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Abstract: Carbon emissions pose a significant challenge to sustainable development, particularly
for China, which is the world’s largest emerging economy and is under pressure to achieve car-
bon neutrality and reduce emissions amid escalating human activities. The variation in economic
development levels and carbon sequestration capacities among its provinces poses a significant
hurdle. However, previous research has not adequately examined this dual discrepancy from the
perspective of spatial heterogeneity, resulting in a lack of differentiated management of forest carbon
sinks across diverse regions. Therefore, to mitigate this discrepancy, this study presents an assessment
methodology that analyzes over 100 types of natural and plantation forests using forest age and
biomass expansion factors. This study presents a model that can significantly support the efforts of
both China and the whole world to achieve carbon neutrality through the improved management
of forest carbon sinks. This approach facilitates the assessment of carbon offsets required to meet
reduction targets, the development of a provincial framework for carbon intensity and sequestration,
and the exploration of their potential for trading markets. Analysis is conducted using MATLAB. Key
achievements of this study include the following: (1) The collection of a comprehensive carbon stock
dataset for 50 natural and 57 plantation forest types in 31 provinces from 2009 to 2018, highlighting
the significant role of new forests in carbon sequestration. (2) The development of a provincial
carbon status scoring system that categorizes provinces as carbon-negative, carbon-balancing, or
carbon-positive based on local forest sink data and carbon credit demand. (3) The formulation of
the carbon intensity–carbon sink assessment (CISA) model, which suggests that provinces with
middle- to upper-middle-level economies may have a prolonged need for carbon sink credits during
their peak carbon phase. Furthermore, the results show that carbon trading may benefit Guangxi
and Yunnan, but may also bring opportunities and risks to Hunan and Hubei. To address regional
imbalances, this study advocates tailored policies: carbon-negative and carbon-balancing provinces
should enhance carbon sink management, while carbon-positive provinces must focus on energy
structure transformation to achieve sustainable development goals.

Keywords: forest carbon sink; sustainable development; green economy; carbon sequestration
trading; China

1. Introduction

Global warming—a consequence of climate change—has emerged as a focal issue
worldwide, significantly affecting the economies and societies of all nations [1]. As the
world’s largest carbon dioxide emitter, China’s commitment to achieving carbon neutrality
by 2060 is pivotal to global climate mitigation efforts [2–4]. Attaining this ambitious goal
necessitates extensive actions in both reducing CO2 emissions and removing atmospheric
CO2 [5–7]. Forest carbon projects, which involve planting trees and managing forests to
store atmospheric CO2 in forest biomass (according to the Intergovernmental Panel on
Climate Change (IPCC) Sixth Assessment Report (AR6) [8], biomass may refer to the mass
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of organic matter in a specific area) and ecosystems, offer substantial carbon sequestration
potential [9–11]. They are a crucial component of climate strategies in numerous countries
and a key element in international climate agreements [12,13].

Expanding forest carbon sinks is a vital part of China’s climate change mitigation
strategy, which is frequently highlighted in the country’s national plans to increase forest
cover [11]. However, due to China’s vast geographical area and diverse hydrothermal
conditions and socio-economic environments across its provinces [14,15], there is a conflict
between the development of forest carbon projects and economic growth objectives, which
is a common problem in other parts of the world as well [16,17]. Furthermore, it is hard to
retain a sustained supply of forest carbon credits due to the inherent flaws and inefficiencies
in the pricing mechanism. This raises feasibility concerns regarding the economic benefit of
forest carbon sequestration. The national emission trading scheme (ETS) offers a market-
based solution to this issue. By compensating for the mitigation function through carbon
trading, it can effectively increase the supply of forest carbon sinks [18–20].

In addition, conducting a thorough assessment of the carbon sequestration potential of
forest ecosystems can assist provinces in understanding their forest carbon sink status and
formulating customized forest management policies. This can also create opportunities for
carbon sink trading between provinces based on differences in their economic development
levels and carbon sequestration potentials. Previous research has primarily focused on
national-level studies or a limited number of provinces [21–24]. This may result in a lack
of consideration for the spatial diversity of a country with over thirty provinces, such
as China. Consequently, this may limit the ability to gain a complete understanding of
the forest carbon sequestration potentials in varied regions, which is crucial for achieving
China’s 2060 carbon neutrality goal. Therefore, it is essential to conduct comprehensive
research that encompasses all provinces and accounts for their distinctive economic and
environmental characteristics in order to gain a full understanding of and enhance China’s
forest carbon sequestration capabilities.

Recent research has led to improved methods and data, including updated forest
inventory data, such as those included in the eighth and ninth China’s National Forest
Inventory (NFI) Report (NFI Reports are produced by the National Forestry and Grass-
land Administration (NFGA) of China. The NFGA and its predecessors have published
nine NFI reports since 1973. After 1984, the inventory has been conducted once every
5 years [25]) [26], enhanced biomass conversion factor models [27], and carbon sink simula-
tions using dynamic forest age models [28]. These advancements enable the integration of
various methodologies to establish an index system connecting carbon intensity and carbon
sinks. This system facilitates the identification of beneficiaries in China’s provincial forest
carbon sink trade and offers solutions to address the imbalance between carbon intensity
and carbon sink volumes across different provinces.

This study makes three key contributions to the existing body of knowledge in the field:
(1) It adopts a detailed, granular approach to distinguish between natural and plantation
forests, categorizing the diversity of over 100 tree species within five distinct forest age
groups at the provincial scale. It meticulously accounts for the spatial heterogeneity
of identical tree species across various regions, significantly improving the accuracy of
data and the precision of predictions related to carbon storage and carbon sequestration
capabilities for each province in China. (2) Moreover, it develops a practical model for
predicting carbon storage and sinks at the provincial level in China, performing spatial and
temporal comparisons across 31 provinces. (3) Lastly, it links provincial carbon intensity
reduction targets to forest carbon sink offsets by simulating changes in the carbon sink
volumes of provincial forest ecosystems. It establishes a coupled index system for provincial
carbon emission intensity and carbon sinks influenced by carbon offset factors, categorizing
provinces into carbon-negative, carbon-positive, and carbon-balancing provinces in China’s
forest carbon sink trade. Through quantifying and identifying primary stakeholders and
consumers of provincial forest carbon credits, the research clarifies the supply–demand
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relationship in forest carbon trading, offering data support for integrating forest carbon
sinks into compliance carbon markets (CCMs), especially in China’s national ETS.

The paper is structured as follows: Section 2 reviews the contemporary literature,
focusing on carbon sink measurement and trading, and emphasizes the importance of
coupling provincial economic development levels with carbon sequestration potential.
Forest carbon offset mechanisms are categorized and challenges related to compensating
forest carbon sinks are addressed. Section 3 describes the selection of models and scenario
assumptions, detailing the process of estimating provincial forest carbon storage, predicting
carbon sinks, and studying the coupling of carbon intensity and sinks in China. Section 4
presents the findings for the three models and identifies the future roles of various provinces
in carbon trading. Finally, Section 5 provides a comprehensive overview of the implications
for future studies and Section 6 offers policy recommendations based on the conclusions of
empirical research.

In conclusion, existing research has predominantly focused on global or national
scales. This leaves a significant gap in dynamic carbon accounting at the regional level,
particularly between different regions. This study aims to bridge this gap by exploring the
disparities in regional socio-economic development and carbon storage capacities. These
are analyzed through the lens of carbon intensity and carbon sequestration. Through the
contributions of this research—refined data accuracy, an innovative predictive model, and
a comprehensive index system—this study proposes a provincial carbon intensity–carbon
sink framework. It aims to synchronize forest carbon sinks with economic development
goals, thereby facilitating the creation of an effective carbon trading market.

2. Literature Review of Forest Carbon Sink Trading

Forest carbon sink trading significantly contributes to the harmonizing of economic
development with ecological protection, thereby serving as a crucial mechanism for align-
ing ecological and economic benefits [18]. This strategy has captured the attention of
governments and the global research community, reflecting its importance in addressing
climate change and promoting sustainable development. Present studies in this field pri-
marily encompass three key areas: analysis of the supply side of the carbon trading market,
economic evaluations of carbon sink trading, and the exploration of the mechanisms and
institutional structures that facilitate forest carbon sink trading.

(1) The models for estimating carbon sinks: This area of research focuses on models
for estimating forest carbon sinks, methods for valuing carbon sinks, and strategies for
enhancing carbon sink growth efficiency. Significant progress has been made in global
and national carbon storage studies [29,30], with an expansion into provincial and regional
levels [15,31,32]. These studies commonly identify data acquisition methods, forest man-
agement, and forest age structure as crucial factors affecting carbon storage estimates.
Through improved biomass expansion factors (BEFs) (according to IPCC Good Practice
Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF) [33], biomass
expansion factor is a multiplication factor that expands growing stock, or commercial
round-wood harvest volume, or growing stock volume increment data, to account for
non-merchantable biomass components such as branches, foliage, and non-commercial
trees) and the biomass density–forest age model, some scholars have estimated changes
in China’s arboreal biomass carbon pools [27,34]. Others have discussed the impact of
different estimation methods on the spatiotemporal dynamics of arboreal carbon pools,
highlighting the importance of forest age structure in carbon storage estimates and propos-
ing a biomass storage model to calculate forest carbon storage [35]. Additionally, the role
of afforestation and reforestation in enhancing carbon sequestration has gained promi-
nence. With advancements in technologies such as sensing satellites, researchers are using
high-precision remote sensing to analyze the dynamic changes in the carbon storage of
plantation forests in different regions, finding that regenerating forests possess high carbon
sequestration potential [36–38].
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(2) Economic analysis of carbon sink trading: This includes theoretical discussions on
the negative externalities of environmental pollution [39,40], studies on the mechanisms
of carbon sink trading [41,42], and analyses of the impacts of carbon sink trading on
the economic development of enterprises and countries [43,44]. Empirical studies have
illustrated that integrating carbon sink trading into broader environmental and economic
strategies can substantially lower the costs associated with emission reductions while
offering both economic and ecological benefits to less developed regions [45,46].

(3) Mechanisms and institutional design of forest carbon sink trading: Natural climate
solutions have become key to achieving carbon neutrality [47,48], with forest carbon
sink offsets playing a crucial role [1,15,49]. However, the carbon market faces issues of
oversupply and low prices, mainly due to insufficient demand and imperfect pricing
mechanisms [50]. Moreover, the sustainability of forest carbon credit projects, characterized
by their temporality and cyclical nature, has also been a subject of extensive debate [51–53].
Subsequent research has improved the assessment model of forest carbon trading by
incorporating carbon flows in harvested wood products and harvesting volumes. This
enhancement has provided a more accurate assessment of the impact of forest carbon
trading [20,54].

Scholars have conducted in-depth studies on carbon sink trading pricing and trading
methods, comparing the advantages and disadvantages of different policy tools from the
perspectives of cost and risk control [55–57]. The various carbon offset trading mecha-
nisms in international and Chinese markets, distinguishing between on-exchange and
off-exchange carbon offset trading mechanisms, are summarized in Table 1. Carbon market
trading mechanisms can be classified in a way that mirrors the organization of securities
markets, which are typically divided into on-exchange and off-exchange (over the counter,
OTC) transactions.

Table 1. Comparison of forest carbon sink trading mechanisms.

Market Level International Market National Level in China Provincial Level in China Carbon Sink Products

Off-Exchange Carbon
Trading Mechanisms

Verified Carbon Standard
(VCS Projects);

Gold Standard Projects

China Green Carbon
Foundation forestry projects;

Large-Scale Event
Carbon Neutrality

Independent carbon
credit trading;

provincial forest carbon
credit projects (e.g., Fujian)

VCU 1

On-Exchange Carbon
Trading Mechanisms

Clean Development
Mechanism (CDM);

Joint Implementation (JI);
Emission Trading Mechanism

Chinese Certified Emission
Reductions (CCER)

Local CCER trading;
carbon-inclusive
forestry projects;

CCER, CER, EUR,
AAU, RMU 2

Note: The authors compiled this table based on the relevant literature and reports [2,19,58]. 1 VCU (verified
carbon unit). 2 CER (certified emission reduction), ERU (emission reduction unit), AAU (assigned amount unit),
RMU (removal unit).

In summary, although significant strides have been made in carbon storage and sink
quantification, discussions on the economic valuation of forest carbon sinks as ecological
goods remain relatively nascent. Moreover, while existing studies have focused on global or
national scales, there is a noticeable gap in dynamic carbon accounting research at regional
levels and between regions. Research covering the supply and demand sides of carbon
credit trading, as well as its regulatory and institutional frameworks, has been extensive.
However, investigations into effective strategies for addressing the dual challenges of
sustainable economic development goals (this study uses “carbon intensity” as a proxy
variable) and carbon sink imbalances are just beginning.

