
Citation: Li, Q.; Hu, B.; Shang, J.; Li,

H. Fusion Approaches to Individual

Tree Species Classification Using

Multisource Remote Sensing Data.

Forests 2023, 14, 1392. https://

doi.org/10.3390/f14071392

Academic Editor: Giorgos Mallinis

Received: 30 May 2023

Revised: 30 June 2023

Accepted: 3 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Fusion Approaches to Individual Tree Species Classification
Using Multisource Remote Sensing Data †

Qian Li 1, Baoxin Hu 1,* , Jiali Shang 2 and Hui Li 3

1 Department of Earth and Space Science and Engineering, York University, 4700 Keele Street,
Toronto, ON M3J 1P3, Canada; qian2018@yorku.ca

2 Ottawa Centre for Research and Development, Agriculture and Agri-Food Canada, 960 Carling Avenue,
Ottawa, ON K1A 0C6, Canada; jiali.shang@canada.ca

3 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
lihui@radi.ac.cn

* Correspondence: baoxin@yorku.ca
† This manuscript is part of a Master’s thesis by Qian Li, available online at

http://hdl.handle.net/10315/40623 (accessed on 14 December 2022).

Abstract: With the wide availability of remotely sensed data from various sensors, fusion-based
tree species classification approaches have emerged as a prominent and ongoing research topic.
However, most recent studies primarily focused on combining multisource data at the feature
level, while few systematically examined their positive or negative contributions to tree species
classification. This study aimed to investigate fusion approaches at the feature and decision levels
deployed with support vector machine and random forest algorithms to classify five dominant tree
species: Norway maple, honey locust, Austrian pine, white spruce, and blue spruce in individual
crowns. Spectral, textural, and structural features derived from multispectral imagery (MSI), a very
high-resolution panchromatic image (PAN), and LiDAR data were systematically exploited to assess
their contributions to accurate classifications. Among the various classification schemes that were
explored, both feature- and decision-level fusion approaches demonstrated significant improvements
in tree species classification compared with the utilization of MSI (0.7), PAN (0.74), or LiDAR (0.8) in
isolation. Notably, the decision-level fusion approach achieved the highest overall accuracies (0.86
for SVM and 0.84 for RF) and kappa coefficients (0.82 for SVM and 0.79 for RF). The misclassification
analysis of fusion approaches highlighted the potential and flexibility of decision-level fusion in tree
species classification.

Keywords: tree species classification; multisource remotely sensed data; feature selection; feature
importance; decision fusion

1. Introduction

The accurate classification of tree species in urban areas plays a crucial role in urban
forest assessment, ecological management, and sustainable city planning. It allows urban
planners and ecologists to effectively monitor and manage the urban ecosystem by evaluat-
ing the tree-species-specific composition and spatial distribution. This information helps
with assessing the overall functionality and resilience of urban forests. It is essential to have
up-to-date tree species data for making informed decisions regarding management strate-
gies related to air and water purification, temperature regulation (especially in mitigating
urban heat islands), soil erosion and flooding prevention, and climate change mitigation [1].
For instance, a study on air pollution demonstrated that certain tree species significantly
influence air quality in urban environments [2]. Felton et al. [3] highlighted the importance
of specific tree species by identifying potential consequences for forest biodiversity and
ecosystem services resulting from changes in tree species [3]. Additionally, accurate tree
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species data are integral to creating well-designed green spaces, urban parks, and infras-
tructure developments that enhance biodiversity and promote the overall livability and
well-being of urban residents.

Remote sensing has been used as a cost-effective method in tree species classification,
an alternative to conventional labor-intensive and time-consuming field surveys, and visual
interpretations of aerial photographs over several decades [4]. Tree species classification
using remotely sensed data has also evolved with the advancement of geospatial technolo-
gies. High-spatial-resolution remotely sensed data make it possible to derive features for
individual tree crowns, thus enabling the capture of more precise spectral signatures and
facilitating the analysis of textural features, such as variations in canopy structure or leaf
arrangement. This approach takes into account the crown-level characteristics, resulting
in a higher level of accuracy and increased discriminatory power when extracting and
utilizing these features. Moreover, structural features that capture detailed 3D information
about tree canopies provide valuable insights into the geometric characteristics of different
tree species. Textural and structural features enable the discrimination and classification
between different species with similar spectral characteristics [5–8].

Spectral features derived from multispectral imagery (MSI) play a fundamental role
in tree species classification. While spectral features, including reflectance values and
vegetation indices, are widely employed in tree species classification, their utility alone
is limited [9–13]. The variations in spectral reflectance within individual tree crowns and
the potential similarities between different species highlight the need for complementary
data and features to improve the accuracy and reliability of tree species classification
models. Textural features provide valuable insights into the 2D structural characteristics
by quantifying the frequency and distribution of reflectance values of tree canopies and
play a significant role in tree species classification [14,15]. Among the various texture
analysis methods, several metrics from the statistical grey-level co-occurrence matrix
(GLCM), such as homogeneity, contrast, correlation, and energy, have been commonly
employed in tree species classification [16–18]. However, a comprehensive investigation
of GLCM-based textural measures, including a broader range of feature types, is needed.
Additionally, it is worth noting that other texture analysis techniques, such as those based
on Gabor filters, have been extensively utilized for texture segmentation and classification
but are rarely employed in tree species classification [19]. The inclusion of the Gabor filter
technique could potentially enhance the discriminatory power and accuracy of tree species
classification models.

Many studies reported successful tree species classification results using various light
detection and ranging (LiDAR) data-derived features [7,8,20,21]. However, it is worth
noting that Aval et al. [16] reported a marginal contribution of height statistics features
derived from LiDAR data when in combination with hyperspectral and panchromatic
imagery in individual tree species classification. Their study highlighted the importance
of extracting the most relevant features prior to merging the complementary multisource
remote sensing data. Therefore, more attention is needed to investigate the advanced
3D structural features, such as point-distribution-related features for multisource remote-
sensing-assisted tree species classification, in addition to the comprehensive investigation
of textural and spectral features.

