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Abstract: Changes in land cover by rapid urbanization have diminished the cooling effect of urban
green spaces (UGS), exacerbating the upward trend of land surface temperature (LST). A thorough and
precise understanding of the spatio-temporal characteristics of UGS and LST is essential for mitigating
localized high temperatures in cities. This study identified the spatio-temporal changes in UGS
configuration and LST in Shanghai from 2003 to 2022. The correlation between UGS configuration
and LST was explored using spatial autocorrelation analysis and causal inference. The results
show that (1) the high-temperature space had grown from 721 km2 in 2003 to 3059 km2 in 2022;
(2) in suburbs, the largest area of UGS tended to decrease, while the number of patches tended to
increase, indicating a distinct feature of suburbanization; (3) changes in the largest area of UGS
had more significant spatial correlation, indicating that urban sprawl primarily impacts large UGSs;
and (4) compared to the number and shape of UGS, changes in the largest area are the key factor
influencing regional LST. These findings enrich the knowledge of the spatio−temporal relationship
between the UGS configuration and its cooling effect in urbanization, offering valuable insights for
building cooler cities.

Keywords: urban sprawl; interannual variation; bivariate Moran’s I; causal inference

1. Introduction

In recent decades, the profound impacts of urbanization on sustainable development
issues have emerged as global concerns [1,2]. These impacts show more significant hazards
in cities with high population densities [3]. The urban heat island (UHI) effect, resulting
from extensive conversion of natural surfaces to impervious ones, poses a significant threat
to the resilience of urban ecosystems [4], as well as to human health [5,6]. Therefore, how
to cool down the city and mitigate the UHI effect has become a hot research topic.

Mitigating the summer UHI effect has become increasingly challenging, as a significant
number of inhabitants are likely to endure both intense solar radiation and heat build-
ups [7]. To build a comfortable living environment, adjusting the pattern of urban green
space (UGS) within the city to mitigate the UHI effect has received focused attention from
scholars around the world [8]. There is unanimous consensus among scholars that land
cover types such as parks, water bodies, and green roofs play a significant role in reducing
the land surface temperature (LST) [9]. Compared to other types, UGS do not only remove
from the atmosphere large amounts of carbon dioxide released by human activities to
mitigate urban warming [10]. Trees also influence the urban climate through shading,
transpiration, and facilitating airflow and heat exchange [11,12]. These influences are
closely tied to the spatial pattern of UGS within the city.

Composition and configuration are two important dimensions that impact the cooling
effect of UGS [13]. Composition refers to the percentage of UGS area, with differences
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mainly in the number of trees and the shading area [14]. Numerous studies have exam-
ined differences in the cooling effect of UGS composition during the diurnal hours. For
instance, research indicates that trees exhibit a stronger cooling effect during pre-dawn
and evening, attributed to heightened shading [15]. The magnitude and intensity of the
diurnal UHI effect are governed by variances in plant transpiration rates and leaf area [16].
However, fewer studies have focused on the relationship between UGS configuration
and LST. Furthermore, there is some controversy in the research on the cooling effect of
UGS configuration [17]. One study has posited that the spatial distribution of UGS holds
greater significance than the shape of individual patches [18]. Peng, J. et al. found that
the morphology of blue-green spaces is more influential than spatial distribution in the
cooling effect [19]. Thus, it is important to study the influences of UGS configuration on
LST variations.

The UGS configuration tends to change strongly during rapid urbanization [20]. UGS
witness a predominant increase in number during urban sprawl growth, while UGS patches
tend to expand in size during the compact development phase [21,22]. These UGS config-
uration changes may have different effects on the LST [23]. Meanwhile, there has been a
limited number of studies investigating the change of UGS configuration impact on LST
from an inter-annual perspective. This leads to the fact that the strategy of urban planning
to improve the cooling effect through the GI configuration is still inadequate [24]. Thus,
with the urban sprawl, it becomes imperative to explore the spatial correlation between
inter-annual variations in the UGS configuration and LST, identifying UGS features with
significant cooling effects.

This study aims to reveal the changing characteristics of the UGS configuration and
LST in a rapidly urbanizing area, and the spatial correlations between them. Based on the re-
sults of existing studies, this study makes the hypothesis that changes in UGS configuration
will produce a significant effect on land surface temperature. The key issues to be clarified
are (1) revealing the trends in the UGS configuration and LST; (2) clarifying the spatial
differences in the UGS configuration on nearby LST; and (3) seeking the UGS configuration
factor that has a significant influence with LST changes. Answering these questions helps
to understand the impact of UGS configuration on the LST from a spatio−temporal change
perspective. It will help decision-makers to develop measures for sustainable development
and UHI mitigation in Shanghai.

