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Abstract: Patients with underlying cardiovascular conditions are particularly vulnerable to severe
COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways
between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE),
or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways
may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune
dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data
from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomy-
opathy and healthy controls; RNA-sequencing data of whole blood samples from patients with
single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood
mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing
data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregula-
tion profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy
patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19
patients experience greater upregulation of cytokine- and inflammasome-related genes than patients
with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-
related gene expression profiles with that of COVID-19 patients, possibly explaining their greater
vulnerability to severe COVID-19.

Keywords: COVID-19; coronary artery disease; cardiomyopathy; venous thromboembolism event;
inflammation

1. Introduction

In December 2019, widespread infection by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) was reported in Wuhan, China [1]. Since then, SARS-CoV-2,
which causes COVID-19, has spread rapidly, and COVID-19 was declared a pandemic by
the World Health Organization (WHO) on 11 March 2020 [2] Current research suggests
that patients with existing comorbidities, including hypertension, cardiovascular disease,
diabetes, and obesity are more likely to develop severe COVID-19 [3–5]. COVID-19 has
also been known to induce myocardial injury, arrhythmia, acute coronary syndrome, and
venous thromboembolism (VTE) [6–8]. Such cardiovascular damage has been attributed to
cytokine storms triggered by the SARS-CoV-2 infection that can cause multi-organ dam-
age [9,10]. Additionally, COVID-19 patients experience coagulation abnormalities, possibly
leading to an increased risk of thromboembolic events [11]. In multiple autopsy studies,
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thromboembolic events were identified in patients who had COVID-19 [12,13]. Specifically,
in Schurink et al., it was found in multiple organs, including but not limited to the brain,
lungs, heart, and kidneys [13]. Undeniably, research suggests links between cardiovascular
disease (CVD) and COVID-19. However, the mechanisms by which CVD results in poorer
COVID-19 prognosis remains unclear. As CVD encompasses a wide range of specific
disorders, it would be impractical to obtain a dataset for all these disorders. In this study,
we focused on three of the most common cardiovascular conditions: cardiomyopathy, VTE,
and CAD.

Cardiomyopathy refers to diseases of the myocardium associated with mechanical
and/or electricdysfunction [14]. In nonischemic dilated cardiomyopathy (NIDCM), the
heart’s ventricles are enlarged [15]. Cytokines and inflammasomes are known to play
significant roles in cardiomyopathy pathogenesis, which suggests a commonality between
cardiomyopathy and COVID-19, where excess inflammation is often induced [16–18].

VTE includes deep vein thrombosis, where a blood clot forms in a deep vein, typically
in the lower extremities or pelvis, which may dislodge and result in pulmonary embolism
(PE). Similar to VTE, COVID-19 patients have increased oxidative stress, which is one
of the hallmarks for endothelial damage [19–21]. Additionally, COVID-19 patients have
been shown to be at risk of thrombotic events [22–24]. Interestingly, in COVID-19 patients
with thrombotic events, their D-dimer levels were found to be increased [23,24]. It is well
established that the immune system functions in deep vein thrombosis pathogenesis, and
the restriction of venous blood flow leads to the recruitment of neutrophils, monocytes,
and platelets [25–27]. Since higher levels of monocytes and neutrophils have been observed
in COVID-19 patients requiring ICU hospitalization, it is possible that such pre-existing
immune dysregulation in COVID-19 VTE patients increases their risk of progressing to
severe disease [28–30].

Lastly, coronary artery disease (CAD) pathogenesis also has an established immuno-
logical component [31]. Higher levels of C-reactive protein (CRP) [32], leukocytes [33],
and cytokines [34] are associated with both CAD and severe COVID-19 patients [35–37].
Moreover, excessive pro-inflammatory cytokine production is associated with vascular
damage that induces uncontrolled blood clotting [38]. This not only suggests that CAD
patients are more vulnerable to severe COVID-19 [39], but also suggests that COVID-19
may exacerbate CAD.

In this project, we aimed to characterize and compare the dysregulation of the im-
mune landscape in patients with cardiomyopathy, VTE, CAD, and COVID-19. We analyzed
the expression of cytokine genes and inflammasome-related genes, the extent of immune
infiltration, and the enrichment of immunological pathways and signatures. By comparing
these features of the immune system, we hoped to gain a more comprehensive understand-
ing of the cardiovascular-disease-mediated immune dysregulation that leaves patients
more vulnerable to severe COVID-19.

