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Abstract: In order to limit the spread of the novel betacoronavirus (SARS-CoV-2), it is necessary
to detect positive cases as soon as possible and isolate them. For this purpose, machine-learning
algorithms, as a field of artificial intelligence, have been recognized as a promising tool. The aim of
this study was to assess the utility of the most common machine-learning algorithms in the rapid
triage of children with suspected COVID-19 using easily accessible and inexpensive laboratory
parameters. A cross-sectional study was conducted on 566 children treated for respiratory diseases:
280 children with PCR-confirmed SARS-CoV-2 infection and 286 children with respiratory symptoms
who were SARS-CoV-2 PCR-negative (control group). Six machine-learning algorithms, based on
the blood laboratory data, were tested: random forest, support vector machine, linear discriminant
analysis, artificial neural network, k-nearest neighbors, and decision tree. The training set was
validated through stratified cross-validation, while the performance of each algorithm was confirmed
by an independent test set. Random forest and support vector machine models demonstrated the
highest accuracy of 85% and 82.1%, respectively. The models demonstrated better sensitivity than
specificity and better negative predictive value than positive predictive value. The F1 score was higher
for the random forest than for the support vector machine model, 85.2% and 82.3%, respectively. This
study might have significant clinical applications, helping healthcare providers identify children with
COVID-19 in the early stage, prior to PCR and/or antigen testing. Additionally, machine-learning
algorithms could improve overall testing efficiency with no extra costs for the healthcare facility.

Keywords: children; infection; COVID-19; machine learning; laboratory

1. Introduction

The coronavirus disease (COVID-19), caused by a novel strain of betacoronavirus
(SARS-CoV-2), has marked the past two years with over 6.7 million deaths worldwide.
New cases are still being diagnosed but with predominantly mild clinical manifestations.
COVID-19 primarily occurs in the adult population, but children play a significant role in
the spread of the disease. Children with COVID-19 usually only have a few mild symptoms
or no symptoms at all, which is why they remain unrecognized. Additionally, newborns,
infants, and toddlers cannot wear protective masks in an appropriate way, and moreover,
they cannot clearly describe their health condition. Regardless of the disease’s severity and
the amount of viral load, it is important to consider that pediatric patients may contribute
to the transmission chain. For all of the above reasons, the pediatric population should
receive special attention during the current pandemic [1–3].

Even though viral pneumonia has been recognized as the main clinical presentation of
this disease, representing the main cause of its severity and mortality, SARS-CoV-2 infection
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may cause several complications in other organs, such as coagulation disorders (pulmonary
embolism, venous thromboembolism, hemorrhages, and acute ischemic stroke) with ab-
dominal involvement (acute mesenteric ischemia, pancreatitis, and acute kidney injury),
especially in severely ill patients and those admitted to the ICU, even in children [4,5].
According to the available data, fever occurs in almost 90% of patients and weakness in
70% of patients. A dry cough is present in more than 60% of patients. Nausea and vomiting
are pronounced in 5% of patients, and diarrhea occurs in almost 4% of patients [6]. Guan
et al. [7] showed that 15.74% of the patients had a severe clinical form of the disease. During
hospital treatment, more than 90% of patients were diagnosed with pneumonia. Acute
respiratory distress syndrome (ARDS) was confirmed in 3.4% of patients and septic shock
in slightly more than 1% of patients. Comorbid diseases, such as hypertension, cardiomy-
opathy, coronary artery disease, chronic kidney diseases, chronic lung disease, etc., are
significantly more common in patients with severe symptoms of the disease (38%) com-
pared to those with a milder form of the disease (21%). Based on the laboratory findings,
the occurrence of lymphopenia, which is commonly observed in adults with COVID-19,
was found in laboratory tests in only 5.5% of children diagnosed with the disease. The
estimated prevalence of leukopenia in pediatric COVID-19 patients was found to be 7.3%.
The prevalence rates for high C-reactive protein (CRP) levels, high LDH levels, high creatine
kinase MB (CK-MB) levels, high AST levels, and high erythrocyte sedimentation rate (ESR)
were estimated to be 14.0%, 17.4%, 43%, 12.3%, and 29.7%, respectively [8]. SARS-CoV-2
infection was commonly followed by hyperinflammation due to the excessive production
of proinflammatory cytokines, such as IL-1, IL-2, IL-6, IL-15, IL-18, TNF-α, IFN-γ, etc.
Numerous cytokines have been tested in order to reduce mortality, especially in critically
ill patients [9].

