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Abstract: Viral respiratory infections contribute to significant morbidity and mortality in children.
Currently, there are limited reports on the composition and abundance of the normal commensal
respiratory virome in comparison to those in severe acute respiratory infections (SARIs) state. This
study characterised the respiratory RNA virome in children ≤ 5 years with (n = 149) and without
(n = 139) SARI during the summer and winter of 2020/2021 seasons in South Africa. Nasopharyngeal
swabs were, collected, pooled, enriched for viral RNA detection, sequenced using Illumina MiSeq,
and analysed using the Genome Detective bioinformatic tool. Overall, Picornaviridae, Paramoxyviridae,
Pneumoviridae, Picobirnaviridae, Totiviridae, and Retroviridae families were the most abundant viral
population in both groups across both seasons. Human rhinovirus and endogenous retrovirus K113
were detected in most pools, with exclusive detection of Pneumoviridae in SARI pools. Generally,
higher viral diversity/abundance was seen in children with SARI and in the summer pools. Several
plant/animal viruses, eukaryotic viruses with unclear pathogenicity including a distinct rhinovirus
A type, were detected. This study provides remarkable data on the respiratory RNA virome in
children with and without SARI with a degree of heterogeneity of known viruses colonizing their
respiratory tract. The implication of the detected viruses in the dynamics/progression of SARI
requires further investigations.

Keywords: severe acute respiratory infection; virome; metagenomics; children; winter; summer

1. Introduction

Severe acute respiratory infection (SARI) is a leading cause of paediatric hospitalisation
and mortality [1,2]. Respiratory RNA viruses are mostly implicated, with potential to
cause pandemics [3]. Despite intensive laboratory investigations, a substantial proportion
of acute respiratory infections are of unknown aetiology [4,5]. Beside the known viral
agents often implicated in acute, symptomatic respiratory infections, recent analysis of the
human respiratory virome has found hitherto undescribed viruses, viruses with unclear
pathogenicity, viruses that induces symptoms but are relatively uncommon respiratory
tract pathogens bacteriophages, and retroviral elements [6–13]. The virome composition is
also reported to vary in response to environment, temperature/humidity, age, and immune
status; and may be distinct in health and disease [12,14].

Recent studies suggests that the respiratory microbiome is linked to airway health and
may influence the development of upper and lower respiratory tract illnesses (RTIs) [15–17].
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Characterising detectable viral populations in the human respiratory tract is essential for
comprehending the role of the respiratory virome to diseases affecting the respiratory tract,
as this may reveal information on a large number of undetectable virus-induced RTIs [17,18].
Additionally, it may lead to the discovery of new viruses, the identification of various viral
variations, and discovery of other viruses with hitherto undiscovered tropisms [17–19].
Moreover, analysis of the human respiratory virome may reveal differences in viral species
between patients with high/low disease severity and healthy individuals [12,14,20]. Addi-
tionally, comprehensive data of viruses present in the respiratory tract of children during
different weather seasons may provide baseline information on which pathogenic viruses
are predominant in various weather conditions [19]. The knowledge garnered can guide
seasonal surveillance, optimal schedule for prophylactics through vaccination, and the
rational inventory and use of antivirals [21–23]. All of which can assist in prevention and
control of RTIs.

The upscaled use of metagenomics next-generation sequencing (mNGS) has increas-
ingly provided the invaluable comprehensive genomic profile of diverse micro-organisms
present in clinical samples [14,24,25]. Beside detailed virome characterization, mNGS
immediately offers additional information on virulence markers, epidemiology, and molec-
ular genotyping [25]. Although the results from investigations of children’s respiratory
virome in health and/or disease states have been reported [9,14,20,26–28], there is little
information on the RNA respiratory virome and its composition during different weather
seasonality in children with and without SARI. Therefore, using clinically informative
data, this study provides pioneering comprehensive data on the respiratory virome of
children in health and disease during varied weather conditions in the Free State Province
of South Africa, with a view to afford baseline data that can guide further studies seeking
to expand/understand viral respiratory diseases in children.

2. Materials and Methods
2.1. Study Settings and Demography

The patients were recruited from Botshabelo District Hospital, Pelonomi Regional
Hospital, and National District Hospital in the Free State Province, South Africa. The patient
population are children ≤ 5 years of age admitted with SARI (as per the World Health
Organization (WHO) definition of SARI) and without SARI. The WHO case definitions for
SARI were implemented as follows: children presenting with acute respiratory infection
with a history of fever or measured fever of ≥38 ◦C and cough; with onset within the
last ten days and requiring hospitalisation [29]. For this study, non-SARI children were
defined as any child ≤ 5 years admitted/attended at the hospital for other forms of illnesses
without any reported/documented history of illness with signs/symptoms relating to the
respiratory tract in the last 14 days and at the time of admission/sample collection.