3. Materials and Methods
3.1. Data Sources

The forest inventory data used in this study, including forest area and stock volume,
were obtained from the China Forest Resources Report; the GDP growth data were obtained
from the national data in the National Bureau of Statistics of China (NBSC); and the carbon
intensity data were obtained from the research reports of China’s central government and
local governments. Three main models were designed in this study: a biomass-storage
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model to estimate the carbon stock of Chinese arbor forests, a biomass density–forest
age model (according to IPCC GPG-LULUCF, biomass density is the ratio between oven
dry mass and fresh stem-wood volume without bark. It allows the calculation of woody
biomass in dry matter mass) to estimate the carbon sink of Chinese arbor forest, and a
carbon intensity–carbon sink assessment model to quantify and identify the carbon sink
resources endowment in each province of China. The different data used in each model are
described below.

For the biomass-storage model, we collected data on arbor forests from China’s eighth
(2009–2013) and ninth (2014–2018) forest inventories, including the area and storage of each
forest type and the age group in 31 provincial administrative regions of China (excluding
data from Taiwan and Hong Kong and Macao (due to the lack of disaggregated data on
forest resources in Taiwan Province and Hong Kong and Macao Special Administrative
Regions, the data for Taiwan Province and Hong Kong and Macao Special Administrative
Regions are not included in the subsequent data from this paper unless otherwise noted.)).
These data serve as the basis for the measurement and comparative analysis of carbon
stocks and sinks in arbor forests. The forest resource inventory data in China are divided
into those concerning arbor forests, bamboo forests, and special shrub forests, where
quantitative indicators include area and storage volume [26]; the arbor forest data are
further divided into natural forests and planted forests, according to the dominant species.
In the ninth China Forest Inventory, only arbor forests are included in the forest stock.
Therefore, the data collected for these types of study are primarily from arbor forests unless
specified, and the focus is on the biomass carbon pool of arbor forests in the forest carbon
pool, including both above-ground and below-ground biomass carbon pools. Notably,
litter, dead wood, and soil organic matter carbon pools are not included in this study.

Furthermore, this study included more categories of dominant tree species and a
more subdivided stand age structure. The eighth China Forest Inventory categorized trees
into 84 dominant tree species in different provinces. The ninth China Forest Inventory
classified every province’s forest in China into natural forests and planted forests and
specified 50 dominant tree species in natural forests and 57 dominant tree species in
planted forests. Moreover, the two forest inventories divided the forests into five forest age
groups according to growth and development stages, namely, young forest, middle-aged
forest, near-mature forest, mature forest, and over-mature forest.

After excluding outliers, the eighth forest inventory contains 924 national data and
8448 provincial data, and the ninth National Forest Inventory contains 600 national data
and 6024 provincial data for natural forests and 684 national data and 8100 inter-provincial
data for planted forests.

This study employed the biomass density–forest age model to estimate the future
carbon sink for each province in China. This was achieved by classifying the dominant
tree species and forest age groups, utilizing data from the ninth National Forest Inventory
(2014–2018). The analysis also incorporated provincial biomass carbon stock data, which
were derived from the aforementioned biomass-storage model.

According to the data of the ninth National Forest Inventory, the forest area is
218,220,500 hectares and the arboreal forest area is 179,888,500 hectares [26]. The per-
centage of existing arboreal forest area of the total forest area in China is 82.43%. If the
percentage remains unchanged, the new forest area in China can be projected from 2021 to
2035 based on future forest coverage.

For the carbon intensity–carbon sink assessment model, provincial carbon emission
data were obtained from the 2019 provincial carbon emission inventory of China’s carbon
accounting database CEADs [59–62], which contains the total annual provincial CO2
emissions of 30 provincial administrative regions of China (excluding Tibet, as data were
unavailable). These data derive from the apparent emissions auditing method, which
includes carbon emissions from fossil energy consumption and industrial processes and
can better reflect the changes in carbon emissions brought by economic development
in each province. In addition, the National Bureau of Statistics has provided detailed
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information on each province’s GDP. Furthermore, the forecast data on the national GDP
growth rate were from The 14th Five-Year Plan of National Economic and Social Development
of the People’s Republic of China and the Outline of Vision 2035. If China expects to double its
GDP per capita in 15 years, it must maintain an annual GDP growth rate of at least 4.7%.
The data related to China’s national ETS originate from the public database of the Ministry
of Ecology and Environment (MEE), and the regulation of a 5% carbon sink offsetting of
total carbon emissions originates from the “Measures for the Administration of Carbon
Emission Trading (Trial)” issued by the MEE. Furthermore, this research operates under
the assumption that all CCERs are sourced exclusively from forest carbon sink initiatives.

3.2. Selection of Models and Scenario

In the realm of forest carbon measurement, international researchers primarily concen-
trate on two approaches: vegetation carbon measurement methods based on plot surveys
and model-based carbon measurement strategies [63–65]. These methodologies are catego-
rized as follows (Table 2).

Table 2. Comparison of forest carbon accounting research methods.

Method Main Content Premise Limitations

Carbon Accounting Based on
Plot Surveys

Harvesting method;
biomass method;

accumulation method;
biomass inventory method;
eddy covariance method.

Accurate forest resource inventory data Excessive cost; long time cycle; data lag

Carbon Accounting Based on
Spatial Technologies Satellite remote sensing method. Relevant technology and measurement

methods are required High technical difficulty; excessive cost

Note: The authors compiled this table based on the relevant literature and reports [65–67].

This research adopts the biomass approach from the carbon accounting techniques
based on plot surveys. Figure 1 presents the methodology for assessing China’s carbon
intensity and sink capacities through an integrated approach involving three models.
Initially, a biomass-storage model calculates current forest carbon stocks (according to the
IPCC AR6, carbon stock is identified as “The quantity of carbon in a carbon pool”) per
province. Subsequently, future stocks are estimated using a biomass density–forest age
model, classifying provinces as ‘sinks’ (according to the IPCC AR6, sink is identified as
“Any process, activity or mechanism which removes CO2 from the atmosphere”) if future
stocks exceed current ones, or ‘sources’ (according to the IPCC AR6, source is identified
as “Any process or activity which releases a greenhouse gas”) otherwise. Furthermore,
a carbon intensity–sink assessment model projects future emissions and the required
offsetting volume for each province. This leads to a determination of carbon surplus or
deficit, culminating in a scoring system that categorizes provinces as carbon-negative,
carbon-balancing, or carbon-positive based on forest sink data and carbon credit demand.

The merit of this approach lies in leveraging models integrated with on-the-ground
data to offer more precise forest carbon storage estimates. When contrasted with newer
satellite and remote sensing methods, it stands out for its lower technical complexity, higher
practicality, and data availability. Recent studies utilizing remote sensing and other modern
technologies have revealed the significant potential of China’s terrestrial carbon sinks [66].
The acknowledgement of this potential has initiated new discussions about the accuracy of
remote sensing technology in the field of carbon sink estimation [68].

The biomass-storage model, part of the BEF methodology [34], is a globally accepted
approach for estimating forest carbon storage. Its strengths include being straightforward
and reliable, and it has demonstrated considerable credibility in China’s carbon sink
measurement studies. This method is frequently employed in the forest carbon sink
reports of the Intergovernmental Panel on Climate Change (IPCC) and the carbon sink
measurement analyses of China’s National Forestry and Grassland Administration. The
biomass density–forest age model employs the logistic growth model, which is a kind of
allometric model using non-linear regression techniques. This model is adept at fitting
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plant growth curves and estimating the carbon sequestration rate of forest ecosystems
using age-related data, which are prevalent in forestry studies [23,27].
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Figure 1. Analytical framework of the study on the carbon intensity–sink assessment model in China.

Due to the advantages of plot surveys and BEFs methodology we mentioned, this
study calculates forest carbon storage using the biomass-storage model and forest carbon
sink volume using the biomass density–forest age model. Coupled with annual provincial
carbon emission data from China, the carbon intensity–carbon sink coupling model is
employed to assess the carbon sink balance in various provinces.

Based on these models, the following scenario assumptions were considered. In terms
of the timeframe and research project, this study focuses on the carbon emission absorption
issues during China’s carbon neutrality period. The carbon emissions during China’s
carbon neutrality period are those that cannot be further mitigated through technological
advancements in industrial processes and energy consumption, representing “inevitable
CO2 emissions.” According to Ding Zhongli of the Chinese Academy of Sciences, chief of
the China Carbon Neutrality Roadmap Research Project, China will still emit approximately
2 to 2.5 billion tons of CO2 in 2060 [69]. These emissions require removal through ecological
construction, engineering sequestration, etc., to achieve carbon neutrality.

The research scope centers on the provincial scale, addressing mismatches in carbon
sink/carbon emission ratios and discrepancies between production and consumption-
end carbon emissions. The research subject is the critical aspect of ecosystem carbon
sequestration, and specifically forest ecosystem carbon sequestration, encompassing both
forest carbon storage and carbon sink volume.

3.3. Methods for Carbon Stock Measurement

In calculating carbon sequestration using the biomass-storage model, tree species and
stand age are crucial components of the fitting equations. This section categorizes the
different tree species for each province and further differentiates stand age according to
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tree species and region, referencing the forest carbon stock measurement method proposed
by previous research [35] to categorize the species of the eighth and ninth National Forest
Inventory data according to 13 forest types, and further specifies the forest age groups
from three groups to five. The provincial forest biomass density and carbon stock were
estimated by fitting the biomass-storage model (the equation fitting parameters are shown
in Table A1), respectively.

Bij = a + b ∗ Vij (1)

In this equation, Bij is the unit biomass of forest type i and forest age group j (Mgha−1),
Vij is the unit stock volume of forest age group j of forest type (m3 ha−1), i is a forest type
(i = 1, 2, . . ., 13), and j is a forest age group (j = 1, 2, 3, 4, 5); a and b are constants to adjust
forest growth.

Based on the provincial data of the eighth forest inventory, the unit stock volume of
each forest age group of 84 dominant tree species was calculated and applied into Equation
(2) to calculate the total biomass of different forest types separately. Furthermore, the
unit biomass density and unit carbon density were calculated based on the area of each
forest type.

Cp =

[
84

∑
i=1

5

∑
j=1

Aij × Bij

]
× Cc (2)

Applying Equation (1) to Equation (2) provides the forest carbon stock (2009–2013) in
each province:

Cp =

[
84

∑
i=1

5

∑
j=1

Aij ×
(
a + b ∗ Vij

)]
∗ Cc (3)

where Cp is the forest carbon stock (Tg C) of provincial administrative region P, Cc is the
carbon content of forest vegetation, and 0.5 is often used (The Intergovernmental Panel on
Climate Change (IPCC) suggests a default value of 0.5 for the carbon fraction of dry matter
to estimate carbon stock changes in biomass, based on the GPG-LULUCF.

Based on the data from the ninth National Forest Inventory, it is evident that applying
Equations (1)–(3) provides more accurate data regarding the stock volume and carbon
unit density of the 50 natural forests and 57 planted forests in question, demonstrating the
2014–2018 provincial forest carbon stock volume.

3.4. Methods for Carbon Sink Prediction

Forest age and tree species are typically used as key explanatory variables for estimat-
ing forest carbon sequestration through BEFs; however, effective extrapolation of the stand
age presents certain challenges. Based on the forest inventory criteria for classifying the
age classes of different forest types (Table A2), this study used the forest age segmentation
method (the method used in this study was compiled from the forestry industry standard
‘Classification of age classes and age groups of major tree species’ (LY/T 2908-2017)) for
50 natural forests and 57 planted forests in the ninth National Forest Inventory, and we
used the median value of the forest age segment to represent the average forest age of the
forest age group. This method predicts the future carbon stock and carbon sink in each
province of China with the premise that the future forest coverage and stand structure
will remain unchanged and that there will be no large-scale deforestation or mortality in
the future.

We adapted the method of Xu Bing et al. [27] and optimized data collection on the
age group values of natural and planted forests (see Table A2). The relationship between
biomass density and forest age for each forest type was fitted based on the logistic growth
equation to form the equation for predicting future forest carbon sink growth (biomass
density–forest age).

B =
ω

1 + ke−at (4)
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where B is the biomass density (Mgha−1), t is the stand age (a), e is the base of the natural
logarithm, and ω, k, and a are constants.

In this research, we used MATLAB R2022a (Natick, MA, USA: The MathWorks Inc.)
to demonstrate the curve-fitted results of a non-linear regression code, according to the cat-
egories of natural and planted forests and each tree species’ biomass density and stand age.
Furthermore, adding Equation (4) into the calculation produced the equation coefficients of
the carbon sink growth of each tree species.

For example, based on the data provided by the ninth National Forest Inventory
(covering 2014–2018) and the area and stock distribution of each age group for each type of
forest, and assuming there is no large-scale deforestation and mortality in the next 5 years,
then the size of the biomass carbon pool of this part of the existing forest in a future year
can be calculated with the following equation, using planted forests as an example:

C∆t =
57

∑
i=1

5

∑
j=1

c × Aij × Bij =
57

∑
i=1

5

∑
j=1

c × Aij ×
ωi

1 + kie
−ai(tij+∆t)

(5)

where C∆t is the total carbon pool of the existing forest at ∆t years later (Tg C); i is the total
carbon pool of a forest type (i = 1, 2, . . ., 57); j is a forest age group (j = 1, 2, 3, 4, 5); c is
the carbon content of forest vegetation, often using 0.5; Aij is the area (ha) of forest age
group j of forest type i in a provincial administrative region; Bij is the biomass density of
forest age group j of forest type i (Mgha−1); ωi, ki, and ai are the logistic curve constants
of biomass density versus forest age for forest type i; tij is the mean stand age (a) for age
group j of forest type i; and ∆t is the time span between the prediction period and the
baseline time period.