The gold standard for confirming the presence of the viral genome in a biological
sample is quantitative polymerase chain reaction (qPCR). Chest X-rays and computed
tomography (CT) were regarded as the main diagnostic tools for the diagnosis of COVID-
19. However, given the progressively increased availability of RT-PCR, CT changed from
being primarily a diagnostic tool to playing a prognostic role. In fact, evaluation of the CT
score became essential for proper patient management, proving to be essential for deciding
whether to hospitalize the patient in healthcare settings with limited resources and a
shortage of intensive care beds [10]. Although qPCR is an irreplaceable diagnostic tool in
the current pandemic, a prolonged turnaround time is often a significant issue. Additionally,
molecular diagnostics is relatively expensive, especially for developing countries, and
represents a significant burden for laboratory staff. Due to various factors, such as disease
prevalence, an increasing population, a rise in the usage of healthcare services, etc., the
diagnostic costs continue to rise [11]. Therefore, the question arises as to how to perform a
rapid triage of children with suspected COVID-19 prior to qPCR. Artificial intelligence (AI)
offers novel and more economical solutions. According to extensive cost–benefit research
by Khanna et al. [12], AI has been recognized as a promising and tremendously cost-saving
diagnostic tool.

The new technologies of Industry 4.0 have significantly influenced medicine in terms
of differential diagnosis, prognosis, and treatment of diseases. Hence, this digitalization
and transformation of medicine is also labeled Medicine 4.0. In this era of digitalization in
medicine, artificial intelligence has been recognized and used as a promising diagnostic
tool and support in the fight against COVID-19 [13,14]. In the largest number of papers
published so far, machine-learning algorithms were used to recognize X-ray and/or CT
abnormalities in SARS-CoV-2-positive patients [15], while fewer studies focused on clinical
laboratory parameters [16]. Most studies included an adult population, while the data
for the pediatric population are still insufficient. Additionally, laboratory markers have
been mostly used for prognosis rather than preliminary diagnosis and triage of COVID-19
patients [17].
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Therefore, the aim of this study was to assess the utility of the most common machine-
learning algorithms in the rapid triage of children with suspected COVID-19 using easily
accessible and less expensive laboratory parameters.

2. Materials and Methods

This cross-sectional study included 280 children with PCR-confirmed SARS-CoV-2
infection (COVID group), treated at the Institute for Children and Youth Health Care of
Vojvodina, Novi Sad, Serbia, in the period from March 2020 to December 2022. The control
group (non-COVID group) consisted of 286 children with respiratory symptoms who were
SARS-CoV-2 PCR-negative. The exclusion criteria were chronic diseases, malignancies,
hematological diseases, and missing data (Figure 1). The detection of SARS-CoV-2 antigen
in nasopharyngeal swab samples of children was performed by the qPCR technique at the
Institute of Public Health of Vojvodina, Novi Sad, Serbia. Children were divided into six
age groups according to chronological age: newborn (0–28 days), infant (1–12 months),
toddler (1–3 years), preschool (4–6 years), school (7–14 years), and adolescent (15–18 years).

Viruses 2023, 15, x FOR PEER REVIEW 3 of 11 
 

 

Therefore, the aim of this study was to assess the utility of the most common ma-
chine-learning algorithms in the rapid triage of children with suspected COVID-19 using 
easily accessible and less expensive laboratory parameters. 

2. Materials and Methods 
This cross-sectional study included 280 children with PCR-confirmed SARS-CoV-2 

infection (COVID group), treated at the Institute for Children and Youth Health Care of 
Vojvodina, Novi Sad, Serbia, in the period from March 2020 to December 2022. The con-
trol group (non-COVID group) consisted of 286 children with respiratory symptoms who 
were SARS-CoV-2 PCR-negative. The exclusion criteria were chronic diseases, malig-
nancies, hematological diseases, and missing data (Figure 1). The detection of 
SARS-CoV-2 antigen in nasopharyngeal swab samples of children was performed by the 
qPCR technique at the Institute of Public Health of Vojvodina, Novi Sad, Serbia. Children 
were divided into six age groups according to chronological age: newborn (0–28 days), 
infant (1–12 months), toddler (1–3 years), preschool (4–6 years), school (7–14 years), and 
adolescent (15–18 years). 