2.2. Sampling and Sample Collection

The sampling for this study was performed during two seasons, summer 2020/2021
and the winter of 2021. The summer sampling started from January to March 2020 and
then commenced again between December 2020 to March 2021. This was due to national
lockdown measures implemented during the COVID-19 pandemic. The winter sampling
was performed between May 2021 to August 2021. In total, (n = 105 with SARI versus n = 80
without SARI) and (n = 44 with SARI versus n = 59 without SARI) were enrolled during the
summer and winter periods, respectively. Upon admission, qualified medical personnel
collected nasopharyngeal swabs (BD Diagnostics, Franklin Lakes, NJ, USA). After collection,
the swab was immediately inserted into a viral transport media (VTM) (BD Diagnostics,
Franklin Lakes, NJ, USA). Samples were labelled and transported to the University of the
Free State-Next Generation Sequencing Unit (UFS-NGS Unit) Bloemfontein, Free State,
South Africa, via cold chain transportation. Subsequently, the samples were registered, and
stored at −80 ◦C until processing.
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2.3. Sample Pooling

The respiratory samples collected per child (nasopharyngeal/oropharyngeal swabs)
were processed as per in-house protocol. Briefly, the samples in VTM BD Diagnostics
(Franklin Lakes, NJ, USA) were vortexed for 12 s and processed in pools using 1000 µL of
each sample. For the summer samples, n = 105 children with SARI were processed into
five pools (5 pools of n = 3, n = 8, n = 23, n = 55, and n = 16) and n = 80 children without
SARI were processed into four pools (4 pools of n = 6, n = 16, n = 38, and n = 20 samples
per pool). In winter, n = 44 children with SARI were processed into three pools (3 pools of
n = 15, n = 14, and n = 15 samples per pool), and n = 59 children without SARI were also
processed into three pools (3 pools of n = 20, n = 20, and n = 19 samples per pool). Beside
the weather-guided sampling, pooling was further made based on the different waves of
COVID-19 for the summer samples and based on monthly collection for the winter samples
(considering the third wave was experienced through the winter periods). The adopted
pooling strategy is presented in Supplementary Table S1.

2.4. Sample Processing, Enrichment and Extraction

During the summer season, the SARI group was processed into five pools (A1 to E1),
and the non-SARI group was processed into four pools (A2 to D2). During the winter
period, the SARI group was processed into three pools (E1 to G1), and the non-SARI group
was processed into three pools (E2 to G2).

For each pool, the VTM was centrifuged at 10,000× g for 10 min to remove cellular
debris. The supernatant was filtered through a 0.22 µm filter to remove the remaining
possible host cellular debris and bacteria. The resulting filtrate was treated with a nuclease
mixture of 0.1U µL−1 Turbo DNAse (Life Technologies, Carlsbad, CA, USA), 0.1U µL−1

RNAse One (Promega, Fitchburg, WI, USA), and 1X DNAse buffer (Life Technologies,
Carlsbad, CA, USA) and incubation at 37 ◦C for 90 min, to remove non-incorporating
nucleic acid. Nucleic acid extraction was performed using the PureLink viral RNA/DNA
mini kit (Thermofisher Scientific, Waltham, MA, USA), following the manufacturer’s
instructions but without using the carrier RNA. Extracted viral RNA was eluted in 50 µL of
RNase-free water.

2.5. Positive and Negative Controls for Evaluation of Viral Recovery and Workflow Contamination

Clinical respiratory samples positive for RNA viruses (SARS-CoV-2 and rhinovirus A)
(the viral transport media (VTM) tested positive for the different viruses during routine
diagnostic testing and were provided by the National Health Laboratory Service, Uni-
versitas Bloemfontein, Free State, South Africa) and no-template control (Nuclease-free
water) were subjected to nucleic acid extraction and processed through the same mNGS
workflow as the pooled samples. The positive controls were included to evaluate the viral
recovery of the workflow, and the negative control was included to assess the presence of
cross-contamination or kitome contamination from reagents.

2.6. Qubit Quantification of the Extracted RNA

Extracted RNA was quantified using the Qubit RNA High Sensitivity (HS) Assay
Kit (Thermofisher Scientific, Waltham, MA, USA) with the Qubit® 3.0 Fluorometer (Ther-
mofisher Scientific, Waltham, MA, USA) as per the manufacturer’s instructions.

2.7. DNase Treatment on Extracted RNA and Purification

Extracted RNA was treated with TURBO DNA-free™ reagents (Thermofisher Scien-
tific, Waltham, MA, USA) according to the manufacturer’s instructions. The DNase-treated
samples were purified using the RNeasy Mini Kit (Qiagen, Hilden, Germany) as per the
manufacturer’s instructions.
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2.8. Depletion of Ribosomal RNA (rRNA)

For each pool, rRNA depletion was performed to decrease the human, mouse, and rat
rRNA by using NEBNext rRNA depletion kit (New England Biolabs, Ipswich, MA, USA)
according to the manufacturer’s instructions.

2.9. Reverse Transcription and Whole Transcriptome Amplification

For library preparation purposes, the starting material was first converted to DNA.
Therefore, the enriched, isolated viral RNA was reverse transcribed to generate cDNA.
For the cDNA synthesis and random amplification, a QIASeq FX Single Cell RNA Library
Preparation Kit (Qiagen, Hilden, Germany) was used as per the manufacturer’s instructions.
Amplified cDNA was subsequently quantified using the Qubit™ 1X dsDNA HS Assay Kits
with the Qubit 3.0 Fluorometer (Thermofisher Scientific, Waltham, MA, USA) as per the
manufacturer’s instructions and normalised.