2. Materials and Methods
2.1. Study Area

Shanghai (120◦52′ E–122◦12′ E, 30◦40′ N–31◦53′ N) experiences a subtropical monsoon
climate characterized by high temperatures and rainy summers [25]. As of the end of
2022, the resident population of Shanghai had reached 24.76 million people (https://
tjj.sh.gov.cn/, accessed on 10 March 2024). As one of the most rapidly urbanizing and
economically developing cities in China, it has experienced massive urbanization since
2003. The urbanization rate has surged from an initial 75.52% to 89.30% by the end of
2022. The study area encompasses the urban extent of the mainland region, spanning an
area of 5110.7 km2. Human activities in this region are highly intensive and concentrated,
contributing to a highly heterogeneous urban green space (UGS) pattern [26] (Figure 1).

Due to the concentration of population and industry in the short term, the UHI effect
in the study area becoming more significant, with frequent and long-lasting heat waves [27].
Since 1982, global mean temperature has risen about 0.72 ◦C and the average rising rate was
0.072 ◦C/10 years [28], while the difference between urban and suburban meteorological
station monitoring data in the study area has shown an upward trend, with a sudden
increase of 0.1 ◦C every 10–13 years [29]. It indicates that warming in the study area has
been occurring at a faster rate than globally. Additionally, in the summer of 2022, Shanghai
experienced its most severe heatwave event since 1961 [30].

https://tjj.sh.gov.cn/
https://tjj.sh.gov.cn/
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2.2. Data Source and Preprocessing

To describe the significant changes that have occurred at UGS configuration, the rapid
development phase of the study area was selected: from 2003 to 2022. In this study, all data
were from open-source websites. Landsat images were used for land surface temperature
(LST) inversion. Radiometric calibration and atmospheric correction were pre-processed
using “Radiometric Calibration” and “FLAASG Atmospheric Correction” of ENVI 5.6
software, respectively. As the study area involves 2 Landsat images, image stitching was
performed using “Seamless Mosaic” based on preprocessing. The road data were obtained
from OpenStreetMap (www.openstreetmap.org, accessed on 10 March 2024). The land
cover data were collected from the global 30 m land cover dataset. According to the
Chinese Academy of Sciences land use/cover classification system and the actual situation
in Shanghai, the data were reclassified into six types: farmland, forest, grassland, water
bodies (including seawater, freshwater, and wetland), construction land, and bare land,
using ArcGIS Pro 3.0. Detailed information is listed in Table 1.

Table 1. Detailed information on the data used.

Data Time Detailed Information

Landsat 5
2 August 2003

02:01:44
Coordinated Universal Time

Path: 118, Row: 38 Path: 118,
Row: 39. Resolution = 30 m.

Landsat 8
22 August 2022

02:25:32
Coordinated Universal Time

Path: 118, Row: 38 Path: 118,
Row: 39. Resolution = 30 m.

Land cover type 2003 and 2022

Six land cover types:
construction land, farmland,
forests, grasslands, water
bodies, and bare land.

The UGS within the study area predominantly consists of parks, residential green
spaces, and roadside green spaces, which collectively form a regional network. Beyond the
outer ring, there are primarily medium-sized patches interspersed with regular farmland.
The average area of UGS in Shanghai in 2022 is about 500 m2. Therefore, the size of the
research unit should not be too small to ensure the integrity of the UGS configuration.
Based on the existing studies on the range of UGS cooling, the maximum distance was
estimated to be 300 m [31]. Considering the statistical analysis, a square research unit size
of 800 m was utilized in this study. Following the exclusion of units near the sea and lake,
the study area was divided into 8768 units.

www.openstreetmap.org
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2.3. Land Surface Temperature Retrieval

Given that the United States Geological Survey no longer provides the Atmospheric
Correction Parameter Calculator, it is not feasible to conduct LST inversion using the heat
radiation equation. Thus, the LST required for this study transitions to using the Landsat
Collection-2 Surface Temperature products (https://www.usgs.gov/landsat-missions/
landsat-collection-2-level-2-science-products, accessed on 10 March 2024). The Scaling
Factor provided on the web page was used to convert the pixel values in the thermal
infrared band for Collection 2 Level 2 to the LST values. The formula is as follows:

LST = 0.00341802 ∗ Valuepixel + 149.0, (1)

where LST represents the surface temperature (◦C); Valuegrid represents the value of
each pixel.

