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Abstract: Graphene–silicon Schottky diodes are intriguing devices that straddle the border between
classical models and two-dimensional ones. Many papers have been published in recent years
studying their operation based on the classical model developed for metal–silicon Schottky diodes.
However, the results obtained for diode parameters vary widely in some cases showing very large
deviations with respect to the expected range. This indicates that our understanding of their operation
remains incomplete. When modeling these devices, certain aspects strictly connected with the
quantum mechanical features of both graphene and the interface with silicon play a crucial role and
must be considered. In particular, the dependence of the graphene Fermi level on carrier density, the
relation of the latter with the density of surface states in silicon and the coupling between in-plane
and out-of-plane dynamics in graphene are key aspects for the interpretation of their behavior. Within
the thermionic regime, we estimate the zero-bias Schottky barrier height and the density of silicon
surface states in graphene/type-p silicon diodes by adapting a kown model and extracting ideality
index values close to unity. The ohmic regime, beyond the flat band potential, is modeled with an
empirical law, and the current density appears to be roughly proportional to the electric field at the
silicon interface; moreover, the graphene-to-silicon electron tunneling efficiency drops significantly in
the transition from the thermionic to ohmic regime. We attribute these facts to (donor) silicon surface
states, which tend to be empty in the ohmic regime.

Keywords: graphene/silicon Schottky diode; surface state; diode parameter extraction; modeling;
charge transport; 2D materials; Fermi liquids

1. Introduction

For more than five decades, silicon (Si) has been the principal material for microelec-
tronics thanks to its simple production, low cost and well-defined processing routes. But in
the last 15 years, two-dimensional (2D) materials (TDMs) have taken a lot of attention as
possible candidates for next generation electronics, promising completely novel devices
and a huge impact on several markets [1]. Among others, graphene (Gr) is particularly
attractive because of its excellent electronic properties and because it can be easily inte-
grated into the standard CMOS (Complementary Metal-Oxide Semiconductor) process,
using a back-end-of-line approach. Considering the devices, the Gr/Si Schottky junction
has received a lot of attention, being largely used in different fields of applications, such as
biological and chemical sensing, or as photodetectors, and because it is one of the simplest
conceivable interfaces for the development of the future generation of electronic and op-
toelectronic devices [2]. Therefore, it is important to achieve a deep understanding of the
main physical mechanisms that govern the current transport in these devices, constructing
a model which would aid in predicting their electrical behavior.

The Gr/Si structures show rectifying properties similar to ordinary 3D/3D metal/
semiconductor Schottky diodes, and the methods originally developed for the latter are of-
ten used to probe the features of the former through, e.g., the analysis of the current/voltage
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(I-V) behavior at different temperatures (known as Richardson analysis). But with graphene,
some main important differences cannot be overlooked, such as (i) the dependence of the
Gr Fermi level on the carrier density [2,3] and (ii) the peculiarities in the charge transfer
mechanism between a 2D and a 3D material in a vertical configuration, responsible for the
rather low values of the Richardson constant found for these devices [4].

The last point has been thoroughly considered by Ang et al. [5,6] for Gr/n-type
semiconductor devices, and recent experimental observations have been discussed also
in the light of those results [4]. A further issue that seems not to have drawn enough
consideration in the literature is the role played by the semiconductor surface states. Their
density may be not negligible at all with respect to the amount of carriers in Gr, or, among
the latter, of just those which succeed in tunneling across the interface. Again, the rather low
values observed for the Richardson constant strongly motivate us to pay attention to this
topic, suggesting that the way the localized states affect the performances of these systems
may differ from what is expected in 3D/3D devices. The role of silicon surface states
has been extensively investigated in the past, particularly within the MOS community,
as current conduction and other device characteristics in MOS transistors were largely
influenced by surface or interface states. However, when considering a Gr/Si structure,
we encounter a fundamentally different situation compared to MOS transistors. In this
case, the 2D graphene layer is mechanically transferred onto the silicon substrate and does
not form a strong physical bond with it; rather, it is attached by van der Waals forces.
A potential model for the interaction between graphene and silicon is proposed in [7],
along with a description of how surface defects could impact current conduction in Gr/Si
junctions, both under forward and reverse biases. Following this approach, we decided
to account for the surface states in the direct fitting of the I-V characteristics of Gr/type-p
silicon (Gr/p-Si) diodes, both in the thermionic and in the ohmic regime, i.e., beyond the
flat band potential, in order to further provide some evidence of their effect. The current–
voltage characteristic of a Schottky junction derived in the regime of thermionic emission
for 3D/3D metal/type-p semiconductor Schottky devices [2,8] is

I = I0 e−qVbias/(nkBT)
[
1− eqVbias/kBT

]
, (1)

expressing the current I as a function of the bias potential Vbias applied to the metal relative
to the semiconductor (note that, as a consequence, the diode is directly polarized for
Vbias < 0, with q being the absolute value of the electron charge). In Equation (1), the
ideality factor n (≳ 1) implicitly accounts for surface states, image charge effects, band
curvature and interfacial inhomogeneities;

I0 ≡ A A∗T2e−ΦB0/kBT (2)

is the saturation current, where A is the diode active area, A∗ is the Richardson constant [2]
and ΦB0 is the zero-bias Schottky Barrier Height (SBH).

