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Abstract: This paper introduces an innovative Particle Swarm Optimization (PSO) Algorithm incor-
porating Sobol and Halton random number samplings. It evaluates the enhanced PSO’s performance
against conventional PSO employing Monte Carlo random number samplings. The comparison
involves assessing the algorithms across nine benchmark problems and the renowned Travelling
Salesman Problem (TSP). The results reveal consistent enhancements achieved by the enhanced
PSO utilizing Sobol/Halton samplings across the benchmark problems. Particularly noteworthy are
the Sobol-based PSO improvements in iterations and the computational times for the benchmark
problems. These findings underscore the efficacy of employing Sobol and Halton random number
generation methods to enhance algorithm efficiency.

Keywords: enhanced PSO; SOBOL; Halton; quasi-random numbers

1. Introduction

Particle Swarm Optimization (PSO) is a metaheuristic algorithm for optimization prob-
lems. PSO was first introduced in 1995 by James Kennedy and Russell Eberhart [1]. The
algorithm is based on the concept of social behavior, where particles (potential solutions)
move towards the optimal solution through interactions with other particles in the search
space. PSO has been widely used in various fields, including engineering, science, and
finance, due to its simplicity, robustness, and efficiency. Despite its success, PSO suffers
from several limitations. One of the main limitations is its slow convergence rate, which can
be attributed to the premature convergence [2] of the particles towards local optima. This
issue can be addressed by introducing efficient improvement techniques in PSO. Several
enhancement ideas have been proposed in the past to improve the convergence rate of
the PSO algorithm, and they are listed below. Firstly, the inertia weight technique was
suggested by Russell Eberhart and Ying Shi [3]. The inertia weight technique is a well-
known approach for enhancing the convergence speed of PSO. The inertia weight is used
to control the movement of particles in the search space. The idea is to maintain a balance
between exploration and exploitation of the search space. The inertia weight is updated at
each iteration based on a predefined formula, which controls the speed and direction of
particle movement. Various formulas have been proposed for updating the inertia weight,
such as linear, nonlinear, and adaptive. The choice of the inertia weight formula depends
on the optimization problem and the PSO parameters. Second, the concept of a mutation
operator was proposed [4]. A mutation operator is a powerful tool for enhancing the
diversity of the PSO population. The mutation operator randomly modifies the position
of a particle to generate a new solution in the search space. This operation can prevent
premature convergence by introducing new solutions that may lead to better solutions. The
mutation operator can be applied at different stages of the PSO algorithm, such as before or
after the velocity update. Similar to the mutation operator, another operator known as the
crossover operator has also been applied to the PSO algorithm [5–7]. This concept involves
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the mixture of the attributes of different solutions to gain exploration and to achieve high
diversity in potential results to avoid premature convergence. Third, the opposition-based
learning technique was suggested [8]. Opposition-based learning (OBL) is a technique that
uses the opposite of the current best solution to generate new solutions. The idea behind
OBL is that the opposite of the best solution may represent a good direction for exploration
in the search space. OBL can improve the diversity and convergence speed of PSO by
generating new solutions that are different from those of the current population. Fourth,
hybridization with other metaheuristics has been proposed [9]. Hybridization with other
metaheuristics is a common approach for improving the efficiency of PSO. The idea is to
combine the strengths of different metaheuristics to overcome their weaknesses. For exam-
ple, PSO can be combined with genetic algorithms (GA), simulated annealing (SA), or ant
colony optimization (ACO). The hybridization approach can enhance the exploration and
exploitation capabilities of PSO, leading to better solutions in less time. Fifth, dynamic pa-
rameter tuning was presented [9]. The PSO parameters, such as the swarm size, maximum
velocity, and acceleration coefficients, significantly impact the algorithm’s performance.
Dynamic parameter tuning is a technique that adjusts the PSO parameters based on the
search history during the optimization process. The idea is to adapt the PSO parameters
to the problem characteristics and the search progress to improve the convergence speed
and solution quality. In conclusion, efficient improvement techniques in PSO can enhance
the algorithm’s convergence speed and solution quality. The approaches discussed in this
paper [9], including the inertia weight technique, mutation operator, opposition-based
learning, hybridization with other metaheuristics, and dynamic parameter tuning, can be
used individually or in combination to address the limitations of PSO. Tareq M. Shami and
a team [10] of researchers conducted a comprehensive survey on PSO. The survey discusses
techniques such as varying the inertia weight and hybridizations, which are discussed
above. The survey also states that the ability of PSO to be hybridized with other opti-
mization algorithms has contributed to its popularity. Another technique described in the
survey is velocity clamping [10], a technique introduced by Eberhart and Kennedy. Velocity
clamping involves setting bounds for the values of the velocities of the particles in all the
dimensions. Another approach to improving the efficiency of the PSO algorithm discussed
in this paper [10] is varying the controlling parameters, such as using the varying inertia
weight technique in which inertia weight changes throughout the optimization process, or
acceleration coefficient techniques in which the two constant controlling parameters for
PSO other than the inertia, are chosen in different ways to yield optimal solutions while
evading premature convergence. Many other approaches have been discussed both in the
survey and elsewhere. The choice of approach depends on the problem characteristics and
the available computational resources. However, most of these approaches can provide
problem-dependent solution methods. In this paper, we proposed a new approach to
replace the random numbers used for this method with quasi-random numbers [11–13],
like Halton and Sobol, by maintaining the k-dimensional uniformity of these quasi-random
numbers. This not only provides a generalized approach to any optimization problem,
but this method can be used in conjunction with the earlier enhancement techniques like
the inertia weight technique, mutation operator, opposition-based learning, hybridization
with other metaheuristics, and dynamic parameter tuning. In this research, two enhanced
versions of PSO (one using Sobol random numbers and the other using Halton random
numbers) were proposed with the intention of speeding up the convergence of the standard
PSO algorithm. To test the efficiency improvement of the two proposed enhancements of
the standard PSO algorithm, the number of iterations taken to achieve the optimum of
the well-known cigar, ellipsoid, and paraboloid functions [14], along with the number of
iterations taken to obtain an optimal path for the famous Travelling Salesman Problem
(TSP) [15–18], were noted. Following this, improvement in terms of the optimum of the
objective function and the number of iterations needed to reach the global optimum were
calculated for both the PSO enhanced with Sobol random number samplings and the PSO
enhanced with Halton random number samplings, with respect to the standard PSO, which
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uses Monte Carlo random number samplings. All the results for each benchmark function
and TSP unanimously show efficiency improvement due to the use of the Sobol and Hal-
ton sequences. Additionally, we noted that the more decision variables an optimization
problem has, the improvement due to Sobol and Halton sequences increases. In conclusion,
both the enhancements of the standard PSO presented in this research, one utilizing Sobol
random numbers and the other utilizing Halton random numbers, consistently show effi-
ciency improvement and a better optimum, meaning that they successfully have increased
the speed of convergence of the standard PSO algorithm.