 
Figure 1. Workflow of predictive modeling. 

2.1. Data Acquisition 
Data on parameters of the complete blood count and baseline biochemical parame-

ters, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), gam-
ma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and C-reactive protein 
(CRP), were collected on the day of admission. All data were obtained through the in-
stitute’s laboratory information system using the structured query language (SQL) code 
as a searching tool. The blood samples were collected using 0.5 mL violet-topped mi-
crotubes with ethylenediaminetetraacetic acid dipotassium salt dehydrate (K2EDTA) as a 

Figure 1. Workflow of predictive modeling.

2.1. Data Acquisition

Data on parameters of the complete blood count and baseline biochemical parameters,
including aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-
glutamyl transferase (GGT), lactate dehydrogenase (LDH), and C-reactive protein (CRP),
were collected on the day of admission. All data were obtained through the institute’s
laboratory information system using the structured query language (SQL) code as a search-
ing tool. The blood samples were collected using 0.5 mL violet-topped microtubes with
ethylenediaminetetraacetic acid dipotassium salt dehydrate (K2EDTA) as a blood clot-
ting inhibitor (Becton Dickinson, Franklin Lakes, NJ, USA). The values were determined
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from the hematology analyzer Advia 2120 (Siemens Healthcare, Erlangen, Germany) and
chemistry analyzer DxC 700 AU (Beckman Coulter, Brea, CA, USA).

2.2. Data Preprocessing

First, all patients with missing data were excluded from the study, following one of
the above-mentioned eligibility criteria. Second, the outliers were identified as data points
located outside the whiskers of the box plot and excluded from further analysis. Third,
Spearman’s correlation was used to screen out highly correlated laboratory parameters
in order to minimize the number of input parameters (the threshold value was set to 0.4).
A correlation heatmap was used to visualize the strength of relationships between the
parameters (Figure S1). Fourth, min–max normalization was applied to transform each
parameter into the range [0, 1] in order to treat them with equal weight without distorting
the general distribution in the source data.

2.3. Baseline Statistical Analyses

Statistical analyses (descriptive and inferential) were performed using open-source
software, JASP version 0.16.4.0 (Department of Psychological Methods, University of
Amsterdam, Amsterdam, The Netherlands). The significance level for the calculated
differences was set at 0.05. For continuous random variables, the normality of distribution
was estimated using the Shapiro–Wilk test. Between-group differences were analyzed
using the Mann–Whitney U-test. Univariate logistic regression analysis was performed to
determine the parameters, which could predict COVID-19 occurrence.

2.4. Machine-Learning Algorithms

The following machine-learning algorithms were tested in this study: random forest
(RF), support vector machine (SVM), linear discriminant analysis (LDA), artificial neural
network (ANN), k-nearest neighbors (KNN), and decision tree (DT). All these algorithms
belong to supervised learning, and their goal is classification. The data set was divided
into two subsets: the training set and the test set, with an 80:20 split. The training set was
validated through stratified cross-validation, where each tuning cycle involved a different
non-overlapping holdout data set. The performance of each algorithm was confirmed by
additional, independent data set—the test set. The final evaluation of the model included
the calculation of accuracy, sensitivity, specificity, positive predictive value, and negative
predictive value from the confusion matrix, i.e., the table of predicted and actual values
of a classifier. The values were expressed as percentages. Discrimination between groups
(COVID and non-COVID) by machine-learning algorithms was presented using receiver
operating characteristics (ROC) curves.

2.5. Ethical Approval

The study was approved by the Ethics Committee of the Institute for Children and
Youth Healthcare of Vojvodina (22 July 2022; No. 3280–2).