2.4. Indicators of UGS Configuration

The landscape pattern index is a quantitative description of the spatial configuration
and composition of the landscape [32]. It has been extensively utilized to evaluate the
characteristics of land cover change. Compared to composition, landscape configuration
refers to the expansion pattern, spatial characteristics, arrangement, and orientation of
landscape elements [33,34]. It is more dramatically stressed during the urbanization process.
Therefore, this study considered forests, grasslands, and farmlands as UGS, focusing on the
impact of landscape configuration changes of UGS on UHI. Based on the previous studies
and considering the practical applicability in guiding urban planning, the Large Patch
Index (LPI), number of patches (NP), and Landscape Shape Index (LSI) were selected to
characterize the UGS configuration (Table 2). LPI represents the single UGS patch with the
largest area. NP represents the total number of UGS patches. LSI represents the complexity
of the UGS patch’s shape within the region. While other indicators like Patch Density and
Fractal Dimension Index may also indicate the level of configuration, they do not offer
easily interpretable spatial information for decision-makers [35].

LPI signifies the percentage of area covered by a specific UGS type. It was selected
because changes in land cover type within patches may be influenced by the abundance
of patches with the same type in the surrounding landscape. UGS patches with a higher
LPI may pose greater difficulty in changing to another type [36]. NP provides a visual
representation of the quantity of UGS patches within the research unit. By examining
changes in LPI values within the research units, the increasing or decreasing trends of NP
indirectly illustrate the spatial characteristics influenced by urban sprawl [37]. For instance,
a decrease in LPI coupled with an increase in NP within the same unit indicates heightened
UGS fragmentation and the destruction of important patches. LSI quantifies the proportion
of patch boundaries exposed to edge effects [38]. Higher LSI values indicate that a larger
proportion of the patch boundary is susceptible to the effects, particularly in UGS patches
with smaller areas and more irregular perimeters [39]. In this study, it suggests that UGS
are more influenced by heat from adjacent construction land. Analyzing the results of LSI
calculations in conjunction with NP can provide a dependable basis for the fragmentation
analysis of UGS.

The indicators were computed using FRAGSTATS 4.2 software, which requires speci-
fying the object of analysis. Therefore, patch data for UGS in the study area was extracted,
and the coordinate system was converted to WGS_1984_UTM_Zone_50N. The moving
window size was set to 800 m.

https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
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Table 2. Detailed information on UGS configuration indicators.

UGS Configuration Indicator Formula Explanation

Large Patch Index (LPI) LPI =
max(aij)

A ∗ 100
max

(
aij

)
is the area of the patch in square meters and A is

the total landscape area in square meters. 0 < LPI ≦ 100.
Units = Percent.

Number of Patches (NP) NP = ni
ni = number of patches in the landscape of patch type (class)
i. NP ≥ 1, without limit. Units = None.

Landscape Shape Index (LSI) LSI = 0.25E*√
A

E* = total length (m) of edge in the landscape; includes the
entire landscape boundary and some or all background
edge segments. A = total landscape area (m2). LSI ≥ 1,
without limit. Units = None.

2.5. Bivariate Moran Analysis

Moran’s I, as the most common indicator for spatial autocorrelation analysis, consid-
ering the stochastic phenomenon of the spatial distribution in two or more dimensions,
characterizes the clustering and disaggregation of the research units [40]. It is more useful
in characterizing spatial patterns than standard landscape indices, especially in Landsat
data [41]. Bivariate Moran can reveal the spatial correlation between the independent
variable and the dependent variable of neighboring research units. The results visualize
how changes in the independent variable affect the neighboring units in terms of spatial
distribution [42].

Thus, this study investigates the characteristics of spatio−temporal changes between
UGS configuration and LST through global and local Moran statistics. Initially, to charac-
terize the interannual variation of UGS configuration indicators, the difference between
2003 and 2022 was calculated using raster precision:

∆I = I2003 − I2022, (2)

where ∆I is the value of the interannual change in indicator I (in this study I represents
LPI, NP, LSI, and LST) from 2003 to 2022, I2003 is the mean value of the indicator for each
research unit in 2003, and I2022 is the mean value of the indicator for each research unit
in 2022.