In addition, we have also compared our enhanced PSO with the SALP meta-heuristic
variant [19]. This is a recent algorithmic approach developed to improve the convergence
rate. Our enhancement is compared with the SALP to see whether the approach of avoiding
clusters in random number generation can make the enhanced PSO algorithm perform better
than the SALP algorithm. The algorithms are compared for the four benchmark problems.

The time-varying inertia factor was introduced to improve the converge performance
of the PSO [20,21]. The authors in [22] introduced a time-varying acceleration coefficient
in addition to the time-varying inertia factor. They introduced a PSO concept called a
self-organizing hierarchical particle swarm optimizer with a time-varying acceleration
coefficient. For the velocity update in PSO, only the social part and cognitive part were
considered, and to avoid stagnation in the search space, a time-varying mutation step size
was used as well.

An adaptive particle swarm optimization (APSO) that features better search efficiency
than the classical particle swarm optimization (PSO) is presented in [23]. It was engineered
to perform a global search over the entire search space with faster convergence speed. The
APSO algorithm was carried out in two main steps. In the first step, the algorithm evaluated
the population distribution and particle fitness based on which a real-time evolutionary
state was estimated. This enabled the automatic control of inertia weight, acceleration
coefficients, and other algorithmic parameters in real-time to improve the search efficiency
and convergence speed in the subsequent step.

The multimodal PSO approach proposed in [24] addressed the issues associated with
poor local search ability and the requirement of prior knowledge to initialize the PSO
algorithm parameters. The authors in [24] proposed an optimizer based on a distance-
based locally informed PSO variant. The algorithm eliminated the need to specify the niche
parameters in the PSO and enhanced its fine-searching capabilities. To guide the search
direction of the particles, each particle used local best information instead of the global best
as in the conventional PSO, and the neighborhood of the particle was measured using the
Euclidean distance to perform the local best search.

In [25], a hybrid algorithm that combined particle swarm optimization with simulated
annealing behavior (SA-PSO) was proposed. The SA-PSO algorithm takes advantage of
the good solution quality provided by the simulated annealing and fast searching ability
inherent to the particle swarm optimization. It was concluded that the hybrid algorithm
could have higher efficiency, better quality and faster convergence speed than conventional
PSO variants.

An economic environmental hydrothermal scheduling problem classified as a multi-
objective nonlinear constrained optimization was solved using PSO [26]. The algorithm
adopted an elite archive set to conserve Pareto optimal solutions and provide multiple
evolutionary directions for individuals, while neighborhood searching and chaotic mutation
strategies enhance the search capability and diversity of the population. The PSO algorithm
also incorporated a constraint handling scheme designed to adjust the constraint violation
of hydro and thermal plants.

To avoid parameter selection and overcome the premature convergence problem in
the PSO optimization, an adaptive fuzzy particle swarm optimization based on a fuzzy
inference system, which incorporated a variable neighborhood search strategy and hybrid
evolution, was proposed in [27] and applied to the parameter estimation of nonlinear
Hydro Turbine Regulation Systems. The results concluded that the new algorithm’s pa-
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rameter error and the objective function were significantly smaller than the other algo-
rithms. The estimated model could accurately reflect the dynamic characteristics of the
real system, proving that the fuzzy PSO variant was an effective and efficient parameter
estimation method.

Support vector machine (SVM)-based classifiers need accurate parameter estimation
for high-accuracy classification, and in [28], an improved variant of the PSO is used to
estimate the SVM parameters. Specifically, dynamic adjustment of inertia is proposed to
optimize the parameters of the SVM. The computation of the inertia weight in the PSO
proposed in [28] involves the nonlinear reduction in the inertia weight as the number of
iterations increases. In particular, the introduction of random function inertia weight in the
PSO avoids falling into the local extremum and, at the same time, increases diversity and
the global searching ability during the optimization process.

In addition to the above-mentioned PSO algorithm comparisons, we compare the
iteration efficiency of the enhanced PSO approach employing the Sobol sequence using the
random inertia PSO variant for the benchmark problems.