Taking advantage of these multiple features extracted from the abundance of data
provided by various sensors (e.g., high-resolution multispectral, hyperspectral, and LiDAR
systems), researchers have recognized the potential benefits of integrating multisource
data to improve the performance of tree species classification [5,11,12,22–26]. Fusion-based
classification approaches have gained considerable attention in recent years and continue to
be an active area of research. Extensive utilization of multisource remotely sensed data was
found to be effective in improving the separation of tree species by leveraging the comple-
mentary information available from different scenarios. Most recent studies that employed
fusion approaches incorporated multisource data at the feature level [11–13,22–25,27]. For
example, Liu et al. [25] employed LiDAR in a combination of hyperspectral imagery to
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classify 15 common urban tree species using an RF classifier, resulting in an increased
accuracy of 70% using feature fusion. Nevertheless, the high dimensionality in the feature
space that results from feature-level fusion is likely to be a concern for applications where
the size of training samples is small [28]. In addition, features derived from different data
sources are treated equally by the SVM and random forest methods, even though some
data sources may be more reliable than others [29]. On the other hand, several studies
recently investigated fusion at the decision level for species classification, demonstrating
the advantages of decision fusion over feature fusion [16,18,29]. Stavrakoudis et al. [18]
mapped five forest species using the combined hyperspectral and multispectral imagery,
and they showed that the decision fusion exhibited a higher degree of flexibility and ac-
curacy than the feature fusion. Aval et al. [16] and Hu et al. [29] also highlighted that
it was important but difficult to define an appropriate decision rule to merge different
data sources. An in-depth analysis of decision fusion approaches is needed to realize its
potential in species classification.

Although many studies illustrated the potential of fusion approaches integrating
optical imagery and LiDAR data, how to effectively harness the full potential of each dataset
and successfully integrate information derived from multisource data remains a significant
challenge. This study aimed to address this challenge by exploring methods to extract
advanced textural and structural features and investigating the optimal decision fusion
approach deployed with advanced machine learning classification models. It implemented
feature selection techniques and evaluated various classification schemes using spectral,
textural, and structural features using feature-level fusion. This study developed a decision
fusion framework based on the Dempster–Shafer theory (DST), leveraging probabilistic
support vector machines (SVMs) and random forests (RFs). A misclassification analysis of
the decision fusion and feature-level fusion results was also conducted to provide insights
into further improvement. This study systematically described and examined the spectral,
advanced textural, and structural features derived from the multispectral imagery, high-
resolution PAN, and LiDAR data. Additionally, the contributions of these features toward
achieving accurate classifications were investigated through feature importance analysis
and feature-group-based classification evaluation to quantify the discriminative power of
these features.

2. Study Area and Data Pre-Processing
2.1. Study Area

This study was conducted at the Keele Campus (43.77◦ N, 79.50◦ W) of York University,
which is situated in the Greater Toronto Area, Ontario, Canada. The campus spans 457 acres
of land and provides an urban setting for tree species classification (Figure 1). For this
study, five dominant tree species were selected: Norway maple (Acer platanoides), honey
locust (Gleditsia triacanthos), Austrian pine (Pinus nigra), white spruce (Picea glauca), and
blue spruce (Picea pungens).
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Figure 1. A false color composite (Band 7 printed as Red, Band 5 as Green, and Band 3 as Blue) of
the WorldView-2 MSI over the study area of the Keele campus of York University (approximately
indicated by the blue star overlapped on the administrative boundaries of the province of Ontario
(red rectangle in the bottom-left corner).

2.2. Data Used and Pre-Processing

To create a reference sample dataset, 751 tree crowns (Table 1) from these five dominant
species were randomly chosen based on the street tree inventory conducted by Campus
Services and Business Operations (CSBO) at York University in June 2015. The selected
tree samples were strategically located along streets, near buildings, and other areas with
high pedestrian traffic, with the aim to represent the typical distribution of trees in an
urban environment. They were manually delineated on MSI and a LiDAR-derived canopy
height model (CHM) using ArcMap 10.6 software. An aerial image acquired in May
2016 with a high spatial resolution of 8 cm by 8 cm, which was provided by the York
University Map Library, was visually inspected to confirm the tree species. Additionally,
Google Street View images were utilized to examine the ground truth of the tree species
for the sample dataset. These delineated tree crowns were then superimposed onto the
multisource remotely sensed data to extract target features and generate the classification
sample dataset. Figure 2 illustrates an example of the delineated individual tree crowns
in a PAN image, false-color MSI, and a CHM. To create training and testing subsets, tree
samples of each species were randomly divided at a ratio of 7:3, resulting in 528 samples
for training and 223 samples for validation.

Table 1. Ground reference dataset for tree species classification.

Common Name Scientific Name Tree Type Samples Number Proportion (%)

Norway maple Acer platanoides Broadleaf 188 25
Honey locust Gleditsia triacanthos Broadleaf 180 24
Austrian pine Pinus nigra Conifer 159 21
Blue spruce Picea pungens Conifer 115 15

White spruce Picea glauca Conifer 109 15
Total 751 100
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Figure 2. An example of a Norway maple tree crown manually delineated in (a) a PAN, (b) false-color
MSI, and (c) a LiDAR-derived CHM.

This study utilized multisource remotely sensed data, including WorldView-2 (WV-2)
MSI, high-resolution PAN image, and airborne LiDAR data. The WV-2 satellite sensor,
which was provided by DigitalGlobe Inc. (Westminster, CO, USA), captured panchromatic
imagery with a resolution of 0.4 m and eight-band MSI with a resolution of 1.6 m. The
wavelength range covered by MSI was from 400 nm to 1040 nm. The data were collected
in Toronto on 21 July 2016. The WV-2 MSI underwent radiometric correction to convert
the digital numbers to at-sensor radiances. This correction process utilized radiometric
calibration parameters and standard correction from the WV-2 image calibration file, and
it was performed using MATLAB (Version 2020a, The Math Works, Inc., Natick, MA,
USA, 2020). Furthermore, the atmospheric correction was conducted to obtain the surface
reflectance of the WV-2 MSI. The surface reflectance values ranged from 0 to 100% and
were obtained using the Atmospheric and Topographic Correction (ATCOR) model in the
PCI Geomatics software (PCI Geomatics 2018).

The LiDAR data provided by the York University Map Library was acquired in
April 2015 during the early spring leaf-off conditions. The data set was collected using a
Leica ALS70-HP discrete return LiDAR system mounted on an aircraft flying at 160 knots
(82.3 m/s). The acquisition flights were undertaken at an altitude of 800 m AGL (above
ground level) with the laser pulse rate set at 300,000 Hz, resulting in four discrete returns
and an aggregated point density of 10 points per square meter. The horizontal and vertical
accuracies of the LiDAR data were 30 cm and 10 cm, respectively. To create the CHM, also
known as the normalized digital surface model (nDSM), the LiDAR data was processed
by obtaining the difference between a digital elevation model (DEM) and a digital surface
model (DSM) using MATLAB (Version 2020a, The Math Works, Inc., 2020). A 3D perspective
view of the LiDAR point cloud is presented in Figure 3.

