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Abstract: The L 1 region of bovine adenovirus (BAdV)-3 encodes a multifunctional protein named
protein VII. Anti-protein VII sera detected a protein of 26 kDa in transfected or BAdV-3-infected cells,
which localizes to nucleus and nucleolus of infected/transfected cells. Analysis of mutant protein VII
identified four redundant overlapping nuclear/nucleolar localization signals as deletion of all four
potential nuclear/nucleolar localization signals localizes protein VII predominantly to the cytoplasm.
The nuclear import of protein VII appears to use importin α (α-1), importin-β (β-1) and transportin-3
nuclear transport receptors. In addition, different nuclear transport receptors also require part of
protein VII outside nuclear localization sequences for efficient interaction. Proteomic analysis of
protein complexes purified from recombinant BAdV-3 expressing protein VII containing Strep Tag II
identified potential viral and cellular proteins interacting with protein VII. Here, we confirm that
protein VII interacts with IVa2 and protein VIII in BAdV-3-infected cells. Moreover, amino acids
91–101 and 126–137, parts of non-conserved region of protein VII, are required for interaction with
IVa2 and protein VIII, respectively.

Keywords: BAdV-3; protein VII; Importins; NLS/NoLS; protein–protein interactions

1. Introduction

Bovine adenovirus (BAdV)-3 is a non-enveloped, double-stranded DNA virus which
belongs to Mastadenovirus genus. The genome is 34446bp in length and can be divided into
early, intermediate and late regions [1]. The inner core (genome, protein VII, protein V,
protein IVa2, protein X, protease and terminal protein) and the outer capsid (hexon, penton
base and fiber) of the icosahedral virus are connected by four cementing proteins named
protein IIIa, protein VI, protein VIII and protein IX, which are organized into two distinct
layers [2].

Production of progeny adenovirus requires proteins encoded by intermediate and
late region of members of Mastadenovirus genus to localize from the cytoplasm to nu-
cleus/nucleolus of infected cells [3]. While most adenovirus proteins contain motifs
required to localize the protein to nucleus [3–5], some adenovirus proteins utilize and
interact with other adenovirus proteins to localize to the nucleus [6]. Irrespective of the
mode of nuclear transport of adenoviral proteins, specific motifs called nuclear localization
signals (NLSs) present in these proteins need to interact with importin and/or transportin-3
receptors before passing through the nuclear pore complex (NPC) [5–7]. In contrast, the
nucleolar transport of viral protein requires retention of viral protein in the nucleolus
by interaction of undefined motifs of proteins designated nucleolar localization signals
(NoLSs) with resident nucleolar protein or RNA [8].
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Adenovirus protein VII, a most abundant core protein encoded by late region [1] of
the genome, acts as a functional analog of the cellular histone [9,10]. Moreover, interaction
of protein VII with viral and cellular proteins facilitates the involvement of protein VII in
different aspects of the adenovirus–host interaction [11]. Although protein VII appeared to
be involved in condensing genomic DNA into the virion [12,13], a recent report suggests
that protein VII is not required for condensing genomic DNA into capsids [14].

While location of proteins encoded by members of Mastadenovirus genus appears
conserved [15], recent reports suggest that structure and function of many homologous
proteins encoded by members of Mastadenovirus genus may not be conserved [3,16–18].
Interestingly, BAdV-3 protein VII shows 39–45% homology with protein VII encoded by
other members of Mastadenovirus genus. Since BAdV-3 protein VII shows lower degree of
homology, we characterized BAdV-3 protein VII. Here, we report the subcellular localization
and stable interactions of BAdV-3 protein VII with other viral and cellular proteins which
may play important roles in BAdV-3 life cycle.

2. Materials and Methods
2.1. Cell Lines and Viruses

Madin–Darby bovine kidney (MDBK) (ATCC CCL22), cotton rat lung fibroblast (CRL; [19])
and VIDO DT1 (cotton rat lung fibroblast [19] expressing endonuclease I-SceI) [20]) cells were
propagated at 37 ◦C and 5% CO2 in minimal essential medium (MEM; Sigma, Tokyo, Japan).
The Human embryo kidney (HEK 293T) (ATCC CRL-11268) and African green monkey
kidney (Vero) (ATCC CCL-81) cells were propagated in Dulbecco’s modified minimal
essential medium (DMEM; Sigma). All media were supplemented with heat-inactivated
10% fetal bovine serum (FBS; SAFC industries, Sigma), 10 mM HEPES (Gibco), 0.1 mM
nonessential amino acids (NEAA; Gibco), and 50 µg/mL gentamicin (Bio Basics). MDBK
and CRL cells (only non-bovine cells) are used mainly for growing bovine adenoviruses.
Due to high transfection efficiency, HEK293T cells are used for Western blots. Vero cells
are usually used for sub-cellular localization as these cells have a distinct nucleus and a
cytoplasm. VIDO DT1 cells are used for generating recombinant BAdV-3. Yeast S288c cells
was a gift from Dr. Troy Harkness, University of Saskatchewan, Canada. Wild-type BAdV-3,
BAV304a (E3 region replaced with EYFP [expressing enhanced yellow fluorescent protein]
under CMV promoter) [20] and recombinant BAV.VII.Strep (this study) was propagated in
MDBK cells [1] in MEM supplemented with 2% fetal bovine serum.

2.2. Antibodies

Anti-HA mouse monoclonal antibody (A1978), anti-nucleolin rabbit polyclonal anti-
body (N2662), anti -nucleolin mouse monoclonal antibody (SAB1305550) and anti-β-Actin
mouse monoclonal antibody (H9658) were purchased from Sigma, Canada. Alexa 488-
conjugated goat anti-mouse antibody (catalog #115-545-003) was purchased from Invitro-
gen, Burlington, ON, Canada. FITC-conjugated goat anti-rabbit antibody, FITC-conjugated
goat anti-mouse, alkaline phosphatase (AP)-conjugated goat anti-rabbit IgG, alkaline phos-
phatase (AP)-conjugated goat anti-mouse IgG, TRITC-conjugated goat anti-rabbit antibody
and TRITC-conjugated goat anti-mouse were purchased from Jackson Immune Research.
Production and characterization of antibodies against BAdV-3 protein VII [21], DNA bind-
ing protein (DBP) [22], protein VIII [23] and protein IVa2 [5] have been described previously.

2.3. Plasmid Construction

Plasmid pC.HA (plasmid pcDNA3 containing 3HA tag) was provided by Dr. Joyce
Wilson, University of Saskatchewan, Canada. Plasmid pGC.linker and pGN.linker were
gifted by Dr. Abraham Loyter, Hebrew University, Jerusalem, Israel. The plasmids en-
coding GST-fused importin α-1, importin α-3, importin α-5, importin α-7 and importin
β-were kindly provided by M. Kohler and have been described [24]. Plasmid-expressing
GST-importin α-9-fused protein was kindly provided by Dr. Yuh Min Chook, UT South-
western Medical Center, Dallas, USA. Plasmid-expressing GST-fused importin α-11 was



Viruses 2024, 16, 732 3 of 23

kindly provided by Dr. Scott M. Plafker, Oklahoma Medical Research Foundation (OMRF),
Oklahoma City, OK, USA. Plasmid-expressing GST importin 13 was provided by Dr. David
Jans, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. Plasmid
pGST-TRN-SR2 was a gift from Dr. Woan-Yuh Tarn and has been described [25]. Plasmid
pRSETnucleolin was purchased from Addgene.