In this paper, we study the kinetics of charge carriers across the graphene–Si interface
in vertical Schottky diodes introducing the probability for a particle to abandon Gr and
the transmission coefficient T for the evaluation of incident Gr electrons. Following this
approach, the factor A∗T2 in Equation (2) is here replaced with an expression derived
in the theory section by qualitative arguments based on the Landau theory of the Fermi
liquid [9]. This kind of an approach is inspired by the work of Trushin [10] on Gr/type-
n semiconductor Schottky diodes. Moreover, we explicitly introduce the effect of the
silicon surface states through the built in potential ϕbi(Vbias), in the Arrhenian dependence
exp{−[ΦB0 + qVbias/n]/kBT} of Equations (1) and (2) following the model proposed by
Zhong [11]. In the ohmic regime, an empirical fitting expression will be provided; this
suffices to highlight the changes observable in the tunneling efficiency with respect to the
thermionic case.
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2. Theory

We consider an ideal system consisting of a p-doped Gr sheet separated from a plane
p-Si surface by a thin native oxide layer, in the order of 1 nm thick. Aimed at dealing
with a model, homogeneous interfaces are assumed. The oxide layer sustains a potential
difference that affects the dependence of the built-in potential on the applied bias. This
point is explicitly considered below in the balance equation relating the bias potential with
the Fermi levels of Gr and p-Si. As a simplifying assumption, donor surface states located
just at the Si/oxide interface are envisaged, yet their wave functions penetrating within the
oxide layer.

The electron population in Gr is conveniently described as an ensemble of quasi-
particles (or their anti-particles [9,12]), which represent delocalized elementary excitations
of a Fermi liquid (a bosonic analog can be viewed in the more familiar case of phonons
in a lattice). It is possible to speak of such states if their energy and momentum are large
with respect to the corresponding quantum uncertainties [9]; this condition leads to the
inequality

∣∣EFg
∣∣≫ kBT, i.e., the electron distribution must be weakly smoothed about the

Fermi level (e.g., referred to the Dirac point).

2.1. Quantum Estimates on Charge Transport

In a free standing Gr single layer, electrons behave as massless particles with respect
to the in-plane dynamics. This is not the case with regards to the direction perpendicular to
the sheet [5], where the electron is confined in a ∼0.3 nm thick layer. The kinetic energy
contribution inherent to this localization can be roughly estimated via the Heisenberg
relation ∆p⊥∆r⊥ ∼ ℏ as [13]

Ekin,⊥ ∼
ℏ2

2m∆r2
⊥

, (3)

where ∆p⊥ and ∆r⊥ are the momentum and position uncertainties perpendicular to the Gr
sheet, ℏ is the reduced Planck’s constant, and m is the electron mass. With ∆r⊥ ∼ 0.3 nm,
one has Ekin,⊥ ∼ 0.5 eV.

The r⊥ localization in Gr follows from Coulomb interaction with the nuclei, but it can
be pictured as a confinement in a potential well that could be assumed to be U0 ∼ 10 Ekin,⊥
deep. Thus, one gets a value close to the Gr work function, which is indeed the barrier
height adopted in ref. [5] for a similar description.

In such a system, collisions of electrons with other electrons or phonons/impurities/
defects are responsible for a coupling between in-plane and out-of-plane dynamics, rep-
resenting at the same time the origin of the uncertainty in the energy E of the quasi-
particles. The latter populate an energy interval

∣∣EFg − E
∣∣ ≲ kBT and their lifetime τ,

due to electron/electron interaction, can be derived by simple considerations based on
energy scales [12], leading to τ ∼ ℏEFg/(kBT)2 and to an energy uncertainty in the order
of ∆Eτ ∼ ℏ/τ ∼ (kBT)2/EFg. This estimate is appropriate when the Gr Fermi level is far
enough from the Dirac point [10,14], which is indeed our case (see below).

