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Abstract: Let Vn(d) denote the least number, such that every collection of n d-cubes with total
volume 1 in d-dimensional (Euclidean) space can be packed parallelly into some d-box of vol-

ume Vn(d). We show that V3(d) = r1−d

d if d ≥ 11 and V3(d) =
1
r +1

rd+( 1
r −r)

d
+1

if 2 ≤ d ≤ 10,

where r is the only solution of the equation 2(d − 1)kd + dkd−1 = 1 on
(√

2
2 , 1

)
and (k + 1)d(1 −

k)d−1(dk2 + d + k − 1
)
= kd

(
dkd+1 + dkd + kd + 1

)
on
(√

2
2 , 1

)
, respectively. The maximum volume

is achieved by hypercubes with edges x, y, z, such that x =
(

2rd + 1
)−1/d

, y = z = rx if d ≥ 11,

and x =
(

rd + ( 1
r − r)d + 1

)−1/d
, y = rx, z = ( 1

r − r)x if 2 ≤ d ≤ 10. We also proved that only for
dimensions less than 11 are there two different maximum packings, and for all dimensions greater
than 10, the maximum packing has the same two smallest cubes.

Keywords: packing of cubes; extreme

1. Introduction

In 1966 (according to [1], in 1963 according to [2]), Leo Moser spread a collection of
50 problems named “Poorly Formulated Unsolved Problems of Combinatorial Geometry”.
The collection consisted of only mimeographed copies, and was not fully published in its
original form until 1991 in [1]. Problem 7 was “What is the smallest number A such that
every set of squares of total area 1 can be accommodated in some rectangle of area A?”.
This problem can also be found in [2–5].

The problem has been extended to higher dimensions, and has been studied for a
specific number of squares (cubes). We reformulate the problem, to distinguish between
the number of dimensions and cubes and to clarify it.

Packing of a (finite or infinite) collection of d-dimensional cubes (d-cubes, for short)
into a d-dimensional rectangular parallelepiped (d-box, for short) means that the union of
the d-cubes is a subset of the d-box and the intersection of the interior of any two d-cubes is
the empty set. The packing, in which each edge of any packed d-cube is parallel to an edge
of d-box, is called parallel packing.

We denote by Vn(d) the least number such that every collection of n d-cubes with the
total volume 1 in d-dimensional (Euclidean) space can be packed parallelly into some d-box
of volume Vn(d). V(d) denotes the maximum of all Vn(d), n = 1, 2, 3, . . .

Most of the results are for two-dimensional space. In 1967, Moon and Moser [4] proved
that 1.2 ≤ V(d) ≤ 2. In 1970, Kleitman and Krieger [6] proved that V(2) ≤

√
3 < 1.733,

and the rectangle with edge lengths 1 and
√

3 is sufficient. Five years later, Kleitman
and Krieger [7] again proved that V(2) ≤ 4√

6
.
= 1.633, the rectangle has sides of lengths

2√
3

and
√

2. After twenty years, Novotný [8] showed that V3(2)
.
= 1.228 and V(2) ≥

2+
√

3
3 > 1.244. Novotný [9] proved V4(2) = V5(2) = 2+

√
3

3 , and in [10], Novotný proved

V6(2) = V7(2) = V8(2) = 2+
√

3
3 . Platz [11] show up to V11(2) = 2+

√
3

3 . It is widely believed
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that V(2) = 2+
√

3
3 . The estimate of V(2) was improved by Novotný [12] V(2) < 1.53. Later,

this result was improved by Hougardy [13] V(2) ≤ 2867
2048 < 1.4 and Ilhan [14] V(2) < 1.37.

In 2021, Neuwohner [15] reduced the problem of V(2) to a problem of a finite set of
squares, and he limited their number to about 26,000.

The estimate of V(3) was also gradually improved. Meir and Moser [16] proved
V(3) ≤ 4, and later Novotný [17] proved V(3) ≤ 2.26. The exact results are known for
n = 2, 3, 4, 5: Novotný [18] V2(3) = 4

3 , V3(3) = 1.44009951, Novotný [19]
V4(3) = 1.5196303266, and in [17], Novotný proved V5(3) = V4(3).

Some results for higher dimensions are known too: V3(4) = 1.63369662, by Bálint and
Adamko in [20]; V3(6) = 1.94449161, by Bálint and Adamko in [21]; V3(8) = 2.14930609,
by Sedliačková in [22]; V3(5)

.
= 1.802803792 and, without a proof, V3(7)

.
= 2.05909680,

V3(9)
.
= 2.21897778, V3(10) .