Secondly, this study utilized global Moran’s I to assess the global spatial correlation
between UGS configuration and LST in the study area. When the value is positive, it
represents that the two variables are positively correlated with each other as well as they
are clustered. The larger the positive value, the greater the positive correlation. When the
value is negative, it represents that the two variables are negatively correlated with each
other and they are discrete. If the value tends to 0, it shows that the two variables are not
correlated with each other [43]. Bivariate local Moran’s I (BLMI) was computed to unveil
the spatial correlation between UGS configuration and adjacent LST at the scale of the
research unit. As an extension of the univariate local Moran’s I, BLMI assumes that closely
related variables tend to exhibit similar spatial patterns [44]. The formula is as follows:

Ikl = Zi
k∑

n
j=1 WijZ

j
l (3)

where Zi
k =

[Xi
k−Xk]
σk

, Zi
k =

[
X j

l−Xl

]
σl

. Xi
k is the mean value of ∆LST for research unit i, X j

l
is the mean value of ∆LPI, ∆NP, and ∆LSI for the neighboring research unit j. Xk and Xl
represent the mean values of the variations of ∆LST and UGS configuration indicators,
respectively. σk and σl represent the variance in X for variables ∆LST and UGS configuration
indicators. Wij is the spatial weight, which is calculated based on the neighbor matrix.

The results indicate the relationship between a particular research unit and its neigh-
boring units: (1) a High–High (H-H) cluster indicates that the dependent variable of the
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analysis unit i and the neighboring unit j (∆LST) are both high; (2) a Low–Low (L-L) clus-
ter indicates the unit i and the neighboring unit ∆LST are both low; and (3) the units of
Low–High (L-H) and High–Low (L-H) indicate that the independent variable of unit i is
low/high, while the dependent variable of the neighboring unit ∆LST is high/low [44].
This study focused on the H-H and L-L clusters as it unveiled spatial aggregation of research
units with high UGS configuration indicators and ∆LSI. The above steps were performed
by GeoDa 1.8 (http://geodacenter.github.io/, accessed on 10 March 2024) software.

2.6. Geographical Convergent Cross Mapping

A full and accurate understanding of the causal relationship between independent and
dependent variables is an important element in the effective use of natural resources and the
achievement of sustainable development. Due to spatial heterogeneity and spatial spillover,
this means that the potential outcomes of a spatial unit affect its spatial neighbors [45].
Traditional regression models are often used to analyze the relationships between variables
within the same research unit, ignoring the impact on the surrounding environment. It
only detects the magnitude and direction of the effects of factors on the response variable,
but correlation alone cannot be used to infer causality between variables [46]. Thus, the
causal model was introduced in this study to try to reveal the causal relationship between
UGS configuration and LST.

Current causal inference approaches still have limitations in handling spatial cross-
sectional data. Therefore, a novel spatial causal inference model called Geographical
Convergent Cross Mapping (GCCM) was proposed [47]. This model effectively addresses
the limitations of existing spatio−temporal causal models by employing dynamic systems
theory and general embedding theory to identify causal relationships between spatial
cross-sectional variables. In this study, ∆LST was considered as the dependent variable,
and the spatial causal associations between ∆LST and ∆LPI, ∆NP, ∆LSI were investigated.
The modeling process was implemented using the “stats” and “pcalg” packages in R Studio
3.1 [48]. Moreover, to verify the results of causality, this study also used the Pearson
correlation coefficient to quantify the strength of the association between variables.

3. Results
3.1. Spatio−Temporal Changes in UGS Configuration and LST

Figure 2 shows the spatial distribution of LST in the study area in 2003 and 2022,
as well as the interannual variation characteristics of LST. The high-temperature area of
Shanghai expanded from 721 km2 in 2003 to 3059 km2 in 2022, using a threshold of more
than 35 ◦C to define high-temperature space [49]. The UHI center shifted from its original
location in the northern area to the southwest. New areas experiencing high temperatures
have emerged in towns outside the outer ring. Surprisingly, there was a decreasing trend
in LST observed in the central city within the outer ring road.

For the UGS configuration indicators, LPI exhibited a ring around the central city
in 2003, which was due to the presence of continuous large areas of farmland within the
suburbs. However, with urban sprawl, there were significantly fewer areas with larger
UGSs in 2022, and they showed a decreasing radial pattern from the central city to the
suburbs. Regions presenting a reduction in the largest UGS seemed to be related to the
road’s form. Meanwhile, regions with significant inter-annual changes in the number of
UGS were distributed near the outer ring road and across the suburbs. Compared to 2003,
the maximum number of UGS in the study area in 2022 increased from 27 to 77. There was
a notable increase in the number of areas with more UGS patches. Changes in the shape of
UGS showed characteristics of regional differences, with a decrease in the central city and
an increase in the suburbs. There was a general tendency for UGS morphology to be simpler
in the research units located in the central city, particularly along the Huangpu River. The
regions where the shape of UGS became complex were observed near the suburban ring
road in the southwest, directly influenced by urban sprawl. Additionally, spatial overlap

http://geodacenter.github.io/
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was observed in these regions where the number and shape of UGS were simultaneously
increasing, indicating a trend of fragmentation and complexity in UGS.