3. Results

Following the eligibility criteria, in the period from March 2020 to December 2022, a
total of 566 children treated at the Institute for Children and Youth Health Care of Vojvodina,
Novi Sad, Serbia, were included in the study. The median age of the COVID-19 group was
4.2 years with a female share of 46.4%, while the median age of the non-COVID group was
3.8 years with a female share of 47.9%. Children were divided into six age groups according
to chronological age: newborn (7.6%), infant (15.9%), toddler (24.9%), preschool (18.6%),
school (17.8%), and adolescent (15.2%).

3.1. Clinical Laboratory Features

The initial data included 22 clinical laboratory parameters, a complete blood count,
and baseline biochemical parameters. After screening out highly correlated instances
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(Spearman’s rank correlation coefficient over 0.4), a total of 14 parameters were included
in further analysis: white blood cells (WBC), red blood cells (RBC), mean corpuscular
volume (MCV), mean corpuscular hemoglobin concentration (MCHC), platelets (PLT),
mean platelet volume (MPV), plateletcrit (PCT), platelet distribution width (PDW), absolute
lymphocyte count (LYM#), absolute eosinophil count (EOS#), AST, GGT, LDH, and CRP
(Table 1). Univariate logistic regression analysis was employed to examine the association
of individual laboratory parameters with the presence of SARS-CoV-2 infection in children.
The following parameters demonstrated significant diagnostic properties as independent
predictors: WBC, MCHC, MPV, and PDW (Table 1). PCR-SARS-CoV-2-negative children
had higher values of WBC and MCHC, while children with COVID-19 had higher values
of MPV and PDW.

Table 1. Laboratory findings as diagnostic markers for children with suspected COVID-19.

Laboratory
Parameter a

COVID
Group

(n = 280)

Non-COVID
Group (n = 286)

Overall
(n = 566)

p-Value
Univariate Analysis Multivariate Analysis

OR (95% CI) p-Value OR (95% CI) p-Value

WBC (109) 7.9 (5.6–11.8) 10.9 (7.9–15.2) 9.4 (6.6–13.9) <0.001 1.088
(1.055–1.123) <0.001 1.052

(1.016–1.089) 0.004

RBC (1012) 4.5 (4.1–4.9) 4.4 (4.1–4.8) 4.5 (4.1–4.8) 0.359 NA NA NA NA

MCV (fL) 80.7
(77.2–85.1) 79.9 (76.1–84.9) 80.1 (76.4–85) 0.130 NA NA NA NA

MCHC
(g/L) 340 (331–347) 344 (332–352) 342

(331.2–350) 0.003 1.039
(1.024–1.056) <0.001 1.029

(1.014–1.044) <0.001

PLT (109)
300

(217–386.2) 342 (239.5–403.5) 315
(230–392.8) 0.028 1.001

(0.999–1.003) 0.189 NA NA

MPV (fL) 7.8 (7.1–8.5) 7.4 (6.8–8) 7.5 (7–8.3) <0.001 1.028
(1.002–1.054) 0.031 1.001

(0.996–1.007) 0.387

PCT (%) 0.24
(0.18–0.3) 0.23 (0.18–0.3) 0.23

(0.18–0.3) 0.943 NA NA NA NA

PDW (%) 13.8
(11.7–16.3) 12.9 (11.7–14.6) 13.4

(11.7–15.5) 0.010 1.427
(1.283–1.587) <0.001 1.183

(1.090–1.283) <0.001

LYM# (109) 2.3 (1.4–3.9) 2.8 (1.9–4.9) 2.6 (1.6–4.4) <0.001 1.054
(0.956–1.161) 0.291 NA NA

EOS# (109)
0.07

(0.03–0.13) 0.1 (0.05–0.15) 0.09
(0.04–0.15) 0.889 NA NA NA NA

AST
(µkat/L)

0.62
(0.46–0.82) 0.57 (0.44–0.45) 0.58

(0.45–0.79) 0.048 0.821
(0.621–1.085) 0.165 NA NA

GGT
(µkat/L)

0.24
(0.18–0.47) 0.26 (0.19–0.56) 0.25

(0.18–0.52) 0.124 NA NA NA NA

LDH
(µkat/L)