2. Materials and Methods
2.1. Downloading Data

RNA-sequencing data were obtained from the following datasets: GSE116250 [40],
GSE19151 [41], GSE90074 [42], and SRP262885 [43]. GSE116250, provided by Sweet et al.,
consists of the RNA sequencing of human left ventricular samples from 14 patients with
no major cardiac history (nonfailing), 37 patients with NIDCM, and 13 patients with ICM.
GSE19151, provided by Lewis et al., consists of the high-throughput sequencing of whole
blood samples from 63 healthy controls, 23 patients with single VTE, and 17 patients with
recurrent VTE on warfarin. GSE90074 consists of the RNA-sequencing data of PBMCs
from 93 patients with and 50 patients without CAD. Lastly, SRP262885 consists of the
RNA-sequencing data of platelets from 10 COVID-19 subjects and 5 healthy controls.
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2.2. Differential Expression

For the cardiomyopathy and VTE cohorts, the Kruskal–Wallis test (p < 0.05) was used
to determine differentially expressed genes. CAD cohorts were analyzed using the GEO2R
software, which employs the limma (linear models for microarray analysis) R package
(p < 0.05). Differential expression was applied to the COVID-19 platelet data to determine
the genes that were differentially expressed (p < 0.05).

2.3. GSEA

To correlate gene expression to immune-associated signatures, gene set enrichment
analysis (GSEA) was utilized. Pathways were chosen from the C2: CP set of signatures
from the Molecular Signatures Database [44]. Signatures that were significantly enriched
were those with a nominal p-value < 0.05.

2.4. CIBERSORTx

The CIBERSORTx algorithm was used to deconvolute the RNA-sequencing data to
estimate the infiltration levels of 22 immune cell types [45].

3. Results
3.1. Comparing Immune Profiles of COVID-19 and Cardiomyopathy Patients
3.1.1. Similarities in Immune-Associated Gene Dysregulation in COVID-19
and Cardiomyopathy

Gene dysregulation was determined by comparing COVID-19 and cardiomyopathy
samples to healthy controls for each study. Cardiomyopathy samples were separated into
patients with ischemic cardiomyopathy (ICM) or nonischemic dilated cardiomyopathy
(NIDCM). The two groups were individually compared against samples from patients with
no major cardiovascular disease (healthy controls).

We found a significant overlap between COVID-19 patients and ICM and NIDCM
patients’ immune-associated (IA) gene expression. About half of the IA genes dysregulated
in COVID-19 are dysregulated in either or both types of cardiomyopathy (Figure 1A). A
complete list of dysregulated IA genes are found in Appendix A, Table A1. Cytokine-related
genes that are dysregulated in both cardiomyopathy patients and COVID-19 patients
include chemokines (CCL3, CCL4, CXCL4, etc.), interleukins or interleukin receptors
(IL15, IL20RA, etc.), and genes in the transforming growth factor beta (TGFB) family. The
inflammasome-related genes include genes in the caspase family (CASP2, CASP9, etc.),
mitogen-activated protein kinase (MAPK)-related genes, and nuclear factor-kB (NF-kB)
regulators (IKBKG, NFKBIA, etc.). IA gene dysregulation was very similar between dilated
and ischemic cardiomyopathies. We observed that a significant number of IA genes were
dysregulated in either of the cardiomyopathies but not in COVID-19 (Figure 1A).

Interestingly, we found that most of the genes dysregulated in both COVID-19 and
cardiomyopathy were dysregulated to a greater degree in COVID-19 than in cardiomy-
opathy samples. This was observed for TGFB3, CCL4, IL15, and IL20RA in both ICM
samples vs. COVID-19 samples and NIDCM samples vs. COVID-19 samples (Figure 1B).
Furthermore, these dysregulated genes appeared to be similarly dysregulated in COVID-
19 and corresponding healthy samples (Figure 1C). In contrast, these genes’ expression
in cardiomyopathy samples and corresponding healthy samples were only sometimes
similar, without overwhelming differences in expression levels between the two cohorts
(Figure 1C). Therefore, we believe that these dysregulated genes are dysregulated to a
greater degree in COVID-19 than in cardiomyopathy.