2.10. Library Preparation and Next-Generation Sequencing

Libraries were prepared using the QIASeq FX Single Cell RNA Library Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The DNA libraries were
analysed for fragment size distribution using the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA). Metagenomic sequencing was performed on the Illumina
MiSeq system with the reagent kit v3 (Illumina, San Diego, CA, USA) for 600 cycles to
generate 2 × 250 bp paired-end reads.

2.11. Bioinformatic Analysis

The generated paired-end reads were analysed using Genome Detective (https://
www.genomedetective.com/, (accessed on 22 February 2022)), an automated web system
for virus identification from high-throughput sequencing data [30,31]. The characteristic
of this tool is presented in Supplementary Table S2. Confirmatory analyses were further
performed for detections with low viral reads using BLAST.

2.12. Phylogenetic Analysis

To analyse the genetic variation in selected respiratory viruses, nucleotide sequences
with close to full genome coverage detected in this study (at least 99%) were compared
with hits entries in the GenBank database. Two Human rhinovirus (HRV) representative
sequences, HRV A C-series and HRV A B-series, with 99.2% and 99.8% genome coverage,
respectively, were selected. For the HRV analysis, the 100 closest hits full-length genomes of
HRV A were retrieved for analysis, and a full-length genome of HRV B was also retrieved
for use as an outgroup. Phylogenetic analysis was conducted using the neighbor-joining
method using MEGA 6.0 with a bootstrap value of 1000 [32].

2.13. Statistical Analysis

Continuous variables are reported as median, whereas categorical variables are re-
ported as percentages and calculated using Microsoft excel version 365 version 2206.

3. Results
3.1. General Demographics and Clinical Presentations

The average age for the SARI and non-SARI groups were 14.5 and 19 months, re-
spectively. A total of 27 (18.1%) and 12 (8.5%) in the SARI and non-SARI group had HIV
infection, respectively. Notably, none of the SARI group required the need for intensive
care unit. Complete demographic and clinical data are presented as Supplementary Table S3.

https://www.genomedetective.com/
https://www.genomedetective.com/
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3.2. Sequencing Data

After quality filtering, the total number of reads per pool during summer season
ranged from 140,444 to 1,703,176. The proportion of viral reads in each pool ranged from
2% to 12% (Table 1). During winter season, the total number of reads per sample pool after
quality filtering ranged from 13,308 to 293,394 and the proportion of virus-specific reads in
each pool ranged from 2% to 9% (Table 1). It was noteworthy that the highest percentage
of viral reads were observed in the non-SARI groups across the two investigated seasons
(Table 1).

Table 1. Reads for each pooled samples after filtering with the percentage of viral reads.

Pooled Samples Number of Samples Reads after Quality
Filtering % of Viral Reads

SARI Summer
SARI Pool A1 3 1,079,760 2
SARI Pool B1 8 1,703,176 3
SARI Pool C1 23 8,500,586 4
SARI Pool D1 55 1,341,384 5
SARI Pool E1 16 862,754 11

Non-SARI Summer
Non-SARI Pool A2 6 140,444 5
Non-SARI Pool B2 16 312,496 12
Non-SARI Pool C2 38 366,146 4
Non-SARI Pool D2 20 1,250,024 6

SARI Winter
SARI Pool E1 15 293,394 2
SARI Pool F1 14 166,726 2
SARI Pool G1 15 272,596 3

Non-SARI Winter
Non-SARI Pool E2 20 15,434 5
Non-SARI Pool F2 20 13,308 6
Non-SARI Pool G2 19 37,010 9

SARI: severe acute respiratory infection.

3.3. Respiratory Tract Virome Analyses from Children with and without SARI during Summer
and Winter

Bioinformatic analyses revealed diverse viruses in the respiratory tracts of children
with SARI across the two seasons investigated (Tables 2 and 3, respectively). During
summer season, viral families with the most abundant viral reads can be grouped into:
Picornaviridae, Retroviridae, Totiviridae, Picobirnaviridae, and Pneumoviridae (Figure 1). During
winter, the viral family with the most abundant reads can be grouped into Picornaviridae,
Pneumoviridae, and Picobirnaviridae (Figure 2). Notably, the Betaflexiviridae, Partitiviridae,
Chrysoviridae, Herpesviridae, Phycodnaviridae, and Circoviridae were exclusively detected in
the summer period in this group.
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Table 2. Viral family, species, reads numbers, and genome structure of viruses detected in the respiratory sample pools of children with SARI during summer period.