2. Materials and Methods

Particle Swarm Optimization
There are countless examples of swarms in the real world, ranging from flocking birds

to hunting wolves. When searching for nourishment, the individuals of these swarms,
called particles to understand PSO, begin random exploration and then start gravitating
towards the findings of other swarm individuals. While following signs of nourishment
and searching randomly in space, these particles move towards their objective through
knowledge of their discoveries and discoveries of the swarm. Similarly, in the PSO al-
gorithm, proposed decision variable sets gravitate towards the optimal findings of each
other, themselves, and the whole swarm together to achieve the globally optimal set of
decision variables, yielding the optimal function value. The sets of decision variables are
called position vectors. They are updated by vectors called velocity vectors (based on the
physics principle that change in position is proportional to the velocity), by randomness,
and by attraction towards their personal best sets of decision variables and the unanimous
global best set of decision variables found by the whole swarm. The global optimum of the
function is achieved through gradual movement towards optimal findings of the swarm.
The following are the steps of the PSO algorithm.

• Initialize Parameters:

o Define the population size (number of particles), Np; Define the number of
decision variables (dimension), D;

o Define the maximum number of iterations, T;
o Define the inertia weight, ω;
o Define acceleration constants: cognitive and social, c1, c2;
o Initialize the position and velocity of each particle randomly within the search space.

The initially proposed set of solutions is grouped together to form the population
matrix, which is written as follows:

x00
0 · · · x0(D−1)

0
...

. . .
...

x(Np−1)0
0 · · · x(Np−1)(D−1)

0


Each row in this matrix represents a potential decision variable vector intended to

optimize the objective function. Each element in a row is the position with respect to a
particular dimension of the particle that corresponds with that row. The subscript for each
element is 0, as these values are the initial values in the matrix (0th iteration).
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The velocity matrix can be represented as follows:
v00

0 · · · v0(D−1)
0

...
. . .

...
v(Np−1)0

0 · · · v(Np−1)(D−1)
0


This represents the velocity of each particle in all the dimensions. The velocity matrix

changes the position matrix, and that is inspired by the physics concept that displacement
is proportional to velocity. The superscript j is the index of the dimension.

• Set the best-known position for each particle n, Pij
n to its initial position.

Pj = x0j

• Evaluate Fitness:

Evaluate the fitness (objective function value) for each particle based on its current position.

• Update the personal best position for each particle Gj
n if its current fitness is better

than its previous best fitness.
• Update Global Best:

o Determine the particle with the best fitness among all particles in the swarm, P∗n .
o Update the global best position with the particle’s position with the best

fitness, G∗n.
o Update Velocities and Positions:

For each particle, update its velocity and position based on the following formulae.
The velocity of each particle at iteration n is updated according to the equation

given below.

vij
n+1 = ω× vij

n + c1 × r1 ×
(

Pj
n − Xij

n

)
+

c2 × r2 ×
(

Gn
j − Xij

n

) (1)

where r1 and r2 are random numbers. So, we have two random numbers per variable.
The corresponding position is updated according to the following equation:

xn+1
ij = xn

ij + vij
n+1 (2)

• Check Stopping Criteria:

o If the maximum number of iterations is reached or a satisfactory solution is found,
stop the algorithm.

o Otherwise, go back to step 2 and repeat the process.

• Output:

Return the global best position as the solution to the optimization problem.
Quasi-random sequence enhancements
In this work, we hypothesize that the success of PSO depends on the choice of appro-

priate random samples. At each iteration of PSO, two random numbers are generated for
each decision variable, as shown in Equation (1). These random numbers are computer-
generated random numbers and are called pseudorandom numbers or Monte Carlo random
numbers. A sequence of random numbers must have two essential properties: uniformity,
i.e., they are equally probable everywhere, and independence, i.e., the current value of a
random variable has no relation with the previous values. Figure 1 shows the two random
variables generated using a computer (Monte Carlo or pseudorandom numbers) with
samples equal to 100. As seen in the figure, for uniformity, the points should be equally
distributed; that is not the case here. We need more samples to cover the points equally in
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that 2-dimensional space. This means more iterations of the algorithm. To circumvent this
problem and to increase the efficiency of PSO, we are presenting a construct based on quasi-
random numbers. Some well-known quasi-random sequences are Halton, Hammersley,
Sobol, Faure, Korobov, and Neiderreiter [11–13]. The choice of an appropriate quasi-Monte
Carlo sequence is a function of discrepancy. Discrepancy is a quantitative measure of the
deviation of the sequence from the uniform distribution. Therefore, it is desirable to choose
a low discrepancy sequence. The Halton, SOBOL, and Hammersley are some examples
of low-discrepancy sequences. Here, we are working with the two sequences, Halton and
SOBOL, as described below.

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 20 
 

Hammersley, Sobol, Faure, Korobov, and Neiderreiter [11–13]. The choice of an appropri-
ate quasi-Monte Carlo sequence is a function of discrepancy. Discrepancy is a quantitative 
measure of the deviation of the sequence from the uniform distribution. Therefore, it is 
desirable to choose a low discrepancy sequence. The Halton, SOBOL, and Hammersley 
are some examples of low-discrepancy sequences. Here, we are working with the two se-
quences, Halton and SOBOL, as described below. 

 
Figure 1. Two-dimensional pseudorandom numbers (100 points). 