The inflammasome-associated genes dysregulated in both COVID-19 and cardiomy-
opathy were upregulated in both conditions (Figure 1C), suggesting that they may upregu-
late inflammation through similar pathways.
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ICM/NIDCM patients. Cytokines are represented in blue and inflammasome-related genes are in red. (B) Bar plots of the 
log2 fold change of significantly dysregulated cytokine genes in COVID-19 and ICM/NIDCM patients. (C) Heatmaps il-
lustrating similar patterns of dysregulation of inflammasome-related genes in COVID-19 and ICM/NIDCM patients com-
pared to their respective controls. 
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Figure 1. Comparing ischemic cardiomyopathy (ICM), nonischemic dilated cardiomyopathy (NIDCM), and COVID-
19 patients. (A) Summary of commonly dysregulated cytokine- and inflammasome-related genes in COVID-19 and
ICM/NIDCM patients. Cytokines are represented in blue and inflammasome-related genes are in red. (B) Bar plots of
the log2 fold change of significantly dysregulated cytokine genes in COVID-19 and ICM/NIDCM patients. (C) Heatmaps
illustrating similar patterns of dysregulation of inflammasome-related genes in COVID-19 and ICM/NIDCM patients
compared to their respective controls.

3.1.2. Comparison of Immune Cell Population Abundance in COVID-19
vs. Cardiomyopathy

We discovered that the levels of T and B cells were unchanged in healthy vs. COVID-
19 patients (See Appendix A, Figure A1A). The most noticeable change in immune cell
abundance occurred in macrophages for COVID-19 patients, where M0 macrophage levels
were dramatically reduced and M1 and M2 macrophage levels were slightly increased (See
Appendix A, Figure A1A). Both cardiomyopathies elicited greater immune cell abundance
changes than COVID-19, with the changes being more pronounced for ICM. The levels of
M1 and M2 macrophages increased in ICM, similar to what was observed for COVID-19
(See Appendix A, Figure A1B). The levels of T- and B-cell subtypes changed more dra-
matically in ICM and NIDCM than in COVID-19. In summary, the levels of inflammatory
macrophages increased for both cardiomyopathy and COVID-19 patients, while the levels
of other immune cell types did not correlate between the two conditions.
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3.1.3. Evaluation of Canonical Pathways Correlated with Genes Dysregulated in Both
COVID-19 and Cardiomyopathy

We analyzed genes that are dysregulated in both COVID-19 and cardiomyopathy to
assess if they dysregulate common pathways in the two conditions. Interleukin 1 receptor-
associated kinase 2 (IRAK2), upregulated in both COVID-19 and ICM, was associated with
the upregulation of the FCER1 and TP63 pathways, both of which are associated with
inflammation and immune activation (See Appendix A, Figure A2A) [46,47]. IRAK2 is a
promoter of NF-kB signaling [48]. Caspase 2 (CASP2), also upregulated in COVID-19 and
cardiomyopathy, is associated with the downregulation of IFIH, which is capable of recog-
nizing viruses and inducing inflammation [49,50]. Finally, CYLD lysine 63 deubiquitinase
(CYLD) was correlated with multiple identical pathways for both COVID-19 samples and
ICM samples. CYLD is upregulated in both COVID-19 and cardiomyopathy and was found
to correlate with the activation of FGFR2, an important promoter of inflammation [51], and
TXA2, a gene that is upregulated in platelets (See Appendix A, Figure A2A) [52]. CYLD is
an inhibitor of inflammation [53]. Since the majority of correlations were between IA genes
and pro-inflammatory pathways and signatures, the dysregulation of CYLD represents an
exception, and we hypothesize that CYLD may be expressed as a response to attenuate
excessive inflammation. We found that the overwhelming majority of pathways that corre-
lated with dysregulated genes in both COVID-19 and NIDCM are associated with CYLD,
and these pathways are primarily pro-plotting, pro-cell aggregation, and pro-inflammation
(See Appendix A, Figure A2A), supporting the possibility that CYLD is released in response
to inflammation.