Number of reads/coverage %
Family Viral Species/Read Number Genome Structure A1 B1 C1 D1 E1

Picornaviridae HRV-A (21,328) ssRNA 342/16.2 15,441/99.8 5495/99.2 22/13.6 28/3.4

HRV-C (9972) ssRNA 1122/53.9 2315/25.2 31/8.2 264/25.8 6240/89.5

Parechovirus (236) ssRNA 176/27.8 60/8

Enterovirus J (60) ssRNA 60/7.9

HRV-B (261) ssRNA 159/28.3 102/4.1

Enterovirus A (44) ssRNA 44/8.4

Enterovirus B (2523) ssRNA 2523/82.8

Enterovirus C (13) ssRNA

Enterovirus A114 (101) ssRNA 24/3.4 77/30.1 13/3

Partitiviridae Fig cryptic virus (420) dsRNA 420/78.1

Pneumoviridae RSV-B (2333) ssRNA 234/23 1840/89.9 493/48

RSV-A (572) ssRNA 124/19 522/40.5 50/7.6

Totiviridae Scheffersomyces segobiensis virus L (7892) dsRNA 152/49.4 271/45.1 1395/46.3 3110/84.4 2964/80.3

Diatom colony-associated dsRNA virus 3 (27) dsRNA 27/5.2

Diatom colony-associated dsRNA virus 10 (21) dsRNA 17/7.3 4/4.5

Red clover powdery mildew-associated totivirus 2 (218) dsRNA 198/41.5 20/3.5

Xanthophyllomyces dendrorhous virus L1B (82) dsRNA 82/16.9

Saccharomyces cerevisiae virus (52) dsRNA 52/19.2

Maize-associated totivirus 2 (1346) dsRNA 1346/11.8

Red clover powdery mildew-associated totivirus 6 (3) dsRNA 3/3.5

Picobirnaviridae Otarine Picobirnavirus (segment 2) (49048) dsRNA 18/52 49,030/98.4

Picobirnavirus green monkey/KNA/2015 (31) dsRNA 6/24.9 25/6.9

Picobirnavirus dog/KNA/2015 (125) dsRNA 125/29

Human Picobirnavirus (75) dsRNA 75/12.5
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Table 2. Cont.

Family Viral Species/Read Number Genome Structure A1 B1 C1 D1 E1

Coronaviridae SARS-CoV-2 (2) 2/1

Retroviridae Human endogenous retrovirus K113 (1287) ssRNA-RT 208/17.2 109/16.8 107/16.1 784/22.5 79/20

Moloney murine leukaemia virus (1528) ssRNA 120/13.7 1404/22.4 4/7

Equine infectious anaemia virus (651) ssRNA 28/4.8 107/16.1 404/20 112/19

Koala retrovirus (2) ssRNA-RT 2/4.3

Reticuloendotheliosis virus (489) ssRNA-RT 61/9.6 428/13.2

RD114 Retrovirus (13) ssRNA-RT 13/5.8

Chick syncytial virus (3) ssRNA-RT 3/23.9

Atlantic salmon swim bladder sarcoma virus (79) ssRNA-RT 79/8.4

Feline leukaemia virus (82) ssRNA 70/7 12/4.7

Baboon endogenous virus strain M7 ssRNA (14) ssRNA-RT 14/4.5

Friend murine leukaemia virus (31) ssRNA 31/5.1

Gibbon ape leukaemia virus (14) ssRNA 14/3.7

Bovine retrovirus CH15 (9) ssRNA-RT 9/8.7

Chrysoviridae Penicillium chrysogenum virus segment 3 (2) dsRNA 2/2.7

Virgaviridae Tobacco Mosaic Virus (60) ssRNA 60/10.2

Pepper mild mottle virus (3) ssRNA 3/1.1

Betaflexiviridae Apple chlorotic leafspot virus (622) ssRNA 527/41.4 95/18.4

Apple stem grooving virus (33) ssRNA 33/6.6

Herpesviridae Saimiriine gammaherpesvirus 2 (2) dsDNA 2/0.3

Phycodnaviridae Micromonas pusilla virus 12T (26) dsDNA 26/0.1

Endornaviridae Grapevine endophyte alphaendornavirus (94) ssRNA 94/10.2

Bell pepper alphaendornavirus (4) ssRNA 4/2.4

Circoviridae Porcine stool-associated circular virus (16) ssDNA 16/19

Unclassified Bovine serum-associated circular virus (331) Unknown 28/99.2 303/99.8

HRV-A: human rhinovirus A; HRV-C: human rhinovirus C; HRV-B: human rhinovirus B; RSV: respiratory syncytial virus; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.



Viruses 2022, 14, 2516 8 of 19

Table 3. Viral family, species, reads numbers, and genome structure of viruses detected in the
respiratory sample pools of children with SARI during winter period.

Number of reads/coverage %

Family Viral Species/Read Number Genome Structure E1 F1 G1

Picornaviridae HRV-C (231) ssRNA 130/30.9 69/26.5 32/7.5

HRV-A (234) ssRNA 6/3.5 26/13 206/52

Enterovirus B (126) ssRNA 31/11.4 95/30.7

Pneumoviridae RSV-B (186) ssRNA 126/18.7 15/5.5 145/16

RSV-A (1) ssRNA 1/0.7

Retroviridae Human endogenous retrovirus K113 (39) ssRNA-RT 11/1.8 28/8.4

Picobirnaviridae Otarine Picobirnavirus (segment 2) (9) dsRNA 9/15.3

Picobirnavirus green
monkey/KNA/2015 (325)