1 
 

 
Figure 2. Spatio−temporal characteristics of LST, LPI, NP, and LSI from 2003 to 2022.

3.2. Spatial Correlation between UGS Configuration and LST

Table 3 shows the global Moran statistics between ∆LPI, ∆NP, ∆LSI, and ∆LST
(p < 0.01). The global Moran’s I of ∆LPI was 0.856, which was 7.8% and 17.4% higher
than ∆LSI and ∆NP, respectively. Thus, it can be argued that there was a stronger spatial
correlation between the largest area of UGS and LST, as opposed to its shape and num-
ber. This result indicated that urban sprawl initially impacts the largest area of UGS in
the region.

The global Moran’s I for both ∆NP and ∆LSI were negative, implying that the research
units with changes in the number and shape of UGS showed a discrete distribution. It was
evident that most of the bivariate global Moran’s I was positive, except for the difference
between ∆LST and ∆LPI. The negative correlation was strongest between ∆LST and ∆LPI
(Moran’s I = −0.270). It indicated a spatial clustering of research units with changes in the
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largest UGS. Both ∆NP and ∆LSI showed a significant positive correlation with ∆LST, but
the correlation coefficients were smaller than those of ∆LPI. This indicated that a change
in the largest UGS had a stronger effect on LST in the surrounding area than shape and
number. Combining the regions located with significant changes in NP (Figure 2), spatial
correlation between ∆NP and ∆LST indicated that the variation in the number of UGS was
related to the specific local development pattern.

Table 3. Bivariate global Moran’s I among ∆LPI, ∆NP, ∆LSI, and ∆LST.

Independent Variables Dependent Variable

∆LPI ∆NP ∆LSI ∆LST

∆LPI 0.856 −0.580 −0.316 −0.270
∆NP −0.580 0.794 0.581 0.067
∆LSI −0.316 0.582 0.729 0.015
∆LST −0.272 0.070 0.017 0.773

Note: p < 0.05.

The BLMI revealed five clusters of correlations between the UGS configuration indica-
tors and the LST (Figure 3), with the white units being non-significant spatial correlations.
There was substantial spatial differentiation between the five clusters, as confirmed by the
global Moran’s I. For all UGS configuration indicators, the spatial distribution of the H-H
and L-L clusters was largely aligned with the regions where changes in ∆LST produced
significant alterations (Figure 2). The H-H clusters were labeled as concentrated in the
Shong-jiang-Qingpu-Jinshan districts, with a large number of agglomerations of different
sizes. In contrast, the L-L clusters were mainly in the Baoshan-Jing’an-Yangpu districts,
showing large continuous gathering regions.

Figure 3a,b depict the difference in the distribution of H-L and L-L clusters based on
the BLMI between ∆LPI, ∆NP, and ∆LST. Compared to changes in ∆NP, clusters with high
∆LPI and neighboring low ∆LST occupied a larger area in the Baoshan–Jing’an–Yangpu
districts and Pudong Coastal, with the spatial distribution becoming more aggregated closer
to the central city. H-H cluster characterized by high ∆NP and neighboring high ∆LST was
prevalent in the Songjiang–Jinshan districts, with the total number of research units in this
cluster being more than ∆LPI but similar to ∆LSI. There was spatial overlap between the
L-L clusters of ∆NP, ∆LSI, and ∆LST, suggesting a significant spatial correlation between
the reduction in the number of UGS, morphological regularization, and the decrease in LST.
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3.3. Driving Factors of UGS Configuration Influencing LST

Table 4 shows the spatial correlation coefficients between UGS configuration indicators
and ∆LST, including the results of the Pearson correlation and GCMM. The correlation
between ∆LPI and ∆LST was significantly negative, while the correlation between ∆LSI and
∆LST was significantly positive, albeit with a small correlation coefficient. ∆NP showed
a non-significant correlation with ∆LST. The GCCM produced results that are numeri-
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cally close to the Pearson correlation coefficient. x xmap(→) y means UGS configuration
indicators are influenced by ∆LST, and y xmap(→) x means ∆LST is influenced by UGS
configuration indicators. The result of the causal association between ∆LPI and ∆LST
revealed that the cross-mapping prediction skill (ρ) of ∆LST → ∆LPI was about 0.19, larger
than ∆LPI → ∆LST (Figure 4a). It suggests that the largest patch size of UGS has a strong
influence on LST changes. The ρ of ∆LST → ∆NP and ∆LST → ∆LSI had smaller values of
0.11 and 1.12, respectively (Figure 4b,c). This result represented a weak causal association
between changes in the number and shape of UGS and LST.