4.39
(3.55–5.1) 4.68 (3.73–5.44) 4.4 (3.7–5.3) 0.017 1.107

(0.992–1.234) 0.068 NA NA

CRP (mg/L) 5.5 (1.2–30) 13.2 (2.7–71.6) 9.7 (1.6–53.7) <0.001 1.002
(0.999–1.005) 0.171 NA NA

a Values are median (interquartile range: Q1–Q3); Mann–Whitney U-test. WBC—White blood cells.
RBC—Red blood cells. MCV—Mean corpuscular volume. MCHC—Mean corpuscular hemoglobin concen-
tration. PLT—Platelet. MPV—Mean platelet volume. PCT—Plateletcrit. PDW—Platelet distribution width.
LYM#—Absolute lymphocyte count. EOS#—Absolute eosinophil count. AST—Aspartate aminotransferase.
GGT—Gamma-glutamyl transferase. LDH—Lactate dehydrogenase. CRP—C-reactive protein. Values in bold are
statistically significant.

3.2. Machine-Learning Algorithm Performances

A comparison of six investigated machine-learning algorithms, based on the standard
evaluation metrics, was carried out with a reduced number of instances (Table 2).
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Table 2. Machine-learning classifiers for the rapid triage of children with suspected COVID-19.

Classifier Accuracy (%) Sensitivity (%) Specificity (%)
Positive

Predictive Value
(%)

Negative
Predictive Value

(%)

F1 Score
(%)

Random forest 85.0 86.0 83.9 84.5 85.5 85.2

Support vector machine 82.1 84.8 79.4 80.0 84.4 82.3

Linear discriminant analysis 78.8 81.1 76.7 75.4 82.1 78.1

Neural network 76.1 72.6 80.4 81.8 70.7 76.9

k-nearest neighbors 73.5 71.0 76.5 78.6 68.4 74.6

Decision tree 68.1 65.5 70.7 67.9 68.3 66.7

The RF and SVM models demonstrated the highest accuracy of 85% and 82.1%, re-
spectively, while all the other algorithms classified instances with an accuracy lower than
80%. The RF and SVM models demonstrated better sensitivity than specificity and better
negative predictive value than positive predictive value. The F1 score, which combines
positive predictive value (precision) and sensitivity (recall) using their harmonic means,
was higher for the RF than for the SVM model, 85.2% and 82.3%, respectively. After evalu-
ating the performance of the best model (in our study, this was the RF model), the feature
importance was compared based on its increase in node purity, i.e., its mean decrease in
accuracy. The most prominent instances (node purity over 0.01) were shown to be MPV,
WBC, MCHC, PDW, and LYM#. Discrimination between groups (COVID and non-COVID)
by machine-learning algorithms was presented using receiver operating characteristics
(ROC) curves (Figure 2).
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4. Discussion

In order to limit the spread of the SARS-CoV-2 virus, it is necessary to detect positive
cases as soon as possible and isolate them. However, the small number of available
qPCR tests, their high price, and the relatively high percentage of false negative results of
these tests brought about the need for additional diagnostic tools [18]. Machine-learning
algorithms for automatic disease detection have been increasingly applied in different
areas of medicine. Machine learning is a field of artificial intelligence, which provides
systems with the ability to automatically learn from experience. The main purpose of these
models is to find appropriate patterns in the data, i.e., to produce statistically reliable and
reproducible results [19,20].

In this study, the authors evaluated the performance of the six most common machine-
learning algorithms: RF, SVM, LDA, ANN, KNN, and DT. The RF and SVM models
outperformed the others with an accuracy of 85% and 82.1%, respectively. Both algo-
rithms fall under supervised machine learning. The task of supervised machine-learning
algorithms is to “learn” the prediction function h(x) based on a given training data set,
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so that h(x) is an optimal approximation of the target classes, in this case COVID and
non-COVID [20,21].

The SVM machine-learning technique solves the problems of non-linear classification
and regression using convex quadratic programming methods. This model only uses
instances from the training set that contribute most to the optimal solution of the quadratic
programming problem, forming the so-called support vectors. SVM is a very popular
and reliable prediction method. During the COVID-19 pandemic, its application has been
confirmed for diagnostic purposes [22–24], mortality risk assessment [25,26], detecting
undertriage in telephone triage [27], etc.