dsRNA 325/82

Chicken Picobirnavirus
(segment RNA 1) (126)

dsRNA 126/17.5

Endornaviridae BPA (6) ssRNA 5/0.6 1/0.4

Coronaviridae Human coronavirus NL63 (3) ssRNA 3/0.8

Virgaviridae Tobacco mosaic virus (6) ssRNA 6/5.4

Retroviridae Equine infectious anaemia virus (4) ssRNA 2/3.7 2/1.8

Totiviridae Scheffersomyces segobiensis virus L (40) dsRNA 40/10.2

Tombusviridae Bermuda grass latent virus (8) ssRNA 8/4.5

HRV-C: human rhinovirus C; HRV-A: human rhinovirus A; RSV A: respiratory syncytial virus A; RSV-B: respira-
tory syncytial virus B; BPA’: bell pepper alphaendornavirus; SSVL: scheffersomyces segobiensis virus L.
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Figure 1. An overview of representative viral family distribution from children with SARI in summer
based on read abundance. The viral families shown include, Picobirnaviridae, Picornaviridae, Pneu-
moviridae, Totiviridae, and Retroviridae. Others comprise of Partitiviridae, Betaflexiviridae, Coronaviridae,
Chrysoviridae, Virgaviridae, Herpesviridae, Phycodnaviridae, Endornaviridae, and Circoviridae.
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Figure 2. An overview of representative viral family distribution from children with SARI in winter
based on read abundance. Viral families with the most abundance include Picornaviridae, Pneumoviri-
dae, and Picobirnaviridae, Retroviridae, and Totiviridae. Others include Endornaviridae, Coronaviridae,
Virgaviridae, and Tombusviridae.

The viral composition in the non-SARI group also contains diverse viral families
(Tables 4 and 5). The viral families with the most abundant reads in this group during
summer can be grouped into Picornaviridae, Totiviridae, Paramoxyviridae, and Retroviridae
(Figure 3). During winter, the viral families with the most reads in this group were mainly
Retroviridae, Bromoviridae, and Reoviridae (Figure 4). Notably, the Reoviridae and Bromoviridae
viral families were only detected in this group during winter period. Comparatively,
Totiviridae, Coronaviridae, Partitiviridae, Picobirnaviridae, Endornaviridae, and Herpesviridae
were exclusively detected during the summer period.

Table 4. Viral family, species, reads numbers, and genome structure of viruses detected in the
respiratory sample pools of the non-SARI group during summer period.

Number of reads/coverage %

Family Viral Species/Read Number Genome Structure A2 B2 C2 D2

Picornaviridae HRV-C (7926) ssRNA 1388/85.5 6495/93.3 31/8.2 12/1.2

HRV-A (29420) ssRNA 726/53.1 27923/92.9 746/86 25/4.2

HRV-B (347) ssRNA 347/65.8

Enterovirus J (71) ssRNA 60/7.9 11/1.0

Enterovirus B (513) ssRNA 513/51.2

Enterovirus A (17) ssRNA 17/9

Totiviridae Scheffersomyces segobiensis
virus L (2204)

dsRNA 785/82.6 1298/70.2 105/31 16/11.8

Red clover powdery
mildew-associated totivirus 7 (41)

dsRNA 4/12 37/3.8

Diatom colony-associated dsRNA
virus 3 (27)

dsRNA 27/5.2

Diatom colony-associated dsRNA
virus 16 (17)

dsRNA 17/7.3
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Table 4. Cont.

Family Viral Species/Read Number Genome Structure A2 B2 C2 D2

Paramoxyviridae HPIV-2 (384) ssRNA 384/34.5

HPIV-3 (305) ssRNA 295/35.7 10/4.7

Coronaviridae Human coronavirus NL63 (223) ssRNA 223/10.7

Retroviridae Feline leukaemia virus (4) ssRNA 4/6.1

Human endogenous retrovirus
K113 (126)

ssRNA-RT 60/8.1 7/1.5 59/17.8

Equine infectious anaemia
virus (86)

ssRNA 40/7.9 46/5.4

Reticuloendotheliosis virus (136) ssRNA 75/8.5 61/9.6

RD114 Retrovirus (13) ssRNA 13/5.7

Partitiviridae Ustilaginoidea virens partitivirus
2 (segment RNA 1) (249)

dsRNA 249/16.5

Fusarium poae virus 1
(segment 1) (14)

dsRNA 14/7

Chrysoviridae Penicillium chrysogenum virus
segment 2 (6)

dsRNA 6/9.25

Picobirnaviridae Otarine picobirnavirus
(segment 2) (1551)

dsRNA 1514/69 37/30.5

Endornaviridae Phaseolus vulgaris
alphaendornavirus 1 (174)

ssRNA 174/32.9

Phaseolus vulgaris
alphaendornavirus 2 (93)

ssRNA 93/18.7

Herpesviridae Saimiriine gamma
herpesvirus 2 (2)

dsDNA 2/0.25

HRV-C: human rhinovirus C; HRV-A: human rhinovirus A; HRV-B: human rhinovirus B; HPIV-2: human
parainfluenza virus 2; HPIV-3: human parainfluenza virus 3.