Figure 3. Three-dimensional perspective view of the LiDAR point cloud data for the study area.
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3. Methodology

Figure 4 presents the comprehensive workflow employed in this study. Initially, indi-
vidual tree crowns were manually delineated to enable species analysis at the single-tree
level. Subsequently, spectral, textural, and structural features were derived from the MSI,
PAN, and LiDAR data for each tree crown, respectively. The derived features were then
utilized in the following investigations: (1) Classification was conducted using spectral,
textural, and structural features individually to assess their discriminatory power in dis-
tinguishing the five tree species of interest. Furthermore, the contributions of advanced
textual and structural features were explored. (2) Feature-level fusion was employed for
classification purposes. All possible combinations of individual spectral, textural, and
structural feature groups were investigated and compared to enhance our understanding
of the performance of different classification schemes by utilizing the feature-level fusion
approach. (3) Decision fusion classification was performed, and an in-depth analysis was
carried out to evaluate the results obtained from the fusion process.

Figure 4. Workflow of proposed crown-based tree species classification.

3.1. Feature Extraction

The identification of tree species can be facilitated by considering the physical and
biophysical characteristics of their tree crowns. Integrating multisource remotely sensed
data allows for the extraction of complementary features from 2D optical imagery and 3D
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LiDAR points, effectively capturing the traits associated with different tree species. In this
study, spectral, textural, and structural information extracted from MSI, PAN, and LiDAR
data was utilized to classify the individual tree species. Table 2 presents ground photos
alongside their respective spectral signatures and representations in the PAN and LiDAR
point data. These examples illustrate manually delineated tree crowns of the five species
of interest.

Table 2. Examples of tree crowns for five species and their ground photos, spectral curves, PAN
image, and LiDAR point plots.

Species Ground Photos Spectral Curve of MSI PAN Image LiDAR Points

Norway maple

Honey locust

Austrian pine

Blue spruce

White spruce

Different tree species have distinct biochemical and biophysical properties, leading to
different spectral responses. This mainly drives the use of spectral signatures in tree species
classification. Spectral features in Table 3 were extracted from WV-2 MSI to evaluate the
performance of spectral signatures in distinguishing tree species, including the mean and
standard deviation of the reflectance of individual tree crowns of each spectral band (16 in
total and 11 selected) and five vegetation indices consisting of the normalized difference
vegetation index (NDVI) [30], enhanced vegetation index (EVI) [31], green normalized
difference vegetation index (GNDVI) and red edge normalized difference vegetation index
(RENDVI) [32], and optimized soil adjusted vegetation index (OSAVI) [33,34].
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Table 3. Spectral, textural, and structural features derived from MSI, PAN, and LiDAR data for tree
species classification and selected features for classification.

Dataset Feature
Group

Representatives of Individual Tree Crowns’
Characteristics Selected Features No.

MSI Spectral
features

Mean and standard deviation of the
reflectance of tree crown using eight bands Reflectance_B4,6,7,8; SD_B2,6,7,8

11Vegetation indices combining reflectance of
different bands (EVI, GNDVI, RNDVI) EVI, GNDVI, RE_NDVI

PAN Textural
features

Two-dimensional GLCM-based texture
analysis describes the variations in the
intensity of pixels belonging to tree crowns
in PAN

2D-Correlation, 2D-ClusterProminence,
2D-ClusterShade, 2D-Entropy,
2D-InverseDifferenceMoment,
2D-SumVariance,
2D-MaximumProbability,
2D-DifferenceEntropy,
2D-InformationMeasureofCorrelation1,
2D-InformationMeasureofCorrelation2,
2D-InverseDifferenceNormalized

11

Gabor-filter-based textural features provide
robustness against varying brightness and
contrast of pixels within the tree crown
in PAN

GaborFilter-SquareEnergy
1,2,17,18,21,22,24GaborFilter-
MeanAmplitude1,21

9

LiDAR
point clouds

Structural
features

Normalized number of points at horizontal
layers using the total number of individual
tree points, presenting the branch and foliage
distribution at vertical profile

Density_Layer1,2,3,4,5,9 6

Crown area and the ratio of the crown areas
to the maximum crown area at horizontal
layers, presenting the vertical foliage clusters
at these layers

Area, Vertical_cluster1,2,5,9,10 6

The proportion of first, second, and third
returns subtracted from 1, presenting gap
distributions within the tree crown opposite
to foliage covers

Gap_distribution1, Gap_distribution2,
Gap_distribution3 3

Measures of the 3D spatial relationship of
neighboring voxels with different LiDAR
point numbers in a tree crown, characterizing
the arrangement of foliage, twigs, and branch

3D-Contrast, 3D-SumMean,
3D-ClusterShade, 3D-ClusterTendency 4

CHM Structural
features

Absolute tree height statistics and the
combinations with area information

Max_H/Area, Max_H*Area,
SD_H/Max_H, Mean_H,
(Max_H-Min_H)/Max_H, Max_H,
Mean_H, (Max_H-Mean_H)/Max_H,
Max_H-Mean_H, SD_H

10

The WV-2 PAN image had a significantly higher spatial resolution of 0.4 m compared
with the MSI imagery (1.6 m), resulting in a significant number of pixels within individual
tree crowns, allowing for a meaningful texture analysis. In this study, textural features
based on a GLCM (gray-level co-occurrence matrix) texture analysis and the Gabor filter
technique were derived from PAN listed in Table 3. An expansion of Haralick’s original
GLCM textural features was generated by calculating multiple GLCMs from each tree
crown, which consisted of 22 features that were found by considering co-occurring values
of neighboring pixel pairs. GLCMs were created using an array of offset parameters
that defined spatial relationships in four directions (0◦, 45◦, 90◦, and 135◦), with a one-
pixel distance and 64 distinct gray levels. The one-pixel distance was selected to capture
detailed spatial variations within individual tree crowns, taking into account the 0.4 m
spatial resolution. GLCM vectors represented each input tree crown in the four directions,
which were then averaged to calculate statistical texture features. MATLAB (Version
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2020a, The Math Works, Inc., 2020) was used for the computational processing of these
texture statistics.

Among the 22 GLCM-based textural features, 13 were formulated by Haralick et al. [15],
namely, contrast, correlation1, energy, entropy, inverse difference moment, the sum of
squares: variance, sum average, sum variance, sum entropy, difference variance, difference
entropy, information measure of correlation1, and information measure of correlation2.
Soh et al. [35] discussed five additional features: cluster prominence, cluster shade, dis-
similarity, autocorrelation, and maximum probability. Correlation2 and homogeneity
were computed using the GLCM formulas in MATLAB (Version 2020a). Clausi [36] in-
troduced two modified features: inverse difference normalized and inverse difference
moment normalized.