= 2.27220126, V3(11) .
= 2.31533581, V3(12) .

= 2.35315527,
V3(13) .

= 2.38661963, by Sedliačková and Adamko in [23].
Adamko and Bálint proved lim

d→∞
Vn(d) = n for n = 5, 6, 7, . . . in [24]. Their proof works

for n ∈ 2, 3, 4 as well.
Packing squares into a rectangle is an over half-century-old problem, and even though

there are multiple partial results, it remains unresolved. We investigated a modified prob-
lem: packing three d-cubes in d-dimensional space. Some results for smaller dimensions
are known. We provide the solution for all dimensions d ≥ 2.

2. Results

Theorem 1.

1. V3(d) = r1−d

d if d ≥ 11, where r is the only solution of the equation 2(d − 1)kd + dkd−1 = 1

on
(√

2
2 , 1

)
.

2. V3(d) =
1
r +1

rd+( 1
r −r)

d
+1

if 2 ≤ d ≤ 10, where r is the only solution of the equation

(k + 1)d(1 − k)d−1(dk2 + d + k − 1
)
= kd

(
dkd+1 + dkd + kd + 1

)
on
(√

2
2 , 1

)
.

The maximum volume is achieved by d-cubes with edges x, y, z, such that:

1. x =
(

2rd + 1
)−1/d

, y = z = rx if d ≥ 11.

2. x =
(

rd + ( 1
r − r)d + 1

)−1/d
, y = rx, z = ( 1

r − r)x if 2 ≤ d ≤ 10.

Proof. Let x, y, z be the edge lengths of d-cubes in the d-dimensional Euclidean space
(d ≥ 2), where 1 > x ≥ y ≥ z > 0 and the total volume xd + yd + zd = 1. Let k and m be
real numbers, such that y = kx and z = mx. In the proof, we use three constraints:

1. xd + (kx)d + (mx)d = 1, i.e., xd(kd + md + 1) = 1, where d ≥ 2, d ∈ N.
2. 1 ≥ k ≥ m > 0.
3. kx + mx > x, i.e., k + m > 1. If k + m ≤ 1, then we pack according to Figure 1b, and

the smallest d-cube does not contribute to the total volume.

(a) (b)

Figure 1. Two cases of packing three d-cubes. (a) Packing used by W1. (b) Packing used by W2.

Three d-cubes can be packed only in two meaningful ways; see Figure 1.
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1. Let W1 = xd−1(x + y + z) = xd(k + m + 1) = k+m+1
kd+md+1

be the function of the volume
of the packing, as shown in Figure 1a.

2. Let W2 = xd−2(x + y)(y + z) = xd(k + 1)(k + m) = (k+1)(k+m)
kd+md+1

be the function of the
volume of the packing, as shown in Figure 1b.

Let G(k, m) = min(W1(k, m), W2(k, m)). The domain of the function G is bounded by
the 1 ≥ k ≥ m > 0 and k + m > 1. It is shown as the triangle ABC in Figure 2. The domain
is the same for each d ≥ 2.

Our goal is to find the global maximum of G for each dimension (d ≥ 2) and the edge
lengths x, y, z for which it occurs.

If W1 = W2, then k+m+1
kd+md+1

= (k+1)(k+m)
kd+md+1

gives the curve PB: 1 = k(k + m). PB is
continuous and divides the triangle ABC, into two regions (see Figure 2):

1. Region C1 where 1 ≤ k(k + m) holds. Therefore, W1 ≤ W2 and, consequently,
G(k, m) = W1(k, m). W1 is continuous on the region C1.

2. Region C2 where 1 ≥ k(k + m) holds. Therefore, W1 ≥ W2 and, consequently,
G(k, m) = W2(k, m). W2 is continuous on the region C2.

The curve PB belongs to both regions. The point P = (
√

2
2 ,

√
2

2 ) is used in the proofs

several times, G(P) =
√

2+1

21− d
2 +1

.

√
2

2

√
2

2

0.5 1
0

0.5

1

P

A

B

C

C1

C2

k

m

m = k
m = 1

k − k
m = 1 − k
m = 3 − 3k

Figure 2. The domain of the function G(k, m).

For the sake of clarity, the rest of the proof is divided into nine claims.