The details of the construction of other plasmids used in this study are depicted in
Supplementary File.

2.4. Transfection

293T or VIDO DT1 cells were transfected with individual plasmid DNA (5 µg/106 cells)
using Lipofectamine TM 2000 (Invitrogen) as per manufacturer’s instructions. After 4–6 h
post transfection, the transfection medium was replaced with fresh medium containing 2%
FBS, and the cells were incubated for indicated times for further analysis.

2.5. Western Blotting

Proteins from the lysates of the cells infected with virus or transfected with plasmid
DNA were detected by Western blotting as described [26] using protein-specific antiserum
and alkaline phosphatase-conjugated secondary antibodies.

2.6. Indirect Immunofluorescence Assay

Virus-infected or plasmid DNA-transfected cells were fixed with 3.7% paraformalde-
hyde for 15 min before permeabilizing with 0.5% Triton X-100 followed by blocking with
5% FBS. After blocking the cells with 5% FBS for 60 min, the cells were incubated with
protein-specific primary antibody followed by fluorophore-conjugated secondary anti-
bodies. Finally, the cells were mounted with mounting medium (VectaShield) containing
4′, 6-diamidino-2-phenylindole (DAPI) and imaged under Zeiss LSM 5 Laser scanning
confocal microscope.

2.7. GST Pull-Down Assay

GST fusion proteins (Importin α1, α3, α5, α7, α9, α11, α13, β1 and transportin-3)
were purified from E. coli BL21 transformed with individual plasmid DNA by glutathione
Sepharose beads (Cytiva, Marlborough, USA). Individual purified proteins were mixed
with the lysate of 293T cells transfected with plasmid pC.HA.VII DNAs. After a 2 h incuba-
tion, the beads with the attached protein complexes were pulled down by centrifugation,
washed extensively and analyzed by Western blot using anti-HA MAb.

2.8. Bimolecular Fluorescence Complementation (BiFC) Analysis

The BiFC assay was performed as described earlier [27]. Briefly, the competent yeast
cells were co-transfected with indicated plasmid DNAs according to the polyethylene
glycol –Lithium acetate (PEG-LiAc) method (Clontech Laboratories 2009). Co-transformed
cells were plated on to a selective drop-out medium supplemented with 2% glucose in the
absence of urease and histidine and incubated at 30 ◦C for 3–5 days. Finally, the colonies
were picked, spread and fixed on slides, mounted with a mounting medium containing
DAPI (Vectashield) and examined using a Zeiss LSM 5 laser scanning confocal microscope.

2.9. Isolation of Recombinant BAdV-3 (BAV.VII.ST)

Recombinant BAdV-3-expressing protein VII containing Strep Tag was isolated as
described [28]. The monolayer of VIDO DT1 cells in a six-well plate was transfected with
2–4 µg of plasmid pUC304a.VII.Strep DNA using Lipofectamine 2000 reagent (Invitrogen).
At 4–6 h post transfection, the medium was replaced with fresh MEM containing 2% FBS.
The cells were observed daily for cytopathic effect (CPE). Once CPE developed, the cells
were harvested, freeze-thawed three times and propagated in MDBK cells. The recombinant
was designated as BAV.VII.ST.
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2.10. Virus Growth

Monolayers of MDBK cells in 24-well plates were infected with wild-type or recombi-
nant BAdV-3 at MOI of 5. After adsorption for 2 h at 37 ◦C, the inoculum was removed
and the cells were incubated in a fresh medium containing 2% FBS. At indicated times
post infection, the infected cells were harvested, freeze-thawed three times and centrifuged
at 3500 rpm for 5 min at 4 ◦C. Finally, the supernatant was collected and used to infect
fresh monolayers of MDBK cells in triplicate. The cells were observed for fluorescent focus
forming units and the titer was expressed as FFU/mL as described [26].

2.11. Purification and Identification of the Strep-Tagged Protein Complex

Strep-Tagged protein complexes were identified as described earlier [28]. Briefly,
MDBK cells infected with BAV304a [20] or BAV.pVII.ST at a MOI of 5 were collected at 32
and 48 h post infection. The cells were washed with PBS and lysed with a cell lysis buffer
(cell signaling technologies) supplemented with phenylmethylsulfonyl fluoride (PMSF).
The cell lysates were centrifuged at 14,000× g for 15 min at 4 ◦C and supernatants were
used to purify the Strep-Tagged protein complex using Strep-tactin sepharose according
to the manufacturer’s instruction. Briefly, the prewashed strep-tactin sepharose with
buffer W (100 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1 mM EDTA) was incubated with the
supernatant at 4 ◦C. After overnight incubation, the lysate–sepharose mixture was drained
to a polyprolene column. Non-specifically bound proteins were washed off with buffer
W. Finally, the proteins attached to the sepharose beads were eluted with buffer E (buffer
W containing 2.5 mM desthiobiotin), concentrated with an MWCO 10 kDa centrifugal
filter (Millipore). The proteins in the Strep-Tagged protein VII complex were separated
by SDS-PAGE and detected by silver staining. Finally, the protein in the complexes was
identified by LC-MS/MS analysis at University of Victoria-Genome BC Proteomics Centre.

2.12. Co-Immunoprecipitation (Co-IP) Assay

MDBK or 293T cells infected with BAV304a [20] or co-transfected with indicated plas-
mid DNAs, collected after 48 h post infection/transfection, were lysed with a lysis buffer.
The proteins from the lysates were incubated with indicated protein specific antibodies
before protein complexes were precipitated using protein A-agarose (Thermo-Scientific,
Irwindale, CA, USA). After 12 h of incubation at 4 ◦C, the immune complexes were washed
with PBS to remove non-specific bindings. Finally, the proteins in the immune complexes
were separated by 12% SDS-PAGE, which was analyzed by Western blotting using indicated
protein-specific antibodies as described [29].

3. Results
3.1. Sequence Analysis of BAdV-3 Protein VII

First, homology between protein VII encoded by members of Mastadenovirus was
analysed using the Clustalw program. As seen in Figure 1, compared to middle and
C-terminus of protein VII, N-terminus shows higher degree of homology. Second, analysis
of BAdV-3 protein VII by NLS mapper [30] and SBC software predicted the potential nuclear
localization signals (NLS) located at amino acids 84–89, amino acids 95–99, amino acids
113–121 and amino acids 142–145 (Figure 1). Finally, predict protein software [31] was used
to identify (between amino acids 52–53 of protein VII) the potential site (characteristics:
hydrophilic region, not a potential protein binding site, disordered region) for insertion of
Strep tag II motif (WSHPQFEK).
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sequences of protein VII of BAdV-3 (Genbank accession #NP0463119), HAdV-2 (Genbank accession #
AP_000171.1), HAdV-5 (Genbank accession # AP000207.1), porcine adenovirus (PAdV)-3 (Genbank
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Ovine adenovirus (OAV)-A (AP 000010.1). The identical amino acids are marked by (*) and shown in
yellow color. The conserved amino acids are shown by (:). Predicted NLS are shown by box. BAdV-3
(red box); HAdV-5 (sky blue box).