In this study, a 2D Gabor filter [37] with five scales and six orientations was employed,
which was defined as Equation (1):

h(x, y; f , θ) =
1

σ
√

π
exp(− x2 + y2

2σ2 ) · exp(i( fxx + fyy)), (1)

where x and y are the coordinates of a given pixel in the image, the parameter σ is the
standard deviation of the 2D Gaussian function in the x and y directions, f is the central
frequency of a sinusoidal wave, fx = f cos θ and fy = f sin θ, and θ is the spatial orientation
of the filter. These filters were created with orientations at 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦,
and five different spatial frequencies in each direction (0.1, 0.3, 0.5, 0.7, and 0.9 cycles/pixel).
The PAN image of individual tree crowns was convolved with each Gabor filter, resulting
in 30 output images. The mean amplitude and square energy of the pixels in each output
image were computed to capture the variation in specific frequency content in specific
directions. These Gabor-filter-based textural features, mean amplitude, and square energy,
derived from the PAN image of individual tree crowns, were added to a 60-feature vector
(9 selected), denoted as GaborFilter-MeanAmplitude i (i = 1, 2, . . . , 30) and GaborFilter-
SquareEnergy j (j = 1, 2, . . . , 30) in Table 3.

As shown in the last column of Table 2, the LiDAR point cloud data reflected the
natural arrangements of foliage and branching patterns of individual tree crowns. This
study extracted five types of 3D structural features to characterize the vertical profiles and
3D point distribution of individual tree crowns from the LiDAR point cloud data and CHM.
They are summarized and described in detail in Table 3 with representatives of individual
tree crowns’ characteristics. Studies have employed discrete return airborne LiDAR data to
derive tree crown structural features for various applications, such as the gap fraction and
leaf area index [38]. Among the structural features in Table 3, the gap-distribution-related
features were computed using the following Equation (2):

Dgap(j) = 1−
∑z=max

z=zi
R(j)

Rtotal
, (j = 1, 2, 3, 4) (2)

where R(j) refers to the number of first and only returns, second returns, third returns,
and last returns within individual tree crowns, respectively. Based on studies [7,39], 12 3D
GLCM-based statistical measures proposed by Haralick et al. [15] were computed to
characterize the arrangement of tree elements, such as foliage, twigs, and branches based
on the 3D point distribution inside the tree volume. First, the size of the voxels wsas
determined as 0.5 m3 to optimally represent the internal structural properties of trees
considering the point density of the LiDAR data. Second, the GLCM was calculated from
13 different directions in 3D space with a voxel distance (dx = dy = dz = 1 voxel) relationship
between neighboring voxels, whose values were derived from the cumulative number of
LiDAR points lying in each voxel. Last, this study extracted ten tree-height-related features
similar to some structural features used by Alonzo et al. [22] and Aval et al. [16]. Absolute-
height-related features were computed at the individual tree crown scale to capture the
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general structural properties of tree species. The detailed descriptions of these features are
in Table 3.

3.2. Feature Selection

The recursive feature elimination (RFE) algorithm [40] combined with an RF clas-
sifier was highlighted by several studies in the literature, as it can provide an unbiased
feature selection and effectively increase the classification accuracy [41–43]. Specifically,
Gregorutti et al. [43] recommended the use of the RFE algorithm, considering its good
performance, even in the presence of correlated features. Demarchi et al. [41] reported
that RFE effectively handles the fusion of complementary and diverse data sources, such
as hyperspectral imagery and LiDAR data. In this study, the feature selection was im-
plemented for the classification scheme of feature-level fusion using the “caret” package
with version 6.0-90 [44] in the statistical software RStudio (Version 1.2.1335) (RStudio Team,
2018) [45]. RFE fitted the RF model with the initial feature space to rank features by im-
portance at first and recursively eliminate the least important features afterward. RFE
then re-examined the ranked features using a permutation importance measure at each
backward elimination step. This process was repeated iteratively until the optimal number
of feature subsets was obtained when the highest classification accuracy was produced.

3.3. Classification

Spectral, textural, and structural features derived from MSI, PAN, and LiDAR data
were used to classify the five tree species using SVM and RF. The implementation of clas-
sification with SVM and RF algorithms was performed using the “e1071” package with
version 1.7-6 [46], which is a package for R programming that provides functions for statis-
tical and probabilistic algorithms and the “randomForest” package [47] in the statistical
software RStudio (Version 1.2.1335) (RStudio Team, 2018). The same training and testing
datasets were used for training and validating the SVM and RF classification models. The
numeric values of the feature vectors derived from individual tree crowns were first nor-
malized to a common scale from 0 to 1 before inputting them into the classification models.

3.3.1. Classification Techniques

The SVM algorithm classified five tree species using the “one-against-one” approach [45],
which is a pairwise classification strategy that trains multiple binary classifiers to distin-
guish between each pair of classes in multiclass classification problems. A total of ten
binary SVM classifiers were built since five species classes were involved in this study. It is
worth mentioning that four kernel types for SVM, namely, the linear kernel, polynomial
kernel, radial basis function (RBF), and sigmoid kernel, were employed for the pretest and
comparison. The RBF kernel was selected in the SVM classification models for the current
study since it provided the best performance on both the training and testing datasets.
The parameters, including the cost (C) and hyperparameter (gamma) with RBF kernel
in the SVM classifier, should be optimized using the training dataset to produce the best
classification performance. However, using the default parameters appeared to achieve
a classification accuracy close to what was achieved through the parameter optimization
process after multiple verifications of empirical tests using separate feature groups. There-
fore, in order to increase the generalizability of the classification model across multiple
classification schemes, the default parameters of the RBF kernel SVM classifier (cost set as
one and gamma as the inverse of the number of features) were used for all the classification
schemes in this study. Furthermore, the RBF-kernel-based SVM classifier computed the
posterior class probabilities of each tree sample belonging to the five tree species of interest
as outputs instead of crisp class labels, which were employed as the mass functions in the
subsequent decision-level fusion approach.

Two parameters were set up for the RF classifier: the number of classification trees
(ntree) and the number of features randomly sampled as candidates at each node (mtry).
Based on the experiment by Maxwell et al. [28], a large ntree number of 500 was set. The
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mtry values varied across a wide range of values from 6 to 12 for the optimization, as
suggested in the documentation of the randomForest package, where the default value of
mtry for classification was set to approximately the square root of the number of features
in the training dataset. The mtry value that delivered the minimum out-of-bag error was
chosen to build the classification model. A 10-fold cross-validation with three repeats
was performed to evaluate the out-of-bag error estimate using multiple mtry values on
the training data. In RF, the final classification result was obtained using the tree species
with the majority vote. The proportion of votes predicting each sample as a specific tree
species was computed as the class-specific probabilities in the RF algorithm, enabling a soft
decision fusion approach. The class probabilities measuring the confidence of classification
results were output as the mass functions in the subsequent decision-level fusion approach.