Table 5. Viral family, genus, reads numbers, and genome structure of viruses detected in the
respiratory sample pools of the non-SARI group during winter period.

Number of reads/coverage %

Family Viral Genus/Read Number Genome Structure E2 F2 G2

Retroviridae Equine infectious anaemia virus (209) ssRNA 36/11.2 173/16.3

Paramoxyviridae HPIV-3 (9) ssRNA 9/1.0

Bromoviridae Ageratum latent virus (82) ssRNA 82/18.3

Parietaria mottle virus
(segment RNA 2) (63)

ssRNA 63/11.9

Reoviridae Rotavirus A (segment 1) (17) dsRNA 17/13.3
Rotavirus A (segment 2) (45) dsRNA 45/40.9
Rotavirus A (segment 6) (5) dsRNA 5/16.7

Bat Rotavirus (segment 4) (15) dsRNA 15/19
Rotavirus A (segment 3) (6) dsRNA 6/11

Picornaviridae HRV-C (1) ssRNA 1//1.9

HRV-A (17) ssRNA 17/2.8

HRV-C: human rhinovirus C; HRV-A: human rhinovirus A; HPIV-3: human parainfluenza virus 3.
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Figure 3. An overview of representative viral family distribution from the non-SARI group in
summer based on read abundance. The major viral families detected include Picornaviridae, Totiviri-
dae, Paramoxyviridae, Retroviridae, Picobirnaviridae, and Endornaviridae. Other viral families at low
abundance include Coronaviridae, Partitiviridae, Chrysoviridae, and Herpesviridae.
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Figure 4. An overview of representative viral family distribution from the non-SARI group in
winter based on read abundance. The viral families include Retroviridae, Bromoviridae, Reoviridae, and
Picornaviridae, and Retroviridae.

3.4. Viral Composition during the Seasons Investigated and between Both SARI and
Non-SARI Group

Based on viral reads, mammalian eukaryotic viruses were more abundant than plant
and other viruses in both groups during the two seasons (Figures 5 and 6). More so,
HRV and human endogenous retrovirus K113 were the only viruses detected in most
pools from the SARI and non-SARI groups during both the summer and winter seasons.
Comparatively, regardless of having SARI or not, children in the summer group (both
SARI and Non-SARI) had higher viral reads and abundance than the participants recruited
during the winter period. Notably, the Pneumoviridae viral family (RSV) was only detected
in the SARI group during both periods investigated. Moreover, viral reads for Human
Rotavirus and Human parainfluenza viruses 2 and 3 were exclusively detected in the non-
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SARI group. Besides detection of reads matching human and eukaryotic viruses, several
phage-related reads (matching Escherichia phage, Enterobacteria phage, Streptococcus
phage, Klebsiella phage, Staphylococcus phage, Stx2-converting phage, Lactococcus phage,
Vibrio phage, Salmonella phage, Proteus phage, and Aggregatibacter phage) were detected
from both groups (Supplementary Table S4).
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viruses, yeast viruses, and algae viruses).
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Figure 6. Different types of viruses from the non-SARI group in winter and summer. Mammalian
viruses were predominant, followed by yeast virus, plant virus, and a small fraction of avian, fungal,
and algae viruses.

3.5. Exclusive Viral Reads Detection in Pools

Beside the detection of RSV exclusively in patients with SARI. Its exclusive detection
was also noted between second and third waves upward (Table 2). Rotavirus was also
exclusively detected only in the July/August Non-SARI samples (Table 5). Of interest,
the only SARS-CoV-2 reads detected were from the pools between COVID-19 lockdown
declarations through the first wave.
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3.6. Viral Recovery and Evaluation for Contaminants in the mNGS Workflow

As presented in supplementary data (Table S5 and Figure S1a,b), the recovery and
distribution of reads on the viruses included in the run as positive control suggest that
RNA viral genomes can be successfully obtained through the workflow adopted in this
study. Notably, only bacteriophages were detected at less than 0.6% genome coverage in
the no template control included in the sequencing run.

3.7. Phylogenetic Analysis

The phylogenetic analysis for the contigs built identified a distinct type of human rhi-
novirus A named (RvA-Cseries) which formed a distinct cluster with the 100 closest hits on
GenBank (mostly sequences isolated in 2021), while RvA-Bseries formed a moderate cluster
with the closest hits on GenBank. The RvA-Bseries series exhibited nucleotide/amino
acid similarities with the RvA-Cseries ranging of 70.6%; 64.7%. In comparison with the
100 hits from GenBank, the RvA-Bseries displayed nucleotide and amino acid identities of
95.7–96.0% and 98.0–98.3% respectively, while the RvA-Cseries exhibited nucleotide and
amino acid identities of 70.6–72.7% and 65.9–66.1%, respectively. The 100 HRV A hits from
GenBank are collapsed in Figure 7 but complete data are provided in Table S3. The two
complete genomes of HRV A (RvA-Cseries SARI and RvA-Bseries SARI), and one partial
genome of HRV C (RvC-Cseries SARI) sequences were logged in the GenBank (Accession
numbers: OP114090; OP114091; OP114092).
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4. Discussion