Claim 1. The global maximum of W1 must occur on the boundary of the region C1.

Proof. ∂W1
∂k =

(kd+md+1)−dkd−1(k+m+1)

(kd+md+1)
2 , ∂W1

∂m =
(kd+md+1)−dmd−1(k+m+1)

(kd+md+1)
2 . The derivatives are

never undefined. The equation ∂W1
∂k = 0 = ∂W1

∂m gives k = m (line segment PC). So, W1 has
no local extremum inside of the region C1. The global maximum of W1 must occur on the
boundary of the region C1.

Claim 2. The global maximum of W2 must occur on the boundary of the region C2.

Proof. ∂W2
∂m = (k+1)(kd+md+1)−dmd−1(k+1)(k+m)

(kd+md+1)2 is never undefined. The equation ∂W2
∂m = 0

gives

1 =
dmd−1(k + m)

kd + md + 1
(1)
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Assume, for the sake of contradiction, that if d ≥ 8, then Equation (1) holds inside
of the region C2. We calculate an upper bound of the right-hand side of Equation (1)
using constraints 1 > k(k + m), k + m > 1, 0.5 ≤ k ≤ 1, and 0 < m ≤

√
2/2. We max-

imize the numerator (k = m =
√

2/2) and minimize the denominator (k = m = 1/2):

1 ≤ d(
√

2/2)d−1(
√

2/2+
√

2/2)
(1/2)d+(1/2)d+1

and we obtain 1 ≤ 2d/2+1d
2d+2

. If d ≥ 8, then we obtain a contradic-

tion. Therefore, if d ≥ 8, then W2 has no local extremum inside of the region C2.
Assume, for the sake of contradiction, that if 2 ≤ d ≤ 7, then ∂W2

∂k = ∂W2
∂m = 0 inside of

the region C2.
Step 1: From Equation (1), it follows that

m =

(
kd + md + 1

d(k + m)

) 1
d−1

(2)

We calculate a lower bound of the right-hand side of Equation (2) using
1 > k(k + m), k + m > 1, 0.5 ≤ k ≤ 1, and 0 < m ≤

√
2/2. We minimize the numer-

ator (k = m = 0.5) and maximize the denominator (k = m =
√

2/2):

For 2 ≤ d ≤ 7, the right-hand side of inequality m ≥
(

0.5d+0.5d+1
(
√

2/2+
√

2/2)d

) 1
d−1

is succes-

sively greater than 0.530, 0.543, 0.584, 0.623, 0.656, 0.684. Therefore, m is at least 0.53.
∂W2
∂k =

(2k+m+1)(kd+md+1)−dkd−1(k+1)(k+m)

(kd+md+1)
2 is never undefined. ∂W2

∂k = 0 gives

k =

 (2k + m + 1)
(

kd + md + 1
)

d(k + 1)(k + m)


1

d−1

(3)

We calculate a lower bound of the right-hand side of Equation (3) using constraints
1 > k(k + m), 0.53 ≤ m ≤ k ≤ 1, and m ≤

√
2/2. We minimize the numerator

(k = m = 0.53) and maximize the denominator (k = m =
√

2/2).

For 2 ≤ d ≤ 7, the right-hand side of inequality k ≥
(

(2·0.53+0.53+1)(0.53d+0.53d+1)
d(

√
2/2+1)(

√
2/2+

√
2/2)

) 1
d−1

is successively greater than 0.838, 0.681, 0.677, 0.694, 0.715, 0.734. Therefore, k is at least 0.67.
Step 2: We repeat the calculations analogously to step 1.

For 2 ≤ d ≤ 7, the right-hand side of inequality m ≥
(

0.67d+0.53d+1
(
√

2/2+
√

2/2)d

) 1
d−1

is succes-

sively greater than 0.612, 0.585, 0.609, 0.639, 0.666, 0.690; m ≥ 0.58.

For 2 ≤ d ≤ 7, the right-hand side of inequality k ≥
(

(2·0.67+0.58+1)(0.67d+0.58d+1)
d(

√
2/2+1)(

√
2/2+

√
2/2)

) 1
d−1

is successively greater than 1.08, 0.777, 0.735, 0.734, 0.744, 0.756; k ≥ 0.73.
Step 3: We repeat the calculations, for the last time.