The predicted total biomass carbon pool of the natural forest at year N is equal to the
sum of the size of the biomass carbon pool of the existing forest at year t + N and the size
of the biomass carbon pool of the newly created forest at year N.

The future total forest carbon pool projection relies on the future forest coverage data.
According to the outline of the 14th Five-Year Plan (the Five-Year Plans are a series of social
and economic development initiatives issued by the Chinese Communist Party (CCP) in
the People’s Republic of China. The 14th Five-Year Plan covers the years 2021–2025), the
forest coverage rate will increase to 24.1% by 2025. According to The Master Plan of Major
Projects of National Important Ecosystem Protection and Restoration (2021–2035) [70], forest
coverage will reach 26% in 2035. Assuming that China’s forest coverage is considered as
a simple linear growth to reduce uncertainties, such as those related to deforestation and
wildfires, the forest coverage during 2026–2030 will reach around 25.05%.

In this study, the growth curves of each dominant species were calculated based on the
data of 62 forest types (50 natural forests and 57 planted forests) from the ninth National
Forest Inventory. Moreover, based on the ratio of the area of each dominant species in
planted forests (Table A3), the new forest area was assigned to 57 forest types according
to the abovementioned newly planted forest area in China. Finally, the carbon pool of the
new forest area was obtained by adding the new forest area of each dominant species to
Equation (5).

3.5. Methodology for Carbon Intensity–Carbon Sink Assessment Analysis

The main function of the carbon intensity–carbon sink assessment model is to predict
the carbon credit market capacity of each province in China based on the annual carbon
emission data of that province in the past to a certain point in the future calculation period.

Based on the CCER offsetting ratio and China’s carbon intensity reduction target, the
carbon intensity reduction and forest carbon sink of each province are calculated, where
the GDP growth rate is used as the national average growth rate value, and, finally, the
carbon credit market capacity of each province is derived to distinguish carbon sink, carbon
balance, and carbon-positive provinces; the equation is derived as follows:
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VP = Ci × α (6)

Ci = Gi × CIi (7)

Gi = Gt × (1 + R)(i−t) (8)

CIi = Ct/Gt × (1 − TP) (9)

Bringing Equations (8) and (9) into Equation (7) yields the following:

Ci =
[

Gt × (1 + R)(i−t)
]
× (Ct/Gt × (1 − TP)) (10)

Bringing Equation (10) into Equation (6) yields the following:

VP = Ct × (1 + R)(i−t) × (1 − TP)− Ct × α = Ct ×
[
(1 + R)(i−t) × (1 − TP)

]
× α (11)

where VP is the carbon credit market capacity of provincial administrative region P during
the period (million tons), C is carbon emissions (million tons), G is total GDP (million
CNY), α is the CCER offset ratio (%), CI is the carbon intensity (CO2/GDP), R is the GDP
growth rate (%), TP is carbon intensity reduction target (%) in the provincial administrative
region P, i is the end year of the calculation period, and t is the beginning year of the
calculation period.

From Equation (11), it follows that Ct, R, and α are constants, the carbon intensity
reduction percentage TP and CCER market capacity VP have a linear relationship, and
the carbon intensity reduction target TP and CCER market capacity VP are inversely pro-
portional to the CCER market capacity. Furthermore, the CCER market capacity has a
maximum limit when TP is zero.

Therefore, considering the forest carbon sink data from 2019 to 2025 as an example,
it is evident that incorporating China’s GDP and the carbon intensity control target of
each province in the period of the 13th Five-Year Plan (13th Five-Year Plan covers the
years 2016–2020) (Table A4) into the calculation of China’s provincial carbon intensity
index in 2019 and the 14th Five-Year Plan period would yield the desired information on
carbon intensity emission target reduction in each province in China for 2019–2025 and
the carbon credit market capacity of each province. Furthermore, according to additional
data sources of this study, it was assumed that R is 4.7%, α is 5%, and i and t are 2019 and
2025, respectively. Using these data in Equation (11) yields the carbon sink demand of
each province:

VP = 0.0659Ct × (1 − TP) (12)

There are two assumptions in this calculation: (1) the total carbon emissions of each
province in 2025 depend on the carbon sinks of newly planted forests in each province
from 2019 to 2025 to complete the carbon intensity reduction target in the 14th Five-Year
Plan period. (2) The forest carbon sinks’ calculation assumes that only the carbon sinks of
newly planted forests can enter the CCER circulation market, and the carbon sink growth
of existing forests is not considered, for the time being, when using Equation (5).

The carbon balance of each province can be obtained by subtracting the demand for
carbon sinks in each province from Equation (12) and by subtracting the carbon sinks of
newly planted forests from Equation (5); the result will demonstrate either a carbon surplus
or a deficit:

CB = VP − C∆t = 0.0659Ct × (1 − TP)−
57

∑
i=1

5

∑
j=1

c × Aij ×
ωi

1 + kie
−ai(tij+8)

(13)

According to the ninth National Forest Inventory’s data on the total percentage of
planted forest, the newly planted forest area from 2019 to 2025 is distributed into 57 forest
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categories (Table A3). These data were incorporated into Equation (13) to calculate the
carbon sink of the new forest area.

4. Results
4.1. Provincial Carbon Stock Model

The calculation based on the data of the biomass-storage model estimates the total
biomass, biomass density, carbon stock, and carbon density of 31 provinces in China,
as shown in Table 3. According to the ninth Forest Inventory (China’s National Forest
Inventory based on continuous forest inventory principles with permanent plots and
statistical sampling. The national statistics were obtained from the summation of all
provincial statistics completed in a 5-year cycle [25]. The results of carbon stock and carbon
density in the study reflect a rolling average picture of conditions over a 5 year period)
(2014–2018), the carbon stock of arbor forests was 7575.38 Tg C. The data difference is 1.29%
when comparing the result to the carbon stock model; this shows that the model has good
robustness. The comprehensive environmental protection policies and afforestation since
the early years of the 21st century have benefited the growth of China’s forest area, forest
stock volume, carbon stock, and carbon intensity from 2009 to 2018.

Table 3. Forest carbon pools in China, 2009–2018.

Periods Arbor Forest Area
(104 ha)

Forest Stock Volume
(106 m3) Biomass (Tg) Carbon Stock (Tg C) Carbon Density

(Mgha)−1

2009–2013 16,460.35 14,779.09 13,462.27 6731.14 40.89
2014–2018 17,988.85 17,058.20 15,347.64 7673.82 42.66

According to the distribution of carbon stocks and carbon density by province in China
(Figures 2–4, Table A5), there are apparent gradient and spatial differences in the regional
distribution of carbon stocks and carbon density in China. The data divide the provinces
into three different levels of carbon resources. The first level contains provinces which
registered a carbon-rich inventory from 2014 to 2018: Heilongjiang, Yunnan, Tibet, Inner
Mongolia, and Sichuan. These account for 50.8% of China’s carbon inventory. The second
level includes Jilin, Guangxi Fujian, Guangdong, Jiangxi, Shaanxi, Hunan, Hubei, Guizhou,
and Liaoning, with a cumulative proportion of 85.4% of China’s total carbon inventory; the
remaining provinces are the third level, with a combined proportion of 14.4% of China’s
total carbon inventory. The national average of forest carbon density in China from 2014 to
2018 was 42.66 Mgha−1, with 10 provinces above the national average (Figure 5). The top
provinces in terms of carbon density were Tibet, Xinjiang, and Jilin.

There is a significant carbon stock imbalance problem in each province, according
to carbon stock changes (Figure 3). The total volume shows that northeast, southwest,
and south China have excessive carbon stock, whereas northwest and east China have
insufficient carbon stock. The growth volume is higher in southwest, northeast, and south
China and lower in east and north China.

In terms of carbon density change, the same challenge of large carbon density imbal-
ance exists in all provinces (Figure 4); however, the total volume is higher in the southwest
and northeast than in the south and middle China. On the other hand, the growth volume
is faster in east, south, and middle China than in the southwest and northwest. Meanwhile,
it is evident that there is a fundamental imbalance between the forest carbon stock-rich
regions and economically developed regions in China, and most of the economically
developed regions are the regions with lower forest carbon stocks.

In conclusion, according to the distribution maps (Figures 2 and 3), China’s carbon
reserves are concentrated in the northeastern and southwestern regions. Moreover, the
carbon reserves in the southwest and southeast regions have a higher growth rate, especially
those on the southeast coast. Therefore, the southeast coast needs to purchase carbon sinks
to offset in the short term. However, the demand gap for carbon sinks in provinces such
as Fujian and Guangdong will gradually decrease in the long term. There will also be
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demand for carbon sink purchases that will become less critical. Therefore, Guangdong
and Fujian may not become the focus of carbon sink trading based on the supply–demand
relationship of China’s national ETS. However, given the slow growth rate of carbon sink
volume in central China, which overlaps with the development demand of the central
rising strategy, provinces such as Hubei and Hunan may require a substantial carbon sink
purchase, creating a gap in their trading.
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4.2. Provincial Carbon Sink Model

The biomass density–forest age relationship was fitted for 50 natural forest species
and 57 planted species by the biomass density–forest age model in the ninth National
Forest Inventory, and the results are shown in Appendix B Tables A6 and A7. This table
is arranged in descending order according to the area of dominant tree species. After
excluding the species with invalid data, 41 species were calculated in natural forests. Of
these, 36 species had R2 greater than 0.8, accounting for 97.27% of the total area of natural
forests, and 51 species were registered in planted forests (among them, the data quality of
Siemian pine, maple, fir, and cork oak in planted forest was characterized by poor fit, and
natural forest fitting parameters were used instead) (of these species, 35 had an R2 greater
than 0.8, accounting for 97.20% of the total area of planted forests). The calculated results
present optimistic data, using reliable evidence, regarding the natural growth process of
each forest type. As shown in the figure, the fitted curve effects of both the natural forests
and planted forests with the top six land areas also better reflected the natural growth
process of trees (Figures A1 and A2).

Based on the logistic growth equation (in the biomass density–forest age model) using
the forest inventory data from 2014 to 2018, the changes in carbon pools of existing forests in
the 14th, 15th, and 16th Five-Year Plans were predicted. The results are shown in Table A8.
In terms of carbon stock, the carbon stock of existing forests steadily increased to 9.8 billion
tons C after three Five-Year Plans. It increased by 2.203 billion tons C compared with
2014–2018, with an average annual increase of 120 million tons C. In terms of carbon
density, the carbon density of existing forests increased from 42.66 Mgha−1 to 54.9 Mgha−1,
with an average annual increase of 0.72 Mgha−1.

Table A8 in Appendix B shows the prediction of newly planted forests’ carbon in-
ventory changes in China’s next Five-Year Plan. The carbon inventories will increase to
892 million tons C, with an average annual growth rate of 52 million tons. Furthermore,
the proportion of increased carbon inventories grew from 2.38% in the 14th Five-Year Plan
to 9.05% in the 16th Five-Year Plan. In terms of carbon density, it will reach 37.45 Mgha−1.
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Combining every change in the carbon stock and carbon intensity of existing and
newly planted forests (see Figure 6), it can be observed that newly planted forest is gradually
becoming the main source of the carbon pool increase. The proportion of newly planted
forest’s carbon pool went up from 2.38% in the 14th Five-Year Plan to 9.05% in the 16th
Five-Year Plan.
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4.3. Provincial Carbon Intensity–Carbon Sink Assessment Model

The calculations of the carbon intensity for 30 Chinese provinces in 2019 are based on
the carbon intensity–carbon sink assessment model, which projects the target carbon inten-
sity and carbon emissions in 2025. In addition, the calculation based on the 5% CCER offset
principle provides the demand volume of carbon credit from sink projects in 30 provinces.
The difference between the demand of carbon credits and the supply of forest carbon credits
in each province is the carbon balance data of the province. Therefore, a positive result
represents a carbon surplus, while a negative result represents a carbon deficit.

The total volume data (Table 4) predict that China’s total carbon emissions in 2025
will be about 13.22 billion tons C, and the demand for carbon sink credits, according to
the 5% CCER offset principle, will be about 661 million tons C. The amount of carbon
sinks in the newly planted area of planted forests in the 14th Five-Year Plan period will be
about 203 million tons C. The supply to-demand ratio is about 1:3, which aligns with the
total emission control target of tightening the carbon market and is conducive to carbon
emission regulation.

At the provincial level, regions are affected by natural conditions and resource endow-
ments, and there are spatial imbalances in both carbon sink growth and emissions (Table 5).
Regarding carbon emissions, socio-economic development conditions heavily influence the
provinces. Carbon emissions are mainly concentrated in the traditional energy generation
provinces such as Shanxi, Shandong, and Inner Mongolia, leading carbon emissions in
2025 and making up 31.89% of the country’s carbon emission. However, provinces with
lower carbon emissions are typically either economically developed areas with a strong
tertiary sector or economically lagging regions. Qinghai, Beijing, Hainan, Chongqing,
Tianjin, Shanghai, and Yunnan are among the provinces with the lowest carbon emissions,
contributing to only 6.3% of the national total.
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Table 4. Projected total provincial carbon emissions in China in 2025 and forest carbon sinks in
2019–2025 (million tons).