Halton Sequence Points: 
The design of Halton points is given below. Any integer n can be written in radix-R 

notation (R is an integer) as follows: 

0121... nnnnnn mm −≡  (3)

m
mRnRnRnnn ++++= ...2

210  (4)

where ]ln/[ln][log Rnnm R ==   (the square brackets denote the integral part). A 
unique fraction between 0 and 1 called the inverse radix number can be constructed by 
reversing the order of the digits of n around the decimal point as follows: 

mR nnnnn ...)( 210=φ 12
1

1
0 ... −−−− +++= m

mRnRnRn  (5)

The Halton points on a 𝑘-dimensional cube are given by the following sequence: 𝑧→ (𝑛) = 𝜑 (𝑛),𝜑 (𝑛), . . . ,𝜑 (𝑛) , 𝑛 = 1,2, . . . . ,𝑁 + 1 (6)

where 𝑅  ,𝑅  , … 𝑅  are the first 𝑘 − 1  prime numbers. The Halton points are

)(1)( nznx kk

→→
−= . 

Figure 2 shows 2-dimensional Halton points (100 samples), which shows better uni-
formity than Figure 1. 

Figure 1. Two-dimensional pseudorandom numbers (100 points).

Halton Sequence Points:
The design of Halton points is given below. Any integer n can be written in radix-R

notation (R is an integer) as follows:

n ≡ nmnm−1 . . . n2n1n0 (3)

n = n0 + n1R + n2R2 + . . . + nmRm (4)

where m = [logR n] = [ln n/ ln R] (the square brackets denote the integral part). A unique
fraction between 0 and 1 called the inverse radix number can be constructed by reversing
the order of the digits of n around the decimal point as follows:

ϕR(n) = n0n1n2 . . . nm= n0R−1 + n1R−2 + . . . + nmR−m−1 (5)

The Halton points on a k-dimensional cube are given by the following sequence:

→
zk(n) =

(
ϕR1(n), ϕR2(n), . . . , ϕRk−1(n)

)
, n = 1, 2, . . . , N + 1 (6)

where R1, R2,. . . Rk−1 are the first k − 1 prime numbers. The Halton points are
→
xk(n) = 1− →zk(n).
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Figure 2 shows 2-dimensional Halton points (100 samples), which shows better unifor-
mity than Figure 1.
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SOBOL Sequence Points:
Like many other quasi-random sequences, the SOBOL sequence starts from the Van

der Corput sequence in base 2. To generate the Vander Corput sequence, consider the
k-th point in the Sobol sequence; this integer k can be written as a linear combination of a
nonnegative power of base 2 as follows.

k = a0(k) + 2a1(k) + 22a2(k) + . . . + 2rar(k) (7)

where r is a large number.
Then, the kth element in the Sobol sequence is given by the following equation:

xk = 1/2y1(k) + 1/22y2(k) + . . . + 1/2ryr(k) (8)

where the coefficients yi(k) can be obtained using the following expression:
y1(k)
y2(k)

. . .

yr(k)

 = V


a0(k)
a1(k)

. . .

ar−1(k)

mod2 (9)

where V is the generation matrix whose elements are 0 or 1. V is an identity matrix for the
Vander Corput sequence.

The operation in Equation (9) can be represented as follows:

a0(k)V1 ⊕ a1(k)V2 ⊕ a2(k)v3 . . . ar−1(k)Vr

where Vi is an element of V and ⊕denotes binary addition.
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The calculation of generation matrix V involves primitive polynomial A, primitive
polynomial of degree d and all the coefficients A1 to Ad−1, which are either 1 or 0 and are
given below.

P = Xd + A1Xd−1 + . . . + Ad−1X + 1 (10)

Direction vectors Mi are generated by the recursive equation given below for i > d,
and the initial direction vectors, i.e., for i < d, are generated by selecting an odd integer
between 0 and 2d.

Mi = 21 A1Mi−1 ⊕ 22 A2Mi−2 ⊕ . . . . . . . . .⊕ 2d−1 Ad−1Mi−d+1 ⊕ 2d Mi−d ⊕Mi−d. (11)

Then, the generation matrix elements can be generated as shown below.

V j
i =

Mi

2i (12)

Thus, SOBOL sequence can be generated by generating the V matrix and the Van der
Corput sequence in base 2. Figure 3 shows that SOBOL points show better uniformity than
pseudo-random numbers from the computer (Figure 1).
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We show where the random numbers are used in PSO with traditional PSO in Figure 4
and enhanced PSO with Halton or SOBOL in Figure 5. However, to maintain k-dimensional
uniformity, the Halton and SOBOL points cannot be generated one at a time; they must be
generated together with the whole sample (for all iterations).

It should be noted that all other efficiency enhancements proposed in the literature can
be directly applicable to our new algorithms as we are only changing the random numbers.
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3. Results

Test Cases
To perform simulation and to estimate the standard deviations and the computation

times, all the following algorithms were on a Windows 10 laptop equipped with an i7 core
processor and with inbuilt 16 GB RAM. The simulations were run for 50 iterations and
averaged to estimate the elapsed time. The computation elapsed times were estimated
using the times associated with the start time and end time of the algorithm execution.
These elapsed times were averaged across multiple runs and were used to measure the
average elapsed time. The mean values for the number of iterations were estimated and
rounded to provide the number of iterations in the following tables. All PSO variants
implemented the mutation scheme that used uniformly generated random numbers.