3.2. Characterization of Protein VII

The cells infected with virus or transfected with indicated plasmid DNA (Figure 2A)
were analyzed by Western blot using anti-VII sera [21] or anti-HA MAb. As seen in
Figure 2B, anti-VII sera detected a protein of 26 kDa in BAdV-3-infected cells. No such
protein could be detected in mock-infected cells. Similarly, anti-HA MAb detected a protein
of 26 kDa in cells transfected with plasmid pC.HA.VII DNA. No such protein could be
detected in plasmid pcDNA.3HA DNA-transfected cells.

To assess the subcellular localization of protein VII, infected or plasmid DNA trans-
fected cells were analyzed 48 hr post infection/transfection by indirect immunofluorescence
using anti-pVII serum or anti-HA MAb. As seen in Figure 2C, protein VII expressed in
BAdV-3-infected (Panels a–c) or plasmid pC.HA.VII DNA-transfected cells localized in the
nuclei (Panels d–f) of the cells. No such fluorescence could be detected in mock-infected
cells (Panels g–i).

To determine whether protein VII is actively transported to the nucleus, subcellular
localization of fusion protein VII-GFP-β-gal (amino acids 1–171 of BAdV-3 protein VII
fused to N-terminus of cytoplasmic fusion protein GFP.β-gal [32]) was analyzed by direct
fluorescence. As expected, the GFP.β-gal protein localized to the cytoplasm (Figure 2E,
Panels d–f) of plasmid pGFP.β-gal DNA (Figure 2D)-transfected cells. Interestingly, fusion
protein VII-GFP-β-gal localized to the nucleus of cells (Figure 2E, Panels g–i) transfected
with plasmid pVII-GFP-β-gal (Figure 2D) DNA.

Moreover, fluorescent signals for protein VII and nucleolin coincide in the cells (Figure 2F,
Panels a–d) transfected with plasmid pC.HA.VII DNA (Figure 2A) or cells infected with
BAdV-3 (Figure 2F, Panels e–h).

The percentage of cells showing similar display of protein distribution is summarized
in Supplementary File (Table S10).



Viruses 2024, 16, 732 6 of 23

Viruses 2024, 16, x FOR PEER REVIEW 6 of 23 
 

 

The percentage of cells showing similar display of protein distribution is summa-
rized in Supplementary file (Table S10). 

 
Figure 2. Expression of BAdV-3 protein VII. (A). Schematic diagram of proteins encoded by plasmid 
DNA. Amino acid numbers are depicted. The name of the plasmid is shown on the right of the 
panel. Hemagglutinin Tag (HA). (B). Western blot. Proteins from the lysates of BAdV-3-infected cells 
or plasmid pC.HA.VII DNA-transfected cells were separated by 12% SDS-PAGE, transferred to ni-
trocellulose and probed in Western blot using anti-pVII sera or anti-HA MAb. Molecular weight 
markers (MW), mock (uninfected/untransfected cells). (C–F). Sub-cellular localization of protein VII. 
(C). Nuclear localization of protein VII. CRL cells were infected with BAdV-3 (Panels a–c). After 48 
h post infection, the cells were fixed with 3.7% formaldehyde and 0.2% TritonX-100. The location of 
protein VII was analyzed by indirect fluorescence using anti-VII serum [21]. The nuclei were stained 
with DAPI. Vero cells were transfected with plasmid pC.HA.VII DNA (Panels d–f). After 48 h post 
transfection, the cells were fixed with 3.7% formaldehyde and 0.2% TritonX-100. The location of 
protein VII was analyzed by indirect fluorescence using anti-HA MAb. The nuclei were stained with 
DAPI. The scale bar (3 µm) is shown as a black box. (D). Schematic diagram of proteins encoded by 
plasmid DNA. Amino acid numbers are depicted. The name of the plasmid is shown on the right of 
the panel. (E). Subcellular localization of VII-GFP--gal fusion protein. Vero cells were transfected 
with plasmid pGFP--gal DNA (Panels d–f) or plasmid pVII-GFP--gal DNA (Panels g–i). After 48 
h post transfection, the cells were fixed with 3.7% formaldehyde and 0.2% TritonX-100. The location 
of fusion protein VII-GFP--gal was analyzed by direct fluorescence. The scale bar (5 µm) is shown 
as a black box (F). Nucleolar localization of protein VII. Vero cells transfected with plasmid 
pC.HA.VII DNA (Panels a–d). After 48 h post transfection, the cells were fixed with 3.7% formalde-
hyde and 0.2% TritonX-100 and analyzed using anti-HA MAb and anti-nucleolin rabbit sera fol-
lowed by TRITC-conjugated goat anti-mouse IgG and FITC-conjugated goat anti-rabbit IgG using 

Figure 2. Expression of BAdV-3 protein VII. (A). Schematic diagram of proteins encoded by plasmid
DNA. Amino acid numbers are depicted. The name of the plasmid is shown on the right of the
panel. Hemagglutinin Tag (HA). (B). Western blot. Proteins from the lysates of BAdV-3-infected
cells or plasmid pC.HA.VII DNA-transfected cells were separated by 12% SDS-PAGE, transferred to
nitrocellulose and probed in Western blot using anti-pVII sera or anti-HA MAb. Molecular weight
markers (MW), mock (uninfected/untransfected cells). (C–F). Sub-cellular localization of protein VII.
(C). Nuclear localization of protein VII. CRL cells were infected with BAdV-3 (Panels a–c). After 48 h
post infection, the cells were fixed with 3.7% formaldehyde and 0.2% TritonX-100. The location of
protein VII was analyzed by indirect fluorescence using anti-VII serum [21]. The nuclei were stained
with DAPI. Vero cells were transfected with plasmid pC.HA.VII DNA (Panels d–f). After 48 h post
transfection, the cells were fixed with 3.7% formaldehyde and 0.2% TritonX-100. The location of
protein VII was analyzed by indirect fluorescence using anti-HA MAb. The nuclei were stained with
DAPI. The scale bar (3 µm) is shown as a black box. (D). Schematic diagram of proteins encoded
by plasmid DNA. Amino acid numbers are depicted. The name of the plasmid is shown on the
right of the panel. (E). Subcellular localization of VII-GFP-β-gal fusion protein. Vero cells were transfected
with plasmid pGFP-β-gal DNA (Panels d–f) or plasmid pVII-GFP-β-gal DNA (Panels g–i). After 48 h post
transfection, the cells were fixed with 3.7% formaldehyde and 0.2% TritonX-100. The location of fusion
protein VII-GFP-β-gal was analyzed by direct fluorescence. The scale bar (5 µm) is shown as a black box
(F). Nucleolar localization of protein VII. Vero cells transfected with plasmid pC.HA.VII DNA (Panels a–d).
After 48 h post transfection, the cells were fixed with 3.7% formaldehyde and 0.2% TritonX-100 and analyzed
using anti-HA MAb and anti-nucleolin rabbit sera followed by TRITC-conjugated goat anti-mouse IgG and



Viruses 2024, 16, 732 7 of 23

FITC-conjugated goat anti-rabbit IgG using confocal microscope TCS SP5 (Leica). CRL cells were
infected with BAdV-3 (panels e–h). After 48 h post infection, the cells were fixed with 3.7% formalde-
hyde and 0.2% TritonX-100 and analyzed by indirect immunofluorescence using anti-pVII sera and
anti-nucleolin MAb followed by TRITC-conjugated goat anti-rabbit IgG and FITC-conjugated goat
anti-mouse IgG using confocal microscope TCS SP5 (Leica). The nuclei were stained with DAPI. The
scale bar (8 µm) is shown as a black box.