Province Carbon Intensity Carbon Emissions 5% CCER
Offsetting Volume Carbon Sink Carbon

Surplus/Deficit

Beijing 0.16 73.95 3.70 0.96 (2.74)
Tianjin 0.78 144.22 7.21 0.37 (6.85)
Hebei 1.35 621.47 31.07 5.80 (25.27)
Shanxi 8.22 1836.34 91.82 3.29 (88.53)

Inner Mongolia 4.75 1076.41 53.18 12.97 (40.21)
Liaoning 2.07 678.38 33.92 6.57 (27.34)

Jilin 1.38 213.62 10.68 6.14 (4.54)
Heilongjiang 2.12 377.48 18.65 8.49 (10.15)

Shanghai 0.33 167.03 8.35 0.15 (8.20)
Jiangsu 0.51 666.66 33.33 4.65 (28.68)

Zhejiang 0.53 438.95 21.95 3.69 (18.26)
Anhui 0.89 430.95 21.55 5.56 (15.99)
Fujian 0.52 292.65 14.63 10.08 (4.55)
Jiangxi 0.61 197.43 9.87 9.56 (0.31)

Shandong 1.40 1303.51 65.18 5.55 (59.62)
Henan 0.70 492.03 24.60 7.35 (17.25)
Hubei 0.50 301.28 14.97 4.76 (10.21)
Hunan 0.50 261.47 13.07 12.10 (0.98)

Guangdong 0.42 595.86 29.79 19.55 (10.25)
Guangxi 0.90 250.73 12.39 22.86 10.47
Hainan 1.09 76.62 3.83 5.36 1.53

Chongqing 0.43 133.26 6.66 2.31 (4.36)
Sichuan 0.48 293.27 14.66 11.85 (2.81)
Guizhou 1.41 312.42 15.62 8.58 (7.04)
Yunnan 0.61 185.91 9.30 14.82 5.53
Shaanxi 1.94 660.63 33.03 4.69 (28.34)
Gansu 1.79 205.19 10.14 2.88 (7.26)

Qinghai 1.35 52.49 2.62 0.29 (2.33)
Ningxia 5.64 278.73 13.77 0.37 (13.40)
Xinjiang 3.36 601.98 30.10 1.97 (28.13)

Table 5. China’s total provincial carbon emissions in 2025 and the proportion of forest carbon sinks in
China during 2019–2025.

Province Proportion of Carbon Emissions Proportion of Carbon Sinks

National 100% 100%
Shanxi 13.89% 1.62%

Shandong 9.86% 2.73%
Inner Mongolia 8.14% 6.37%

Liaoning 5.13% 3.23%
Jiangsu 5.04% 2.28%
Shaanxi 5.00% 2.30%
Hebei 4.70% 2.85%

Xinjiang 4.55% 0.97%
Guangdong 4.51% 9.60%

Henan 3.72% 3.61%
Zhejiang 3.32% 1.81%

Anhui 3.26% 2.73%
Heilongjiang 2.86% 4.17%

Guizhou 2.36% 4.22%
Hubei 2.28% 2.34%

Sichuan 2.22% 5.82%
Fujian 2.21% 4.95%

Ningxia 2.11% 0.18%
Hunan 1.98% 5.94%

Guangxi 1.90% 11.23%
Jilin 1.62% 3.02%

Gansu 1.55% 1.42%
Jiangxi 1.49% 4.70%
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Table 5. Cont.

Province Proportion of Carbon Emissions Proportion of Carbon Sinks

Yunnan 1.41% 7.28%
Shanghai 1.26% 0.07%

Tianjin 1.09% 0.18%
Chongqing 1.01% 1.13%

Hainan 0.58% 2.63%
Beijing 0.56% 0.47%

Qinghai 0.40% 0.14%

The regions mentioned above only generate 10.72% of the nation’s electricity, and
China’s seven lowest-ranking provinces generate only 11.92% of the total carbon sink.
Therefore, it is evident that a spatial imbalance exists in the proportion of carbon emissions
and carbon sinks among Chinese provinces. For example, Shanxi accounts for 13.89% of
carbon emissions and only 1.62% of carbon sinks, and Guangxi accounts for 1.9% of carbon
emissions and 11.23% of carbon sinks. In total, the provinces mentioned above include
13 provinces that have imbalanced carbon emissions and carbon sinks.

According to the data from the study on carbon sink offset in each province, we
compared the proportions of provincial carbon emissions (Figure 7) and carbon sinks
(Figure 8) in China. We used three different labels to categorize 30 provinces (Table 6):
carbon-negative, carbon-balancing, and carbon-positive. The definition of each category
was determined by the relationship between carbon sink and carbon emissions. A “carbon-
negative province” sequesters more carbon than it emits, reaching a threshold where the
carbon sequestered is greater than 5% of its emissions. A “carbon-balancing province” does
not reach the 5% absorption threshold but stands out because its contribution to national
carbon absorption is greater than its share of national emissions. Finally, a “carbon-positive
province” also falls below the 5% sequestration threshold and also contributes less to
national carbon sequestration than it does to emissions, indicating that it releases more
carbon than it sequesters.
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Table 6. Classification of carbon sinks by province.

Classification Province

Carbon-negative province Guangxi, Yunnan, Hainan
Carbon-balancing province Jiangxi, Hunan, Sichuan, Chongqing, Fujian, Jilin, Guizhou, Heilongjiang, Hubei, Guangdong

Carbon-positive province Shanxi, Shandong, Inner Mongolia, Jiangsu, Shaanxi, Xinjiang, Liaoning, Hebei, Zhejiang, Henan,
Anhui, Ningxia, Shanghai, Gansu, Tianjin, Qinghai, Beijing

Figures 7 and 8 serve as the foundation for this classification. The categorization
into carbon-negative, carbon-positive, and carbon-balancing provinces is then visually
represented in Figure 9, which synthesizes the data from Figures 7 and 8 to map out the
provinces according to their net carbon impact. This approach ensures a nuanced under-
standing of each province’s role in China’s broader carbon dynamics, with Table 7 offering
further clarity on the specific criteria and definitions applied in this analytical framework.

Table 7. The definition of each category in different provinces.

Classification Rule Roles

Carbon-negative province Provincial carbon sinks > 5% of provincial carbon emissions Carbon asset holders

Carbon-balancing province Provincial carbon sinks < 5% of provincial carbon emissions
Percentage of carbon sinks in China > percentage of carbon emissions in China Carbon-balancing traders

Carbon-positive province Provincial carbon sinks < 5% of provincial carbon emissions
Percentage of carbon sinks in China < percentage of carbon emissions in China Carbon sink buyers

In the carbon trading market, carbon-negative provinces serve as suppliers of carbon
credit, such as CCER. Their roles are as traders who hold carbon sink assets and provide
carbon sink allowances for the market; carbon-balancing provinces are the speculative
side of the market that balance carbon emissions by buying or selling carbon sinks to
provide liquidity for the carbon credit market. In addition, carbon-positive provinces are
on the demand side of the carbon trading market, which needs to buy carbon sinks to
reduce carbon emissions while increasing carbon sink demand. In conclusion, the provinces
comprise three categories: asset holders, traders, and buyers.
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Carbon-negative provinces, carbon-balancing provinces, and carbon-positive provinces
in the carbon credit market are carbon asset holders, carbon balancing traders, and carbon
sink buyers, respectively.

Although some provinces, such as Guangdong and Fujian, have higher carbon emis-
sions and their carbon balances are currently in deficit, they are likely to become the next
group of carbon-negative provinces because their carbon sinks are rapidly growing, and
purchasing demand is diminishing in the long run. However, these economically devel-
oped provinces with more oversized carbon sinks will play an active role in positively
affecting the carbon credit market in supply and demand.

On the other hand, provinces such as Shanxi and Shandong will become significant
purchasing powers in the future carbon credit market. This consequence is the result of
two factors. First, they do not have enough forest recourse for carbon offsetting. Second,
they are constantly under immense pressure to offset their carbon emissions during their
economic development, which generates an enormous amount of carbon emissions. In
addition, the current carbon-negative provinces, such as Guangxi and Yunnan, will become
the major suppliers in the carbon credit market, and carbon sink trading will generate
additional revenue for the local government.

In conclusion, it is evident that the carbon sink deficit in the market will occur regularly,
as there are fewer carbon-negative provinces than carbon-positive provinces, which may
cause a carbon price surge in the future. Therefore, introducing market principles will help
to promote the green development strategies of all provinces, increase recognition of forest
carbon sink values, and expedite the process of reaching carbon neutrality.
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In the long run, the number of carbon-negative provinces will increase, and the tension
currently existing between suppliers and buyers will reduce. As a result—and to further
strengthen the outcome of green development and stabilize carbon prices in the market—it
may be necessary to periodically adjust the ratio of carbon offset credits according to the
current supply and demand relationship in the market.

5. Discussion
5.1. Superiority and Innovations of the Models

For this study, we utilized carbon accounting methods based on plot surveys, em-
ploying three distinct approaches to estimate the 2019 carbon storage and the carbon sink
volume from 2019 to 2035 in Chinese provincial forests. This analysis also discerned the
future carbon sink surplus and deficit scenarios for different provinces in light of their
economic development. Compared to other methodologies, such as satellite remote sensing
and simulation models [31,32,66,72], our study’s carbon sink estimates showed high similar-
ity with results found in most of the literature while providing more precise identification
of the spatiotemporal heterogeneity of provincial carbon sinks. This increased accuracy was
achieved by including comprehensive data on natural and plantation forests categorized
by dominant tree species in each province. It can also assist regions in proactively reducing
carbon emissions if they find themselves in a carbon deficit, which has also been referred to
as a carbon-positive province in this study. Such detailed analysis is vitally important for
policymakers to formulate proactive policies based on the carbon sequestration surplus
or deficit across different regions, thereby providing a strategic advantage in addressing
regional and national carbon management objectives effectively.

5.2. Robustness of the Models

Regarding model robustness, the carbon storage calculations from this research show
a minimal statistical discrepancy of only 1.29% compared to the arboreal carbon storage
figures reported in the ninth National Forest Inventory. Within the carbon sequestration
model, 97.27% of total natural forest species and 97.2% of total plantation forest species
demonstrate a model fit (R2) greater than 0.8. The fitted curves for the six most extensive
natural and plantation forests accurately reflect the natural growth process of trees (as
detailed in Figures A1 and A2).

5.3. Limitations and Future Research

There are several limitations to the model’s prediction in this study, in terms of carbon
intensity and carbon sink. Although we cannot predict technological advancements, the
process guarantees that progress in achieving the carbon intensity reduction target will
occur, leading to a substantial carbon intensity reduction in the carbon-emission-heavy
provinces in the future, ultimately resulting in a change in carbon-positive provinces.
On the other hand, the growth of forest carbon sinks may be limited. This is because
forest growth has specific natural law characteristics and requires a longer cycle to reach
maturity. At the same time, the natural conditions, including drought, fire, and other
climatic anomalies, will also limit the growth of forest carbon sinks, especially for forest
resources in the central and western regions.

In summary, future coupled carbon intensity–carbon sink studies need to consider
both the limits of forest carbon sink growth and the decrease in carbon intensity due to
technological progress. If this method is appropriate, combined with China’s efforts in
natural forest cultivation and low- and medium-yield forest renovation, the carbon sink
limit may also be further increased; therefore, the number of provinces in carbon balance
and carbon sink may be larger than the model predicts, and the carbon surplus will be
more significant.

In the following stages of the carbon intensity–carbon sink study, carbon sink data with
a more extensive range of periods can also be considered for inclusion. In this study, the
carbon sinks in the coupled carbon intensity–carbon sink assessment model are considered
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only for the forest area that is newly planted from 2019 to 2025. Due to uncertainties, such
as those related to deforestation and wildfires, and the lack of data, we did not include
carbon sinks from the existing forests under forest management in the model. However, it
is required that data from all forest newly planted in China since 2005 are included in the
carbon sink calculation. It may be more realistic to include the above carbon sinks, and the
carbon-balanced and carbon-negative provinces should have more carbon surplus than
the current model predicts. It is also important to consider the reduction in forest carbon
stocks due to timber harvesting and natural disasters such as wildfires [18,20].

6. Conclusions

Utilizing the carbon intensity–carbon sink assessment (CISA) model in conjunction
with the biomass-storage model and biomass density–forest age model, this study conducts
a comprehensive analysis of carbon dynamics and forest carbon sinks across Chinese
provinces. The findings highlight several key insights.

First, the study reveals that high levels of economic development do not invariably
lead to increased demand for carbon credit purchases. Instead, regions with middle to
upper-middle levels of economic development may exhibit sustained demand for carbon
credits. Specifically, central China is projected to become the region with the highest
demand for carbon credits in the future, while demand in southeast China is expected to
decline over time.