It is worth noting the positional change of the blue and red lines in Figure 4b,c,
compared to Figure 4a. The ρ of ∆NP → ∆LST and ∆LST → ∆NP were 0.11 and 0.17, while
the ρ of ∆LSI → ∆LST and ∆LST → ∆LSI were 0.15 and 0.12, respectively. These values
were very close. Combined with the Pearson correlation coefficient, this indicated that
changes in the shape and number of UGS did not significantly influence the LST of the
research unit where it was located and its neighboring units. Meanwhile, the coefficient
between ∆NP and ∆LST was non-significant, and the coefficient between ∆LSI and ∆LST
was significant at the 0.05 level. This phenomenon revealed that the number and shape of
UGS may be driven more by the LST changes in the surrounding environment.

Table 4. GCMM results for ∆LST and influencing indicators.

Method Relationship
∆LPI ∆NP ∆LSI

r/ρ p r/ρ p r/ρ p

Pearson Correlation −0.352 ** 0.000 0.011 0.000 0.063 * 0.000

GCCM
x xmap y 0.14 0.00 ** 0.17 0.00 ** 0.15 0.00 **
y xmap x 0.19 0.00 ** 0.11 0.00 ** 0.12 0.00 **

** correlation is significant at the 0.01 level, * correlation is significant at the 0.05 level; r/ρ r is for Pearson
correlation, ρ is for GCCM; p is the significance p-value for Pearson correlation and GCCM; xmap means cross-
mapping prediction; x means ∆LPI, ∆NP, and ∆LSI; y means ∆LST.
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4. Discussion
4.1. Spatio−Temporal Differences between UGB Configuration and LST

With urban sprawl, the UGS configuration has been strongly disturbed by human
activities, especially in regions on the periphery of the central city. The areas with high LST
also gradually changed from the original spatial characteristics of high concentration in
one center to multiple dispersed centers (Figure 2). This trend appears logical due to the
expansion of built-up areas and the development of the five major new towns [50], where
the population serves as a significant factor contributing to the elevated LST [51]. This
phenomenon is not only occurring in China, but also in Europe and Africa, where large
cities are now facing thermal exposure caused by heatwaves and a steadily growing urban
population [52,53].
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The interannual change in LPI from 2003 to 2022 was consistent with the irregular
sprawl pattern of construction land, which is likely to divide the original large individual
UGS patches [54], especially near large water bodies, parks, or roads. This result is con-
sistent with the findings on Mosul city in the Iraq region by Salwan Ali Abed et al. [55].
Simultaneously, it was also related to the land use type; for example, residential areas
will be generally close to being situated near an attractive environment and convenient
transport [56]. This behavior will inevitably result in a decrease in UGS area and an increase
in LST in regions that previously had low LST. From the central city to the suburbs, it
similarly appeared that the area where the number of UGS changed was becoming larger
and more dispersed. These areas have spatial overlap with units where the largest area
of UGS was decreased, suggesting that UGS patches within these units are isolated and
fragmented [57]. It is interesting to note that previous studies have found higher LST in
areas close to barren land and lower LST in areas close to vegetation and water bodies,
which is known as the ‘proximity effect’ [58]. This study further found that the probability
of this phenomenon is higher in the suburbs than in the central city. Thus, UGS could be
susceptible to external disturbances, such as traffic and crowding [59], which is explained
by the fact that the regions with significant changes in LSI are essentially contained within
the regions with the largest UGS changes in Shanghai’s suburbs.

This study indicated that in regions experiencing significant changes in the number
of UGS, there are often large-scale alterations in the largest UGS. It implies a notable
fragmentation of UGS configuration aligned with the process of suburbanization [60].
Additionally, causes of suburbanization may include some policies, such as the retail land
use regulation in the Ile-de-France region [61], and policies for limiting land consumption
in Germany [62]. According to the theory of the City Life Cycle, suburbanization was
regarded as a sequential stage of metropolitan development [63]. Thus, it requires the
effective use of small and medium-sized UGS to reduce LST, such as the polygonal UGS
with mixed vegetation and close-to-water bodies [64], while controlling the expansion of
construction land [65].