The possibility that an electron leaves Gr is linked to a non-zero ∆Eτ . Let ϵ̂coll be
the perturbation to the Hamiltonian related to collisions, and let ϵ f i = ⟨ f |ϵ̂coll |i⟩ be a
typical matrix element between an initial state |i⟩ and a final one | f ⟩ where one of the
quasi-particles has boosted towards an out-of-plane drift; then, ∆Eτ ∼ ϵ f i and the chance
for a quasi-particle to abandon Gr may be estimated as roughly

λ ≲ ∆Eτ

vF∆pcoll
∼ kBT

EFg
, (4)

where vF ≃ 108 cm/s is the Fermi velocity [2] and vF∆pcoll ∼ kBT, the typical energy
exchange in a collision [9], assures that the quasi-particle remains in the smoothed domain
of the Fermi distribution. This condition is essential: for a T = 0 distribution, the collisional
interaction would be inhibited by the Pauli principle. Equation (4) provides just an order
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of magnitude for λ; the actual value would increase adding heterogeneous collisions. Note
that the condition by which quasi-particles have physical meaning implies λ≪ 1.

In a vertical, stacked configuration, typical for Gr/Si diodes, the presence of an oxide
layer between Gr and Si is expected to lower U0 significantly at the interface (cf. Figure 1);
the presence of localized surface states also relates to this lowering. As often done in the
literature, we may model this lowered barrier with a square profile of effective height U
over the whole thickness di of the oxide layer. Then, when Vbias = 0, the transmission
coefficient T for incident Gr electrons is in the order of [13] (and refs. [15,16] for the
relevance of collisions)

T ≈ e−4di [2m(U−ϵ)]1/2/ℏ , (5)

where ϵ is the total electron energy. Equation (5) has meaning provided the arrival state at
the Si side is already empty.

The fraction κ of Gr electrons close to EFg which may recombine with a hole at the p-Si
surface reads as

κ ≈ λ T e−ΦB0/kBT , (6)

where e−ΦB0/kBT is the probability to have a hole at the Si surface (Vbias ≡ 0).
Following this approach, the pre-exponential factor of the saturation current in

Equation (2) can be replaced as

A∗T2 ←→ q
n0

l⊥
λ T v̄⊥ , (7)

where n0 is the carrier surface density in Gr at zero-bias, l⊥ is the thickness of the Gr
moiety, and v̄⊥ is the typical out-of-plane carrier velocity. We point out that a tunneled
electron emitted from Gr may have undergone interactions which render its v⊥ at the
Si-side distributed with a certain probability profile.
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Figure 1. Energy diagram of the Gr/oxide/p-Si system under moderate reverse bias (Vbias > 0).
Ec, Ei, n0 and w are the bottom energy of the conduction band, the intrinsic Fermi level, the carrier
density in Gr at Vbias = 0 and the width of the space charge region respectively; all other symbols
are defined in the text. When Vbias ̸= 0 both EFg and EFs shift with respect to the common value
at Vbias = 0. Donor surface states are characterized by a constant energy density, and qϕ0 is the
maximum value of their energy spectrum. A di-thick oxide layer is also represented. Point A is a
useful reference for the derivation of Eq. 8.
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Figure 1. Energy diagram of the Gr/oxide/p-Si system under moderate reverse bias (Vbias > 0).
Ec, Ei, n0 and w are the bottom energy of the conduction band, the intrinsic Fermi level, the carrier
density in Gr at Vbias = 0 and the width of the space charge region, respectively; all other symbols
are defined in the text. When Vbias ̸= 0 both EFg and EFs shift with respect to the common value
at Vbias = 0. Donor surface states are characterized by a constant energy density, and qϕ0 is the
maximum value of their energy spectrum. A di-thick oxide layer is also represented. Point A is a
useful reference for the derivation of Equation (8).
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A number of simplifying, tacit assumptions inhere in the replacement of A∗T2 in
Equations (1) and (2) after Equation (7) (cf., e.g., ref. [17] for a similar discussion). The
expression of κ has been derived for Vbias = 0; thus, a correction to U due to a non-zero
electric field when Vbias ̸= 0 would in principle be more appropriate. Also, the direct
tunneling across the Schottky barrier and the electron reflection on the U-edge have not
been accounted for. However, a refinement of the model which includes these corrections
would not improve our analysis, mainly due to the quantum estimates being at most
semi-quantitative.