3.3.2. Fusion Approaches

The current study considered two classification cases: feature-level fusion (case A)
and decision-level fusion (case B). In case A, individual feature groups without feature
selection were directly utilized to build classification models using SVM and RF algorithms,
respectively. The classification outputs of separate feature groups were presented in the
class probabilities instead of the predicted classes. The evidence or confidence of the
preliminary classification results from individual feature groups was quantified as numeric
posterior probabilities using the improved Platt scaling method [48,49] in SVM and the
voting of trees in RF [50]. For a tree sample, the probability indicated the percentage
supporting the belief that the tree object belongs to a specific tree species. The workflow
diagram in Figure 5 depicts the outline of the DST-based decision-level fusion approach
deployed with SVM/RF classifiers to tree species classification. The original features from
each dataset were used to compute the posterior probabilities for the decision-level fusion
approach and to obtain classification accuracies for comparisons.

Figure 5. Workflow of the decision-level fusion approach deployed with SVM and RF.

Dempster’s rule of combination (the joint mass) aggregates multiple mass functions
calculated from pieces of evidence (here, preliminary classification results as posterior
probabilities from the respective MSI, PAN, and LiDAR data). The frame of discernment,
which is denoted by θ, is first defined in DST, which contains all the possible classes Ai
under consideration. When θ = {A1, A2 . . . Ai}, the power set 2θ contains all the subsets
Ai of θ (denoted as Ai ⊆ 2θ), including the empty and full sets. DST uses a mass function
m(Ai), also called BPA or basic belief assignment (BBA), to represent the degree of belief in
classes given the relevant and available evidence that supports the claim that the actual
class belongs to Ai. In this study, the mass function m(Ai) is in the form of probabilities. For
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any Ai ⊆ 2θ , m(Ai) ∈ [0, 1], m(∅) = 0, and ∑Ai⊆2θ m(Ai) = 1. The decision rule defined
by Shafer (1976) [51] using Equation (3) was applied to combine multisource remotely
sensed data for tree species classification in this study. The posterior class probabilities
from individual classification schemes were employed as mass functions that were further
combined through the DST combination rule for the decision-level fusion. The DST-based
decision fusion approach combined probabilities for five tree species of interest computed
from multisource features and arrived at a degree of confidence, considering all the available
evidence for the decision-making. The most probable tree species was ultimately assigned
to a given sample based on the decision criterion of the maximum probability:m1,2,...,i(A) =

∑B1∩...∩Bn=A ∏n
i=1 mi(Bi)

1−K
K = ∑

B1∩...∩Bi=∅
∏n

i=1 mi(Bi)
(3)

where mi(A) signifies the combined mass for the possible predicted tree species A. mi
(Bi) are the individual masses assigned to subsets of the frame of discernment, which
are posterior probabilities from the respective MSI, PAN, and LiDAR data. The conflict
parameter, which is denoted as K, measures the amount of conflict or uncertainty among the
multisource-derived features. The value of K indicates the extent to which these features or
data support conflicting predictions. After the combination using Equation (3), the decision
criterion that the maximum probability indicated as the most credible or plausible decision
was used in this study to ultimately classify a given sample into one of the interested tree
species classes.

For case B, feature selection was implemented first, and classification was performed
based on the selected features to calculate classification accuracies for comparison with the
feature-level fusion approach. The importance of individual feature groups was analyzed
based on the results of the feature selection and their discriminatory powers in the clas-
sification accuracies evaluated in case B. In particular, textural features were subdivided
into GLCM- and Gabor-filter-based features, and structural features were considered as
CHM and LiDAR point-cloud-derived features to further assess the discriminatory power
of different feature types from the same dataset. A feature-level fusion approach integrated
spectral, textural, and structural features for classification using SVM and RF algorithms.
The RFE algorithm was implemented to select the most relevant features from the original
features. Based on the selected features, all possible feature-level fusion schemes in terms of
the types of features used were investigated and compared to enhance the understanding
of the relative importance of these features and their classification performances using the
feature-level fusion approach. Table 4 summarizes all the designed classification schemes
in the feature-level fusion. It is worth noting that the feature selection was implemented for
each combination in the feature-level fusion; however, there was no significant difference
in the results from the feature selection conducted for all features combined. Sixty features
selected from all features in combination are presented in Table 3.

Table 4. Classification schemes using the feature-level fusion approach.

Features Combination No.

Spectral and textural features 31
Spectral and structural features 40
Textural and structural features 49

All features 60

3.3.3. Classification Accuracy Assessment

The performance of different classification methods was assessed by comparing the
predicted results with ground truth data using independent testing data. To evaluate
the classification accuracy, three evaluation metrics, namely, the overall accuracy, kappa
coefficient, and F1-score, were calculated based on the confusion matrix, which is a widely
accepted method for assessing classification accuracy [51]. The F1-score, which is a har-
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monic mean of the user’s and producer’s accuracy, provides a comprehensive measure
that takes into account both aspects of performance. With a range from 0 to 1, a perfect
F1-score of 1 indicates optimal results for both the user’s and the producer’s accuracy. The
user’s accuracy represents the fraction of correctly identified tree samples among all the
samples classified into a specific tree species, reflecting the probability that the prediction
accurately represents reality. Conversely, the producer’s accuracy denotes the ratio of
correctly classified tree samples to the total ground truth tree samples in each species,
indicating the classification quality within the testing set.

4. Result
4.1. Classification Using Individual Spectral, Textural, and Structural Features

The classification accuracies for individual feature groups in both cases are shown in
Table 5, and selected features for case B are comprehensively presented in Table 6. A total
of 60 features were selected, which contained 11 spectral, 20 textural, and 29 structural
features (shown in Table 3).

Table 5. Classification results of individual feature groups using SVM and RF (entries with the star
(*) indicate the highest overall accuracy among all feature groups).

SVM RF

Feature Groups Overall
Accuracy Kappa Overall

Accuracy Kappa

Case A

Spectral features 0.70 0.62 0.70 0.62

Textural features 0.76 0.70 0.75 0.68

Structural features 0.78 0.72 0.76 0.69

Case B

Selected spectral features 0.70 0.62 0.65 0.56

Selected textural features 0.74 0.68 0.72 0.64

Selected structural features 0.80 * 0.74 * 0.78 * 0.72 *

Table 6. Classification results of case B (entries with a star (*) indicate the highest F1-score for each
species and feature group with the highest overall accuracy).