This study demonstrated how mNGS is an important tool to decipher the respiratory
RNA virome with significant depth. The diversity of detected reads originating from
~59 species in the pooled samples in this study mirrors the relative ease of exposure of
the human respiratory system to several organisms. The majority of known respiratory
RNA viruses detected in this study belonged to four families, namely Picornaviridae, Pneu-
moviridae, Coronaviridae, and Paramoxyviridae, and interestingly, these families have all been
previously detected in the human respiratory tract [14,18,27,28]. The detected reads for
several plants and animal viruses and other human non-respiratory viruses in this study for
which pathogenicity in the respiratory tract is yet to be established can be either regarded
as temporary commensals, or could have been introduced from the environment, contact
with animals, food, and water [26,28]. While this study further reports on viral reads for
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several RNA viral families/species which have not been reported elsewhere, some viruses
reported from other studies were not detected. For instance, some studies [14,33] detected
a high level of viruses in the family Anelloviridae, which were not detected in the current
study. The differences noted in viral detection in different studies may be attributed to
differences in geographical location, viral exposure, or methodological choices [18].

In terms of virome composition in children with and without SARI, regardless of the
sampling period (winter or summer), the proportion and abundance of viruses (in terms
of family diversity and reads number) in the SARI group were higher than that of the
control group. This observation is consistent with previous studies [14,20] on the virome
composition in febrile versus afebrile children. Specifically, a study by Wylie et al. [20]
reported higher viral sequences in the nasopharyngeal swabs samples from febrile children
compared with afebrile ones. Wang et al. [14] also reported higher viral abundance in the
respiratory tracts of children with SARI compared with children without SARI. Similar to
other metagenomic studies [14,28], and PCR-based studies [34,35], the samples from the
subjects in this study without SARI also contains reads from known epidemic respiratory
viruses, such as HRV A, B, and C, Coronavirus NL63, PIV 2, and 3. The presence of these
viruses in children without SARI may be transient, or the particular viral strain does not
induce clinical symptoms, especially with HRV, which has been reported to be commonly
present in the respiratory tracts of young children [20,36–40]. Moreover, the detection of the
known pathogenic viruses in the non-SARI group further makes it challenging to use the
virome data in establishing/judging the possible causative agents (in the SARI group) in this
study as previously performed [14]. Nonetheless, observations from this study highlight
the need for comprehensive studies of the dynamics of the airway virome over time to
evaluate the possibility of a transient infection becoming symptomatic and to understand
the future contribution of asymptomatic viral infection to community transmission.

Regarding the contribution of HIV to virome composition, a previous study reported
alteration of microbiome composition in individuals with advanced HIV infection [41],
while Beck et al. [42] reported that the respiratory microbiome measured in whole bron-
choalveolar lavage (BAL) was indistinguishable between an HIV-infected and uninfected
population. Similarly, Monaco and colleagues reported that in the absence of immunode-
ficiency, HIV has a minimal effect on the enteric DNA virome and bacterial microbiome.
Rather, AIDS and the resultant immunodeficiency were associated with notable alter-
ations [43]. In the current study, even though samples were pooled regardless of HIV
status, the HIV-infected children were on antiretroviral therapy (ART), and as such their
inclusion is not expected to contribute to alteration in the pooled virome composition
towards increased viral detection.

Furthermore, the detection of sequence reads belonging to the human endogenous
retrovirus K113 (HERV-K) in this study can be attributed to the recent entry of this group
into the human genome. The group includes numerous retroviruses with full-length intact
proviruses [44]. Typically, these proviruses only occasionally express in patients with cancer
or autoimmune disease [45,46]. However, a recent study by Ferravente and colleagues
used NPS to characterise the respiratory virome in SARS-CoV-2 patients; they detected
HERV-K in 10 patients who were characterised with severe outcomes [47]. Similarly,
Temerozo et al. [13] characterised the virome of tracheal aspirates of severe COVID-19
patients and linked the detection of HERV-K in their lower airways with early mortality.
In this study, the detection of reads for the HERV-K113 in the sample pools for both SARI
and non-SARI cases during winter and summer cannot be exclusively associated with
severe outcomes, especially in patients in the SARI group, and as such the detection of this
provirus in both groups may warrant further studies.

The detection of HRV in most sample pools in both SARI and non-SARI cases through-
out the sampling period (winter and summer) further corroborates reports from another
study in South Africa [48] and other countries [49–51] that HRV is an all-year-round virus
that may circulate in both winter and summer. The detection was reportedly maintained or
heightened post-COVID-19-targeted NPIs [52,53]. In addition, we identified a distinct type
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of HRV A, which from the phylogenetic analysis formed a distinct cluster with the closest
hits on GenBank. These closest hits were majorly samples detected and deposited in the
year 2021 from the USA. Despite being the closest 100 hits on GenBank, the detected HRV
A strain only had a nucleotide/amino acid identity similarity that ranged from 70.6–72.7%
to 65.9–66.1% with these hits. This detection may warrant future genomic surveillance
of HRV in the study setting. Although, the presence of RSV in healthy children has been
reported previously [14,18,28], in this study, reads for RSV were exclusively detected only
in the SARI pools. More so, the total absence of the seasonal influenza virus was noted
and can be due to the sampling period (during COVID-19 waves), where the complete
absence/limited presence of influenza viral circulation has been reported [54,55].