To test the efficiency improvements of the enhanced PSO suggested in this paper, both
mixed and continuous versions of three well-known benchmark functions, namely the
Cigar, Ellipsoid, and Paraboloid functions, along with the famous Travelling Salesman
Problem, were taken as test cases (Table 1). Three algorithms consisting of one PSO code
with no enhancement (using Monte Carlo random number samplings), a second PSO code
that uses Sobol random number samplings, and a third PSO code that uses Halton random
numbers each ran for 5, 10, 15, and 20 decision variables to optimize both the mixed and
continuous versions of the three benchmark functions and to solve the TSP problem. The
number of iterations taken to achieve an optimum is recorded for all three algorithms to
reach the global optimum.

Table 1. Test cases for algorithm testing [11].

Function Formula Range

Continuous Optimization Problems

1 Cigar f (x) = x1
2 + 104

NC
∑

i=2
xi

2 [−3, 3]NC

2 Parabolic f (x) =
NC
∑

i−1
xi

2 [−3, 3]NC

3 Ellipsoid f (x) =
NC
∑

i−1
5

i−1
n−1 xi

2 [−3, 3]NC

Mixed-Variable Combinatorial Optimization Problems

4 Cigar f (x, y) = xi
2 + 104

ND
∑

i=1
xi

2 + y1
2 + 104

ND
∑

i=2
yi

2 [−3, 3]NM

5 Parabolic f (x, y) =
NC
∑

i=1
xi

2 +
ND
∑

i=1
yi

2 [−3, 3]NM

6 Ellipsoid f (x, y) =
NC
∑

i=1
5

i−1
n−1 xi

2 +
ND
∑

i=1
5

i−1
n−1 yi

2 [−3, 3]NM

Traveling Salesman Problem Optimization Procedure
The Traveling Salesman Problem is a discrete combinatorial optimization problem [12–15].

The locations of many cities are given, and an optimal order in which the cities are traversed
is calculated. A position vector is the suggested order of cities. The velocity vector is a
sequence of two-element tuples in which each tuple consists of two indices of elements to
be swapped to make the path more optimal. For example, if there are five cities labeled
with indices {1, 2, 3, 4, 5}, the population matrix could consist of different suggested orders
in which they are to be traversed, such as {2, 4, 3, 5, 1} and {5, 4, 3, 1, 2}. The velocity vector
for the first suggested order of cities could be {(1, 2), (3, 2), (4, 5)}, while for the second, it
could be {(5, 1)}. In this case, the first element would be swapped with the second, the third
with the second after that, and the fifth with the fourth after that, in the first suggested
sequence of cities. For the second, the fifth and first elements are to be swapped.
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ω, α, and β are pre-determined constants used in this algorithm. A random number
is generated for each swap in the previous velocity vector. For each random number that
is less than ω, the corresponding swap is included in the new velocity vector. Similarly,
this process is carried out for the second term and the third term with α and Beta instead
of ω. These three random numbers are generated together to maintain the k-dimensional
uniformity of the quasi-random number sequence when Halton or SOBOL is used. Through
the usage of this swapping method, the optimal order in which the cities must be visited
is attained.

For the ith particle at the iteration index n, to update the velocity, the following
equation can be used.

th :
vi

n+1 =
{

ω ∗ vi
n
}⊕ {

α ∗
(

Pi
n − Xi

n
)}⊕{

β ∗
(

Gj
n − Xi

n

)} (13)

Hence, vi
n+1 is a set o f swaps.

Here, the ⊕ is the merging operator, which merges sequences of swaps into a new
swap sequence.

α < 1, β < 1 and ω < 1 (14)

For the ith particle at the iteration index n, we can apply the new updated velocity
vi

n+1 to the current position Xi
n, ( which is a set of node sequences or a node list in TSP) and

obtain the updated position Xi
n+1.

Xi
n+1 = Xi

n
Apply Swaps←−−−−−−− vi

n+1 (15)

For ω ∗ vn, if vn is a vector of L elements to begin with, then L random numbers are
generated and for each random number that is less than ω, the corresponding swap in vn is
used.

(
Pi

n − Xi
n
)

is a swap sequence to move from Xi
n to Pi

n. For example, if Pi
n is {3, 4, 5, 2, 1}

and Xi
n is {5, 3, 4, 1, 2}, the set of swaps needed to move fromXi

n to Pi
n is {(1, 3), (3, 2), (4, 5)}

(assuming that indices start from 1).
α ∗

(
Pi

n − Xi
n
)

is a set of swaps that are selected from the swap sequence vector(
Pi

n − Xi
n
)

of length N based on the N random numbers generated that are less than α.
During initialization, for each particle i, Xi

0 is set to a random selection of cities whose
IDs are the city node index. If there are N cities to be visited, then Xi

0 is a vector of length N.
The following are tables comparing the results produced by Monte Carlo random number

sampling with Sobol random number sampling and Halton random number sampling.
Sobol vs. Monte Carlo Random Numbers
We compare the performance of using SOBOL versus conventional random number

approaches based on PSO for the three functions (continuous and mixed variable form) in
Tables 2–7. In addition, we also compare the SALP algorithm for the continuous ellipse
and paraboloid and mixed variable ellipse and paraboloid function optimizations.

Table 2. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the continuous variable Cigar function.

Number
of Dimensions

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute

Time (secs)

PSO
Conventional

Compute
Time (secs)

Iterations’
Improvement

Percentage

5 85 107 1.9 5.1 0.31 0.37 21%

10 167 193 2.4 6.3 0.46 0.68 14%

15 183 312 5.2 30.5 0.69 1.1 42%

20 231 447 26.5 30.1 0.87 1.6 49%
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Table 3. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the mixed variable Cigar function.