Norway
Maple

Honey
Locust

Austrian
Pine

Blue
Spruce

White
Spruce OA

SVM Classification

SF 0.87 0.71 0.69 0.58 0.49 0.70

TF_GLCM 0.91 0.67 0.65 0.68 0.54 0.71

TF_GABOR 0.80 0.38 0.69 0.40 0.60 * 0.60

TF 0.89 0.70 0.74 0.72 * 0.58 0.74

STF_CHM 0.90 0.70 0.74 0.54 0.49 0.71

STF_3D 0.85 0.67 0.86 0.62 0.56 0.74

STF 0.93 * 0.80 * 0.90 * 0.67 0.53 0.80 *

RF Classification

SF 0.88 0.69 0.65 0.46 0.35 0.65

TF_GLCM 0.88 0.67 0.62 0.60 0.46 0.67

TF_GABOR 0.82 0.33 0.63 0.42 0.59 * 0.58

TF 0.90 0.67 0.71 0.65 * 0.54 0.72

STF_CHM 0.91 0.73 0.72 0.57 0.48 0.72

STF_3D 0.88 0.70 0.82 0.61 0.53 0.74

STF 0.93 * 0.77 * 0.86 * 0.63 0.51 0.78 *
SF: spectral features. TF_GLCM: textural features based on the statistical 2D GLCM. TF_GABOR: textural features
based on the Gabor filter method. TF: the combination of GLCM- and Gabor-filter-based features. STF_CHM:
structural features extracted from the LiDAR-derived CHM. STF_3D: structural features extracted from the 3D
LiDAR point cloud data. STF: combined CHM and 3D structural features.
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The contribution of the advanced textural features and structural features were further
demonstrated based on the classification accuracies of feature-level fusion using the testing
dataset shown in Table 6, where the F1-score and overall accuracy of the selected features
in the groups are detailed. The F1-score was involved in a comprehensive analysis of
the classification contribution of feature groups on each tree species. GLCM- and Gabor-
filter-based textural features and CHM- and 3D-LiDAR-point-cloud-based features were
analyzed separately to evaluate the commonly used height-related features and rarely used
3D structural features, and the results are given in Table 6.

4.2. Classification Using Feature-Level Fusion

Figure 6 depicts the importance ranking of selected features using the RFE algorithm,
ordering from top to bottom as the most to least essential features. Structural features
accounted for 48 percent of the selected feature subset (60 features in total). In comparison,
spectral features accounted for 18 percent (11 features), and the proportion of textural
features was 34% (20 features).

Figure 6. The importance ranking of the selected features based on the MDA in RF.
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Generally, when analyzing each feature, most spectral features demonstrated a remark-
able capacity to discriminate tree species, followed by structural and textural features. In
addition, reflectance information at band7-NIR1(770–895 nm), band8-NIR2 (860–1040 nm),
and band6-red edge (705–745 nm) indicated greater discriminatory power than vegetation
indices, except for EVI, which is consistent with related studies [4,52,53]. It is worth not-
ing that advanced structural features held the potential for increasing the discriminatory
power for remote sensing-assisted tree species classification. They accounted for 48% of
the final feature subset with a wide range of importance scores. As mentioned previously,
classification using different combinations of features (Table 4) was carried out to analyze
the relative contribution of each type of feature group in the species classification. The
results are shown in Table 7. SVM and RF delivered accordant classification results, and
thus, the discussion in this section focuses on the results from SVM. Classification using the
combination of spectral, textural, and structural features exhibited the best classification
performance, with the highest overall accuracy of 0.85 and kappa coefficient of 0.81, which
outperformed the classification accuracies by using individual feature groups (Table 5) and
any other combination schemes in Table 7.

Table 7. Comparison of classification results at the feature-level fusion using SVM and RF (entries
with a star (*) indicate the highest classification accuracy for classification models).

Feature Combinations SVM RF

Accuracy Kappa Accuracy Kappa

Spectral + textural 0.81 0.76 0.80 0.75

Spectral + structural 0.83 0.78 0.81 0.76

Textural + structural 0.82 0.77 0.81 0.76

Spectral + textural
+ structural 0.85 * 0.81 * 0.83 * 0.78 *

4.3. Classification Using the Decision-Level Fusion Approach

The confusion matrix for the classification using the spectral, textural, and structural
features based on decision-level fusion is presented in Table 8. Using the SVM algorithm,
the overall accuracy and kappa coefficient were 85.65% and 0.82, respectively. RF produced
slightly lower classification accuracies (83.86% and 0.79, respectively). Similarly, the classi-
fication results from SVM are discussed in detail. Austrian pine had the highest producer
accuracy of 95.83% among the five tree species, showing that most Austrian pines were
correctly classified. Norway maple was classified with quite a high producer accuracy
(94.64%) and user accuracy (92.98%). The misclassification occurred between Norway
maple and honey locust.

To clearly show the differences in classification accuracies of classification schemes
investigated in this study, overall accuracies and kappa coefficients obtained by the clas-
sifications using spectral, textural, and structural features individually (Table 5) and in
combination for the feature-level (Table 7) and decision-level (Table 8) fusion with SVM
algorithm are compared in Figure 7. Like the feature-level fusion, the decision fusion
approach significantly improved the classification accuracies obtained using individual
feature groups. The accuracy of classification schemes using spectral, textural, and struc-
tural features increased by 8% to 15% when using the decision fusion method. Although
the decision fusion approach achieved the highest overall accuracy and kappa coefficient,
feature-level fusion produced comparable results within a narrow margin.
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Table 8. Confusion matrix for the decision-level fusion approach using SVM and RF. User accuracy
(UA) and producer accuracy (PA) were calculated as percentages.

Predicted
tree species

Actual Tree Species

Tree Species Norway
Maple

Honey
Locust

Austrian
Pine Blue Spruce White

Spruce UA (%)

SVM_RBF

Norway maple 53 4 92.98

Honey locust 3 46 2 3 85.18

Austrian pine 2 46 1 2 90.19

Blue spruce 26 8 76.47

White spruce 2 5 20 74.07

PA (%) 94.64 85.19 95.83 74.29 66.67

Overall accuracy 85.65%

Kappa coefficient 0.82

RF

Norway maple 50 3 94.34

Honey locust 5 46 2 1 85.19

Austrian pine 1 3 46 1 3 85.19

Blue spruce 27 9 75.00

White spruce 2 6 18 69.23

PA (%) 89.29 85.19 95.83 77.14 60.00

Overall accuracy 83.86%

Kappa coefficient 0.79

Figure 7. Comparison of classification accuracies achieved by individual feature-group-based classifi-
cation schemes and the feature and decision fusion approaches.