The issue of the surface states needs some consideration. Allowing for localized
states also within the oxide layer or at the Gr side may possibly influence the effective
potential barrier U, but apart from a rough estimate of this parameter in the discussion of
our data (estimate that is done by assuming an oxide thickness of 1 nm anyway), this is
of no relevance to our main focus. On the other hand, we point out that the fraction κ of
Equation (6) has been derived in the hypothesis that the surface states are mostly filled; for
this reason, they do not contribute to the expression of T . On the other hand, these states
are mostly empty in forward polarization when the ohmic regime is entered and should be
accounted for. Nevertheless, we shall limit ourselves to discuss our data in terms of the
product λ T v⊥ irrespective of its detailed expression and show how this quantity changes
when the thermionic regime is abandoned to enter the ohmic one. These calculations are
deferred to future work.

As a final comment, we note that, being λ ∝ T after Equation (4), the explicit tempera-
ture dependence of κ also conforms to the T1 scaling of refs. [4,6].

2.2. Thermionic Regime

Electron/hole pairs forming at the Si surface are effective to charge transport if a
sufficient energy barrier is crossed. Its height depends on the applied bias (Vbias) and is
influenced by the Si surface states. Assuming temporarily that the transmission coefficient
T ≡ 0 (i.e., that the system is a perfect capacitor at equilibrium), the dependence of the
electron/hole barrier on the polarization follows from the relation EFg = EFs − qVbias,
where EFg and EFs are the Fermi energies in Gr and p-Si, respectively. Adopting a common
reference (e.g., point A in Figure 1), one immediately obtains the balance equation

Φg0 + ∆E + q∆int = χ + Egap − δE− qϕbi + qVbias , (8)

where
δE = kBT ln(Nv/Na) (9)

is the difference between EFs and the top of the Si valence band edge Ev, being
Nv = 1.04× 1019 cm−3 the effective density of states in the valence band of Si [18] and
Na the donor density (≈1015 cm−3 for the devices considered in this paper); χ = 4.05 eV
and Egap = 1.12 eV are the affinity and energy gap of Si, respectively; finally, Φg0 ≃ 4.5 eV
is the work function of graphene with respect to the Dirac point [4]. On the other hand, the
built-in potential ϕbi, the energy ∆E separating EFg from the Dirac point and the potential
∆int across the oxide layer all depend on the number ∆n of electrons that are exchanged
between Gr and Si (by convention ∆n > 0 if they leave Gr) to establish equilibrium at a
given Vbias. Surface states, which may host or release electrons, play an important role in
this redistribution.

Following refs. [19,20], it is assumed a distribution of localized donor surface states
with uniform density Di relative to both surface area and energy. Let ∆E0 ≡ [qϕ0 − EFs]FB
be the maximum energy limit to the surface states with respect to EFs in the virtual non-
equilibrium condition of flat bands; then, surface state electrons with energy > EFs add up
to ∆n ones forming a depletion layer with the built-in potential given implicitly by [11]

Qg + Qs = sign
(

ϕbi −
kBT

q

)[
2qεsNa

∣∣∣∣ϕbi −
kBT

q

∣∣∣∣
]1/2

, (10)
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where Qg ≡ q∆n, Qs = qDi(qϕ0 − EFs) is the overall positive charge at the empty surface
states (cf. the red crosses in Figure 1), and εs is the Si dielectric permittivity.

For the remaining terms,

∆E = h̄vFπ1/2
√

n0 + ∆n , (11)

with n0 the initial doping of graphene [2] and, by Gauss theorem, ∆int can be expressed as

∆int =
Qg

εd
di , (12)

where εd is the dielectric permittivity of the oxide layer (which is assumed to be the same
as for vacuum).

Equations (8)–(12) provide ∆n as a function of Vbias; when T = 0 is relaxed, this rela-
tion will be assumed still approximately valid due to the low current densities considered.

The SBH is the energy barrier that a valence electron at Ev0 ≡ Ev|x=0 has to surmount
to reach EFg in order to drift towards Gr due to the electric field, and can be expressed as
(cf. Figure 1)

ΦB = δE + qϕbi(Vbias)− qVbias . (13)

Because this barrier refers to a negative current, we call ΦB the backward SBH.
On the other hand, the term exp{−[ΦB0 − qVbias/n]/kBT} multiplying the square

brackets in Equation (1) is the first order Taylor expansion of

ΨB ≡ ΦB + qVbias = q(EFs − Ev0), (14)

and we refer to ΨB as to the forward SBH.
Now, all the ingredients for the analysis of the I-V behavior for Gr/Si Schottky diodes

have been introduced. Anyway, it is important to underline that the above equations
maintain their validity only within a limited Vbias interval. Indeed, by increasing the
forward polarization, the thickness of the depletion layer progressively decreases until the
flat band potential VFB is reached. Then, upon further increasing |Vbias| the ohmic regime
is entered, the built-in potential becomes negative, the holes tend to accumulate at the p-Si
surface [20], and the conduction mechanism in the junction is dominated by the diode
series resistance. On the other hand, at sufficiently large reverse Vbias, the intrinsic Fermi
level Ei approaches EFs closely, and an inversion layer forms at the p-Si surface, so that the
conduction mechanism, still thermionic in nature, differs from that previously described.