Number of
Dimensions

PSO
Enhanced

(Iterations)

PSO
Conventional

(Iterations)

PSO
Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

Salp
Swarm

Standard
Deviation

PSO
Enhanced
Compute

Time (secs)

PSO
Conventional

Compute
Time (secs)

Iterations’
Improvement

Percentage

5 93 97 3.1 6.8 N/A 0.47 0.41 4%

10 119 156 6.1 9.1 N/A 0.54 0.71 24%

15 147 209 11.2 11.8 N/A 0.73 0.87 30%

20 195 264 12.6 15.8 N/A 0.91 1.1 27%

Table 4. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO optimization for the continuous variable Paraboloid function.

Number of
Dimensions

PSO
Enhanced

(Iterations)

PSO Con-
ventional

(Iterations)

Salp
Swarm

(Iterations)

PSO
Enhanced
Standard
Deviation

PSO Con-
ventional
Standard
Deviation

Salp
Swarm

Standard
Deviation

PSO
Enhanced
Compute

Time (secs)

PSO Con-
ventional
Compute

Time (secs)

Iterations’
Improve-

ment
Percentage

5 42 54 43 0.9 3.2 0.8 0.17 0.21 23%

10 67 91 71 1.2 4.5 0.9 0.26 0.37 26%

15 82 136 88 1.91 7.1 0.89 0.33 0.53 40%

20 102 178 120 1.95 7.9 1.1 0.42 0.59 43%

Table 5. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the mixed variable Paraboloid function.

Number of
Dimensions

PSO
Enhanced

(Iterations)

PSO Con-
ventional

(Iterations)

Salp
Swarm

(Iterations)

PSO
Enhanced
Standard
Deviation

PSO Con-
ventional
Standard
Deviation

Salp
Swarm

Standard
Deviation

PSO
Enhanced
Compute

Time (secs)

PSO Con-
ventional
Compute

Time (secs)

Iterations’
Improve-

ment
Percentage

5 42 47 85 2.2 3.5 1.5 0.19 0.23 11%

10 62 68 98 3.5 4.9 1.69 0.27 0.38 20%

15 78 106 352 2.5 3.5 35.1 0.38 0.53 27%

20 94 151 364 4.5 8.2 30.2 0.46 0.64 38%

Table 6. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the continuous variable Ellipsoid function.

Number of
Dimensions

PSO
Enhanced

(Iterations)

PSO Con-
ventional

(Iterations)

Salp
Swarm

(Iterations)

PSO
Enhanced
Standard
Deviation

PSO Con-
ventional
Standard
Deviation

Salp
Swarm

Standard
Deviation

PSO
Enhanced
Compute

Time (secs)

PSO Con-
ventional
Compute

Time (secs)

Iterations’
Improve-

ment
Percentage

5 48 60 44 2.2 3.7 0.875 0.20 0.24 20%

10 70 96 75 4.1 3.1 1.1 0.31 0.42 27%

15 92 154 96 3.9 5.1 2.8 0.41 0.68 40%

20 105 184 132 4.2 9.2 2.9 0.52 0.88 43%

Table 7. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the mixed variable Ellipsoid function.

Number of
Dimensions

PSO
Enhanced
(Iteration)

PSO Con-
ventional

(Iterations)

Salp
Swarm

(Iterations)

PSO
Enhanced
Standard
Deviation

PSO Con-
ventional
Standard
Deviation

Salp
Swarm

Standard
Deviation

PSO
Enhanced
Compute

Time (secs)

PSO Con-
ventional
Compute

Time (secs)

Iterations’
Improve-

ment
Percentage

5 45 53 90 3.5 4.6 11.9 0.26 0.26 15%

10 62 89 109 4.9 8.3 29.1 0.42 0.43 30%

15 84 128 342 4.4 6.7 54.3 0.52 0.65 35%

20 90 165 350 3.2 7.8 63.6 0.63 0.88 46%
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Halton vs. Monte Carlo:
The results of Halton-based enhanced PSO are presented in Tables 8–13.

Table 8. Comparison of performances of both Monte Carlo and (scrambled) Halton random number
samplings in PSO for the continuous variable Cigar function.

Number of
Dimensions

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

5 61 101 3.2 5.1 0.51 0.35 40%

10 111 189 5.1 6.3 0.77 0.64 42%

15 188 298 6.8 30.5 1.1 1.03 37%

20 220 451 10.1 30.1 1.3 1.51 52%

Table 9. Comparison of performances of both Monte Carlo and (scrambled) Halton random number
samplings in PSO for the mixed variable Cigar function.

Number of
Dimensions

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

5 96 95 2.87 4.9 0.67 0.40 1%

10 107 156 4.12 5.8 0.81 0.65 32%

15 157 204 9.75 14.5 1.03 0.88 23%

20 190 265 13.3 8.31 1.30 1.16 29%

Table 10. Comparison of performances of both Monte Carlo and Halton random number samplings
in PSO for the continuous variable Paraboloid function.

Number of
Dimensions

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

5 38 52 0.9 3.1 0.41 0.20 30%

10 64 88 1.1 4.4 0.6 0.33 28%

15 79 142 1.15 6.5 0.76 0.52 45%

20 103 174 1.6 5.5 0.92 0.55 41%

Table 11. Comparison of performances of both Monte Carlo and Halton random number samplings
in PSO for the mixed variable Paraboloid function.