4.2. Key Driving Factor of UGS Configuration Influencing LST

By analyzing the spatial correlation between the change values of the UGS configura-
tion indicators and LST, the result indicated that when the largest area of UGS in the region
changed, it was more likely that the edges of UGS were encroached upon by construction
land rather than being sliced directly into smaller patches [66]. This phenomenon is found
frequently in suburban towns, such as the 18 suburban sprawl renovation projects in the
United States between 2008 and 2018 [67]. This may also be related to the conversion of
pre-existing intact farmland into construction land [20]. Meanwhile, the bivariate global
Moran’s I implied that the research units in which the largest UGS and LST had changed
were spatially separated from each other, while those in which the number of UGS and
LST had changed showed aggregation. The separated distribution may be related to the
expansion of villages into large areas of farmland, which is common in the sprawl of
cities with flat topography [68]. Studies have proved that urban regeneration projects and
continuous green spaces on the periphery of central cities prevent new sprawl [69]. The
aggregation distribution can be attributed to urban regeneration in the central city, such
as the construction of pocket parks and street trees, which can effectively reduce regional
LST [70].

BLMI revealed that areas of an increased largest UGS area with an increase in sur-
rounding LST were distributed between the outer ring road and the suburban ring road.
This phenomenon, which could be attributed to urban sprawl and the protection policy of
basic farmland in China [71], has resulted in suburbanization generating more heat than is
reduced by the addition of new UGS. Areas of declining UGS numbers and regularized
shape were within the outer ring road, which already has well-developed infrastructures
and is less affected during urban sprawl [25,72]. In fact, with the planning of green belts,
wedge-shaped UGSs, and green corridors, the focus of UGS construction in Shanghai has
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shifted from the central city to the suburbs [73]. It is worth noting that the L-L clustering of
the number, and shape of UGS and ∆LST has spatial overlap mostly located in the central
city. It is related to the regular shape of the UGS as a result of urban regeneration, and the
increased number of trees within the same UGS, which could create a secondary effect of
the cold island [74], or the increase in low-albedo land in the surrounding area [75].

In verifying the key factors of UGS configurations affecting the neighboring LST,
previous studies have consistently confirmed a negative relationship between change in
the largest UGS and ∆LST [24,76]. This is consistent with the causal association between
∆LPI xmap(→) ∆LST, as examined by GCCM in this study. When a region contains
larger contiguous UGS patches, it is likely to decrease LST as these patches provide more
shaded areas and vegetation cover, reducing the absorption of solar radiation [77,78]. For
∆NP/∆LSI → ∆LST, both ρ values were smaller than ∆LPI → ∆LST. For the same number
of patches, differences in vegetation types within the UGS can significantly impact the
cooling effect on the surrounding environment. For instance, albedo values at the surface
typically decline from grasslands with standing dead leaves, which have high reflectivity,
to broadleaf forests, and finally to dark coniferous forests [79]. In other words, if a UGS
patch is covered by grasslands, its causal association with ∆LST is no longer significant.
Thus, reducing LST requires attention to the largest UGS in the region and the vegetation
composition within it.

It is worth noting that, as explained by Suighara et al. [80], the smaller ρ of ∆LST →
∆NP/∆LSI can either indicate a weaker causal influence of ∆LST on ∆NP/∆LSI, or the
spatial variation in ∆LST can have a small reflection on the spatial variation of ∆NP/∆LSI
(reflection, not causation). This study indicated that regions with changes in LST are often
accompanied by corresponding changes in the number and shape of the UGS. The key
factor of UGS configuration that has a significant effect on the neighboring LST is the size
of the largest UGS. This result is consistent with a portion of existing research. For example,
He, B et al. found that when the total amount of green space is fixed, the cooling effect
is stronger in a few large cores than in a large number of small islands [81]. However,
some studies have found the shape of the landscape/UGS was the key factor affecting the
regional temperature [82,83]. These differences probably relate to the inversion methods
for the thermal environment as well as to the study object, which needs to be explored in a
wider range of cases.