Furthermore, the research demonstrates a significant imbalance between carbon stock-
rich and economically developed regions in China. Economically developed regions
typically exhibit lower forest carbon stocks, presenting challenges regarding carbon stock
changes across different regions. The results indicate that 17 carbon-positive provinces
account for 73.86% of carbon emissions, while 10 carbon-balancing provinces account for
22.26%, and three carbon-negative provinces account for 3.88%. In terms of forest carbon
sinks, the corresponding shares are 37.19%, 30.58%, and 21.14%, respectively.

In light of these findings, the study offers policy recommendations to address the
imbalance between regional economic development and forest carbon sequestration ca-
pacity in China. Carbon-negative provinces are encouraged to refine the management of
forest carbon sink markets to act as "purifiers," cleansing the economy of carbon emissions.
Meanwhile, carbon-balancing provinces should prioritize energy conservation, carbon re-
duction, and afforestation to become "engines" of China’s green economy. Carbon-positive
provinces are advised to focus on sustainable development through transforming their
energy structures and promoting research and development in energy technologies, thereby
stabilizing China’s transition towards sustainability.

In conclusion, this research underscores the significance of understanding the regional
disparities in carbon dynamics and forest carbon sinks in China. By shedding light on
these imbalances, the study provides valuable insights for policymakers and stakeholders
seeking to promote sustainable development and mitigate climate change impacts.
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Appendix B

Table A1. Fitting parameters for the biomass-storage model.

Forest Type Age Group a b

Coniferous mixed trees, Cinnamomum camphora (L.) J. Presl, Abrus precatorius L., other
broad-leaved softwood trees, Phoebe zhennan, Casuarina equisetifolia, Schima superba

Gardner & Champ.

Young forest 17.5941 0.9501
Middle-aged forest 39.3752 0.8593
Near-mature forest 43.4173 0.8389

Mature forest 43.4173 0.8389
Over-ripe forest 43.4173 0.8389

Pinus koraiensis Siebold & Zucc.

Young forest 33.2049 0.4834
Middle-aged forest 54.7293 0.4108
Near-mature forest 54.7293 0.4108

Mature Forest 54.7293 0.4108
Over-ripe forest 54.7293 0.4108

Pinus wallichiana, other pine classes, Pinus taiwanensis Hayata, Pinus armandii Franch.,
Pinus densata Mast.

Young forest 15.6557 0.6333
Middle-aged forest 45.5374 0.4139
Near-mature forest 47.6751 0.4292

Mature forest 47.6751 0.4292
Over-ripe forest 47.6751 0.4292

PopulusL., Populus davidiana, Betula L.

Young forest 21.5600 0.5750
Middle-aged forest 39.9348 0.5917
Near-mature forest 29.6156 0.6257

Mature forest 29.6156 0.6257
Over-ripe forest 29.6156 0.6257

Taxus cuspidata Siebold & Zucc., Picea asperata Mast., Keteleeria fortunei, Tsuga chinensis,
Abies fabri (Mast.) Craib

Young forest 49.0802 0.3422
Middle-aged forests 29.3993 0.4952
Near-mature forest 53.612 0.3917

Mature forest 53.612 0.3917
Over-ripe forest 53.612 0.3917

Cryptomeria fortunei Hooibr. ex Otto & Dietrich, Cupressus funebris Endl.

Young forest 35.2538 0.4741
Middle-aged forests 47.6005 0.4741
Near-mature forest 69.3512 0.393

Mature forest 69.3512 0.393
Over-ripe forest 69.3512 0.393

Wide-needled mixed trees, Ulmus pumila L., Phellodendron amurense Rupr., Quercus
variabilis Bl., Other broad-leaved hardwood trees, other economic trees, Toxicodendron

delavayi, Paulownia Sieb. et Zucc., Salix L., Melia azedarach L., Quercus, pinus massoniana,
Juglans regia L., Liquidambar formosana Hance, Tilia, Robinia pseudoacacia L., Sassafras

tzumu (Hemsl.) Hemsl., Castanea mollissima Bl., Fraxinus chinensis Roxb.

Young forest 21.8281 0.7084
Middle-aged forests 22.2598 0.8398
Near-mature forest 55.4361 0.4265

Mature forest 55.4361 0.4265
Over-ripe forest 55.4361 0.4265

Larix gmelinii

Young forest 30.4438 0.6194
Middle-aged forest 14.3096 0.6425
Near-mature Forest 33.7734 0.5558

Mature forest 33.7734 0.5558
Over-ripe forest 33.7734 0.5558

Pinus massoniana

Young forest 12.1063 0.5093
Middle-aged forest 38.6436 0.4934
Near-mature forest 21.2812 0.5497

Mature forest 21.2812 0.5497
Over-ripe forest 21.2812 0.5497

Cunninghamia lanceolata

Young forest 14.6212 0.6765
Middle-aged forest 32.8777 0.3858
Near-mature forest 0.5264 0.5115

Mature forest 0.5264 0.5115
Over-ripe forest 0.5264 0.5115

Pinus tabuliformis, Pinus densiflora

Young forest 14.4807 0.7106
Middle-aged forest 4.9498 0.8115
Near-mature forest 8.4727 0.6983

Mature forest 8.4727 0.6983
Over-ripe forest 8.4727 0.6983

Pinus yunnanensis, Pinus kesiya

Young forest 31.7207 0.507
Middle-aged forest 4.2304 0.7185
Near-mature forest −10.0118 0.7892

Mature forest −10.0118 0.7892
Over-ripe forest −10.0118 0.7892

Pinus sylvestris var. mongholica Litv.

Young forest 1.1302 1.1034
Middle-aged forest 55.795 0.2545
Near-mature forest 55.795 0.2545

Mature Forest 55.795 0.2545
Over-ripe forest 55.795 0.2545

Note: In the equation Bij = a + b ∗ Vij, B is the biomass density, V is the forest stock density, and a and b are
constants to adjust forest growth.
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Table A2. Age group division of each dominant tree species.

Tree Species Region Origins Young Forest Middle-Aged Forests Near-Mature Forest Mature Forest Over-Ripe Forest

A

North Natural 0–60 61–100 101–120 121–160 ≥161
North Artificial 0–40 41–60 61–80 81–120 ≥121
South Natural 0–40 41–60 61–80 81–120 ≥121
South Artificial 0–30 31–50 51–60 61–80 ≥81

B

North Natural 0–60 61–100 101–120 121–160 ≥161
North Artificial 0–30 31–50 51–60 61–80 ≥81
South Natural 0–40 41–60 61–80 81–120 ≥121
South Artificial 0–30 31–50 51–60 61–80 ≥81

C

North Natural 0–40 41–80 81–100 101–140 ≥141
North Artificial 0–20 21–30 31–40 41–60 ≥61
South Natural 0–40 41–60 61–80 81–120 ≥121
South Artificial 0–20 21–30 31–40 41–60 ≥61

D

North Natural 0–30 31–50 51–60 61–80 ≥81
North Artificial 0–20 21–30 31–40 41–60 ≥61
South Natural 0–20 21–30 31–40 41–60 ≥61
South Artificial 0–10 11–20 21–30 31–50 ≥51

E
North Natural 0–20 21–30 31–40 41–60 ≥61
North Artificial 0–10 11–15 16–20 21–30 ≥31
South Artificial 0–5 6–10 11–15 16–25 ≥26

F
South Natural 0–20 21–30 31–40 41–60 ≥61
South Artificial 0–5 6–10 11–15 16–25 ≥26

G
North Natural/artificial 0–10 11–15 16–20 21–30 ≥31
South Natural/artificial 0–5 6–10 11–15 16–25 ≥26

H South Artificial 0–5 6–10 11–15 16–25 ≥26

I

North Natural 0–30 31–50 51–60 61–80 ≥81
North Artificial 0–20 21–30 31–40 41–60 ≥61
South Natural 0–20 21–40 41–50 51–70 ≥71
South Artificial 0–10 11–20 21–30 31–50 ≥51

J North Natural 0–40 41–60 61–80 81–120 ≥121
South Artificial 0–20 21–40 41–50 51–70 ≥71

K South Artificial 0–10 11–20 21–25 26–35 ≥36

Notes: This table was compiled using data from the forestry industry standard “Classification of age classes and
age groups of major tree species” (LY/T 2908-2017) and “China Forest Inventory (2005)” on the classification of
forest age groups; these were combined with latest forest inventory data [73,74]. Tree species were replaced by the
following capital letters: A: Pinus koraiensis Siebold & Zucc., Picea asperata Mast., Tsuga chinensis, Taxus cuspidata
Siebold & Zucc., Keteleeria fortunei, Cupressus funebris Endl. B: Cupressus funebris Endl. C: Larix gmelinii (Rupr.) Kuzen.,
Abies fabri (Mast.) Craib, Pinus sylvestris L. var. mongholica Litv., Pinus densiflora Siebold & Zucc., Pinus thunbergii Parl.
D: Pinus tabuliformis Carrière, Pinus massoniana Lamb., Pinus yunnanensis Franch., Pinus kesiya, Pinus armandii Franch.,
Pinus densata Mast., coniferous mixed trees, mixed wide-needled trees, Pinus taiwanensis Hayata, Pinus wallichiana, Exotic
pines, other pine classes. E: PopulusL., Salix L., Sassafras tzumu (Hemsl.) Hemsl., Paulownia Sieb. et Zucc., Illicium verum
Hook.f., Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg., other broad-leaved softwood trees, pinus massoniana. F: Melia
azedarach L. G: Robinia pseudoacacia L. H: Casuarina equisetifolia, Eucalyptus robusta Smith. I: Betula L., Ulmus pumila
L., Schima superba Gardner & Champ., Liquidambar formosana Hance. J: Quercus, Cinnamomum camphora (L.) J. Presl,
Phoebe zhennan, Tilia, other broad-leaved hardwood trees, Abrus precatorius L., Phellodendron amurense Rupr., Juglans
regia L., Castanea mollissima Bl., Populus davidiana, Toxicodendron delavayi, Fraxinus chinensis Roxb., Quercus variabilis
Bl., Magnolia officinalis Rehder & E. H. Wilson, Eucommia ulmoides Oliver, Ginkgo biloba L., Vernicia fordii (Hemsl.)
Airy-Shaw, other economic trees. K: Cunninghamia lanceolata (Lamb.) Hook., Cryptomeria fortunei Hooibr. ex Otto &
Dietrich, Metasequoia glyptostroboides, Taxodium ascendens Brongn., other fir species.

Table A3. New forest area from 2021 to 2035 (unit: hectares).

Dominant Tree Species Percentage Existing Planted Forest Area 2021–2025 2026–2030 2031–2035

Total 100% 57,126,700 8,931,746 16,374,868 23,817,990
Abies fabri (Mast.) Craib 0.08% 48,100 7520 13,787 20,054

Picea asperata Mast. 0.72% 411,900 64,400 118,068 171,735
Larix gmelinii (Rupr.) Kuzen. 5.54% 3,162,900 494,519 906,618 1,318,716

Pinus koraiensis 0.54% 309,100 48,328 88,601 128,874
Pinus sylvestris 0.84% 478,900 74,876 137,272 199,669
Pinus densiflora 0.10% 58,300 9115 16,711 24,307

Pinus thunbergii Parl. 0.22% 123,200 19,262 35,314 51,366
Pinus tabuliformis Carrière 2.94% 1,677,600 262,292 480,869 699,446

Pinus armandii 0.92% 528,200 82,584 151,404 220,224
Pinus massoniana Lamb. 4.41% 2,519,200 393,876 722,107 1,050,337

Pinus yunnanensis 0.78% 445,400 69,638 127,670 185,702
Pinus kesiya 0.33% 187,200 29,269 53,659 78,050

Pinus densata Mast. 0.02% 9700 1517 2780 4044
Exotic pines 2.57% 1,465,700 229,162 420,130 611,098

Pinus taiwanensis Hayata 0.08% 44,600 6973 12,784 18,595
Other pine classes 0.09% 52,600 8224 15,077 21,931
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Table A3. Cont.