Number of
Dimensions

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

5 38 46 1.37 2.66 0.46 0.21 18%

10 60 77 3.1 4.31 0.62 0.33 23%

15 71 107 3.9 5.78 0.81 0.48 35%

20 92 146 6.99 7.52 0.94 0.67 38%

It can be seen from the above tables (Tables 2–13) that the quasi-random sequence-
based enhanced PSO demonstrates superior performance compared to a conventional
random number-based PSO for both continuous and mixed variable problems. The en-
hancement increases generally with a higher number of variables specifically for continuous
variable problems. SOBOL works better for mixed variable functions than Halton, but
Halton shows better convergence than SOBOL when considering most of the continuous
variable benchmark problems.
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Table 12. Comparison of performances of both Monte Carlo and Halton random number samplings
in PSO for the continuous variable Ellipsoid function.

Number of
Dimensions

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

5 38 60 2.7 3.7 0.6 0.24 40%

10 75 96 3.08 3.1 1.0 0.42 24%

15 86 154 3.01 5.1 1.27 0.68 45%

20 152 184 3.44 9.2 1.44 0.88 35%

Table 13. Comparison of performances of both Monte Carlo and Halton random number samplings
in PSO for the mixed variable Ellipsoid function.

Number of
Dimensions

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

5 42 53 2.54 4.6 0.50 0.26 21%

10 61 89 2.75 8.3 0.70 0.43 32%

15 110 128 6.19 6.7 0.91 0.65 14%

20 120 165 7.1 7.8 1.2 0.88 27%

Constant Inertia vs. Random Inertia:
As suggested earlier, in new variants proposed in the literature, adaptive parameter

enhancements provide improvements. We can also replace the random numbers used in
these variants with the quasi-random numbers suggested in our new algorithm as these
two improvements are mutually exclusive. We illustrate this by comparing the constant
inertia algorithm, which is the traditional approach to PSO, to the random inertia proposed
as an enhancement [Tables 14–17].

Table 14. Comparison of random inertial weight-aided Sobol and conventional PSO performances
for benchmark functions with 5 dimensions.

Function Type
PSO Sobol

Contant Weight
Inertia

PSO
Conventional

Random Weight
Inertia

PSO Sobol
Random Weight

Inertia

Standard
Deviation
PSO Sobol

Contant Weight
Inertia

Standard
Deviation PSO
Conventional

Random Weight
Inertia

Standard
Deviation
PSO Sobol

Random Weight
Inertia

Improvement in
Random Inertia
(Conventional

vs. Sobol)

Cigar—
Continuous 85 54 48 1.9 1.88 3.9 11.1%

Ellipse—
Continuous 48 35 30 2.2 1.2 1.8 14.3%

Parabola—
Continuous 42 31 29 0.9 1.7 1.3 6.45%

Cigar—Mixed 93 108 95 3.1 14.3 3.6 12.03%

Ellipse—Mixed 45 57 47 3.5 8.5 4.6 17.54%

Parabola—
Mixed 42 52 43 2.2 15.8 5.5 17.3%

In this section, we compare the performance of the PSO with the constant inertia
weight and that of the PSO with the random inertia weight. Random inertia weight has
been used in reference [20,21] to improve the iteration efficiency. The traditional constant
inertia PSO, our proposed enhanced PSO with quasi-random numbers with constant inertia
PSO, is compared with random inertia variants for both algorithms. We use Sobol random
numbers for the enhanced PSO and its random inertia variant.
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Table 15. Comparison of performances of random inertial weight-aided Sobol and conventional PSO
for the benchmark functions with 10 dimensions.

Function Type
PSO Sobol

Contant Weight
Inertia

PSO
Conventional

Random Weight
Inertia

PSO Sobol
Random Weight

Inertia

Standard
Deviation
PSO Sobol

Contant Weight
Inertia

Standard
Deviation PSO
Conventional

Random Weight
Inertia

Standard
Deviation
PSO Sobol

Random Weight
Inertia

Improvement in
Random Inertia
(Conventional

vs. Sobol)

Cigar—
Continuous 167 76 67 2.4 2.6 1.8 11.8%

Ellipse—
Continuous 70 35 30 4.1 1.8 1.7 14.3%

Parabola—
Continuous 67 31 29 1.2 2.3 1.6 6.5%

Cigar—Mixed 119 177 136 6.1 9.2 16.1 23.2%

Ellipse—Mixed 62 99 84 4.9 8.0 17.2 15.2%

Parabola—
Mixed 62 89 71 3.5 8.2 4.5 20.2%

Table 16. Comparison of performances of random inertial weight-aided Sobol and conventional PSO
for the benchmark functions with 15 dimensions.

Function Type
PSO Sobol

Contant Weight
Inertia

PSO
Conventional

Random Weight
Inertia

PSO Sobol
Random Weight

Inertia

Standard
Deviation
PSO Sobol

Contant Weight
Inertia

Standard
Deviation PSO
Conventional

Random Weight
Inertia

Standard
Deviation
PSO Sobol

Random Weight
Inertia

Improvement in
Random Inertia
(Conventional

vs. Sobol)

Cigar—
Continuous 183 96 85 5.2 2.1 2.2 11.5%

Ellipse—
Continuous 92 63 56 3.9 1.2 1.6 11.1%

Parabola—
Continuous 82 61 52 1.91 1.3 1.9 14.8%

Cigar—Mixed 147 260 166 11.2 44.8 16.4 36.2%

Ellipse—Mixed 84 140 100 4.4 11.9 6.9 28.6%

Parabola—
Mixed 78 133 86 2.5 30.1 5.7 35.3%

Table 17. Comparison of performances of random inertial weight-aided Sobol and conventional PSO
for the benchmark functions with 20 dimensions.