Unlike SVM, which belongs to the category of “individual” algorithms in supervised
machine learning, RF belongs to the class of ensemble methods, which combine the results
of several individual methods in a certain way. This approach aims to obtain better
prediction results than any of the individual methods. For RF construction, an ensemble
is formed consisting of several hundred to several thousand DTs. The advantages of
DTs, compared to other machine-learning methods, are their simplicity of implementation
and the comprehensibility of the procedure. There are rules by which trees are quickly
formed, and the output can be easily interpreted. In addition, DTs allow attributes to have
missing values, which is not the case with SVM. However, one of the disadvantages of
the DT method is its instability. A small change in the input training data can lead to
a significant change in the topology of the tree. Instability occurs due to many possible
splits, which often have approximately the same importance (competitor splits). Therefore,
a small change in the data can lead to a completely different partition, which further
introduces changes to all the branches of the tree below it. RF overcomes these limitations
by aggregating the prediction results of hundreds of individual trees [21]. Therefore, the RF
model has been widely used during the COVID-19 pandemic for disease diagnosis [28,29],
predicting patient outcomes [30–32], recommending hospitalization [33], processing of
healthcare and travel data to identify COVID-infected people [34], etc.

The evaluation metrics for the RF and SVM models based on clinical laboratory data
reported in other studies were similar to this study. Our RF model demonstrated an
accuracy of 85%, while Çubukçu et al. [35] reported an accuracy of 85.2% in their RF
model using complete blood count parameters and clinical chemistry parameters as input
variables, but in an adult population. Our SVM model demonstrated an accuracy of 82.1%,
thus outperforming a model proposed by Thimoteo et al. [36], who reported an accuracy of
73.7% in their SVM model, including complete blood count parameters only, as well as an
adult population.

The model presented in this study cannot outperform the PCR method, which is
considered the diagnostic gold standard, with an average efficiency of over 96% [37].
Conversely, the suggested model outperformed the immunochromatography method used
in the rapid SARS-CoV-2 antigen tests. In the beginning of the pandemic, only a few antigen
tests received emergency use authorization (EUA) from regulatory authorities, indicating
their acceptable performance [38]. Subsequently, some of them were reported to have a
sensitivity of no more than 30% [39]. Since these tests were widely used for diagnosing
active infections, their performance has significantly improved over time. One of the most
commonly used rapid antigen tests at our institute has an overall sensitivity of 79.6% [40].
Our RF and SVM models demonstrated a sensitivity of 86% and 84.8%, respectively.

Including additional clinical biochemical analyses in a machine-learning algorithm,
such as ferritin [41], fibrinogen, D-dimer [42], procalcitonin, interleukin-6 [43], etc., may
increase the accuracy, sensitivity, and specificity of the model. However, minimal blood
sample volume is imperative in pediatric health research. For example, a complete blood
count analysis can be performed using a total blood volume of 25 µL. Blood volume
overdraws in pediatric laboratory medicine should always be taken into consideration
from a legal and ethical perspective [44].

Children experience milder symptoms during the course of the SARS-CoV-2 infection
in comparison to adult individuals. Age-related differences may reflect disease severity.
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These age-related differences include differences in immunity, differences in binding affinity
of the SARS-CoV-2 target receptors, etc. [45,46]. In our study, children were divided into
six age groups according to chronological age: newborn (0–28 days), infant (1–12 months),
toddler (1–3 years), preschool (4–6 years), school (7–14 years), and adolescent (15–18 years).
According to the systematic review conducted by Carobene et al. [47], only half of the
PubMed and Scopus publications on the application of artificial intelligence in COVID-
19 diagnostics take demographic data, such as gender and age, into consideration. The
reference ranges in pediatric laboratory medicine are strictly defined and age-dependent.
Therefore, it is mandatory to compare individuals within the same age group. This is
often overlooked by many researchers, which produces misleading conclusions. Another
important consideration and strength of the study is the period in which the children
were included, i.e., March 2020–December 2022. This period covers several waves of the
pandemic, both before and after the vaccination program had started.