3.3. Identification of Functional Nuclear/Nucleolar Localization Sequences of Protein VII

To identify motifs involved in nuclear localization of protein VII (Figure 3A,D), plas-
mids expressing mutant protein VII (containing substitution of arginines with alanines in
potential NLSs) fused to the HA tag [33] were constructed (Figure 3B,E). Vero cells were
transfected with individual mutant plasmid DNAs and analyzed by indirect immunofluo-
rescence assay at 48 h post transfection. As seen in Figure 3C, substitution of arginines with
alanines in individual potential NLS1 (Panels g–i), NLS2 (j–l), NLS3 (Panels m–o) or NLS4
(Panels p–r) did not alter the nuclear localization of protein VII (Panels d-f). However,
substitution of arginines with alanines (Figure 3F) in two (Panels g–i) or three (Panels j–l)
potential NLS sites localizes protein VII both in the nucleus and the cytoplasm. Interestingly,
substitution of arginines with alanines in four potential NLS sites abolishes the nuclear
localization of protein VII (Panels m–o).
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nuclear localizations signals (NLSs) are depicted. The name of the plasmid is on the right of the panel.
Hemagglutinin Tag (HA). (B,E). Schematic representation of mutant protein VII. The numbers depict
the amino acid number. Arginine to alanine mutation of potential nuclear localizations signals (NLSs)
is depicted. The name of the plasmid is on the right of the panel. (C,F). Sub-cellular localization of
protein VII. Vero cells transfected with indicated plasmid DNAs were fixed with 3.7% formaldehyde
and 0.2% TritonX-100 at 48 h post transfection and visualized by indirect immunofluorescence using
anti-HA MAb. The nuclei were stained with DAPI. The scale bar for panels C and F (5 µm) are shown
as a black box.

The percentage of cells showing similar display of protein distribution is summarized
in Supplementary File (Table S11).

To identify nucleolar localization sequences, Vero cells were transfected with individ-
ual mutant plasmid DNAs and analyzed by immunofluorescence assay at 48 h post transfec-
tion. As seen Figure 4, fluorescent signals for protein VII and nucleolin coincide with nucle-
olin in cells transfected with plasmid pC.HA.VII DNA, plasmid pC.HA.pVIImNLS1 DNA,
plasmid pC.HA.VIIm NLS2, pC.HA.VIImNLS3 DNA, plasmid pC.HA.VIImNLS4 DNA,
plasmid pC.HA.VIIm1,2 DNA and plasmid pC.HA.VIImNLS1,2,3 DNA. However, fluores-
cent signals for protein VII expressed in cells transfected with plasmid pC.HA.VIIm,1,2,3,4
DNA do not appear to coincide with nucleolin.
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Figure 4. Analysis of nucleolar localization sequences (NoLSs) of BAdV-3 protein. Schematic
representation of BAdV-3 protein VII is shown in Figure 3A,D. Vero cells transfected with indicated
plasmid DNAs were fixed with 3.7% formaldehyde and 0.2% TritonX-100 at 48 h post transfection
and visualized by indirect immunofluorescence using anti-HA MAb and anti nucleolin rabbit sera.
The nuclei were stained with DAPI. The scale bar (8 µm) is shown as a black box.

The percentage of cells showing similar display of protein distribution is summarized
in Supplementary File (Table S12).

3.4. Interaction of Protein VII with Importins/Transportin

To identify the import receptor(s) involved in the nuclear transportation of protein
VII, purified individual GST-importin fusion protein or GST-transportin-3 fusion protein
was incubated with lysates of cells transfected with plasmid pC.HA.VII DNA or plasmid
pC.IVa2 DNA. Finally, the protein complexes were pulled down by GST beads and analyzed
by Western blot using specific sera. As seen in Figure 5A, protein VII appears to interact
with importins α1 (Lne 5), β1 (Lane 12) and transportin-3 (Lane 13) but not with α3
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(Lane 6), α5 (Lane 7), α7 (Lane 8), α9 (Lane 9), α11 (Lane 10) or α13 (Lane 11). Similarly,
no interaction could be detected between protein VII and GST (Lane 2). As expected, [5]
IVa2 interacted with importin α1 (Figure 5B, Lane 3), but not with importin α3 (Figure 5A,
Lane 3). Input protein VII (Figure 5A, Lane 4) and input protein IVa2 (Figure 5B [Lane 2])
are shown.
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Figure 5. Interactions of protein VII with nuclear transport receptors. (A,C). Western blots. Purified
GST-transport receptor fusion proteins were individually mixed with lysates of 293T cells transfected
with indicated plasmids. The complexes were pulled down by centrifugation and visualized in
Western blot using anti HA MAb. (B). Input HA.IVa2 and positive control [5] are shown. (C). Purified
GST importin α1, β1 and transportin-3 proteins were individually mixed with lysates of 293T cells
transfected with plasmid pC.HA.VII DNA or pC.HA.VIImNLS1,2,3,4 DNA. The complexes were
pulled down by centrifugation and visualized in Western blot using anti HA MAb (D). The values of
panel C (Lanes 7–12) were analyzed by GraphPad Prism, version 10 (GraphPad Software, Inc., La
Jolla, CA, USA). The values represent the average from three independent experiments, and error
bars represent standard deviations.

To identify whether NLS1−4 motifs are sufficient to bind importins/transportin-3,
purified GST-importin fusion proteins or GST-transportin-3 fusion protein were incubated
with lysates of cells transfected with plasmid pC.HA.VII DNA, plasmid pC.HA.VIImNLS
1,2,3,4 DNA or plasmid pC.HA.IVa2 DNA. Finally, the protein complexes were pulled
down by GST beads and analyzed by Western blot using specific sera. As seen Figure 5C,D,
importin α1 (Lane 8), importin β1 (Lane 10) and transportin-3 (Lane 12) interacted less effi-
ciently with protein VIIm1,2,3,4 than protein VII (importin α1 [Lane 7]; importin β1 [Lane 9];
or transportin-3 [Lane 11]). Input protein VII (Figure 5C [Lane 4]) and VIImNLS1,2,3,4
(Figure 5C [Lane 5]) are shown.