For 2 ≤ d ≤ 7, the right-hand side of inequality m ≥
(

0.73d+0.58d+1
(
√

2/2+
√

2/2)d

) 1
d−1

is succes-

sively greater than 0.661, 0.611, 0.627, 0.651, 0.675, 0.697; m ≥ 0.61.

For 2 ≤ d ≤ 7, the right-hand side of inequality k ≥
(

(2·0.73+0.61+1)(0.73d+0.61d+1)
d(

√
2/2+1)(

√
2/2+

√
2/2)

) 1
d−1

is successively greater than 1.21, 0.828, 0.768, 0.757, 0.761, 0.769; k ≥ 0.75.
If ∂W2

∂k = ∂W2
∂m = 0 and 2 ≤ d ≤ 7, then k ≥ 0.75 and m ≥ 0.61, which implies

1 < 0.75(0.75 + 0.61). This is a contradiction, since the region C2 holds 1 ≥ k(k + m).
Hence, if 2 ≤ d ≤ 7, then W2 has no local extremum inside of the region C2.

So, the global maximum of W2 must occur on the boundary of the region C2.

Claim 3. The global maximum of W2 does not occur on AB.
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Proof. AB is a part of a line m = 1 − k if k ∈
[

1
2 , 1
]
. Substituting it into W2 we obtain

W2(k, 1 − k) = k+1
kd+(1−k)d+1

. Denote it by WAB(k), k ∈
[

1
2 , 1
]
.

If k ∈
[

1
2 , 1
]
, then WAB < 2. If d ≥ 7, then 2 <

√
2+1

21−d/2+1
= W2(P). Therefore, if d ≥ 7,

then W2(P) > WAB.
Assume, for the sake of contradiction, that if 2 ≤ d ≤ 6, then WAB ≥ W2(P) at some

k ∈
[

1
2 , 1
]
. From k+1

kd+(1−k)d+1
≥

√
2+1

21−d/2+1
we obtain k ≥ (

√
2+1)(kd+(1−k)d+1)

21− d
2 +1

− 1. Let t(k)

denote the right-hand side, and t(k) increases on
[

1
2 , 1
]
. For 2 ≤ d ≤ 6, t

(
1
2

)
is successively

approximately equal to 0.810, 0.767, 0.810, 0.895, 0.991, thus k > 0.76. We obtain k > 0.97
because t(0.76) is successively approximately equal to 0.973, 1.054, 1.151, 1.237, 1.303. The
value of t(0.97) is successively approximately equal to 1.343, 1.704, 2.034, 2.315, 2.540, which
implies k > 1, which is a contradiction, since k ∈

[
1
2 , 1
]
. Thus, if 2 ≤ d ≤ 6 and k ∈

[
1
2 , 1
]
,

then W2(P) > WAB.
W2(P) > WAB holds for d ≥ 2, therefore the global maximum of W2 does not occur

on AB.

Claim 4. The global maximum of W2 must occur on PB.

Proof. AP is a part of a line m = k if k ∈
[

1
2 ,

√
2

2

]
. Substituting it into W2, we obtain

W2(k, k) = 2k(k+1)
2kd+1

. We denote it by WAP(k), k ∈
[

1
2 ,

√
2

2

]
.

W ′
AP =

(4k+2)(2kd+1)−4d(k+1)kd

(2kd+1)
2 is never undefined. W ′

AP = 0 gives 2(d − 2)kd+1 +

2(d − 1)kd − 2k − 1 = 0. We denote the polynomial on the left-hand side by p(k). It has
one sign change, as the sequence of signs is +,+|−,− (or +|−,− if d = 2). Therefore,
according to Descartes’ rule of signs, it has exactly one positive real root.

If d ≥ 2, then p(2) = 2d+1(3d − 5)− 5 is positive. Setting 2 ≤ d ≤ 5 in p
( 72

100
)
=

1
25

((
18
25

)d
(86d − 122)− 61

)
, we see that it is negative. If d ≥ 5, then the exponential term

dominates and p
( 72

100
)

is decreasing. So, if d ≥ 2, then p
( 72

100
)

is negative. Therefore, if

d ≥ 2, then the only positive root of W ′
AP = 0 is greater than 0.72. Since W ′

AP

(
1
2

)
=

2d+1(−3d+2d+1+4)

(2d+2)
2 > 0 for d ≥ 2, then WAP is increasing on

[
1
2 ,

√
2

2

]
. Therefore, the global

maximum of WAP occurs at point P, which also belongs to PB. It implies, together with
Claims 2 and 3, that the global maximum of W2 must occur on PB.