4.3. Implications for Planning Practice and Policy

Green space is listed as one of the indicators for achieving the Sustainable Develop-
ment Goals by 2030. The results of this study emphasized the UGS configuration as an
effective tool to promote urban cooling. Compared to the number and shape of UGS, the
area of the largest UGS patch, which exhibits strong causality and significant negative
correlation with ∆LST, suggests that increasing the area of the largest green space in the
region is effective in mitigating localized high temperatures. This pattern remains broadly
consistent across cities with different climatic geographies [84]. While there are already
many examples of using UGS to combat heat waves in the planning of developed Chinese
cities, currently there is no policy to match this. For example, policies of UGS planning do
not feature prominently on the ‘China Sustainable Urban Cooling Project’ (in Guangzhou).
Based on this study’s findings, the challenge is not only to protect or rehabilitate the largest
UGS in the region but also to avoid fragmentation of UGS. This requires policymakers
to adopt different approaches to UGS planning and management according to regional
characteristics. For instance, in suburbs, construction land development should be traded
off against the protection of original ecological space; in central cities, reasonably dis-
tributed and sufficiently sized UGS should be preserved [85]. It also emphasizes that the
construction of UGS should be treated as a long-term project, with timely adjustment of
UGS restriction policies at different stages of urban development.

For planning practice, planners and designers should recognize that cities need to
create wider cold islands to mitigate the UHI effect [86]. Regions located at the edge of



Forests 2024, 15, 812 12 of 16

urban sprawl show a trend of decreasing UGS number and regular shape, resulting in
lower LST in the neighboring areas. Regions located in the suburbs show a trend of a
decreasing largest area and increasing number, resulting in higher LST in the neighboring
areas. These phenomena emphasize the importance of tailored strategies for mitigating
UHI effects in different zones. In addition, a focus on policy and planning practice is a
key step in preserving ecological spatial quality and connectivity in sparsely populated
suburbs, compared to the central city.

4.4. Limitations and Future Research

The limitations of this study were clarified, mainly the selection of UGS configuration
indicators and the limited number of independent variables. On the one hand, the construc-
tion of the index system does not contain all the landscape pattern indicators. Although
the landscape pattern index, which has a significant effect on LST in general, was chosen
for this study, there may be more significant factors for this study area. On the other hand,
the object of causal interpretation was restricted to the UGS, and indicators describing the
urban sprawl, such as land use intensity, population, and nighttime lighting, were not
analyzed [87]. This study did not explicitly establish a strong spatial causal relationship
between a specific type of landscape pattern or land use type with LST change.

Based on the comparative analyses between this study and the existing studies, sug-
gestions for future research were proposed. Firstly, this study argues that more attention
needs to be paid to the factors that lead to LST increase, as the results of this study are
controversial with existing studies. For example, Ward et al. (2016) pointed out that urban
form indicators are the most critical factors [88]. He et al. (2019) explained that the effect
of urban form on UHI depends on the size of the study area [89]. Therefore, there is a
need to include indicators other than UGS patterns in future studies, such as exploring
the effectiveness of different UGS management strategies on LST or investigating socio-
economic factors affecting UGS distribution. Secondly, with the evolution of machine
learning and spatial regression models, better tools are available for analyzing the impact of
UGS and socio-economic factors on LST. Instead of being limited to simple regression and
linear relationships, studies can try to clarify what types and forms of UGS can effectively
reduce LST from the perspective of spatial and temporal heterogeneity. It can provide more
accurate recommendations for UGS planning and policy.

5. Conclusions

In this study, a novel approach was proposed to elucidate the spatial heterogeneity
and its causality between LST changes and the UGS configuration. The results indicated
that the high-temperature space shifted from the central city to the suburbs, expanding
from 721 km2 in 2003 to 3059 km2 in 2022. A decreasing trend of LST was observed in the
central city. There was a stronger spatial correlation between ∆LPI and ∆LST, compared to
∆LSI and ∆NP, which indicated that urban sprawl primarily impacted the UGS patches
with larger areas. A significant causal association was also shown between these two
variables. Conclusively, this study provided a new insight into the spatial relationship
between the change in UGS configuration and LST interannually. The results of the study
further confirmed that the rapidly urbanizing region, Shanghai, showed significant spatial
heterogeneity in the changes in UGS configuration and LST. The LPI of UGS was more
strongly causally related to the changes in LST, compared to NP and LSI. In addition,
UGS configurations in adjacent research units need to be considered in UGS plans and
policies for UHI mitigation. The series of results derived from this study illustrates the
effectiveness of the bivariate local Moran statistics in identifying the spatial externality of
UGS configuration changes to the surrounding LST. Significant spatial correlations between
variables do not represent strong causality.
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