3.2. Comparing Immune Profiles of COVID-19 and VTE Patients
3.2.1. Similarities in Immune-Associated Gene Dysregulation in COVID-19 and VTE

We compared the immune landscape between COVID-19 samples and blood samples
from VTE patients to find similarities in IA gene and pathway expression. VTE patients
were classified into single occurrence VTE (single VTE) and recurrent VTE. Compared to
the similarities in IA genes dysregulated between COVID-19 and cardiomyopathy, the
similarities between COVID-19 and VTE are less pronounced.

Two cytokine-associated genes (CCL4 and CD40) were dysregulated in COVID-19 and
single VTE, and one cytokine-associated gene (CCL4) was dysregulated in COVID-19 and
recurrent VTE (Figure 2A). A complete list of dysregulated cytokine- and inflammasome-
associated genes are found in Appendix A, Table A2. CCL4 recruits immune cells, including
macrophages, monocytes, and T cells [54], suggesting that COVID-19 and VTE may both
exhibit the increased recruitment of inflammatory immune cells. The upregulation of CCL4
was much greater in COVID-19 than in VTE, however (Figure 2B). Two inflammasome-
related genes were found to be dysregulated in VTE and COVID-19. BCL2L1 is known to be
highly upregulated in inflamed tissue [55], and it was found to be upregulated in COVID-
19 and both single and recurrent VTE (Figure 2C), while CASP4 directs the noncanonical
upregulation of inflammasomes [56]. Interestingly, CASP4 was found to be upregulated in
both COVID-19 and recurrent VTE but downregulated in single VTE (Figure 2C), which
suggests that the gene could contribute to the development of recurrent VTE.
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Figure 2. Comparing single venous thromboembolism (VTE), recurrent VTE, and COVID-19 patients. (A) Summary of
commonly dysregulated cytokine- and inflammasome-related genes in COVID-19 and single/recurrent VTE patients.
Cytokines are denoted in blue and inflammasome-related genes are in red. (B) Bar plots of the log2 (fold change) of
significantly dysregulated cytokine genes in COVID-19 and single/recurrent VTE patients. (C) Heatmaps of inflammasome-
related genes in COVID-19 and single/recurrent VTE patients.

3.2.2. Comparison of Immune Cell Population Abundance in COVID-19 vs. VTE

We found that naive B cells were dramatically reduced in abundance in VTE patients,
which may indicate adaptive immune activation (See Appendix A, Figure A1C). This was
the only significant immune cell population change in VTE patients that was observed and
does not correlate to changes in COVID-19.

3.2.3. Evaluation of Canonical Pathways Correlated with Genes Dysregulated in
COVID-19 and VTE

BCL2L1 and CASP4 were the only genes found to be dysregulated in both COVID-19
and VTE and also correlated with similar pathways in both patient cohorts (Figure 3A,B).
BCL2L1 was found to be upregulated in COVID-19 and both VTE cohorts (Figure 3C).
However, the direction of correlation to pathways was the complete opposite between
COVID-19 and recurrent VTE (See Appendix A, Figure A2C). The high correlation strength
for each cohort suggests BCL2L1 is involved in both COVID-19 and recurrent VTE but
functions in opposite ways. On the other hand, CASP4 expression was correlated with over
10 pathways in the same direction for both COVID-19 and recurrent VTE (See Appendix A,
Figure A2C). It was also found to be upregulated in both COVID-19 and recurrent VTE
(Figure 3C). The pathways correlated with CASP4 were immune related (antigen process-
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ing and cross presentation) and general metabolism related (ABC transporter, oxidative
phosphorylation). Therefore, while CASP4 likely functions similarly in COVID-19 and
recurrent VTE, its precise role requires further investigation.
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3.3. Comparing Immune Profiles of COVID-19 and CAD Patients
3.3.1. Similarities in Immune-Associated Gene Dysregulation in COVID-19 and CAD

We found a significant overlap in IA gene expression in COVID-19 and CAD. About a
third of the IA genes dysregulated in CAD were also found to be dysregulated in COVID-
19 (Figure 4A). The complete list of dysregulated cytokine and inflammasome-associated
genes are found in Appendix A, Table A3.
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related genes are in red. (B) Bar plots of the log2 fold change of significantly dysregulated cytokine genes in COVID-19 and
CAD patients. (C) Heatmaps of inflammasome-related genes in COVID-19 and CAD patients.