3.5. Construction of BAdV-3 with Strep-Tagged Protein VII

To study the interactions between BAdV-3 protein VII and other viral and cellular
proteins during viral infection, we constructed recombinant BAV.VII.ST. Initially, we con-
structed a plasmid pC.HA.VII.Strep containing Strep-Tag II motif inserted in protein VII
(Figure 6A) and analyzed the expression of recombinant protein in transfected cells. As seen
in Figure 6B, Western blot analysis identified a protein of 26 kDa in 293T cells transfected
with plasmid pC.HA.VII.Strep DNA or plasmid pC.HA.VII DNA (Figure 6B). Similarly,
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immunofluorescence analysis demonstrated nuclear location of protein VII in Vero cells
transfected with plasmid pC.HA.VII.Strep DNA or plasmid pC.HA.VII DNA (Figure 6C).
However, compared to protein VII, there appeared to be some difference in the distribution
of protein VII-Strep-tag II in the nucleus (Figure 6C).
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Figure 6. Analysis of protein HA.VII.Strep. (A). Schematic representation of proteins expressed by
plasmids. The amino acid numbers are depicted. The Strep Tag II sequence is depicted. Hemag-
glutinin Tag (HA). (B). Western blot. Proteins from lysates of plasmid DNA transfected cells were
separated by 12% SDS-PAGE, transferred to nitrocellulose and visualized by Western blot using
anti-HA MAb. Molecular weight markers (MW). (C). Vero cells transfected with indicated plas-
mid DNAs were fixed with 3.7% formaldehyde and 0.2% TritonX-100 and analyzed by indirect
immunofluorescence using anti-HA MAb. The scale bar (2.5 µm) is shown as a black box.

Since insertion of Strep-Tag II did not alter the expression or subcellular localiza-
tion of protein VII, we constructed a recombinant plasmid pUC304a.VII.Strep containing
full-length genomic DNA of BAV304a with modified protein VII (protein VII containing
insertion of the Strep Tag (Figure 7A). VIDO DT1 cells transfected with plasmid pUC304a
DNA (Figure 7A) produced cytopathic effects in 7 days (Figure 7B, Panels a–c). Similarly,
transfection of VIDO DT1 cells with plasmid pUC304a.VII.Strep DNA (Figure 7A) produced
cytopathic effect in 7 days (Figure 7B, Panels g–i). The infected cells were harvested 15 days
post transfection, freeze-thawed three times, and recombinant virus designated BAV.VII.ST
was isolated and propagated in MDBK cells. The recombinant BAV.VII.ST was analyzed by
DNA sequencing.
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Figure 7. Isolation of recombinant BAV.VII.ST (A). Schematic representation of BAdV-3 genomic
DNA. The name of the plasmids is depicted on right side of the panel. The sequence of Strep
Tag II (WSHPQFEK) is depicted. The arrows in the genome sequence determine the direction of
transcription. Human cytomegalovirus immediate early promoter (CMV); enhanced green fluorescent
protein (EYFP). (B). Fluorescent microscopy. VIDO DT1 cells transfected with indicated plasmid
DNA were observed for the appearance of green fluorescent cells and cytopathic effects. The numbers
represent the days after transfection. Phase contrast (Panels d–f and j–l).

3.6. Characterization of BAV.VII.ST

To determine whether the insertion of the Strep Tag in BAdV-3 protein VII affects
the viral protein expression in infected cells, virus-infected MDBK cells were analyzed
by immunofluorescence assay and Western blot using protein-specific sera. As seen in
Figure 8A, immunofluorescence assay demonstrated no detectable difference in the subcel-
lular localization of protein VII in BAV304a- or BAV.VII.ST-infected cells. Similarly, Western
blot analysis (Figure 8B) showed no detectable difference in the expression of protein VII in
BAV304a- or BAV.VII.ST-infected cells. Moreover, the expressions of other viral proteins
including DBP (early) and IVa2 (intermediate) or VIII (late) appeared similar in BAV304a-
or BAV.VII.ST-infected cells.

To determine the effect of Strep Tag insertion on BAV.VII.ST replication, we performed
a single cycle growth assay. Briefly, MDBK cells were infected with a MOI of five. At
indicated times post infection, infected cells were collected, freeze-thawed 3–5 times and
the virus titer was determined by FFU/mL. As seen in Figure 8C, BAV304a and BAV.VII.ST
demonstrated similar growth characteristics.
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Figure 8. Analysis of BAV.VII.ST. (A). Sub-cellular localization of protein VII. MDBK cells were
infected with indicated virus. After 48 h post infection, the cells were fixed with 3.7% formaldehyde
and 0.2% TritonX-100, and analyzed by direct fluorescence (Panels c,g) or indirect fluorescence using
anti-VII sera (Panels a,b,d; e,f,h) under a fluorescent microscope. The scale bar (5 µm) is shown as a
black box (B). Western blot. Proteins from lysates of indicated virus infected cells were separated by
12% SDS-PAGE a, transferred to nitrocellulose and probe in Western blot using protein specific-sera.
The name of the protein is depicted on the right of the panel. (C). Virus titer. Monolayers of MDBK
cells were infected with indicated viruses. At different times post infection, the infected cells were
collected, freeze-thawed and titrated on MDBK cells. Values represent average of two independent
repeats and error bars represent S.D. (D). Silver staining. Proteins purified from BAdV304a- or
BAV.VII.Strep-infected MDBK cells by streptactin Sepharose beads at indicated times post infection
were separated by10% SDS-PAGE. The gel was stained with silver stain. Position of the molecular
weight markers is shown on the left of the panel.

3.7. Purification and Identification of Cellular/Viral Proteins Interacting with Protein VII

Since Strep Tag introduction did not influence viral replication and protein VII func-
tions, BAV.VII.ST was used to determine the viral/cellular proteins interacting with protein
VII. Briefly, MDBK cells were infected with BAV404a or BAV.VII.ST at MOI of five. At
32 and 48 h post infection, proteins from the lysates of infected cells were purified using
Strep-tactin Sepharose beads. Proteins in the purified samples were separated by 10%
SDS-PAGE followed by silver staining. As shown in Figure 8D, protein bands were de-
tected by the silver staining of samples purified from BAV.VII.ST post-infected MDBK
cells while no band was observed in protein samples purified from BAV304a-infected
MDBK cells. Once Strep-Tagged protein complexes were purified and concentrated, they
were sent for LC-MS/MS analysis to the University of Victoria-Genome BC proteomics
Centre. A number of viral or cellular proteins were identified from the protein complexes
extracted 32 and 48 h post infection. In fact, four viral (Table 1) and several cellular proteins
(Supplementary File S2) including other cellular proteins (Table S2), ribosomal proteins
(Table S3), mitochondrial proteins (Table S4), cytoskeleton proteins (Table S5), nuclear
proteins (Table S6) and nucleolar proteins (Table S7) were observed. We filtered the list of
proteins in two independent ways: protein probabilities and number of peptides. In detail,
we assigned filter criteria as 100% probability in one of the two samples and more than two
peptides. Each protein had to be above both filter criteria to be displayed.
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Table 1. Viral proteins identified from LC-MS/MS analysis.