While we shall treat the latter in a future work, a brief illustration of the ohmic regime
is presented below.

2.3. Ohmic Regime

For |Vbias| > |VFB|, holes that accumulate at the Si surface [20] are available for
recombination with tunneled electrons. Let ∆nh be the overall excess (surface) hole density
with respect to the bulk value; its dependence on Vbias can be derived starting from the
solution of the one-dimensional Poisson equation for the potential ϕ with an excess positive
charge,

ρ(x) = qNa

{
exp

[
− qϕ(x)

kBT

]
− 1

}
(15)

as a source term (minority carriers are neglected in view of our rough empirical modeling).
With the conditions ϕ→ 0 and E = −dϕ/dx → 0 for x → ∞, one finds [20]

−E =
dϕ

dx
=

√
2NakBT

εs

[
qϕ

kBT
+ exp

(
− qϕ

kBT

)
− 1

]
. (16)
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The excess hole density follows from Gauss theorem

q∆nh
εs

=
dϕ

dx

∣∣∣∣
x=0+

(17)

(the half-space x ≤ 0 encompasses the charges in Gr, in the oxide layer and at the Si surface).
The dependence ∆nh(Vbias) follows from Equation (8) and the last two. Then, in order to
explore some feature of the conduction mechanism, we adopt for the current the empirical
power law

I = AJ
(

∆nh
n0

)α

, (18)

where A is the active area of the diode, and the adjustable parameters are the current
density J and the exponent α. This dependence fits well the experimental data in the
interval [−0.6 V, VFB], within which |∆nh| ≲ n0/10 always holds (see below); moreover,
values α ̸= 1 but close to unity will be found.

Since n0λ T ≪ |∆nh|, as we shall see, the current in the diode is not limited by the
number of available holes at the p-Si surface. This supports our assumption regarding the
reliability of the balance condition in Equation (8), also in forward polarization.

3. Materials and Methods
3.1. Device Fabrication

Gr/Si Schottky junctions are fabricated starting from a low-doped p-Si substrate with
a resistivity of 10–20 Ω cm. A 120 nm thick silicon oxide was deposited on the wafer by
CVD as an insulating layer. The device active areas are lithographically defined, and the
SiO2 oxide is etched in a standard BOE solution. The trench areas are further cleaned by
hydrofluoric acid immediately before the Gr transfer process to limit the formation of the
native oxide. A 3× 3.5 cm2 Gr sheet was transferred onto the Si substrate by a semi-dry
method (details are reported in [21]), obtaining a matrix of 100 circular diodes with a radius
spanning from 200 to 500 µm. The devices are identified by a capital letter, indicating the
row of the matrix, and a number indicating the column.

3.2. Characterization

The I-V measurements are performed at wafer level in a Karl Süss probe station, in
ambient atmosphere and in the dark, using four Keithley 238 (KeithIey Instruments, Inc.,
Cleveland, OH, USA) source monitor units (SMU) connected to the probe through the
switching matrix Keithley 707 (with 7072 and 7174 semiconductor cards). As convention,
the bias voltage is applied to graphene, while the silicon substrate is grounded in all
measurements.

Figure 2 shows the measured I-V curves for a Gr-Si Schottky diode obtained by
varying the temperature from 27 ◦C to 120 ◦C. Increasing the temperature, we can observe
an increase in the diode reverse current, because more electrons gain sufficient thermal
energy to surmount the Schottky barrier, while the effect of temperature on the forward
current is less evident, because for high forward voltages, the exponential dependence from
the applied bias is absent, and the effect of the series resistance becomes more important.
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Figure 2. Semi-logarithmic plot of the current–voltage characteristic for a graphene/p-silicon diode
measured at different temperatures.

4. Data Analysis
4.1. Extraction of Parameters via the Richardson Plot

A common protocol adopted for the extraction of the main diode parameters relies on
the analysis of the I vs. Vbias measurements in terms of Equations (1) and (2). The ideality
index, together with the zero-bias SBH, are obtained by fitting the experimental data at
different temperatures, for small direct polarizations, say ∼−0.1 V ≤ Vbias ≤ 0 V [2], with
the expression

ln
[

I
(

1− e qVbias/kBT
)−1

]
≃ ln I0 −

qVbias
n kBT

(19)

Using this approach, the effects of the surface states are disregarded but implicitly
encompassed in the extracted parameters.