Cytokine-related genes that were found to be dysregulated in both CAD patients and
COVID-19 patients include chemokines (CCL3 and CCL4), chemokine receptor CXCR1,
and a TNFSF gene, LTB. The inflammasome-related genes that were found include NF-
kB regulators (NFKBIA and CHUK), an alpha arrestin (TXNIP), and an F-BAR domain-
containing protein (PSTPIP1). Similar to cardiomyopathy, we found that most genes
dysregulated in both COVID-19 and CAD were dysregulated to a greater degree in COVID-
19 samples than in CAD samples. This was observed for CCL3, CCL4, CXCR1, and LTB
(Figure 4B).

3.3.2. Comparison of Immune Cell Population Abundance in COVID-19 vs. CAD

Similar to COVID-19 patients, the memory B cells in CAD patients were more abun-
dant (See Appendix A, Figure A1D).

3.3.3. Evaluation of Pathways Correlated with Genes Dysregulated in COVID-19 and CAD

We analyzed genes that are dysregulated in both COVID-19 and CAD to assess if they
are associated with similar pathways in the two conditions. Notably, we discovered that
CHUK, PSTPIP1, and CCL3, upregulated in both COVID-19 and CAD, were associated
with the upregulation of many inflammatory pathways in both conditions, including the
IL12, IL10, IL23, and P53 regulation pathways (See Appendix A, Figure A2C).

4. Discussion

In this project, we characterized the immune landscape of cardiomyopathy, VTE,
CAD, and COVID-19 patients, drawing important parallels between COVID-19 and
cardiovascular-disease-mediated immune dysregulation. Of the four genes that were
more severely dysregulated in COVID-19 compared to cardiomyopathy, two were reported
to be dysregulated in COVID-19 patients: pro-inflammatory CCL4 was highly expressed in
the bronchoalveolar lavage fluid of COVID-19 patients [57], and IL15 modulates inflam-
mation and functions in viral clearance [58,59]. In fact, IL15 is part of an immune-based
biomarker signature associated with mortality in COVID-19 patients, and CCL4 has been
shown to be elevated in COVID-19 patients who eventually died due to the disease [60]. As
we report that these cytokines are also upregulated in patients with cardiomyopathy, it is
possible that such pre-existing immune dysregulation could explain the higher COVID-19
mortality rates of patients with cardiomyopathy and COVID-19. Our findings on immune
cell abundance in COVID-19 and cardiomyopathy patients also point to a more robust
innate immune response in COVID-19 patients, which is plausible as research has shown
that a hyperinflammatory innate immune response coupled with an impaired adaptive
immune response may lead to tissue damage in COVID-19 patients [59–61]. Conversely,
the elevated levels of T and B cells in cardiomyopathy patients indicate a stronger adaptive
immune response, which is now considered an increasingly important factor in cardiovas-
cular disease pathogenesis [62–64]. Comparing COVID-19 and cardiomyopathy patients,
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we found elevated levels of inflammatory macrophages in both groups of patients. This
could suggest that cardiomyopathy patients are more susceptible to hyperinflammation in
COVID-19 and are thus more likely to progress to severe COVID-19.

We then analyzed overlapping gene expression pathway dysregulation between
cardiomyopathy and COVID-19 patients. Upregulated CASP2 and IRAK2 are of particular
interest due to their inflammatory roles. CASP2 is a pro-inflammatory gene and IRAK2
promotes NF-kB, which is a central activator of inflammation. Overall, genes dysregulated
in both cardiomyopathy and COVID-19 appear to promote inflammation, which may
indicate why cardiovascular disease patients experience poorer clinical outcomes, as greater
inflammation correlates with severity and death in COVID-19 [56].