Protein Accession # MW Protein Probability
(32 h)

Protein Probability
(48 h) # of Peptides

IVa2 P03273 [7] 51 kDa 86% 100% 2

pVIII Q03556 15 kDa 100% 100% 4

Hexon P03278 [3] 103 kDa 100% 100% 5

Fiber Q03553 102 kDa 100% 100% 5

3.8. Interaction between Proteins VII-IVa2 and Proteins VII-VIII

Since proteins VIII and IVa2 are involved in stabilization of capsid [34] and genome as-
sembly [5], respectively, initially, we analyzed the viral protein interaction by biomolecular-
fluorescence complementation (BiFC) assay [34]. Yeast competent cells S288c co-transformed
with plasmid (pGC.pVII + pGN.IVa2, pGC.pVII + pGN.pVIII, pGC.pVII + pGN or pGN.IVa2
+ pGC.pV) DNAs (Figure 9A) were plated out in a dropout medium devoid of histidine
and uracil and analyzed by confocal microscopy. As expected, green fluorescence was ob-
served in yeast cells co-transformed with plasmid pGN.IVa2 + pGC.pV DNAs (Figure 9B).
Similarly, green fluorescence could be observed in yeast cells co-transformed with plasmid
pGC.pVII + pGN.IVa2 DNAs or plasmid pGC.pVII + pGN.pVIII DNAs (Figure 9B). No
such green fluorescence could be observed in yeast cells co-transformed with plasmids
pGC.pVII + pGN DNAs or plasmids pGC + pGN DNAs (Figure 9B).
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Figure 9. Interaction of BAdV-3 protein VII with other viral proteins. (A,C,E). Schematic representation
of proteins expressed by plasmids. The name of the plasmid is depicted on the right side of the panel.
Hemagglutinin Tag (HA). Linker region (L). Green fluorescent protein N-terminus (GFP-N). Green florescent
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protein-C terminus (GFP-C). (B). Biomolecular fluorescence complementation assay (BiFC). Yeast
S288c cells co-transformed with indicated plasmid DNAs were incubated on selective media and
observed under confocal microscope. Direct fluorescence (DF). Phase contrast (PC). (D,F). Transfected
cells. Proteins from lysates of cells co-transfected with indicated plasmids were immunoprecipitated
with anti-HA Mab. The immunoprecipitated complexes or lysates of cells transfected with indicated
plasmids were separated by 12% SDS-PAGE, transferred to nitrocellulose and probed in Western blot
using anti-IVa2 sera (D) and anti-VIII sera (F). (G,H). BAdV-3 infected cells. Proteins from lysates
of mock- or BAdV-3-infected cells immunoprecipitated with anti-VII sera were separated by 12%
SDS-PAGE, transferred to nitrocellulose and probed in Western blot with anti-IVa2 (G) and anti-VIII
sera (H).

To further confirm interactions between proteins VII and IVa2, 293T cells were co-
transfected with indicated plasmids (Figure 9C). After 48 h post transfection, proteins from
the lysates of co-transfected cells were immunoprecipitated (Figure 9D) using anti-HA
MAb and analyzed by Western blot using anti-IVa2 sera [5]. As seen in Figure 9D, a IVa2-
specific protein band could be detected in cells co-transfected with plasmid pC.HA.pVII
+ pC.IVa2 DNAs (Lane 1). A similar protein could be detected in cells transfected with
individual plasmid pC.IVa2 DNA (Lane 4) in Western blot using anti-IVa2 sera. No such
protein could be detected in cells co-transfected with plasmid pC.IVa2 + pC.HA DNAs and
immunoprecipitated with anti-HA MAb (Lane 2) or transfected with individual plasmid
pC.HA DNA in Western blot using anti-IVa2 sera (Lane 3).

Similarly, interactions between protein VII and protein VIII were confirmed by co-
immunoprecipitation/Western blot assays. 293T cells were co-transfected with indicated
plasmid DNAs (Figure 9 E). After 48 h post transfection, proteins from the lysates of co-
transfected cells were immunoprecipitated (Figure 9 F) using anti-HA MAb and analyzed
by Western blot using anti-pVIII sera [23]. As seen in Figure 9 F, protein VIII-specific
protein could be detected in cells co-transfected with plasmid pC.HA.pVII + pC.pVIII
DNAs (Lane 1). A similar protein could be detected in cells transfected with individual
plasmid pC.VIII DNA in Western blot using anti-VIII sera (Lane 4). No such protein
could be detected in the cells co-transfected with plasmid pC.pVIII + pC.HA DNAs and
immunoprecipitated with anti-HA (Lane 2) or transfected with individual plasmid pC.HA
(Lane 3) in Western blot using anti-pVIII sera.

Finally, the interactions of protein VII with protein IVa2 and protein VIII were veri-
fied in infected cells. MDBK cells were infected with BAV304a. After 48 h post infection,
the proteins from the cell lysates were immunoprecipitated with the indicated sera and
co-immunoprecipitated proteins were detected in Western blots using viral protein-specific
sera. As seen in Figure 9G, IVa2-specific protein could be detected in infected cells im-
munoprecipitated with anti-pVII sera (Lane 2). A similar protein could be detected in
BAV304a-infected cells in Western blot using anti-IVa2 sera (Lane 1). No such protein
could be detected in mock-infected cells immunoprecipitated with anti-pVII sera (Lane 4),
prebleed sera (Lane 5) or BAdV-3-infected cells immunoprecipitated with preimmune sera
(Lane 3)

Similarly, protein VIII-specific protein could be detected in BAdV-3-infected cells
immunoprecipitated with anti-pVII sera (Figure 9H, Lane 2). No such protein could be
detected in mock-infected cells immunoprecipitated by anti-pVII sera (Figure 9H, Lane 4)
or pre-bleed sera (Figure 9H, Lane 5). As expected, Western blot analysis of proteins
from BAV304a-infected cells detected IVa2 and protein VIII proteins using anti-IVa2 sera
(Figure 9G, Lane 1) and anti-pVIII sera (Figure 9H, Lane 1), respectively.

3.9. Identification of Protein VII Domain Interacting with IVa2

To determine the domain of protein VII interacting with IVa2, we conducted the BiFC
assay using plasmids expressing protein VII deletions/truncations (Figure 10A). Initially,
random deletions spanning about 40 amino acid of protein VII were constructed. Results
are summarized in Figure 10B. As expected, green fluorescence could be detected in yeast
cells co-transfected with plasmid pGC.pVII + pGN.IVa2 DNAs. Similar green fluorescence
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could be observed in yeast cells co-transformed with plasmids pGC.pVIId1 + pGN.IVa2
DNAs, plasmids pGC.pVIId2 + pGN.IVa2 DNAs or plasmids pGC.pVIId4 + pGN.IVa2
DNAs. No such fluorescence could be observed in yeast cells co-transformed with plasmids
pGC.pVIId3 + pGN.IVa2 DNAs or plasmids pGC.pVII + pGN DNAs.
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Figure 10. Identification of BAdV-3 protein VII domain(s) interacting with IVa2. (A,C,E). Schematic
representation of plasmid DNAs. The name of the plasmid is depicted on the right side of the panel.
Amino acid numbers are depicted. Solid black line represents deleted region. Hemagglutinin Tag
(HA). Linker region (L). Green fluorescent protein N-terminus (GFP-N). Green florescent protein-C
terminus (GFP-C). (B). Biomolecular fluorescence complementation assay (BiFC). Yeast S288c cells
co-transformed with indicated plasmid DNAs were incubated on selective media and observed under
confocal microscope. Direct fluorescence (DF). Phase contrast (PC). (D,F). Western blots. Proteins
from the lysates of cells co-transfected with indicated plasmids were immunoprecipitated with
anti-IVa2. The immunoprecipitated complexes or lysates of cells transfected with indicated plasmids
were separated by 12% SDS-PAGE, transferred to nitrocellulose and probed in Western blot using
anti-HA MAb.