Claim 5. The global maximum of G does not occur at points P, B, C.

Proof. W1(B) = W1(1, 0) = W1(C) = W1(1, 1) = 1 < 1.2 <
√

2+1
21−d/2+1

= W1(P) for d ≥ 2.
Therefore, the global maximum of W1 does not occur at point B nor C.

The point (0.76, 0.76) ∈ PC. If d ≥ 14, then the sequence W1(0.76, 0.76) = 2·0.76+1
2·0.76d+1

is increasing. G(P) =
√

2+1

21− d
2 +1

<
√

2 + 1 .
= 2.415. If d = 14, then 2.416 .

= W1(0.76, 0.76).

Hence, if d ≥ 14, then G(P) < W1(0.76, 0.76).
The point (0.72, 0.72) ∈ PC. If 11 ≤ d ≤ 13, then G(P) is successively less than

2.313, 2.342, 2.363 and W1(0.72, 0.72) is successively greater than 2.315, 2.348, 2.373. Hence,
if 11 ≥ d ≥ 13, then G(P) < W1(0.72, 0.72).

Let k1 =
√

2
2 + 0.0001 and m1 = 1

k1
− k1. The point (k1, m1) ∈ PB. If 2 ≤ d ≤ 10, then

W1(k1, m1) is successively greater than
1.20717, 1.41434, 1.60964, 1.78379, 1.9315, 2.05168, 2.14605, 2.21819, 2.2722011, and
G(P) is successively less than
1.20711, 1.41422, 1.60948, 1.78362, 1.9314, 2.05155, 2.14597, 2.21816, 2.2722010.
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Therefore, the global maximum of G does not occur at P.

Claim 6. The global maximum of W1 does not occur on BC.

Proof. BC is a part of a line k = 1 if m ∈ (0, 1). Substituting it into W1, we obtain
W1(1, m) = m+2

md+2
. We denote it by WBC(m), m ∈ (0, 1). We show that, for each m0 ∈ (0, 1),

there exists k0, such that point (k0, m0) ∈ C1 and WBC(m0) < W1(k0, m0) holds.
If m ∈

[√
2

2 , 1
)

and d ≥ 2, then m−md

(2md+1)(md+2)
> 0 holds. It implies 2m+1

2md+1
> m+2

md+2
.

Thus, W1(m, m) > WBC(m) on m ∈
[√

2
2 , 1

)
. Therefore, the global maximum of W1 does

not occur on BC if m ∈
[√

2
2 , 1

)
and d ≥ 2.

If m ∈
(

0,
√

2
2

)
, then the line k = 1 − m

3 is a part of C1 (see the dash-dotted line in
Figure 2). Assume, for the sake of contradiction, that W1(1 − m

3 , m) ≤ WBC(m) holds

at some m ∈
(

0,
√

2
2

)
. From 2m/3+2

md+(1−m/3)d+1
≤ m+2

md+2
, we obtain

( 2m
3 + 2

)(
md + 2

)
≤

(m + 2)
(

md +
(
1 − m

3
)d

+ 1
)

< (m + 2)
(

md +
(
1 − m

3
)1

+ 1
)

and, finally, m2 < md+1.

This is a contradiction. Therefore, if m ∈
(

0,
√

2
2

)
and d ≥ 2, then the global maximum of

W1 does not occur on BC.
So, the global maximum of W1 does not occur on BC.

The previous claims imply that the global maximum of G must occur on interior of
PC or PB.

1. If m ∈
(√

2
2 , 1

)
, then m = k. G(k, k) = 2k+1

2kd+1
. We denote it by WPC(k), k ∈

(√
2

2 , 1
)

.

2. If m ∈
(

0,
√

2
2

)
, then m = 1

k − k. G(k, 1
k − k) =

1
k +1

kd+( 1
k −k)

d
+1

. We denote it by WPB(k),

k ∈
(√

2
2 , 1

)
.

Claim 7. If d ≤ 10, then the global maximum of G must occur on the interior of PB. If d ≥ 11,
then WPC has exactly one critical point on PC.