Exploring immune-associated (IA) gene dysregulation in VTE and COVID-19 revealed
several IA genes dysregulated in both conditions. Cytokine CCL4 has been shown to be
upregulated in COVID-19 patients [65] and in patients who develop cardiovascular dis-
eases [66]. Inflammasome-related genes BCL2L1 and CASP4 are tied to inflammatory
caspases. CASP4 is an inflammatory caspase and promotes pro-inflammatory cytokine
secretion [67]. Conversely, BCL2L1 inhibits caspase release. With both genes being upreg-
ulated in VTE and COVID-19, future analysis must be carried out to examine how these
genes function differently in VTE and COVID-19. Interestingly, in both COVID-19 and
single VTE, BCL2L1 expression is negatively correlated to canonical pathway expression,
but in recurring VTE they are positively correlated. CASP4, on the other hand, only has
overlapping significant canonical pathways with COVID-19 in recurrent VTE. From these
pathways, we observe that CASP4 functions similarly in recurrent VTE and COVID-19.
Together, these results show that VTE and COVID-19 patients share similar upregulation
of inflammation-associated genes, which could explain why rates of venous thromboem-
bolism events are higher in COVID-19 patients, as well as why venous thromboembolism
events are associated with higher risk of death in COVID-19 patients [68,69].

Lastly, we compared the immune landscape and canonical pathways of CAD and
COVID-19 patients. Of the significantly dysregulated cytokines in both COVID-19 and
CAD, pro-inflammatory cytokines CCL3 and CCL4 have been associated with COVID-19
severity [59]. Of the inflammasome-related genes, CHUK is of particular interest. CHUK
forms part of the IκB kinase (IKK) complex that is involved in the phosphorylation and
degradation of IκBα, allowing for the transcription of NF-kB-dependent genes. Following
coronavirus infection, the NF-kB pathway is activated via the MyD88 pathway [70], and
increased transcription of NF-kB-dependent genes has implications for cardiomyopathy,
atherosclerosis, and COVID-19 severity. Specifically, NF-kB activation in endothelial cells
triggers the expression of adhesion molecules that are responsible for the invasion and
homing of macrophages [71–76], contributing to atherosclerosis pathogenesis [77]. In
addition, TNFa and IL6 expressions have been shown to be triggered by SARS via the NF-
kB pathway [78]. These cytokines have been implicated in macrophage activation syndrome
and cytokine storms and are associated with COVID-19 severity [79–81]. Interestingly,
IRAK2, another NF-kB pathway regulator, is upregulated in cardiomyopathy patients.
IRAK2, when phosphorylated with IRAK1 and IRAK4, recruits Ub ligase and activates
TRAF6. TRAF6 activates the NF-kB pathway via the IKK complex. In summary, COVID-19
upregulates both IRAK2 and CHUK, while atherosclerosis only upregulates CHUK, and
cardiomyopathy upregulates IRAK2, suggesting that NF-kB activation may be critical in
all three conditions. Given that hyperactivation of the NF-kB pathway in B cells has been
implicated in cytokine storms and the pathogenesis of severe and critical COVID-19 [82],
our results suggest that the upregulation of this pathway in patients with pre-existing
cardiovascular disease could be key to explaining their poorer COVID-19 prognoses.

5. Conclusions

In conclusion, we found that cardiomyopathy, VTE, and CAD patients display signifi-
cant similarities in inflammation-related gene expression to COVID-19 patients. Therefore,
when a patient with the above cardiovascular conditions contracts COVID-19, COVID-19
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could further dysregulate the expression of inflammatory genes already dysregulated,
leading to more severe inflammation. This may explain why patients with cardiovascular
disease are more likely to develop severe COVID-19 and tend to have poorer clinical
outcomes [83,84]. Furthermore, we found that patients with CAD display a similar dysreg-
ulated immune landscape to COVID-19 patients, possibly indicating why CAD patients
are at higher risk of severe COVID-19. Interestingly, cardiomyopathy patients display
more similar immune dysregulation to COVID-19 patients than VTE or CAD patients
vs. COVID-19 patients. This observation could explain the fact that COVID-19 mortality
is increased in congestive heart failure patients, as demonstrated in a study of 31,461
adults [85]. Our findings suggest that investigating the relationships between specific
cardiovascular diseases and COVID-19 severity and mortality is meaningful and offers
insight into COVID-19 immune dysregulation. However, our study has several limitations.
We had limited COVID-19 platelet data, specifically normal patients. This may have im-
pacted our differential expression analysis and thus reduced the statistical power of our
analysis. However, the direction of dysregulation of many of the genes identified was
consistent with existing literature. Additionally, we used platelet data instead of blood
samples. To validate our results, in vitro and in vivo experiments can be done. Despite
these limitations, we believe our study advances our understanding of the relationship be-
tween cardiovascular disease and COVID-19. Our study also encourages the examination
of potential treatment strategies such as anti-inflammatory steroids and ACE2 inhibitors to
downregulate inflammation in COVID-19 patients with CVDs.
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Figure A2. (A) Bar plots showing direction of correlation between genes and canonical pathways for genes dysregulated in
both ischemic cardiomyopathy (ICM) and COVID-19 patients. (B) Bar plots showing direction of correlation between genes
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and canonical pathways for genes dysregulated in both nonischemic dilated cardiomyopathy (NIDCM) and COVID-19
patients. (C) Bar plots showing direction of correlation between CASP4/BCL2L1 and canonical pathways and enrichment
plots showing BCL2L1’s correlation to pathways is opposite in COVID-19 and recurrent venous thromboembolism (VTE)
patients. (D) Bar plots showing the direction of correlation between CHUK, PSTPIP1, and CCL3 and canonical pathways
and enrichment plots of CHUK, PSTPIP1, and CCL3 showing correlation to pathways are similar in COVID-19 and coronary
artery disease patients.