Function Type
PSO Sobol

Contant Weight
Inertia

PSO
Conventional

Random Weight
Inertia

PSO Sobol
Random Weight

Inertia

Standard
Deviation
PSO Sobol

Contant Weight
Inertia

Standard
Deviation PSO
Conventional

Random Weight
Inertia

Standard
Deviation
PSO Sobol

Random Weight
Inertia

Improvement in
Random Inertia
(Conventional

vs. Sobol)

Cigar—
Continuous 231 118 98 26.5 5.4 3.5 16.9%

Ellipse—
Continuous 105 77 66 4.2 2.8 2.7 14.3%

Parabola—
Continuous 102 74 62 1.95 2.1 1.9 16.2%

Cigar—Mixed 195 330 234 12.6 37.1 21.2 29.1%

Ellipse—Mixed 90 213 120 3.2 28.4 19.2 43.7%

Parabola—
Mixed 94 193 105 4.5 23.6 5.1 45.6%

The velocity of each particle in the PSO algorithm at iteration n is updated according
to the following equation:

vij
n+1 = ω ∗ vij

n + c1 ∗ r1 ∗
(

Pj
n − Xij

n

)
+ c2 ∗ r2 ∗

(
Gn

j − Xij
n

)
(16)

In the above equation, ω is the inertia weight. For constant inertia, ω was set to 0.75.
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For random inertia weight, ω was set to 0.5 + rand
2 as per [21]. The comparison results

are provided in the table below. The improvement percentage in the table below is the
comparison between random inertial weight-aided Sobol and conventional PSO variants.

From the above results, we conclude that the Sobol-based PSO variant performs better
in terms of iteration efficiency with respect to the conventional PSO as well as random
inertia PSO.

TSP Optimization Results
Tables 18 and 19 provide the TSP optimization comparisons using the PSO variants.

TSP is a completely discrete problem, and SOBOL performs better, as can be seen from
Figures 6–8, as well as Tables 14 and 15. For TSP, the particles were initialized using the
standard uniformly distributed random numbers for both the standard and the enhanced
PSOs. The velocity and position updates, which are basically a set of swaps, are controlled
using the Sobol and Halton-generated random numbers in the case of enhanced PSO.

Table 18. Comparison of performances for Monte Carlo and Sobol random number samplings in
PSO for TSP.

Number of
Cities

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

10 74 103 16.1 28.9 0.98 1.18 28%

15 414 478 88.7 130.2 7.85 8.7 13%

20 1705 1927 210.2 371.4 16.55 17.8 11.5%

Table 19. Comparison of performances for Monte Carlo and Halton random number samplings in
PSO for TSP.

Number of
Cities

PSO Enhanced
(Iterations)

PSO
Conventional

(Iterations)

PSO Enhanced
Standard
Deviation

PSO
Conventional

Standard
Deviation

PSO Enhanced
Compute Time

(secs)

PSO
Conventional

Compute Time
(secs)

Iterations’
Improvement

Percentage

10 78 103 18.2 28.9 1.26 1.18 24%

15 431 478 76.7 130.2 8.98 8.7 9.8%

20 1760 1927 212.1 371.4 17.39 17.8 8.6%
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4. Discussion

We have augmented the PSO algorithm by integrating Sobol and Halton random
number samplings to achieve superior results. Our rationale behind this enhancement
is rooted in Sobol and Halton random numbers, which are quasi-random number types.
These numbers are generated in such a manner that they are uniformly distributed across
multidimensional space, thus mitigating clustering or bias in particle movement. Conse-
quently, this facilitates more extensive exploration, thereby increasing the likelihood of
avoiding local optima and accelerating the discovery of the global optimum, as a more
significant portion of the space can be explored when biases or clusters are circumvented.

The outcomes indicate that the enhancement applied to the standard PSO through the
utilization of quasi-random numbers has consistently improved the number of iterations
required for the algorithm to produce the optimal function value across all three benchmark
functions. The efficiency gains for continuous functions are more pronounced than those
for mixed variable functions.
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Additionally, including more decision variables in the problem correlates with more
significant improvements in general. As evident from the data, the application of Sobol or
Halton sequences to the standard PSO algorithm demonstrates efficiency improvements,
suggesting the potential benefits of these sequences to researchers in various optimization
fields. Notably, this technique is algorithm-agnostic, as indicated in the introduction, and
can thus be employed with other optimization algorithms such as the Genetic Algorithm,
Ant Colony Optimization (ACO) algorithm, and other established optimization algorithms.

5. Conclusions

Particle Swarm Optimization harnesses swarm behavior effectively for function opti-
mization but is often hampered by slow convergence. We consistently improved efficiency
through two distinct enhancements to the Particle Swarm Optimization algorithm. We pro-
posed the use of quasi-random number sequences to update decision variable values and
their rates of change in each iteration to enhance the PSO algorithm. Since quasi-random
number sequences do not alter the fundamental algorithm, this concept can be integrated
into modified versions of the PSO algorithm suggested previously, as discussed in the
introduction. To evaluate whether quasi-random number sequences in PSO yield efficiency
improvements, we tested them using continuous and mixed variable Cigar, Ellipsoid, and
Paraboloid functions, along with an example of the Traveling Salesman Problem. The
results demonstrate that both sequences of quasi-random numbers used to enhance the
standard PSO improved efficiency.
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