Figure 3 shows the ln I0 vs. 1/kBT plot (Richardson plot) for the I5 device, from which
ΦB0, ⟨n⟩ and ⟨A∗⟩ are extracted. The values obtained from different diodes are reported in
Table 1.

Table 1. Parameters extracted from the Richardson plots for different devices. A (in 10−3 cm2) is the
area of the diode, ⟨n⟩ is the T-average ideality index, ⟨A∗⟩ (in 10−6 Amp cm−2 K−2) is the T-average
Richardson constant, and ΦB0 (in eV) is the zero-bias SBH as obtained from the linear regressions on
the I vs. Vbias data (cf. Equation (19)) at temperatures T = 27, 60, 80, 100 and 120 ◦C.

Device A ⟨n⟩ ⟨A∗⟩ ΦB0

A3 7.85 2.1 3.0 0.26± 0.03
D3 6.36 1.9 2.0 0.25± 0.04
E4 3.85 1.8 2.2 0.28± 0.04
G5 1.96 1.7 6.0 0.31± 0.03
I5 1.26 1.8 1.7 0.31± 0.04

The relation I0 ∝ T2 is only appropriate for metal/semiconductor diodes and not
for Gr/Si ones [4–6]; we nevertheless decided to maintain it, since (i) the details of the
pre-exponential factors are marginal at this stage, and (ii) the contrast of the worked out
values with the metal/semiconductor case is better highlighted.

It is important to note that, e.g., in the case of the D3 device, ΦB0 ≈ δE. However, δE
varies between 0.24 eV and 0.32 eV upon changing the temperature from 27 ◦C to 120 ◦C (cf.
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Equation (9)); this would point to an almost zero or even negative ϕbi (cf. Equation (13)),
that is, a condition where the ohmic regime would be entered, in contrast with the spirit in
which ΦB0 was extracted. The low values of ΦB0, as well as those found for the ideality
index (≈2), can be explained considering the effect of silicon surface states.
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4.2. I-V Fitting Including Surface Effects
4.2.1. Thermionic Regime: ΦB0 and the Ideality Index n

The I vs. Vbias experimental data are fitted for each single T with the equation

I = A A∗T2e−ΨB(Vbias)/nkBT
[
1− eqVbias/kBT

]
, (20)

from which Equations (1) and (2) can be obtained upon expanding ΨB(Vbias) to first order
in Vbias; in this respect, it is worth noticing that the zero-bias SBH of Equation (2), ΦB0,
would now correspond to ΨB|Vbias=0/n. We would underline that the parameter n is now
the residual ideality index after all the effects considered so far are encompassed in ΨB, such
as the ϕbi(Vbias) dependence and the effect of surface states; the image charge correction is
disregarded, and this would affect n by just about a 5% (cf., e.g., ref. [22]).

Assuming the presence of an oxide layer with thickness di = 1 nm, and setting
n0 ≈ 1013 cm−2, after Hall measurements, we estimate from Equation (8) (with the condi-
tion ϕbi = 0) that a transition from the thermionic to ohmic regime is expected to occur
around the flat band potential VFB ≈ −0.1 V.

Table 2 collects the relevant parameters for diode I5 extracted from the fitting of I-V
curves at different temperatures; an example of how the fittings look is shown in Figure 4
for the I5 device at T = 80 ◦C. In all cases, as well as in those collected in Table 3, a
good matching between thermionic and ohmic regimes was always found for a flat band
potential VFB ≃ −0.07÷−0.11 V, which is very close to what was expected (fluctuations
around this value were found particularly in devices with small area). It is noteworthy that
the typical Di and ∆E0 worked out values are rather similar to those found for Si-oxide/Si
interfaces by capacitance measurements [23].

The ΦB and ΨB vs. Vbias dependencies are almost linear, as shown by inset a in Figure 4;
this legitimates a posteriori the first order Taylor approximation of ΨB(V) in Equation (1).
All fittings were done in the interval −0.6 V≤ Vbias ≲ 0.1÷ 0.3 V. The zero-bias SBH values
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reported in Table 2 are linear interpolations from the ΦB vs. Vbias dependence and are
derived at each T.

Table 2. Fitting parameters for the I5 device at different temperatures T (in ◦C) as obtained from
the analysis with the complete model illustrated in the Theory Section. In the columns, Di (in
1012 eV−1 cm−2) is the surface states’ density, ∆E0 ≡ [qϕ0 − EFs]FB (in eV) is the upper limit of the
surface states excess energy with respect to EFs in the absence of band curvature, n is the ideality
index, A∗ (in 10−6 Amp cm−2 K−2) is the Richardson constant, ΦB0 (in eV) is the zero-bias SBH, X2

(in units of 10−3) is the chi-square value limited to the fitting within the thermionic regime interval, J
is a fitting parameter in 10−3 Amp cm−2, and α is a fitting exponent (cf. Equation (18)).