In terms of viral diversity/abundance during the summer versus winter period, both
the SARI and non-SARI groups had a relatively higher viral diversity and abundance (in
terms of reads number) of known respiratory viruses and other viruses during the summer
than the winter period. The differences in viral abundance can be due to the number of
children recruited during the winter period, as fewer children presented to the hospital
with SARI and non-SARI cases during this time, resulting in fewer participants per pool,
thus less viral abundance. It can also be due to viral exposure, considering the sampling
period, where several non-pharmaceutical interventions (NPIs) such as wearing of mask
and constant hand sanitization were in place. Moreover, there was a build-up of social
restrictions alongside other NPIs into the winter period which may have affected viral
exposure and circulation, especially of respiratory viruses. Hence, there was a low pocket
of circulating and limited detection of respiratory viruses in the winter period.

Beside the weather-based sampling, the samples were also pooled based on pre and
during waves of COVID-19 experienced in the country (for the summer samples) and
based on months (for the winter samples). The rationale was to evaluate compositional
changes, if any, in the respiratory virome prior to COVID-19 declaration, over the different
COVID-19 waves and different winter months. Notably, no RSV reads were detected in
the SARI sample pools prior to COVID-19 lockdown declaration through the first wave.
Reads for RSV were only detected from second wave upwards. This agrees with a previous
study [56] where the surge in reported cases of RSV were noted from summer 2020 (during
second wave). Furthermore, the only reads detected for SARS-CoV-2 were from the pools
between COVID-19 declaration through first wave. Reads for SARS-CoV-2 would be
expected in at least more than one pool considering the study period; however, relatively
fewer reads for SARS-CoV-2 were detected. From our recent reports on the pathogen
profile of children with SARI using a multiplex real-time PCR in the same study settings
and period, comparatively higher Ct values (average of ≥33) were generally noted for
SARS-CoV-2 (inversely correlated with low viral load) in the child population [57]. If this
is also the case across the child population in this study in those possibly infected with
COVID-19, then suggestively SARS-CoV-2 viral reads recovery could have been impacted
or even masked by the more abundant host reads and could have resulted in missed
detection by mNGS [58–60], hence fewer reads for SARS-CoV-2. Moreover, Ct values
of ≤30 were previously reported for optimal detection of SARS-CoV-2 virus in whole
genome sequencing [61].

A major limitation of the study was the inability to attribute the occurrence of each
virus to individual participants due to the pooling of samples. In this regard, a larger
individual-based longitudinal sampling can be performed. This would allow a compre-
hensive elucidation of the length of stay of these viruses in the respiratory tract in health
and disease, and the existence or not of a permanent viral community in the respiratory
niche in each patient. Moreover, relatively fewer participants were recruited during the
winter period, a situation beyond control as fewer admissions were seen for both SARI and
Non-SARI cases. Furthermore, this study only focused on enrichment for RNA viruses and
thus cannot account for missed DNA viruses; thereby necessitating the need for further
studies on the DNA respiratory virome in children with and without SARI. Lastly, using a
0.22 µm filter may have resulted in the loss of larger viruses that could have been detected.
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Additionally, the non-SARI group included diverse groups of patients, with varying condi-
tions including meningitis, neurological disorders, and diarrhoea and may thus present
with detectable viruses (such as enterovirus and rotavirus) in their nasopharynx. In this
regard, some virome characteristics described in the non-SARI group may be confounded
by the diversity of some disorders in these patients.

5. Conclusions

This study provided remarkable pioneering data of the RNA respiratory virome
of children with and without SARI in South Africa during winter and summer when
the COVID-19 pandemic was at the peak before vaccination interventions. The diverse
distribution of viral reads in each sample pool, highlights similarities and differences both
within and between children with and without SARI. Despite the study’s exploratory
nature, it raised concerns about whether some of the viruses detected with unknown
pathogenicity may exacerbate clinical course or contribute to symptoms manifestation. It
also raises the question of whether the several known epidemic viruses detected in the
non-SARI group are transient or biomarkers for future respiratory infection. Moreover, the
detection of a distinct HRV A type in this study highlights the need for continuous genomic
surveillance of the respiratory virome for possible detection and characterization of other
distinct/novel strains which may have the potential for outbreak.

Of importance, considering the study sampling period, the virome composition could
have been impaired due to various NPIs against COVID-19 such as restriction of social
gatherings and wearing of mask; all of which significantly impacted viral circulation
of respiratory viruses. Consequently, there may be a need for other studies to evaluate
the spectrum/composition of respiratory virome in health and disease post-COVID-19;
of which this study would serve as an invaluable baseline. Lastly, the detection of ex-
pected/unexpected pathogenic viruses in both SARI and non-SARI groups, the detection
of viruses with potential to worsen the course of respiratory infection, and the detection
of other pathogenic viruses with unknown roles in respiratory infection further high-
lights the complexity of this niche in health and disease and may contribute further to the
understanding and management of SARI in children.
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