Dominant Tree Species Percentage Existing Planted Forest Area 2021–2025 2026–2030 2031–2035

Cunninghamia lanceolata 17.33% 9,902,000 1,548,175 2,838,322 4,128,468
Cryptomeria fortunei Hooibr. ex Otto & Dietrich 1.15% 657,500 102,800 188,467 274,133
Metasequoia glyptostroboides Hu & W. C. Cheng 0.19% 109,000 17,042 31,244 45,446

Taxodium ascendens Brongn. 0.02% 10,900 1704 3124 4545
Cupressus funebris Endl. 2.82% 1,611,300 251,926 461,865 671,804

Taxus cuspidata Siebold & Zucc. 0.01% 4800 750 1376 2001
Other fir species 0.004% 2400 375 688 1001

Quercus 1.03% 588,800 92,059 168,774 245,490
Betula L. 0.19% 108,600 16,980 31,129 45,279

Phellodendron amurense Rupr. 0.04% 23,400 3659 6707 9756
Cinnamomum camphora (L.) J. Presl 0.52% 299,400 46,811 85,820 124,830

Phoebe zhennan S. K. Lee & F. N. Wei 0.003% 1600 250 459 667
Ulmus pumila L. 0.55% 312,600 48,875 89,604 130,333

Robinia pseudoacacia L. 3.11% 1,778,400 278,052 509,763 741,473
Schima superba Gardner & Champ. 0.24% 137,500 21,498 39,413 57,328

Liquidambar formosana Hance 0.19% 110,000 17,198 31,531 45,863
Other broad-leaved hardwood trees 1.90% 1,085,400 169,702 311,120 452,539
Sassafras tzumu (Hemsl.) Hemsl. 0.02% 14,100 2205 4042 5879

PopulusL. 13.25% 7,570,700 1,183,677 2,170,075 3,156,472
Salix L. 0.54% 309,300 48,359 88,658 128,957

Paulownia Sieb. et Zucc. 0.32% 181,100 28,315 51,911 75,507
Eucalyptus robusta Smith 9.57% 5,467,400 854,827 1,567,182 2,279,538

Abrus precatorius L. 0.34% 193,200 30,207 55,379 80,551
Casuarina equisetifolia J.R. Forst. & G. Forst. 0.04% 24,000 3752 6879 10,006

Melia azedarach L. 0.03% 17,900 2799 5131 7463
Other broad-leaved softwood trees 1.66% 946,300 147,954 271,249 394,543

Coniferous mixed trees 4.28% 2,446,800 382,557 701,354 1,020,151
Broadleaf mixed trees 4.65% 2,655,900 415,249 761,290 1,107,332

Wide-needled mixed trees 6.78% 3,873,600 605,636 1,110,333 1,615,031
Juglans regia L. 1.71% 974,900 152,425 279,447 406,468

Castanea mollissima Bl. 1.31% 746,700 116,746 214,035 311,324
Illicium verum Hook.f. 0.64% 365,000 57,068 104,624 152,180

Eucommia ulmoides Oliver 0.09% 51,800 8099 14,848 21,597
Magnolia officinalis Rehder & E. H. Wilson 0.23% 133,300 20,841 38,209 55,577

Ginkgo biloba L. 0.11% 61,200 9569 17,542 25,516
Toxicodendron delavayi 0.14% 80,500 12,586 23,075 33,563

Vernicia fordii (Hemsl.) Airy-Shaw 0.20% 111,800 17,480 32,046 46,613
Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. 2.42% 1,382,800 216,200 396,367 576,535

Fraxinus chinensis Roxb. 0.08% 46,500 7270 13,329 19,387
Quercus variabilis Bl. 0.03% 19,100 2986 5475 7963
Other Economic Trees 2.08% 1,186,600 185,525 340,128 494,732

Notes: Data of new forest area for the periods 2021–2025, 2026–2030, and 2031–2035.

Table A4. China’s carbon intensity reduction target for its 13th Five-Year Plan by province (exclud-
ing Tibet).

Region Carbon Intensity Reduction Target (%)

Beijing 20.5
Tianjin 20.5
Hebei 20.5
Shanxi 18

Inner Mongolia 17
Liaoning 18

Jilin 18
Heilongjiang 17

Shanghai 20.5
Jiangsu 20.5

Zhejiang 20.5
Anhui 18
Fujian 19.5
Jiangxi 19.5

Shandong 20.5
Henan 19.5
Hubei 19.5
Hunan 18

Guangdong 20.5
Guangxi 17
Hainan 12
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Table A4. Cont.

Region Carbon Intensity Reduction Target (%)

Chongqing 19.5
Sichuan 19.5
Guizhou 18
Yunnan 18
Shanxi 18
Gansu 17

Qinghai 12
Ningxia 17
Xinjiang 12

Table A5. Carbon stocks and carbon density and their changes by province in China, 2009–2018.

Projects Region 2009–2013 2014–2018 Amount of Change

Carbon stock (Tg C)

Beijing 10.17 16.00 5.83
Tianjin 1.98 2.68 0.70
Hebei 72.62 88.87 16.24
Shanxi 57.20 73.33 16.13

Inner Mongolia 663.96 722.09 58.14
Liaoning 130.33 151.85 21.52

Jilin 399.64 424.87 25.23
Heilongjiang 817.35 888.23 70.88

Shanghai 1.15 2.59 1.43
Jiangsu 38.95 40.28 1.33

Zhejiang 119.68 142.28 22.61
Anhui 94.05 109.73 15.68
Fujian 272.58 310.77 38.19
Jiangxi 235.99 267.90 31.91

Shandong 47.54 48.94 1.40
Henan 98.40 116.11 17.71
Hubei 167.13 196.39 29.26
Hunan 189.95 221.04 31.09

Guangdong 228.19 272.38 44.19
Guangxi 285.66 365.68 80.01
Hainan 43.26 83.74 40.48

Chongqing 70.47 99.04 28.56
Sichuan 633.80 710.43 76.64
Guizhou 150.25 188.38 38.12
Yunnan 725.15 861.03 135.88

Tibet 711.48 715.39 3.90
Shanxi 221.05 258.59 37.55
Gansu 100.54 115.10 14.56

Qinghai 18.46 20.82 2.36
Ningxia 3.77 5.00 1.23
Xinjiang 120.38 141.11 20.73

Carbon density (Mgha−1)

Beijing 23.71 25.73 2.03
Tianjin 26.31 26.09 −0.22
Hebei 23.35 24.32 0.97
Shanxi 27.18 30.01 2.83

Inner Mongolia 38.76 41.12 2.36
Liaoning 33.45 35.68 2.23

Jilin 53.04 54.85 1.80
Heilongjiang 41.92 44.76 2.84

Shanghai 26.43 35.77 9.34
Jiangsu 31.12 31.77 0.66

Zhejiang 29.18 33.33 4.15
Anhui 32.24 35.55 3.31
Fujian 44.93 50.02 5.09
Jiangxi 29.88 33.14 3.26

Shandong 29.45 32.06 2.61
Henan 32.22 33.34 1.11
Hubei 29.20 32.37 3.17
Hunan 25.97 27.67 1.70

Guangdong 31.93 34.88 2.95
Guangxi 31.60 34.82 3.23
Hainan 44.54 48.30 3.75
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Table A5. Cont.

Projects Region 2009–2013 2014–2018 Amount of Change

Chongqing 33.42 40.28 6.87
Sichuan 53.54 53.32 −0.22
Guizhou 31.39 32.18 0.79
Yunnan 47.49 46.22 −1.27

Tibet 83.85 80.96 −2.89
Shanxi 34.58 36.57 1.99
Gansu 40.67 43.62 2.95

Qinghai 48.78 49.41 0.63
Ningxia 23.79 28.91 5.12
Xinjiang 67.18 65.69 −1.49

Table A6. Logistic growth equation fitting parameters based on natural forest.

Number Dominant Tree Species w k a R2

1 Pinus massoniana 126.20 3.3635 0.0898 0.999
2 Quercus 136.12 3.8364 0.0486 0.893
3 Needles wide mixed trees 141.05 2.7176 0.0526 0.891
4 Betula L. 969.46 26.4673 0.0175 0.931
5 Larix gmelinii (Rupr.) Kuzen. 175.92 4.7963 0.0283 0.913
6 Pinus massoniana Lamb. 109.22 4.2193 0.0662 0.903
7 Picea asperata Mast. 393.62 4.6298 0.0079 0.845
8 Pinus yunnanensis Franch. 2618.06 74.6539 0.0287 0.853
9 Abies fabri (Mast.) Craib 263.98 3.0862 0.0154 0.888
10 Other broad-leaved softwood trees 183.91 5.5553 0.0647 0.952
11 Coniferous mixed trees 463.75 8.2634 0.0214 0.945
12 Cupressus funebris Endl. 100.73 3.8362 0.0659 0.506
13 Other broad-leaved hardwood trees 159.34 4.1043 0.0275 0.975
14 Pinus densata Mast. 597.28 9.4820 0.0182 0.951
15 Cunninghamia lanceolata (Lamb.) Hook. 82.13 3.6189 0.1440 0.978
16 Populus davidiana 128.38 3.4278 0.0415 0.992
17 Ulmus pumila L. 101.66 2.5524 0.0379 0.883
18 Pinus tabuliformis Carrière 135.75 4.0321 0.0384 0.776
19 PopulusL. 209.45 4.5446 0.0310 0.873
20 Phellodendron amurense Rupr. 113.99 3.3169 0.0470 0.906
21 Quercus variabilis Bl. 372.90 7.2828 0.0114 0.997
22 Schima superba Gardner & Champ. 150.83 6.6465 0.0945 0.844
23 Pinus kesiya 114.15 1.0033 0.0559 0.812
24 Tilia 123.08 2.5930 0.0411 0.944
25 Pinus sylvestris L. var. mongholica Litv. 110.83 3.9274 0.0356 0.980
26 Pinus armandii Franch. 111.37 3.8474 0.0683 0.931
27 Keteleeria fortunei 102.13 1.5248 0.0310 0.867
28 Liquidambar formosana Hance 112.51 7.8187 0.1140 0.752
29 Tsuga chinensis 264.45 23.9632 0.0361 0.918
30 Salix L. 139.00 2.9226 0.0331 0.964
31 Phoebe zhennan 191.58 11.4202 0.0636 0.997
32 Pinus taiwanensis Hayata 112.90 6.6056 0.1122 0.913
33 Pinus densiflora Siebold & Zucc. 114.93 13.5835 0.0836 0.315
34 Castanea mollissima Bl. 242.13 4.7340 0.0172 0.410
35 Cinnamomum camphora (L.) J. Presl 197.58 4.6505 0.0392 0.994
36 Other pine classes 68.43 5.4237 0.0891 0.998
37 Pinus koraiensis Siebold & Zucc. 244.68 2.7223 0.0139 1.000
38 Pinus wallichiana / / / /
39 Other economic trees 94.14 11.1035 0.0851 0.914
40 Toxicodendron delavayi 125.90 2.9024 0.0164 0.811
41 Robinia pseudoacacia L. 34.78 1.7564 0.6009 1.000
42 Paulownia Sieb. et Zucc. 68.76 190.3043 0.5568 0.945
43 Fraxinus chinensis Roxb. / / / /
44 Melia azedarach L. / / / /
45 Cryptomeria fortunei Hooibr. ex Otto & Dietrich / / / /
46 Taxus cuspidata Siebold & Zucc. / / / /
47 Abrus precatorius L. / / / /
48 Sassafras tzumu (Hemsl.) Hemsl. / / / /
49 Casuarina equisetifolia / / / /
50 Juglans regia L. / / / /
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Table A7. Logistic growth equation fitting parameters based on planted forests.

Number Dominant Tree Species w k a R2

1 Cunninghamia lanceolata (Lamb.) Hook. 77.79 2.0005 0.1235 0.937
2 PopulusL. 101.29 4.7948 0.2874 0.917
3 Eucalyptus robusta Smith 131.98 3.4903 0.1582 0.942
4 Wide-needled mixed trees 156.42 4.1926 0.0911 0.932
5 Larix gmelinii (Rupr.) Kuzen. 104.66 2.7795 0.0834 0.801
6 pinus massoniana 99.79 2.5508 0.1862 0.860
7 Pinus massoniana Lamb. 70.96 13.8463 0.2998 0.878
8 Coniferous mixed trees 169.16 3.0879 0.0435 0.839
9 Robinia pseudoacacia L. 94.93 2.2815 0.1011 0.949
10 Pinus tabuliformis Carrière 107.32 4.8563 0.0458 0.970
11 Cupressus funebris Endl. 110.68 3.9664 0.0572 0.893
12 Exotic pines 92.35 6.0569 0.1874 0.987
13 Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. 173.58 3.6690 0.1397 0.996
14 Other economic trees 94.81 4.6483 0.0486 0.971
15 Other broad-leaved hardwood trees 92.80 4.0680 0.0801 0.887
16 Juglans regia L. 87.59 3.7985 0.0436 0.914
17 Other broad-leaved softwood trees 222.63 6.1933 0.1061 0.935
18 Castanea mollissima Bl. 96.78 3.7204 0.0588 0.877
19 Cryptomeria fortunei Hooibr. ex Otto & Dietrich 162.53 4.0251 0.1277 0.999
20 Quercus 107.51 3.8135 0.0710 0.980
21 Pinus armandii Franch. 116.18 4.7543 0.0933 0.969
22 Pinus sylvestris L. var. mongholica Litv. 90.76 50.7269 0.2393 0.995
23 Pinus yunnanensis Franch. 276.57 6.9718 0.0244 0.991
24 Picea asperata Mast. 153.45 3.6541 0.0345 0.735
25 Illicium verum Hook.f. 150.08 5.1549 0.1606 0.992
26 Ulmus pumila L. 70.07 3.0878 0.1209 0.933
27 Salix L. 101.38 5.0435 0.1897 0.949
28 Pinus koraiensis Siebold & Zucc. 236.06 5.6602 0.0350 0.919
29 Cinnamomum camphora (L.) J. Presl 137.23 2247.4151 0.6887 0.893
30 Phellodendron amurense Rupr. 220.84 7.8430 0.0507 0.619
31 Abrus precatorius L. 119.08 12.8831 0.1698 0.968
32 Pinus kesiya 114.15 1.0033 0.0559 0.812
33 Paulownia Sieb. et Zucc. 88.99 3.6066 0.3367 0.785
34 Schima superba Gardner & Champ. 139.00 4.7506 0.1935 0.574
35 Magnolia officinalis Rehder & E. H. Wilson 82.28 2.6947 0.0462 0.982
36 Pinus thunbergii Parl. 68.62 5.6969 0.0915 0.844
37 Vernicia fordii (Hemsl.) Airy-Shaw 94.70 2.9632 0.0318 0.813
38 Liquidambar formosana Hance 112.51 7.8187 0.1140 0.752
39 Metasequoia glyptostroboides 403.62 15.5384 0.0518 0.929
40 Betula L. 63.70 19.5038 0.3215 0.569
41 Toxicodendron delavayi 162.18 9.9784 0.0409 0.909
42 Ginkgo biloba L. 117.94 3.1343 0.0485 0.556
43 Pinus densiflora Siebold & Zucc. 181.83 7.3057 0.0230 0.958
44 Other pine classes 76.39 6.3204 0.1843 0.761
45 Eucommia ulmoides Oliver / / / /
46 Abies fabri (Mast.) Craib 263.98 3.0862 0.0154 0.888
47 Fraxinus chinensis Roxb. 100.07 758.2827 0.6194 0.474
48 Pinus taiwanensis Hayata 112.53 18.6471 0.1864 0.451
49 Casuarina equisetifolia 155.13 5.4512 0.1799 0.891
50 Quercus variabilis Bl. 372.90 7.2828 0.0114 0.997
51 Melia azedarach L. / / / /
52 Sassafras tzumu (Hemsl.) Hemsl. 97.31 3.8786 0.3532 0.067
53 Taxodium ascendens Brongn. 75.15 3.2820 0.2485 0.296
54 Pinus densata Mast. / / / /
55 Taxus cuspidata Siebold & Zucc. / / / /
56 Other fir species / / / /
57 Phoebe zhennan / / / /

Table A8. Forecast of forest carbon pools in China, 2014–2035.