Proof. W ′
PC =

2(2kd+1)−2d(2k+1)kd−1

(2kd+1)
2 is never undefined. W ′

PC = 0 gives:

2(d − 1)kd + dkd−1 = 1 (4)

Let h(k) denote the left-hand side of Equation (4). The function h(k) is increasing and
continuous if k > 0, therefore Equation (4) holds on

(√
2

2 , 1
)

if and only if h(
√

2/2) ≤ 1 and

h(1) ≥ 1. From the first inequality, we obtain
(√

2 + 2
)

d ≤ 2d/2 + 2, which only holds for
d ≥ 11, where h(1) ≥ 1 holds for d ≥ 2. So, if 2 ≤ d ≤ 10, then WPC has no local extremum
inside of PC. Therefore, if 2 ≤ d ≤ 10, then the global maximum of WPC must occur at P or
at C, but G does not attain the global maximum at P or C. Therefore, if 2 ≤ d ≤ 10, then
the global maximum of G must occur on the interior of PB.

The function h(k) is increasing and continuous if k > 0; therefore, if d ≥ 11, then
Equation (4) has exactly one solution on

(√
2

2 , 1
)

. Therefore, if d ≥ 11, then WPC has exactly
one critical point on PC.

Claim 8. If d ≥ 11, then the global maximum of G must occur on the interior of PC.

Proof. Assume, for the sake of contradiction, that if d ≥ 11, then WPB ≥ G(P) at some
k ∈ [0.74, 1). Using the endpoints of the interval in WPB we obtain an upper bound

of WPB on the interval. The inequality
1

0.74+1

0.74d+( 1
1−1)

d
+1

≥
√

2+1

21− d
2 +1

gives 37
87

(( 37
50
)d

+ 1
)
≤
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(√
2 − 1

)(
21− d

2 + 1
)

. After setting d = 11 and d = 12 into the inequality, we see that they

do not satisfy it. The left-hand side is always greater than 37
87 , and the right-hand side is

decreasing. If d ≥ 13, then the right-hand side is even smaller than 37
87 .

We obtain a contradiction. Therefore, if d ≥ 11, then the global maximum of WPB does
not occur on [0.74, 1).

W ′
PB =

− 1
k2 (k

d+( 1
k −k)

d
+1)−( 1

k +1)
(

dkd−1+d
(
− 1

k2 −1
)
( 1

k −k)
d−1)(

kd+( 1
k −k)

d
+1
)2 is continuous on

(√
2

2 , 1
)

.

Assume, for the sake of contradiction, that if d ≥ 11, then W ′
PB = 0 at some

k ∈
(√

2
2 , 0.74

]
, we obtain:

(
dk2 + d + k − 1

)(1
k
− k
)d

= (1 − k)
(

dkd+1 + dkd + kd + 1
)

(5)

Using the endpoints of the interval in Equation (5), we obtain an upper bound of the
left-hand side and a lower bound of the right-hand side.(
0.742d + d + 0.74 − 1

)( 1√
2

2

−
√

2
2

)d
≥ (1 − 0.74)

(
d
(√

2
2

)d+1
+ d
(√

2
2

)d
+
(√

2
2

)d
+ 1
)

gives
(

3219 − 325
√

2
)

d − 650
(

2d/2 + 2
)
≥ 0. If d .

= 10.95, then the left-hand side is 0, if
d ≥ 7.23, then the left-hand side is decreasing. Therefore, if d ≥ 11, then the left-hand
side is always negative. This is a contradiction. Hence, if d ≥ 11, then WPB has no local
extremum on

(√
2

2 , 0.74
)

.
Therefore, if d ≥ 11, then the global maximum of WPB occurs at P or at B, but G does

not attain the global maximum at P or at B. Therefore, if d ≥ 11, then the global maximum
of G must occur on the interior of PC.

Claim 9. If 2 ≤ d ≤ 10, then WPB has exactly one critical point inside PB.

Proof. We remove the fractions from Equation (5) by multiplying it by kd. The global
maximum of G does not occur on BC, so we remove the root k = 1 by dividing the equation
by (k − 1), and we obtain:

If d is odd, then we divide the equation additionally by (k + 1)2. If d = 2, then we
divide the equation additionally by (2k + 1). Removing these roots is not necessary, but
we reduce the degree of the polynomial in this way. With the help of Sturm’s theorem, we
prove that Equation (6) has exactly one solution on

(√
2

2 , 1
)

. Table 1 shows Sturm chain for
d = 5.

(k + 1)d(1 − k)d−1
(

dk2 + d + k − 1
)
− kd

(
dkd+1 + dkd + kd + 1

)
= 0 (6)

Table 1. Sturm chain for d = 5.