T Di ∆E0 n A∗ ΦB0 X2 J α

27 2.5 ± 0.2 0.18 1.1 ± 0.03 1.2 0.30 1.5 5.4 1.08
60 2.6 0.22 1.1 4.2 0.32 3.3 86.1 1.40
80 2.5 ± 0.1 0.12 1.02 3.2 ± 0.4 0.32 1.9 5.9 ± 0.4 0.84

100 3.0 ± 0.8 0.12 ± 0.06 1.06 2.5 0.32 3.2 5.9 0.84
120 1.8 0.30 1.10 3.2 0.34 0.5 28 1.07

Table 3. Same as Table 2 for the A3, D3, E4, G5, I5 devices at a temperature T = 80 ◦C.

Device Di ∆E0 n A∗ ΦB0 X2 J α

A3 2.3 ± 0.3 0.11 1.01 3.4 ± 0.1 0.32 4.3 2.9 ± 0.1 0.73
D3 2.4 ± 0.3 0.11 ± 0.02 1.02 ± 0.25 5.3 ± 0.3 0.32 3.0 4.8 ± 0.1 0.73
E4 1.80 0.18 1.08 2.5 0.31 2.0 2.3 ± 0.3 1.07
G5 2.5 ± 0.1 0.13 1.02 9.7 ± 0.5 0.33 1.4 9.6 ± 0.4 1.18
I5 2.5 ± 0.1 0.12 1.02 3.2 ± 0.4 0.32 1.9 5.9 ± 0.4 0.84
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Figure 4. Fitting of the experimental I −Vbias data (open squares) with Equation (20) in thermionic
regime and with Equation (18) in ohmic regime (black triangles) for sample I5 at T = 80 ◦C. The Gr
carrier density is set to n0 = 1013 cm−2. The worked out parameters are reported in Table 2. Inset
(a) shows the Vbias dependencies of the backward SBH, ΦB (filled squares), and forward SBH, ΨB

(open triangles), within the thermionic regime; inset (b) reports the ratio ∆nh/n0 in the ohmic regime.

The chi-square values, X2, reported in Tables 2 and 3 refer to the thermionic regime
fitting domain, which is most critical. In fact, one proceeds by first considering the I-V pat-
terns in the thermionic domain to derive parameters such as Di, ∆E0 and n via a non-linear
regression. Once the latter are determined, J and α in the ohmic domain can be worked
out without particular problems, given their reduced number. This procedure is repeated
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iteratively, meanwhile also adjusting VFB for better matching the fitting curves at the border
between the ohmic and thermionic regions. Good quality fittings in the thermionic domain
are compulsory; for this reason, the associated X2 values are highlighted.

As expected, by introducing the effect of silicon surface states in the fitting model,
the worked out ΦB0’s are found to be a bit larger than those obtained from the Richardson
analysis (cf. Table 1). Moreover, the n values now extracted are very close to unity, indicating
a quite ideal behavior, and the inequality ΦB0(T) > δE(T) always holds. This evidence
supports the idea of the important role played by silicon surface states in the current
conduction of Gr/p-Si junctions.

Considering the Richardson constant, the fitting values obtained are around A∗ ≈
5× 10−6 Amp cm−2 K−2, very similar to those reported in Table 1. Thus, for a temperature
T ≈ 350 K, one has A∗T2 ≈ 0.6 Amp cm−2. Assuming l⊥ ≈ 0.5 nm, we find λT v⊥ ≈
0.02 cm/s (cf. Equation (7)).

On the other hand, the initial out-of-plane velocity of a scattered Gr electron which
has a chance to tunnel towards p-Si is in the order of v⊥ ≲ ∆E/p⊥ [10], that is (since
p⊥ ∼ ∆p⊥ ∼ ℏ/∆r⊥), v⊥ ≲ 105 cm/s. Then, by taking λ ≈ 0.1, i.e., assuming about the
same chances for parallel momentum-conserving and non-conserving collisions, we would
obtain a transmission coefficient T ≈ 10−6. As a consequence, by letting di = 1 nm, one
finds ∆U ≡ U − ϵ ≃ 0.47 eV; this energy barrier would lower on accounting properly for
the fraction of collisions which do not conserve the in-plane momentum.