Forest Type 2014–2018 2021–2025 2026–2030 2031–2035

Existing forests
Area (104 ha) 7674 8635 9308 9877

Carbon stock (Tg C) 42.66 48 51.75 54.9
Carbon density (Mgha−1) 0 893 1637 2382

Newly created forests
Area (104 ha) 0 204 510 892

Carbon stock (Tg C) 0 22.82 31.16 37.45
Carbon density (Mgha−1) 17,989 18,882 19,626 20,371

Total
Area (104 ha) 7674 8839 9819 10,769

Carbon stock (Tg C) 42.66 46.81 50.03 52.86
Carbon density (Mgha−1) 7674 8635 9308 9877



Forests 2024, 15, 816 30 of 32

References
1. Smith, H.B.; Vaughan, N.E.; Forster, J. Long-Term National Climate Strategies Bet on Forests and Soils to Reach Net-Zero. Commun.

Earth Environ. 2022, 3, 1–12. [CrossRef]
2. He, J.; Li, Z.; Zhang, X.; Wang, H.; Dong, W.; Chang, S.; Ou, X.; Guo, S.; Tian, Z.; Gu, A.; et al. Comprehensive Report on China’s

Long-Term Low-Carbon Development Strategies and Pathways. Chin. J. Popul. Resour. Environ. 2020, 18, 263–295. [CrossRef]
3. Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris

Agreement Pledges May Limit Warming Just below 2 ◦C. Nature 2022, 604, 304–309. [CrossRef] [PubMed]
4. Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and Opportunities for Carbon Neutrality in

China. Nat. Rev. Earth Environ. 2021, 3, 141–155. [CrossRef]
5. Baldocchi, D.; Penuelas, J. The Physics and Ecology of Mining Carbon Dioxide from the Atmosphere by Ecosystems. Glob. Change

Biol. 2019, 25, 1191–1197. [CrossRef] [PubMed]
6. Parmesan, C.; Morecroft, M.D.; Trisurat, Y. Climate Change 2022:Impacts, Adaptation and Vulnerability; Cambridge University Press:

Cambridge, UK.
7. Piao, S.; Yue, C.; Ding, J.; Guo, Z. Perspectives on the Role of Terrestrial Ecosystems in the ‘Carbon Neutrality’ Strategy. Sci. China

Earth Sci. 2022, 65, 1178–1186. [CrossRef]
8. Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al.

IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; First;
Intergovernmental Panel on Climate Change (IPCC).

9. Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.;
Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [CrossRef] [PubMed]

10. Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree
Restoration Potential. Science 2019, 365, 76–79. [CrossRef] [PubMed]

11. Lu, N.; Tian, H.; Fu, B.; Yu, H.; Piao, S.; Chen, S.; Li, Y.; Li, X.; Wang, M.; Li, Z.; et al. Biophysical and Economic Constraints on
China’s Natural Climate Solutions. Nat. Clim. Change 2022, 12, 847–853. [CrossRef]

12. Grassi, G.; House, J.; Kurz, W.A.; Cescatti, A.; Houghton, R.A.; Peters, G.P.; Sanz, M.J.; Viñas, R.A.; Alkama, R.; Arneth, A.; et al.
Reconciling Global-Model Estimates and Country Reporting of Anthropogenic Forest CO2 Sinks. Nat. Clim. Change 2018, 8,
914–920. [CrossRef]

13. Bastos, A.; Ciais, P.; Sitch, S.; Aragão, L.E.O.C.; Chevallier, F.; Fawcett, D.; Rosan, T.M.; Saunois, M.; Günther, D.; Perugini, L.; et al.
On the Use of Earth Observation to Support Estimates of National Greenhouse Gas Emissions and Sinks for the Global Stocktake
Process: Lessons Learned from ESA-CCI RECCAP2. Carbon Balance Manag. 2022, 17, 15. [CrossRef] [PubMed]

14. Xu, M.; Du, R.; Li, X.; Yang, X.; Zhang, B.; Yu, X. The Mid-Domain Effect of Mountainous Plants Is Determined by Community
Life Form and Family Flora on the Loess Plateau of China. Sci. Rep. 2021, 11, 10974. [CrossRef]

15. Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate Change, Human Impacts, and Carbon Sequestration in China. Proc. Natl.
Acad. Sci. USA 2018, 115, 4015–4020. [CrossRef] [PubMed]

16. Richards, K.R.; Stokes, C. A Review of Forest Carbon Sequestration Cost Studies: A Dozen Years of Research. Clim. Change 2004,
63, 1–48. [CrossRef]

17. Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Andrasko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R.
Global Cost Estimates of Reducing Carbon Emissions through Avoided Deforestation. Proc. Natl. Acad. Sci. USA 2008, 105,
10302–10307. [CrossRef] [PubMed]

18. Ke, S.; Zhang, Z.; Wang, Y. China’s Forest Carbon Sinks and Mitigation Potential from Carbon Sequestration Trading Perspective.
Ecol. Indic. 2023, 148, 110054. [CrossRef]

19. Xu, S. Forestry Offsets under China’s Certificated Emission Reduction (CCER) for Carbon Neutrality: Regulatory Gaps and the
Ways Forward. Int. J. Clim. Change Strateg. Manag. 2024, 16, 140–156. [CrossRef]

20. Qiao, D.; Zhang, Z.; Li, H. How Does Carbon Trading Impact China’s Forest Carbon Sequestration Potential and Carbon Leakage?
Forests 2024, 15, 497. [CrossRef]

21. Yu, Z.; Ciais, P.; Piao, S.; Houghton, R.A.; Lu, C.; Tian, H.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D.; et al. Forest Expansion
Dominates China’s Land Carbon Sink since 1980. Nat. Commun. 2022, 13, 5374. [CrossRef]

22. Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S.; et al.
Forest Management in Southern China Generates Short Term Extensive Carbon Sequestration. Nat. Commun. 2020, 11, 129.
[CrossRef]

23. Zhu, J.; Hu, H.; Tao, S.; Chi, X.; Li, P.; Jiang, L.; Ji, C.; Zhu, J.; Tang, Z.; Pan, Y.; et al. Carbon Stocks and Changes of Dead Organic
Matter in China’s Forests. Nat. Commun. 2017, 8, 151. [CrossRef] [PubMed]

24. Chen, L.-C.; Guan, X.; Li, H.-M.; Wang, Q.-K.; Zhang, W.-D.; Yang, Q.-P.; Wang, S.-L. Spatiotemporal Patterns of Carbon Storage
in Forest Ecosystems in Hunan Province, China. For. Ecol. Manag. 2019, 432, 656–666. [CrossRef]

25. Zeng, W.; Tomppo, E.; Healey, S.P.; Gadow, K.V. The National Forest Inventory in China: History-Results-International Context.
For. Ecosyst. 2015, 2, 23. [CrossRef]

26. Zhang, J. China Forest Resources Report (2014–2018); China Forestry Press: Beijing, China, 2019. (In Chinese)

https://doi.org/10.1038/s43247-022-00636-x
https://doi.org/10.1016/j.cjpre.2021.04.004
https://doi.org/10.1038/s41586-022-04553-z
https://www.ncbi.nlm.nih.gov/pubmed/35418633
https://doi.org/10.1038/s43017-021-00244-x
https://doi.org/10.1111/gcb.14559
https://www.ncbi.nlm.nih.gov/pubmed/30588763
https://doi.org/10.1007/s11430-022-9926-6
https://doi.org/10.1073/pnas.1710465114
https://www.ncbi.nlm.nih.gov/pubmed/29078344
https://doi.org/10.1126/science.aax0848
https://www.ncbi.nlm.nih.gov/pubmed/31273120
https://doi.org/10.1038/s41558-022-01432-3
https://doi.org/10.1038/s41558-018-0283-x
https://doi.org/10.1186/s13021-022-00214-w
https://www.ncbi.nlm.nih.gov/pubmed/36183029
https://doi.org/10.1038/s41598-021-90561-4
https://doi.org/10.1073/pnas.1700304115
https://www.ncbi.nlm.nih.gov/pubmed/29666313
https://doi.org/10.1023/B:CLIM.0000018503.10080.89
https://doi.org/10.1073/pnas.0710616105
https://www.ncbi.nlm.nih.gov/pubmed/18650377
https://doi.org/10.1016/j.ecolind.2023.110054
https://doi.org/10.1108/IJCCSM-04-2022-0047
https://doi.org/10.3390/f15030497
https://doi.org/10.1038/s41467-022-32961-2
https://doi.org/10.1038/s41467-019-13798-8
https://doi.org/10.1038/s41467-017-00207-1
https://www.ncbi.nlm.nih.gov/pubmed/28751686
https://doi.org/10.1016/j.foreco.2018.09.059
https://doi.org/10.1186/s40663-015-0047-2


Forests 2024, 15, 816 31 of 32

27. Xu, B.; Guo, Z.; Piao, S.; Fang, J. Biomass Carbon Stocks in China’s Forests between 2000 and 2050: A Prediction Based on Forest
Biomass-Age Relationships. Sci. China Life Sci. 2010, 53, 776–783. [CrossRef] [PubMed]

28. Xu, H.; Yue, C.; Zhang, Y.; Liu, D.; Piao, S. Forestation at the Right Time with the Right Species Can Generate Persistent Carbon
Benefits in China. Proc. Natl. Acad. Sci. USA 2023, 120, e2304988120. [CrossRef]

29. Yu, K.; Smith, W.K.; Trugman, A.T.; Condit, R.; Hubbell, S.P.; Sardans, J.; Peng, C.; Zhu, K.; Peñuelas, J.; Cailleret, M.; et al.
Pervasive Decreases in Living Vegetation Carbon Turnover Time across Forest Climate Zones. Proc. Natl. Acad. Sci. USA 2019,
116, 24662–24667. [CrossRef] [PubMed]

30. Dirnböck, T.; Kraus, D.; Grote, R.; Klatt, S.; Kobler, J.; Schindlbacher, A.; Seidl, R.; Thom, D.; Kiese, R. Substantial Understory
Contribution to the C Sink of a European Temperate Mountain Forest Landscape. Landsc. Ecol. 2020, 35, 483–499. [CrossRef]
[PubMed]

31. Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature
2009, 458, 1009–1013. [CrossRef] [PubMed]

32. Jiang, F.; Chen, J.M.; Zhou, L.; Ju, W.; Zhang, H.; Machida, T.; Ciais, P.; Peters, W.; Wang, H.; Chen, B.; et al. A Comprehensive
Estimate of Recent Carbon Sinks in China Using Both Top-down and Bottom-up Approaches. Sci. Rep. 2016, 6, 22130. [CrossRef]

33. IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry/The Intergovernmental Panel on Climate Change; Penman, J.,
Ed.; IPCC: Hayama, Kanagawa, 2003.