Since no interaction was observed between IVa2 and protein VII (containing deletion
of amino acids 81–125; pGC.pVIIId3), plasmids expressing mutant protein VII containing
smaller deletions in amino acids 81–125 were constructed (Figure 10A). Green fluorescence
could be observed in yeast cells co-transformed with plasmids pGC.VIId3.2 +pGN.IVa2
DNAs, plasmids pGC.VIId3.3 + pCN.IVa2 DNAs or plasmids pGC.VIId70−90 DNAs
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(Figure 10B). No such fluorescence could be observed in yeast cells co-transformed with
plasmids pGC.VIId3.1 + pGN.IVa2 DNAs (Figure 10B).

The BiFC analysis results were confirmed by co-immunoprecipitation assays using
plasmids expressing HA-tagged protein VII deletions/truncation (Figure 10 C,E). Proteins
from the lysates of 293T cells co-transfected with indicated plasmid DNAs were immuno-
precipitated using anti-IVa2 sera and co-immunoprecipitated protein VII or protein from
individual plasmid DNA-transfected cells was detected in Western blotting using and
anti-HA MAb. As seen in (Figure 10D), an VII-specific protein could be detected in the cells
co-transfected with plasmids pC.HA.VII + pC.IVa2 DNAs (Lane 3), plasmids pC.HA.VIId1
+ pC.IVa2 DNAs (Lane 4), plasmids pC.HA.VIId2 + pC.IVa2 DNAs (Lane 5) and plasmids
pC.HA.VIId4 + pC.IVa2 DNAs (Lane 7). No such protein could be observed in cells co-
transfected with plasmids pC.HA.VIId3 + pC.IVA2 (Lane 6). Protein VII could be detected
in cells transfected with plasmid pC.HA.VII DNA (Lane 2) but not in cells transfected with
plasmid pC.HA DNA (Lane 1) in Western blotting using anti-HA Mab.

Similarly (Figure 10F), protein VII-specific protein could be observed in cells co-
transfected with plasmids pC.HA.VII + pC.IVa2 DNAs (Lane 3), plasmids pC.HA.VIId3.2
+ pC.IVa2 DNAs (Lane 6) or plasmids pC.HA.VIId70−90 + pC.IVa2 (Lane 7). No such
protein could be detected in cells co-transfected with plasmids pC.HA.VIId3 + pC.IVa2
DNAs (Lane 4) or plasmids pC.HA.VIId3.1 +pC.IVa2 DNAs (Lane 5). Protein VII could
be detected in cells transfected with plasmid pCHA.VII DNA (Lane 2) but not in cells
transfected with plasmid pC.HA DNA (Lane 1) in Western blotting using anti-HA Mab.
The input blots are shown in Supplementary File (Figure S1).

The results are summarized in Supplementary File (Table S8).

3.10. Identification of Protein VII Domain Interacting with Protein VIII

To identify the domain of protein VII interacting with protein VIII, we performed BiFC
assay using plasmids expressing protein VII deletions/truncations (Figure 11A). Results are
summarized in Figure 11B. Green fluorescence was observed in yeast cells co-transformed
with plasmids pGC.pVII + pGN.pVIII DNAs, plasmids pGC.pVIId1 + pGN.pVIII DNAs,
plasmids pGC.pVIId2 + pGN.pVIII DNAs and plasmids pGC.pVIId3 + pGN.pVIII DNAs.
No such green fluorescence could be observed in yeast cells co-transfected with plasmids
pGC.VIId4 + pGN.VIII.

Since no interaction was observed between protein VII and protein VIII (containing
deletion of amino acids 125–171), plasmids expressing mutant protein VII containing
smaller deletions in amino acids 125–171 were constructed (Figure 11A). The results are
summarized in Figure 11B. Green florescence could be observed in yeast cells co-transfected
with plasmids pGC.VIId4.1 + pGN.pVIII DNAs, plasmids pGC.VIId4.2 + pGN.pVIII DNAs
and plasmids pGC.VIId4.3 + pGN.pVIII DNAs. No such florescence could be observed in
yeast cells co-transfected with plasmids pGC.pVIId126−137 + pGN.pVIII DNAs.

The BiFC analysis results were confirmed by co-immunoprecipitation assays using
plasmids expressing HA-tagged protein VII deletions/truncation (Figure 12A,C,E). Proteins
from the lysates of 293T cells co-transfected with indicated plasmid DNAs were immuno-
precipitated using anti-VIII sera, and co-immunoprecipitated protein VII protein or protein
from individual plasmid DNA transfected cells was detected in Western blot using and
anti-HA MAb. As seen in (Figure 12B), protein VII-specific protein could be detect in the
cells transfected with plasmid pC.HA.VII DNA (Lane 2) or co-transfected with plasmids
pC.HA.VII + pC.VIII DNAs (Lane 3), plasmids pC.HA.VIId1 + pC.VIII DNAs (Lane 4),
plasmids pC.HA.VIId2 + pC.VIII DNAs (Lane 5) and plasmids pC.HA.VIId3 + pC.VIII
DNAs (Lane 6). No such protein could be observed in cells transfected with plasmid pC.HA
DNA (Lane 1) or co-transfected with plasmids pC.HA.VIId4 + pC.VIII DNAs (Lane 7).
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(A). Schematic representation of proteins encoded by plasmid DNAs. The name of the plasmid is
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deleted region. Linker region (L). Green fluorescent protein N-terminus (GFP-N). Green florescent
protein-C terminus (GFP-C). (B). Biomolecular fluorescence complementation assay (BiFC). Yeast
S288c cells co-transformed with indicated plasmid DNAs were incubated on selective media and
observed under confocal microscope. Direct fluorescence (DF). Phase contrast (PC).
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Figure 12. Identification of BAdV-3 protein VII domain(s) interacting with protein VIII by Western blot.
(A,C,E) Schematic representation of proteins expressed by plasmid DNAs. The name of the plasmid is
depicted on the right side of the panel. Amino acid numbers are depicted. Solid black line represents
deleted region. Hemagglutinin Tag (HA). (B,D,F). Proteins from the lysates of cells co-transfected
with indicated plasmid DNAs were immunoprecipitated with anti-pVIII. The immunoprecipitated
complexes or lysates of cells transfected with indicated plasmids were separated by 12% SDS-PAGE,
transferred to nitrocellulose and probed in Western blot using anti-HA MAb. Immunoprecipitation
(IP). Molecular weight markers are shown on the left of the panel.

Similarly (Figure 12D), protein VII-specific protein could be observed in cells co-
transfected with plasmids pC.HA.VII + pC.VIII DNAs (Lane 3), plasmids pC.HA.VII4.d1
+ pC.IVa2 DNAs (Lane 5) or plasmids pC.HA.VIId4.2 + pC.VIII (Lane 6) DNAs (Lane 7)
or plasmids pC.HA.VIId3 + pC.VIII DNAs (Lane 7). No such protein could be detected in
cells co-transfected with plasmids pC.HA.VIId4 + pC.VIII DNAs (Lane 4).

Finally (Figure 12F), protein VII-specific protein could be observed in cells co-transfected
with plasmids pC.HA.VII + pC.VIII DNA (Lane 1) or transfected with plasmid pC.HA.VII
DNA (Lane 3). No such protein could be detected in cells co-transfected with plasmids
pC.HA.VIId4 + pC.VIII (Lane 4) or plasmids pC.HA.VIId126-137 (Lane 5). The input blots
are shown in Supplementary File (Figure S2).