Data on laboratory-based machine-learning approaches for the detection and triage
of children with COVID-19 are scarce. Previous studies were mainly focused either on
the adult population or, in the case of pediatric population, on radiological rather than
laboratory findings, and on outcome rather than detection. With that being considered, this
study is a unique contribution to pediatric laboratory medicine.

Multiplex PCR and rapid panel antigen tests (lateral immunochromatography) are
used in the diagnosis of viral infections in pediatrics. However, the healthcare system faces
a constant challenge in finding an additional diagnostic modality, which is fast, reliable, and
cheap, such as AI algorithms. Nevertheless, the potential drawbacks of machine learning
in personalized laboratory medicine should be taken into consideration. Diagnostics
should always strongly rely on human skills, including physical examination, critical
perception of medical history, etc. Machine-learning algorithms provide multi-dimensional
biomedical data, which should not be overrated and should only be observed as supporting
information for making a final diagnosis [48].

Analyzing the cost–benefit properties of the algorithms proposed in this study, it can
be concluded that the healthcare system can benefit from these algorithms in terms of both
time and money. The turnaround time for SARS-CoV-2 qPCR tests can vary depending on
several factors, including testing capacity and demand, laboratory workload and staffing,
supply chain issues, transportation, logistics, etc. The average turnaround time for SARS-
CoV-2 qPCR tests ranges from a few hours to a couple of days [49]. On the contrary,
laboratory tests used as input data in the proposed algorithm can be performed within a
few minutes, and the algorithm can deliver results within a few seconds. Taking finances
into consideration, the proposed algorithms have an advantage over the SARS-CoV-2
qPCR test. The price for a single SARS-CoV-2 qPCR test may vary depending on several
factors, such as the country and healthcare system. However, the average price ranges from
around USD 50 to USD 200 per test. On the other hand, the baseline laboratory parameters
used in this study can be obtained from automated clinical chemistry analyzers for no
more than USD 50 [50,51]. Moreover, all the parameters used in this study are part of
routine testing upon admission to our institute. Therefore, the proposed algorithm entails
no additional laboratory-related cost. Furthermore, the statistical package used in this
study is an open-source program without the need for license-related costs. Based on
the above-mentioned claims, it can be inferred that the implementation of the proposed
machine-learning algorithms could improve overall testing efficiency with no extra costs
for the healthcare facility.

The use of machine learning in COVID diagnostics has several clinical implications,
which can greatly impact the detection and management of the disease, such as early
detection and diagnosis, improved accuracy and efficiency, risk stratification and prognosis,
personalized treatment plans, monitoring disease trends and outbreaks, etc. It is important
to note that while machine learning holds great promise, it should be integrated into clinical
practice with caution. Rigorous validation, ethical considerations, and ongoing monitoring
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are necessary to ensure the reliability, safety, and ethical use of machine-learning models in
COVID diagnostics [52,53].

There are certain limitations to the approach proposed in this study and some practical
considerations for future research to be considered. First, this is a single-center study,
which only includes a limited number of children. Second, the pediatric patients in this
study are all European. Performing multi-institutional and multi-national studies could
evaluate whether the proposed models could perform well in other human races. Third,
all children with underlying conditions were excluded from the proposed study, making
its clinical applicability for children with co-infections limited. Fourth, only blood counts
and baseline biochemical parameters were included in the study, as they are easily and
immediately obtained at admission. However, other non-laboratory parameters could also
be included, resulting in a potentially better diagnostic model. Fifth, the control group was
heterogeneous, without a specific pathogen classification. They were all labeled only as
non-COVID, i.e., SARS-CoV-2-negative.

5. Conclusions

Herein, the six most common machine-learning algorithms for the rapid triage of
children with suspected COVID-19 were presented and validated. The RF and SVM models
outperformed the others with fairly high accuracy. Thereby, a set of clinical laboratory
features with markedly high prediction potential was identified, including MPV, WBC,
MCHC, PDW, and LYM#. The results of this study might have significant clinical applica-
tions, helping healthcare providers identify children with COVID-19 in the early stages,
prior to PCR and/or antigen testing. Additionally, machine-learning algorithms could
improve overall testing efficiency with no extra costs for the healthcare facility. However,
the potential drawbacks of machine learning in personalized laboratory medicine should
be taken into consideration.
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