4.2.2. Ohmic Regime

From Tables 2 and 3, one sees that α ≈ 1. In the first approximation, this points at a
linear dependence of I on the electric field (cf. Equation (17)):

I ≈ A J
∆nh
n0

∝ E|x=0 . (21)

To provide a connection with the actual form of the saturation current, we resort
to continuity:

J
(

∆nh
n0

)α

= q nev⊥ , (22)

where ne is the density of Gr electrons that are allowed to tunnel through the oxide layer
located between Gr and Si, and v⊥ is their normal velocity on impinging the Gr/oxide
interface. From the previous arguments of the Theory section,

ne ≈
n0

l⊥
λ T (23)

and, considering a typical value of J ∼ 5× 10−3 Amp cm−2 as from Tables 2 and 3, one finds
λ T v⊥ ∼ 10−4 cm/s, i.e., about two orders of magnitude less than in the thermionic case.

To explain this low value, we suggest that surface states may possibly play a role. In
fact, as anticipated in the theory section, within the thermionic regime, they are mostly
filled in, while in the transition to the ohmic regime, they progressively rise above EFs and
tend to ionize. The tunneled electrons would get temporarily anchored to these empty
states, until the electric field will drag them away. This circumstance would be responsible
for some artifact in the Richardson procedure for the estimate of the diode parameters, at
least when |VFB| values are small.

The capture of these electrons does not seem to be so rare an event. Consider as an
example the I5 device in direct polarization at Vbias = −0.3 V (cf. Figure 4 and Table 2); then,
∆nh ≃ 5× 10−2 n0 and, from Equation (16), ϕbi ≃ −0.2 V and |E |x=0 ≈ 104 V/cm, while
the surface density of the localized surface states is in the order of Di∆E0 ≈ 5× 1011 cm−2.
On the other hand, assuming v⊥ ∼ 105 cm/s, one finds nel⊥ ∼ 104 cm−2 in the ohmic
regime, which is much smaller than Di∆E0.
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In these circumstances, a corrected expression of the overall transmission coefficient
should be adopted for the appropriate description of the ohmic regime, including both the
effects of traps and electric field.

5. Concluding Remarks

The extraction of the Gr/p-Si junction parameters from the current–voltage–temperature
characteristics in the thermionic regime usually gives a large ideality index and a small
value for the potential barrier of the diodes. Generally, an ideality index larger than unity
is related to the deviation from pure thermionic emissions as well as to inhomogeneities of
the barrier height. But we show that Gr/p-Si diodes work as quite ideal junctions when
taking into account the bias dependence of the SBH in the fitting model, as well as the effect
played by silicon surface states. In fact, our approach showed that the values obtained for
these parameters are significantly influenced by the silicon surface states on the current
conduction. The role of these states in the electrical properties of MOS devices is well
known, and we can say that they are present in Gr/Si diodes, probably also for the weak
Van der Waals interaction between Gr and Si.

The comparison of the electron tunneling efficiencies in the thermionic and ohmic
regimes turned out to be crucial for highlighting the impact of the localized states in the
characteristic features of these 2D/3D Schottky devices, and to our knowledge, this strategy
has not been followed before in the literature.

The approximate expression derived for a saturation current appropriate for our
devices pointed out the product λ T v⊥ as a key indicator of their electrical performances.
Irrespective of the detailed form of the transmission coefficient T , we referred to this
quantity in the discussion of the data. In turn, the results suggested that the modeling
of T as proposed in the theory section is incomplete, in the sense that the presence of
trap states at the Si surface, as well as of an electric field (rather strong as we saw) which
both modulates the profile of the oxide potential barrier and de-traps electrons from these
localized states, must be envisaged. These aspects cannot be overlooked, since λ T v⊥
changes of about two orders of magnitude are revealed by the analysis; for this reason,
a better suited form of T is actually being considered. This may also be worth when
estimating the v⊥ drop in crossing the interface. Certainly such effects are “felt” by the
phenomenological model of Equation (18), although not explicitly highlighted, and further
work has to be done in this respect.

Finally, we explicitly found through our quantum estimates that the T1 scaling of
the saturation current also holds in our case, confirming that this feature depends on the
vertical architecture of these devices and not on the nature of the charge carriers inherent
to the semiconductor moiety.

In conclusion, the model presented in the paper provides insight into the physical
mechanism governing the Gr/Si junction operation, such as charge transport, carrier
injection and interface effects, which are fundamental in further improving the device per-
formance and exploring new device functionalities. This is fundamental at this stage, when
the integration of graphene and related layered materials in the semiconductor platform
is becoming true via the Experimental 2D Pilot Line, which offers prototyping services to
companies, research centers and academics to develop their innovative technologies based
on 2D materials in an established processing platform.
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