Table A1. Complete list of dysregulated cytokine and inflammasome-related genes.

ICM Only ICM and
COVID-19 COVID-19 Only DCM Only DCM and

COVID-19 COVID-19 Only

CCL17 CXCR4 TNF CCL3 CCL2 MAPK3 CCL11 CXCR4 TNF CCL3 CD40 MAPK8
CCL21 IFNA14 TNFSF12 CCL4 CKLF MAPK8 CCL17 EPO TNFSF11 CCL4 CXCL5 NAIP
CCL22 IL11 TNFSF13 CD40 CXCL5 MAPK9 CCL2 IFNA14 TNFSF12 CXCL3 CXCR1 NFKBIB
CCL24 IL11RA TNFSF13B CXCL3 EPOR NAIP CCL22 IL10 TNFSF13B IL15 EPOR POLR2J4
CCL5 IL12A TNFSF8 CXCR1 IL15RA NFKBIA CCL24 IL11 TNFSF14 IL20RA IL1RN RELA
CCL8 IL16 TNFSF9 IL15 IL1RN POLR2J4 CCL5 IL11RA BIRC2 IL20RB LTB SUGT1

CCR10 IL17B APP IL20RA IL20RB PSTPIP1 CCL8 IL12A BIRC3 TGFB3 LTBR TAB1
CCR3 IL17C BIRC2 LTB TGFB1 RELA CCR1 IL13 CARD8 CASP2 TGFB1 TAB3
CCR4 IL17D CARD8 LTBR TGFBR2 SUGT1 CCR10 IL15RA CCL11 CASP9 CCL2 TNFAIP3
CCR7 IL1A CCL5 TGFB3 BCL2L1 TAB1 CCR3 IL16 CCL2 CYLD CKLF TRAF6
CD27 IL1B CCL8 CASP2 BIRC3 TAB3 CCR4 IL17B CCL5 HSP90AB1 IL15RA UBE2N
CD4 IL2 CXCL1 CASP9 CARD6 TMEM189 CCR7 IL17D CCL8 IKBKG TGFBR2 BIRC3

CKLF IL23A CXCL2 CYLD CASP4 TRAF6 CD27 IL18 CXCL2 IRAK2 BCL2L1 HSP90AA1
CX3CL1 IL25 HSP90AA1 HSP90AB1 CASP8 TXN CD4 IL20 HSP90AA1 MAPK12 CARD6 IRAK1
CXCL1 IL27 IL1B IKBKB CHUK TXNIP CKLF IL23A IL18 NFKBIA CASP4 MAPK1
CXCL10 IL33 IL6 IKBKG HSP90AA1 UBE2N CX3CL1 IL25 IRAK1 NOD1 CASP8 MAPK10
CXCL14 IL34 MAPK1 IRAK2 HSP90B1 CXCL14 IL33 MAP3K7 TRIP6 CHUK MAPK9
CXCL16 IL6 MAPK11 MAPK12 IRAK1 CXCL16 OSMR MAPK1 TXNIP HSP90B1 PSTPIP1
CXCL2 IL9R MAPK9 NFKBIB MAPK1 CXCL2 TGFB2 MAPK10 IKBKB TMEM189
CXCL9 OSM NFKB1 NOD1 MAPK10 CXCL9 TGFBR1 MAPK9 MAPK13 TXN
CXCR2 TGFB2 NLRC4 TNFAIP3 MAPK13 CXCR2 TGFBR2 NLRC4 MAPK14
CXCR3 TGFBR1 NLRP3 TRIP6 MAPK14 CXCR3 TGFBR3 NLRP1 MAPK3