5. Discussion
5.1. Contribution of Structural and Textural Features

The contribution of structural and textural features to the accurate classifications was
evaluated based on the feature importance analysis, which quantifies the discriminative
power of these features and was further verified by the classification accuracies of SVM and
RF using the testing dataset. The results from this study demonstrate that the structural
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feature group (STF in Table 6) that combined CHM and 3D-point-cloud-based features
(STF_CHM and STF_3D) could effectively distinguish Norway maple, honey locust, and
Austrian pine better than the spectral and textural feature groups. On the other hand, the
textural feature group (TF) produced the highest F1-score when separating blue spruce
and white spruce. The primary reason is that these coniferous trees’ natural crown cross-
sectional area and crown volume significantly impacted the effective extraction of spectral
features and structural features. Finally, it was worth noting that among the five tree species
tested, Norway maple showed the highest classification accuracies using each feature group
in Table 6. This mainly resulted from its physical characteristics, such as wide-spreading
crowns and dense foliage, compared with other tree species with narrow or sparse foliage.
Nevertheless, the narrow crowns and needle leaves of blue spruce and white spruce limit
the extraction of expressive spectral and structural features, which resulted in severe
misclassification between these two tree species under the spruce genus. In related studies,
LiDAR-derived structural features were also reported to have a robust discriminatory
capacity for the identification of coniferous tree species with narrow crowns, for example,
features measuring the distributions of laser points along with the vertical profile [7,8],
statistical analysis of height information of laser points for individual tree crowns [54], and
the point density of horizontal layers at particular tree heights [20]. However, the spectral
feature group (SF) contributed moderately to classifying coniferous and broadleaf tree
species, as indicated by its F1-score and overall accuracy ranking in the middle.

For the contribution from advanced textural and structural features, according to
the overall accuracy of classification models considering all five tree species, it could be
concluded that STF_3D contributed more than STF_CHM, with an increase of the overall
accuracy of 3%. The tree-height-related features alone were not able to effectively separate
the tree species of interest in the study area. Caution should be taken since for most cities,
different species might be planted at different times, and thus, the height variations might
result from the age difference, though this was not the case for the study area. Except
for STF, STF_3D indicated the most significant discriminatory power in the classifications.
In contrast, the Gabor filter feature group (TF_GABOR) contributed the least to the tree
species classification. The statistical GLCM feature group (TF_GLCM) slightly improved
the classification performance using spectral features that consisted of commonly used
multispectral signatures and vegetation indices. Although the discrimination powers of
TF_GLCM and TF_GABOR varied greatly regarding the classification accuracies, combining
them as the textural feature group (TF) improved the overall accuracy to 0.74, which was
higher than SF by 4% and comparable to STF_3D. Furthermore, STF_CHM exhibited the
same discrimination power as the statistical TF_GLCM, with an overall accuracy of 0.71.

The results of the feature importance ranking and classification accuracy of multisource-
derived feature groups demonstrated that the combination of multisource data should
be an optimal approach to improving the tree species classification accuracy. This was
also verified by the feature importance ranking, which indicated that features with high
importance scores for tree species classification were extracted from different feature groups
and complementary. Although the LiDAR-derived structural feature group resulted in a
promising overall accuracy of 0.8 when using the SVM, the potential for investigating the ef-
fective and efficient way to integrate the multiple feature groups confirmed the motivation
of the current study of feature-level and decision-level fusion approaches.

5.2. Comparison of Feature-Level Fusion and Decision-Level Fusion

In this study, comparable classification accuracies were obtained using feature-level
and decision-level fusion. This result is in accordance with recent studies on the decision
fusion approach to tree species classification conducted by Aval et al. [16] and Stavrakoudis
et al. [18]. On the other hand, Hu et al. [29] provided a mechanism to consider the uncertain-
ties of multisource data in decision-level fusion and obtained better classification accuracies
than feature-level fusion using SVM. Aval et al. indicated that the feature-level fusion
decreased the performance of hyperspectral visible near-infrared (VNIR) image-based
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classification [16]. It is worth mentioning that their study might enhance the importance of
the feature selection implemented before feature-level fusion in the current study.

The misclassification analysis was conducted based on the classification results from
both feature-level and decision-level fusion to show the advantages of the decision fusion
approach. Forty tree samples were misclassified, considering the classification results from
both the feature-level and decision-level fusion. Among them, 25 trees were misclassified
by both methods, eight by feature-level fusion only and seven by decision fusion approach
only. The misclassification mainly occurred among honey locusts, white spruces, and blue
spruces, especially between blue and white spruces.

The margin of a tree sample is the probability of the actual class minus the maximum
value of the other classes, and the size of the margin is a measure of the degree of confidence
in the classification results. Among 40 misclassified samples, many misclassification results
were caused by the narrow margins, indicating the uncertainties and conflicts in the
classification results. Table 9 presents the classification results of a white spruce tree with
the ID of 705, which was correctly classified with a marginal difference between the voting
probabilities of only 0.05 compared with the probability of the blue spruce. In contrast,
decision-level fusion gave rise to evidence of misclassification as blue spruce with a more
significant margin of 0.36, i.e., 0.68 vs. 0.32 for the probabilities. On the other hand, Table 10
shows a positive example of the decision fusion approach. The honey locust tree with the
ID of 311 was correctly classified using feature- and decision-level fusion approaches. It is
worth noting that the feature-level fusion successfully classified it with an even negligible
margin of 0.01 between the voting probabilities of 0.49 vs. 0.48 (Austrian pine). The decision
fusion approach enhanced the evidence of the correct classification with a slightly larger
margin of 0.04, i.e., 0.52 vs. 0.48 for the probabilities.

Table 9. Classification results indicating the posterior probabilities that a tree sample (white spruce)
belonged to each of the five candidate tree species in the SVM models (entries highlighted in bold are
predicted tree species based on the maximum probabilities for different classification schemes).

Tree ID: 705 SVM-Based Posterior Probabilities

Classification
Schemes

Norway
Maple

Honey
Locust

Austrian
Pine

Blue
Spruce

White
Spruce

Spectral feature 0.14 0.73 0.01 0.07 0.05
Textural feature 0.00 0.01 0.00 0.64 0.35

Structural feature 0.00 0.00 0.00 0.47 0.53
Feature-level fusion 0.00 0.00 0.00 0.47 0.52

Decision-level fusion 0.00 0.00 0.00 0.68 0.32

Table 10. Classification results indicating the posterior probabilities that a tree sample (honey locust)
belonged to each of the five candidate tree species in the SVM models (entries highlighted in bold are
predicted tree species based on the maximum probabilities for different classification schemes).

