discussion

The growth of 3C-SiC on patterned substrates leads to a reduction in the stacking fault
density by trapping defects at the sidewalls of 3C-SiC columns. A further reduction in
defect density is obtained by modifying the geometry of the Si structures, which can be
achieved through thermal annealing in H2. Rounding the starting Si structure is shown to
generate planar defects, which propagate along the {111} crystal planes that direct away
from the [001] growth direction. Conformal epitaxial growth of 3C-SiC on such micro-
structures begins to form on Si; however, once a thickness comparable to the separation
between structures is obtained, growth within the trenches is suppressed and voids are
formed. These voids act as natural defect termination points and may help reduce thermally
induced wafer bow by breaking up the continuous interface of 3C-SiC/Si.

The challenge with the growth of epilayers on separate structures such as this is
promoting the coalescence of the individual columns into a continuous film; however, this
has been achieved through the introduction of sufficiently high levels of HCl into RP-CVD
during epitaxy, which results in more ordered growth and enables the fusion of layers
grown on the Si structures. A similar technique is used in the process of 4H-SiC trench refill
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epitaxy, whereby additional HCl is added to the epitaxial process to modify the growth
and etch rates of 4H-SiC on different faces of the patterned structure [19,20].

Using a patterned substrate for the epitaxial growth of 3C-SiC has a clear impact
on the formation of planar defects such as stacking faults and micro-twins; however, its
impact on the generation of point defects is unknown. The formation of point defects
in SiC is mainly controlled by the growth rate and temperature as well as the precursor
composition and, as such, compliant substrates have little impact on point defect generation
directly [14]; however, the change in stacking sequence caused by planar defects can lead
to the formation of interstitials, which may be reduced by this technique [21].

5. Conclusions

The density of planar defects in 3C-SiC can be reduced through the use of the demon-
strated micron-scale compliant substrate fabricated by the formation of trenches in a Si(001)
substrate followed by thermal annealing in a H2 atmosphere. The rounded shape of the
Si structure, formed by this annealing process, assists in channeling stacking faults away
from the center of each pillar, thus resulting in an area of lower defect density. Such
areas of 3C-SiC must then fuse with adjacent growth columns to produce a coalesced
thin film, which can be enabled through the selective etching of additional HCl added
into the growth phase. The pattern used in this study included linear trenches, which
limited the investigation to the propagation of defects in one dimension; however, the
technique could be expanded to arrays of pillars, which would enable defect trapping
in both in-plane directions. The method presented offers a low-cost and highly scalable
process for the fabrication of micron-scale compliant substrates for 3C-SiC as it relies solely
on standard semiconductor processing techniques including photolithography and dry
etching. The process does not rely on the crystal orientation and hence could be applied
to other substrates beyond the (001) orientation and with various levels of offcut, which
would help suppress the formation of anti-phase domains.
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