TAB2 NLRP3
TAB3 PSTPIP1
TNF PYCARD

TRAF6 TAB2
XIAP TMEM189

- - - - - - - - TNF - - -
TXN

Table A2. Complete list of dysregulated cytokine and inflammasome-related genes.

Single VTE
Only

Single VTE
and

COVID-19
COVID-19 Only Recurrent

VTE Only

Recurrent VTE
and

COVID-19
COVID-19 Only

CCL1 CCL4 CCL2 MAPK8 IKBKB CD27 CCL4 CCL2 MAPK3 IKBKB
CCL16 CD40 CCL3 NAIP IKBKG CXCL10 BCL2L1 CCL3 MAPK8 IKBKG
CCL18 BCL2L1 CKLF NFKBIA IRAK1 CXCL8 CASP4 CD40 NAIP IRAK1
CCL7 CXCL3 NFKBIB IRAK2 IFNG CKLF NFKBIA IRAK2
CD27 CXCL5 NOD1 TAB1 IL13 CXCL3 NFKBIB TAB1

CXCL10 CXCR1 POLR2J4 TAB3 IL16 CXCL5 NOD1 TAB3
CXCL8 EPOR PSTPIP1 TMEM189 IL1A CXCR1 POLR2J4 TMEM189

IL13 IL15 SUGT1 TNFAIP3 IL3 EPOR PSTPIP1 TNFAIP3
IL16 IL15RA CASP4 TRAF6 TNFSF10 IL15 SUGT1 TRAF6
IL1A IL1RN MAPK1 TRIP6 MAPK1 IL15RA MAPK1 TRIP6
IL3 IL20RA MAPK9 TXN MAPK9 IL1RN MAPK9 TXN

TNFSF10 IL20RB RELA TXNIP RELA IL20RA RELA TXNIP
IFNA5 LTB BIRC3 UBE2N BIRC2 IL20RB BIRC3 UBE2N
BCL2 LTBR CARD6 CARD8 LTB CARD6

CASP5 TGFB1 CASP2 CASP5 LTBR CASP2
IL18 TGFB3 CASP8 IL18 TGFB1 CASP8

NLRP3 TGFBR2 CASP9 IL1B TGFB3 CASP9
NOD2 MAPK10 CHUK NLRP3 TGFBR2 CHUK
CASP4 MAPK12 CYLD MAPK10 CYLD
MAPK1 MAPK13 HSP90AA1 MAPK12 HSP90AA1
MAPK9 MAPK14 HSP90AB1 MAPK13 HSP90AB1
RELA MAPK3 HSP90B1 MAPK14 HSP90B1
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Table A3. Complete list of dysregulated cytokine and inflammasome-related genes.

CAD Only CAD and COVID-19 COVID-19 Only

CCR4 CCL3 CCL2 CASP4 MAPK9NAIP
CD27 CCL4 CKLF CASP8 NFKBIB
CD40 CXCR1 CXCL3 CASP9 NOD1

CXCR3 LTB CXCL5 CYLD POLR2J4
CXCR4 CHUK EPOR HSP90AA1 RELA
IL17B NFKBIA IL15 HSP90AB1 SUGT1
IL21 PSTPIP1 IL15RA HSP90B1 TAB1
IL6 TXNIP IL1RN IKBKB TAB3

OSM IL20RA IKBKG TMEM189
TNFSF10 IL20RB IRAK1 TNFAIP3

TNFSF13B LTBR IRAK2 TRAF6
TNFSF14 TGFB1 MAPK1 TRIP6
CASP1 TGFB3 MAPK10 TXN
CASP5 TGFBR2 MAPK12 UBE2N

MAPK11 BCL2L1 MAPK13
NLRP3 BIRC3 MAPK14

PYCARD CARD6 MAPK3
TAB2 CASP2 MAPK8
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