Sign at
√

2
2 Sign at 1

p0 = 15k7 − 10k6 − 5k5 − 4k3 + 8k2 + 3k − 4 − +
p1 = 105k6 − 60k5 − 25k4 − 12k2 + 16k + 3 + +
p2

.
= 1 2.24k5 + 0.340k4 + 2.29k3 − 5.55k2 − 2.79k + 3.96 + +

p3
.
= 120.41k4 − 336.93k3 + 69.25k2 + 263.49k − 136.88 − −

p4
.
= −19.5k3 + 14.3k2 + 14.7k − 11.5 − −

p5
.
= 21.9k2 − 4.89k − 9.57 − +

p6
.
= −8.40k + 7.15 + −

p7
.
= −2.12 − −

The number of sign changes 4 3

1 The table shows real numbers, but fractions are used in the calculation.
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Evaluating pi

(√
2

2

)
, we obtain the pattern: −|+,+|−,−,−| + |−, i.e., four sign

changes. There are three sign changes at pi(1). The difference of these values is the
number of real roots on (

√
2

2 , 1]. For 2 ≤ d ≤ 10, we only show the sign patterns and the
number of sign changes in Table 2.

Table 2. Summary of Sturm chain for 2 ≤ d ≤ 10.

d Signs Sign Changes

2 −+++− 2
++++− 1

3 −++− 2
+++− 1

4 −++++−−+−− 4
+++−−+++−− 3

5 −++−−−+− 4
+++−−+−− 3

6 −+++−+++−−−+−− 6
+++−−+++−+++−− 5

7 −++++−+−−−+− 6
+++−−+−−−+−− 5

8 −+++−+++−−−+−−−+−− 8
+++−++++−+++−++−−− 7

9 −+++−−+−−−+−−−+− 8
+++−+++−−+−−−+−− 7

10 −+++−+++−−−+−−−+−−−+−− 10
+++−+++−−+++−+++−++−−− 9

So, if 2 ≤ d ≤ 10, then there is only one solution of Equation (6) on the
(√

2
2 , 1

)
.

Therefore, if 2 ≤ d ≤ 10, then WPB has exactly one critical point inside PB.

Claim 7 guarantees the existence of the global maximum of G on the interior of PB
if 2 ≤ d ≤ 10. Claim 9 proves the existence of a single critical point of WPB if 2 ≤ d ≤ 10.
Therefore, if 2 ≤ d ≤ 10, then the global maximum of G must occur at the only solution r of

Equation (6) on
(√

2
2 , 1

)
. The global maximum is WPB(r) =

1
r +1

rd+( 1
r −r)

d
+1

and d-cubes have

edges x =
(

rd + ( 1
r − r)d + 1

)−1/d
, y = rx, z = ( 1

r − r)x.
Claim 8 guarantees the existence of the global maximum of G on the interior of PC if

d ≥ 11. Claim 7 proves the existence of a single critical point of WPC if d ≥ 11. Therefore, if
d ≥ 11, then the global maximum of G must occur at the only solution r of Equation (4) on(√

2
2 , 1

)
. The global maximum is WPC(r) = 2r+1

2rd+1
= r1−d

d (from Equation (4)) and d-cubes

have edges x =
(

2rd + 1
)−1/d

, y = z = rx.

3. Discussion

There are three d-cubes, that is, three variables. In the previous proofs [20–23], the
apparent substitution zd = 1 − xd − yd is used to achieve only two variables. As a result of
it, the domain boundaries xd + yd = 1 and xd + 2yd = 1 change as the dimension changes.
For example, in [23], the shape of the curve C : xdyd + y2d − yd + (x2 − y2)d = 0 is analyzed
depending on the dimension, concluding: “. . . the shape of the curve C is similar . . .”. The
word “similar” (but not the same) is essential. The curve C is also dimension dependent.
(The curve C in previous proofs has the same role as our curve PB.)
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It is difficult, if not impossible, to perform calculations in all dimensions at once when
the curve C and the boundaries change with the change in dimension.

Our substitutions y = kx, z = mx and xd = (kd + md + 1)−1 lead to the boundaries
m = k, k = 1, m = 1 − k, which are simpler than the boundaries in the previous proofs,
and do not depend on the dimension (see Figure 2). The curve PB: 1 = k(k + m) is also the
same for all dimensions, and it is much simpler than the curve C.