Tree ID: 311 SVM-Based Posterior Probabilities

Classification
Schemes

Norway
Maple

Honey
Locust

Austrian
Pine

Blue
Spruce

White
Spruce

Spectral feature 0.06 0.51 0.08 0.27 0.08
Textural feature 0.00 0.14 0.85 0.00 0.00

Structural feature 0.06 0.47 0.46 0.00 0.00
Feature-level fusion 0.03 0.49 0.48 0.00 0.00

Decision-level fusion 0.00 0.52 0.48 0.00 0.00

Even though feature-level fusion delivered successful classifications for these tree
samples, the confidence in the classification accuracy was pretty weak, reducing the re-
liability of the classification results. The predicted tree species was ultimately assigned
to a given tree sample based on the maximum probability for voting, even though the



Forests 2023, 14, 1392 19 of 23

value might not be significantly different between two different species, which made the
classification method not robust, especially in the presence of noise inherently added by the
sensors and image processing techniques. Furthermore, as shown in Tables 9 and 10, the
information provided by individual feature groups is often imprecise and uncertain due to
the inherent conflicts between remote sensing data sources. For example, the white spruce
tree was misclassified as a honey locust with a probability of 0.73 and blue spruce with
0.64 using spectral and textural features, respectively. As discussed in previous sections, it
was indisputable that multisource features are complementary because sensors measure
different physical properties of individual tree canopies. The DST-based decision fusion
approach in this study provided an effective means to combine the evidence measures from
complementary multisource data and produce satisfactory results. However, the current
method did not weigh the importance of different evidence pieces for identifying specific
tree species. Hence, advanced decision rules for the decision fusion approach should
be further investigated to represent tree crowns while adequately reducing imprecision
and uncertainty.

5.3. Limitation of the Current Study and Future Works

The number of species types investigated was limited to five in the current study.
A multitude of other tree species, such as bur oak (Quercus macrocarpa), sugar maple
(Acer saccharum), white cedar (Thuja occidentalis), and sand basswood (Tilia americana),
dominate or co-dominate urban forests of Toronto or other neighboring cities. Including
a wide range of tree species over larger areas in future research would be of interest.
Moreover, the classification results of a few trees have high uncertainties, as reflected by
the posterior probabilities generated by feature and decision fusion approaches. Trees
near roads and pathways are usually subject to salt, landscaping, and human interference
more than distant ones, increasing the uncertainty for tree species classification. Tree
species classes, including a two-species or a three-species compound class, and even an
“unknown” class may reduce the confusion errors in other species classes, likely improving
the classification performance.

Complementary features from multisource remote sensing data were shown to be
beneficial for distinguishing tree species. The features with significant discretionary power
can be applied to other detection/classification problems to improve the classification
performance, such as 3D structural features and some rarely used GLCM textural measures.
However, the severe misclassification among specific tree species, such as blue and white
spruce, in this study indicated that additional information is needed. Very high spatial
resolution imagery acquired by unmanned aerial vehicles (UAVs) and very high-density
LiDAR data are capable of deriving detailed spatial and structural features to improve the
classification accuracy of confusing tree species under the same genus, such as spruce.

The DST-based decision fusion approach effectively combined the measures of evi-
dence (posterior probability masses in this study) from multisource remote sensing data.
The workflow of the DST-based decision fusion approach deployed with posterior SVM and
RF presented in the current study can be applied to multisource-data-based classification
tasks. When significant conflicts and incompatibilities exist among the evidence, the Demp-
ster rule combining the available evidence may result in counter-intuition decisions [29].
The current method examined the uncertainties in classification results caused by conflicts
among feature groups through the misclassification analysis; however, the contribution
of different pieces of evidence from multisource to specific tree species was not weighed.
Based on the current study, the decision fusion approach employing alternative combina-
tion rules or comprehensive solutions can be further explored for future considerations to
deal with classification uncertainties due to the conflicting information from multisource
remotely sensed data.
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6. Conclusions

This study investigated fusion approaches to improving the accuracy of tree species
classification of Norway maple (Acer platanoides), honey locust (Gleditsia triacanthos), Aus-
trian pine (Pinus nigra), white spruce (Picea glauca), and blue spruce (Picea pungens) using
WV-2 multispectral imagery (MSI), high-resolution PAN, and LiDAR data. Advanced
textural and structural features were first extracted from high-resolution PAN and LiDAR
data in addition to spectral features derived from MSI. The contribution of feature groups
from multisource data to the accurate classifications was comprehensively evaluated based
on the feature importance analysis, which quantified the discriminative power of these
features and was further verified by the classification accuracies of SVM and RF using the
testing dataset. The feature selection results demonstrated the complementarity of struc-
tural, textural, and spectral features in tree species classification. Spectral and structural
features were found to be more important in the feature importance ranking compared
with textural features. Notably, despite their limited usage in the literature, GLCM-based
textural features, such as cluster shade and inverse difference moment, showed significant
importance in tree species classification. The classification results from SVM and RF further
indicated the importance of structural features for identifying tree species with widespread
and dense tree crowns, such as Norway maple and honey locust. On the other hand, textu-
ral features improved the classification of coniferous tree species with sparse needle leaves
and small crowns, such as blue spruce and white spruce. Overall, the structural feature
group demonstrated the most significant discriminatory power in classifying the five tree
species, followed by the textural feature group. Although spectral features ranked high in
feature importance, they yielded the lowest overall classification accuracy. Notably, GLCM-
based textural features contributed more to the classification than Gabor-filter-derived
features, while the 3D-point-distribution-related structural features were more important
than the features derived from CHM.

A decision fusion framework based on the Dempster–Shafer theory (DST) was de-
veloped to enhance individual tree species classification. The decision fusion approach
considered the uncertainty measures by quantifying the class probabilities from individual
feature groups from the complementary multisource data instead of aggregating features
directly with feature-level fusion. When evaluated on an independent testing dataset, both
feature-level fusion and decision fusion approaches significantly improved the tree species
classification compared with the uses of MSI (0.7), PAN (0.74), or LiDAR (0.8) alone. The
decision fusion approach achieved the best overall accuracies (0.86 for SVM and 0.84 for
RF) and kappa coefficients (0.82 for SVM and 0.79 for RF) and slightly outperformed the
feature-level fusion when combining the MSI, PAN, and LiDAR data. The misclassification
analysis of the decision fusion approach and feature-level fusion results was also conducted
to provide insights into further improvement. The decision fusion approach based on DST
provided an open perspective for individual tree species classification using multisource
remotely sensed data, which holds the potential to continually improve the performance,
along with comprehensive decision rules and advanced features from developed data in
the future.
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