34. Guo, Z.; Fang, J.; Pan, Y.; Birdsey, R. Inventory-Based Estimates of Forest Biomass Carbon Stocks in China: A Comparison of
Three Methods. For. Ecol. Manag. 2010, 259, 1225–1231. [CrossRef]

35. Xu, X.; Cao, M.; Li, K. Study on the temporal and spatial dynamic changes of vegetation carbon storage in forest ecosystem in
China. Prog. Geogr. 2007, 1–10. (In Chinese)

36. Lv, H.; Wang, W.; He, X.; Wei, C.; Xiao, L.; Zhang, B.; Zhou, W. Association of Urban Forest Landscape Characteristics with
Biomass and Soil Carbon Stocks in Harbin City, Northeastern China. PeerJ 2018, 6, e5825. [CrossRef] [PubMed]

37. Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of Forest Regrowth in Global Carbon
Sink Dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [CrossRef] [PubMed]

38. Shi, X.; Wang, T.; Lu, S.; Chen, K.; He, D.; Xu, Z. Evaluation of China’s Forest Carbon Sink Service Value. Environ. Sci. Pollut. Res.
2022, 29, 44668–44677. [CrossRef]

39. Coase, R.H. The Problem of Social Cost. J. Law Econ. 1960, 3, 1–44. [CrossRef]
40. Pigou, A. The Economics of Welfare; Routledge: New York, NY, USA, 2017; ISBN 978-1-351-30436-8.
41. McGregor, A. REDD+ in Asia Pacific. Nat. Clim. Change 2015, 5, 623–624. [CrossRef]
42. Macintosh, A.; Keith, H.; Lindenmayer, D. Rethinking Forest Carbon Assessments to Account for Policy Institutions. Nat. Clim.

Change 2015, 5, 946–949. [CrossRef]
43. Szajkó, G.; Rácz, V.J.; Kis, A. The Role of Price Incentives in Enhancing Carbon Sequestration in the Forestry Sector of Hungary.

For. Policy Econ. 2024, 158, 103097. [CrossRef]
44. Kallio, A.M.I.; Solberg, B.; Käär, L.; Päivinen, R. Economic Impacts of Setting Reference Levels for the Forest Carbon Sinks in the

EU on the European Forest Sector. For. Policy Econ. 2018, 92, 193–201. [CrossRef]
45. Lin, B.; Ge, J. Valued Forest Carbon Sinks: How Much Emissions Abatement Costs Could Be Reduced in China. J. Clean. Prod.

2019, 224, 455–464. [CrossRef]
46. Lin, B.; Ge, J. Carbon Sinks and Output of China’s Forestry Sector: An Ecological Economic Development Perspective. Sci. Total

Environ. 2019, 655, 1169–1180. [CrossRef] [PubMed]
47. Pan, H.; Page, J.; Shi, R.; Cong, C.; Cai, Z.; Barthel, S.; Thollander, P.; Colding, J.; Kalantari, Z. Contribution of Prioritized Urban

Nature-Based Solutions Allocation to Carbon Neutrality. Nat. Clim. Change 2023, 13, 862–870. [CrossRef]
48. Marvin, D.C.; Sleeter, B.M.; Cameron, D.R.; Nelson, E.; Plantinga, A.J. Natural Climate Solutions Provide Robust Carbon

Mitigation Capacity under Future Climate Change Scenarios. Sci. Rep. 2023, 13, 19008. [CrossRef] [PubMed]
49. Miranda, A.; Hoyos-Santillan, J.; Lara, A.; Mentler, R.; Huertas-Herrera, A.; Toro-Manríquez, M.D.R.; Sepulveda-Jauregui, A.

Equivalent Impacts of Logging and Beaver Activities on Aboveground Carbon Stock Loss in the Southernmost Forest on Earth.
Sci. Rep. 2023, 13, 18350. [CrossRef] [PubMed]

50. Mundaca, L.; Richter, J.L. Challenges for New Zealand’s Carbon Market. Nat. Clim. Change 2013, 3, 1006–1008. [CrossRef]
51. Brienen, R.J.W.; Caldwell, L.; Duchesne, L.; Voelker, S.; Barichivich, J.; Baliva, M.; Ceccantini, G.; Di Filippo, A.; Helama, S.;

Locosselli, G.M.; et al. Forest Carbon Sink Neutralized by Pervasive Growth-Lifespan Trade-Offs. Nat. Commun. 2020, 11, 4241.
[CrossRef] [PubMed]

52. Friend, A.D.; Lucht, W.; Rademacher, T.T.; Keribin, R.; Betts, R.; Cadule, P.; Ciais, P.; Clark, D.B.; Dankers, R.; Falloon, P.D.; et al.
Carbon Residence Time Dominates Uncertainty in Terrestrial Vegetation Responses to Future Climate and Atmospheric CO2.
Proc. Natl. Acad. Sci. USA 2014, 111, 3280–3285. [CrossRef] [PubMed]

53. Fisher, R.A.; Koven, C.D.; Anderegg, W.R.L.; Christoffersen, B.O.; Dietze, M.C.; Farrior, C.E.; Holm, J.A.; Hurtt, G.C.; Knox, R.G.;
Lawrence, P.J.; et al. Vegetation Demographics in Earth System Models: A Review of Progress and Priorities. Glob. Change Biol.
2018, 24, 35–54. [CrossRef]

54. Johnston, C.M.T.; Radeloff, V.C. Global Mitigation Potential of Carbon Stored in Harvested Wood Products. Proc. Natl. Acad. Sci.
USA 2019, 116, 14526–14531. [CrossRef]

55. Jacoby, H.D.; Ellerman, A.D. The Safety Valve and Climate Policy. Energy Policy 2004, 32, 481–491. [CrossRef]

https://doi.org/10.1007/s11427-010-4030-4
https://www.ncbi.nlm.nih.gov/pubmed/20697867
https://doi.org/10.1073/pnas.2304988120
https://doi.org/10.1073/pnas.1821387116
https://www.ncbi.nlm.nih.gov/pubmed/31740604
https://doi.org/10.1007/s10980-019-00960-2
https://www.ncbi.nlm.nih.gov/pubmed/32165789
https://doi.org/10.1038/nature07944
https://www.ncbi.nlm.nih.gov/pubmed/19396142
https://doi.org/10.1038/srep22130
https://doi.org/10.1016/j.foreco.2009.09.047
https://doi.org/10.7717/peerj.5825
https://www.ncbi.nlm.nih.gov/pubmed/30397545
https://doi.org/10.1073/pnas.1810512116
https://www.ncbi.nlm.nih.gov/pubmed/30782807
https://doi.org/10.1007/s11356-022-18958-w
https://doi.org/10.1086/466560
https://doi.org/10.1038/nclimate2692
https://doi.org/10.1038/nclimate2695
https://doi.org/10.1016/j.forpol.2023.103097
https://doi.org/10.1016/j.forpol.2018.04.010
https://doi.org/10.1016/j.jclepro.2019.03.221
https://doi.org/10.1016/j.scitotenv.2018.11.219
https://www.ncbi.nlm.nih.gov/pubmed/30577110
https://doi.org/10.1038/s41558-023-01737-x
https://doi.org/10.1038/s41598-023-43118-6
https://www.ncbi.nlm.nih.gov/pubmed/37923761
https://doi.org/10.1038/s41598-023-45657-4
https://www.ncbi.nlm.nih.gov/pubmed/37884596
https://doi.org/10.1038/nclimate2052
https://doi.org/10.1038/s41467-020-17966-z
https://www.ncbi.nlm.nih.gov/pubmed/32901006
https://doi.org/10.1073/pnas.1222477110
https://www.ncbi.nlm.nih.gov/pubmed/24344265
https://doi.org/10.1111/gcb.13910
https://doi.org/10.1073/pnas.1904231116
https://doi.org/10.1016/S0301-4215(03)00150-2


Forests 2024, 15, 816 32 of 32

56. Webster, M.; Sue Wing, I.; Jakobovits, L. Second-Best Instruments for near-Term Climate Policy: Intensity Targets vs. the Safety
Valve. J. Environ. Econ. Manag. 2010, 59, 250–259. [CrossRef]

57. Weitzman, M.L. Prices vs. Quantities. Rev. Econ. Stud. 1974, 41, 477. [CrossRef]
58. Zhang, D.; Zhang, Q.; Qi, S.; Huang, J.; Karplus, V.J.; Zhang, X. Integrity of Firms’ Emissions Reporting in China’s Early Carbon

Markets. Nat. Clim. Change 2019, 9, 164–169. [CrossRef]
59. Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earth’s

Future 2021, 9. [CrossRef]
60. Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 Emission Accounts 1997–2015. Sci. Data

2018, 5, 170201. [CrossRef] [PubMed]
61. Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 Emission Accounts 2016–2017. Sci. Data 2020, 7, 54. [CrossRef] [PubMed]
62. Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New Provincial CO2 Emission Inventories in China Based on Apparent

Energy Consumption Data and Updated Emission Factors. Appl. Energy 2016, 184, 742–750. [CrossRef]
63. Mugabowindekwe, M.; Brandt, M.; Chave, J.; Reiner, F.; Skole, D.L.; Kariryaa, A.; Igel, C.; Hiernaux, P.; Ciais, P.; Mertz, O.; et al.

Nation-Wide Mapping of Tree-Level Aboveground Carbon Stocks in Rwanda. Nat. Clim. Change 2023, 13, 91–97. [CrossRef]
[PubMed]

64. Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.;
Houghton, R.A.; et al. Global Maps of Twenty-First Century Forest Carbon Fluxes. Nat. Clim. Change 2021, 11, 234–240.
[CrossRef]

65. Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; de Miguel, S.; Nabuurs, G.-J.; Renner, S.S.; van den Hoogen, J.; Araza, A.; Herold, M.;
et al. Integrated Global Assessment of the Natural Forest Carbon Potential. Nature 2023, 624, 92–101. [CrossRef]

66. Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese Land
Carbon Sink Estimated from Atmospheric Carbon Dioxide Data. Nature 2020, 586, 720–723. [CrossRef] [PubMed]

67. Ipcc, I. Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme;
Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Tokyo, Japan, 2006.

68. Wang, Y.; Wang, X.; Wang, K.; Chevallier, F.; Zhu, D.; Lian, J.; He, Y.; Tian, H.; Li, J.; Zhu, J.; et al. The Size of the Land Carbon Sink
in China. Nature 2022, 603, E7–E9. [CrossRef] [PubMed]

69. Ding, Z. Research on China ’s carbon neutral framework roadmap. China Ind. Inf. Technol. 2021, 54–61. (In Chinese) [CrossRef]
70. Guan, F.-J.; Liu, L.-H.; Liu, J.-W.; Fu, Y.; Wang, L.-Y.; Wang, F.; Li, Y.; Yu, X.-D.; Che, N.; Xiao, Y. Systematically Promoting the

Construction of Natural Ecological Protection and Governance Capacity: Experts Comments on Master Plan for Major Projects of
National Important Ecosystem Protection and Restoration (2021–2035). J. Nat. Resour. 2021, 36, 290–299. [CrossRef]

71. Ma, C.; Yang, J.; Chen, F.; Ma, Y.; Liu, J.; Li, X.; Duan, J.; Guo, R. Assessing Heavy Industrial Heat Source Distribution in China
Using Real-Time VIIRS Active Fire/Hotspot Data. Sustainability 2018, 10, 4419. [CrossRef]

72. Ji, Y.; Zhou, G.; Luo, T.; Dan, Y.; Zhou, L.; Lv, X. Variation of Net Primary Productivity and Its Drivers in China’s Forests during
2000–2018. For. Ecosyst. 2020, 7, 15. [CrossRef]

73. State Forestry Administration (SFA). Guideline for Carbon Sink Measurement and Monitoring of Afforestation Projects; State Forestry
Administration: Beijing, China, 2014. (In Chinese)

74. Xiao, X. China Forest Resources Inventory; China’s Forestry Press: Beijing, China, 2005. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jeem.2010.01.002
https://doi.org/10.2307/2296698
https://doi.org/10.1038/s41558-018-0394-4
https://doi.org/10.1029/2021EF002241
https://doi.org/10.1038/sdata.2017.201
https://www.ncbi.nlm.nih.gov/pubmed/29337312
https://doi.org/10.1038/s41597-020-0393-y
https://www.ncbi.nlm.nih.gov/pubmed/32054849
https://doi.org/10.1016/j.apenergy.2016.03.073
https://doi.org/10.1038/s41558-022-01544-w
https://www.ncbi.nlm.nih.gov/pubmed/36684409
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.1038/s41586-023-06723-z
https://doi.org/10.1038/s41586-020-2849-9
https://www.ncbi.nlm.nih.gov/pubmed/33116288
https://doi.org/10.1038/s41586-021-04255-y
https://www.ncbi.nlm.nih.gov/pubmed/35296850
https://doi.org/10.19609/j.cnki.cn10-1299/f.2021.08.007
https://doi.org/10.31497/zrzyxb.20210202
https://doi.org/10.3390/su10124419
https://doi.org/10.1186/s40663-020-00229-0

	Introduction 
	Literature Review of Forest Carbon Sink Trading 
	Materials and Methods 
	Data Sources 
	Selection of Models and Scenario 
	Methods for Carbon Stock Measurement 
	Methods for Carbon Sink Prediction 
	Methodology for Carbon Intensity–Carbon Sink Assessment Analysis 

	Results 
	Provincial Carbon Stock Model 
	Provincial Carbon Sink Model 
	Provincial Carbon Intensity–Carbon Sink Assessment Model 

	Discussion 
	Superiority and Innovations of the Models 
	Robustness of the Models 
	Limitations and Future Research 

	Conclusions 
	Appendix A
	Appendix B
	References