Such huge simplifications are not free. For dimensions from 2 to 10, the volume
function xd + xd+1

y changed to (k+1)(k+m)
kd+md+1

, but the stable domain more than compensates
for this trade-off. The “dimensionless” and simplicity of both the boundaries and the PB
curve allowed us to achieve the following:

• The preceding proofs cover only one dimension at a time and only for some dimensions
less than 10. We present the results for all dimensions (d ≥ 2) in about the same
number of pages.

• The previous proofs are based mainly on numerical calculations. There are significantly
fewer numerical calculations in our proofs.

• The method of the previous proofs would have a precision problem in higher dimen-
sions. Our proofs are not affected by this problem.

• The presented results are shorter. The final result of the preceding proofs is a system
of two equations with two variables. Our result is the single one-variable equation,
and it has the same or lesser degree. For example, the final system of equations for the
fifth dimension from [23]:
7x6y5 + 12xy10 − 6xy5 + 5x5y6 + 10y11 − 5y6 + (x2 − y2)4(2x3 − 10y3 − 12xy2) = 0,
x5y5 + y10 − y5 + (x2 − y2)5 = 0.
Our final equation: 15k7 − 10k6 − 5k5 − 4k3 + 8k2 + 3k − 4 = 0.
Our final equation is even simpler for dimensions greater than 10. For example, if
d = 17, then 32k17 + 17k16 = 1.
Although the equations are different, we can confirm that the volumes and the lengths
of the edges published in [20–23] are the same as ours.

• Compared to the previous results, we guarantee that the final equation has exactly
one solution in the interval.

• In [23], it was conjectured that there is only a single maximal packing for each dimen-
sion greater than 10, and in these packings, the two smallest d-cubes are the same.
We proved this conjecture. The global maximum of G occurs on PB (it means two
different maximum packings W1 and W2, even though they use the same d-cubes)
only if 2 ≤ d ≤ 10. If d ≥ 11, then the global maximum of G occurs only on PC, where
k = m.

• We present uniform results.

4. Conclusions

These results raise further questions. For example, if we are packing more than three
cubes, are there multiple maximal packings and are there some identical cubes in maximal
packing for some dimensions? There remains the unanswered question of V(d). We know
V4(2) = V5(2) = . . . = V11(2) and V5(3) = V4(3). Is it true that for each dimension, the
maximal packing volume does not change after a certain number of cubes?

Our method of proof works great for three cubes. It helped that there is only one critical
point on the boundary curves for the dimensions that suited us. This is not guaranteed
for four or more cubes. It is possible that this method of proof would work for more
cubes without some major improvements, but with each additional cube, it gets more
complicated.

The concept of maximal packing holds importance in various fields:

• Geometry and packing problems: Maximal packing refers to arranging objects (such
as spheres or cubes) within a given space in a way that maximizes their density or min-
imizes the empty space. In geometry, it is a fundamental question to determine how
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efficiently we can fill a region with identical objects. The study of maximal packing
helps us understand the optimal arrangement of shapes in different dimensions.

• Materials science and crystal structures: In materials science, maximal packing is cru-
cial for understanding the arrangement of atoms or molecules in crystalline structures.
Crystals exhibit specific packing arrangements (e.g., face-centered cubic, hexagonal
close-packed) that maximize the density of particles while maintaining stability. The
efficiency of packing affects material properties such as hardness, conductivity, and
optical behavior.

• Optimization and efficiency: Maximal packing problems often arise in optimization
scenarios. Solving these problems has practical applications in logistics, manufactur-
ing, and resource utilization.

• Computational complexity: Determining the optimal packing arrangement can be
computationally challenging. Researchers use heuristics, algorithms, and mathemati-
cal techniques to approximate solutions. The study of maximal packing contributes to
our understanding of computational complexity and algorithmic efficiency.

• In historical context: ancient civilizations (such as the Egyptians and Babylonians)
were interested in efficient packing for practical reasons (e.g., storing grain, arranging
bricks) and Kepler’s conjecture about the densest sphere packing in three dimensions
dates back to the 17th century.

In summary, maximal packing plays a vital role in understanding spatial arrangements,
optimizing resource usage, and solving complex problems across various disciplines.
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19–21 October 2011; pp. 100–103. (In Slovak)
18. Novotný, P. Pakovanie troch kociek. In Proceedings of the Symposium on Computational Geometry, Kočovce, Slovakia, 27–29
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