4. Discussion

Protein–protein interactions (PPIs) play a critical role in different steps of viral replica-
tion. Like with other viruses, production of an infectious adenovirus involves interaction
of viral proteins with host proteins [35–39] and other viral proteins [5,40–42]. Understand-
ing these PPIs are important to predict the sub-cellular localization and functions of the
adenoviral proteins.

Protein VII is a multifunctional protein [11] which appears to be involved in many
stages of the viral life cycle including endosomal escape of incoming infectious virus [14],
transcription of early viral genes [12,13,43], internalizing the viral genome into nuclei [7],
protecting viral DNA from cellular DNA damage response [44] and maturation of the virus
particle [45,46]. The multiple functions performed by protein VII could be inherent or
acquired by interacting with other cellular/viral proteins. Although structural analysis
of adenovirus has provided valuable information about interactions of major and minor
capsid proteins, little structural information is available regarding the interaction of virion
core proteins including protein VII with other viral proteins [40,42,47]. Biochemical analysis
suggested that human adenovirus protein VII interacts with protein IIIa [48], 52K [48],
protein IVa2 [49] and protein V [41]. Since earlier studies have demonstrated differences
in the structure and function [50–53] of colinear proteins [15] encoded by members of
Mastadenovirus genus, we characterized the functional domains of BAdV-3 protein VII.

Protein VII appears to be actively transported to the nucleus/nucleolus of the cell
as GFP-β-gal (cytoplasmic protein) fused to protein VII is predominantly localized to
the nucleus of the transfected cell. Active nuclear transport of protein utilizes single or
multiple NLSs (classical or non-classical) [54,55]. Similarly, analysis of nuclear transport
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of adenoviral proteins has suggested the use of single [4,56] or multiple NLSs [3,57]. Like
HAdV-5 [7], BAdV-3 protein VII also appears to use multiple NLSs. However, in contrast
to HAdV-5 [7], the mutation (all arginine to alanine) of four NLSs could abolish the nuclear
localization of protein VII. Since four NLSs are localized in non-conserved C-terminus of
BAdV-3 protein VII, it is possible that localization of mutant protein VII predominantly in
the cytoplasm (unlike HAdV-5 [7]) could be due to the difference in amino acid sequences
of protein VII encoded by BAdV-3 and HAdV-5. Similar observations have been reported
for the BAdV-3 100K protein [17].

Active nuclear transportation of adenoviral proteins uses single [5,17,23,58] or multi-
ple [4,7,59] receptor-mediated pathways. Like HAdV-5 [7], BAdV-3 protein VII appears to
utilize multiple receptors (importin-α1, importin-β1 and transportin-3) for nuclear trans-
port. Moreover, the use of multiple NLSs and alternative nuclear receptor pathways may
create a redundancy, which increases the efficiency of nuclear transport (to perform impor-
tant functions) and prevents the nuclear import receptors from becoming a rate-limiting
factor during protein VII nuclear localization.

Nucleolar transport of viral proteins involves interaction of viral sequences rich in basic
residues (arginines and lysines) with nucleolar resident protein or RNA [60]. In addition,
viral proteins utilize overlapping [61], non-overlapping [62] or both [3] (overlapping and
non-overlapping NLSs/NoLSs) for transport to both the nucleus and nucleolus. Earlier, we
demonstrated that while BAdV-3 IVa2 localizes to the nucleolus using non-overlapping
NoLS/NLS [5], BAdV-3 protein V localizes to the nucleolus using both overlapping and
non-overlapping NoLS/NLS [3]. The mutation (all arginine to alanine) of single, double or
triple NLSs could not abolish the nucleolar localization of protein VII. However, mutation
of (all arginine to alanine) four NLSs could abolish the nucleolar localization of the protein,
suggesting that BAdV-3 protein VII contains overlapping NoLS/NLS.

An earlier report suggested that adenovirus protein VII interacts with IVa2 [49]. Our
demonstration of interaction between BAdV-3 protein VII and IVa2 confirms earlier obser-
vations. Since IVa2 appears essential for both genome packaging and assembly [63], it was
speculated that interaction between pVII and IVa2 may be required for packaging of DNA
complexed with protein VII [49]. However, a recent report suggested the production of
virus particles in the absence of protein VII, leading to the conclusion that protein VII is not
required for genome encapsidation and virus assembly [14].

The adenovirus genome is tightly associated with about 800 copies of protein VII [64].
Earlier, we [5] and others [2] have demonstrated that adenovirus protein V interacts with
IVa2 [5] and protein VIII [2]. Here, we demonstrate that protein VII interacts with IVa2 and
protein VIII. Since protein V acts as a bridge between adenovirus core and capsid by binding
to penton base and protein VI [37,65], it is possible that the interaction of protein VII with
protein VIII and IVa2 further helps in connecting the core of the virus with the inner surface
of the capsid [66], thus maintaining the integrity of the viral capsid. Interestingly, human
adenovirus-5 virions devoid of protein VII [67] or expressing a mutant protein VIII [34,68]
appear to be less thermostable than wild-type human adenovirus-5.

The N-terminus including adenovirus protease cleavage site appears to be highly con-
served among protein VII encoded by other Mastadenoviruses [1]. The conserved protease
cleavage site appears to be utilized in different members of Mastadenovirus genus. In fact,
recent Cryo-EM studies has revealed the presence of only cleaved N-terminus protein VII
(amino acid 14–24; VIIn2) in the hexon cavities [40]. Interestingly, analysis of protein VII
deletions/truncations, identified amino acids 91–101 and amino acids 126–137 of protein
VII as the regions interacting with IVa2 and protein VIII, respectively, which is part of
mature protein VII. Few amino acids 92, 93, 95 of the 91–101 region and amino acids 127,
129, 130, 135 of region 126–137 appear conserved among protein VII encoded by members
of Mastadenovirus genus. Since IVa2 and protein VIII appear to interact with non-conserved
regions of protein VII, it would be interesting to determine whether the functions associated
with these interactions are conserved among the members of Mastadenovirus genus.
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In conclusion, here, we report that BAdV-3 protein VII localizes to nucleus/nucleolus
using redundant nuclear/nucleolar localization signals/sequences and multiple nuclear
transport receptors. Unlike HAdV-5 (7), BAdV-3 protein VII containing the deletion of po-
tential nuclear localization signals localizes to the cytoplasm of transfected cells. Moreover,
we demonstrate that non-conserved amino acids 91–101 and 126–137 of BAdV-3 protein
VII interact with viral proteins IVa2 and VIII.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/v16050732/s1, Table S1. List of primers used for PCR [69,70]; Table S2.
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identified from LC-MS/MS; Table S4. Mitochondrial proteins identified from LC-MS/MS. nd: No
Data; Table S5. Cytoskeleton proteins identified from LC-MS/MS; Table S6. Nuclear proteins
identified from LC-MS/MS. nd: No Data; Table S7. Nucleolar proteins identified from LC-MS/MS.
nd: No Data; Table S8. Summary for 3.9 Results (For both BiFC assay & CO-IP); Table S9. Summary
for 3.10 Results (For both BiFC assay & CO-IP); Table S10. The percentage of cells showing similar
display of protein distribution; Table S11. The percentage of cells showing similar display of protein
distribution; Table S12. The percentage of cells showing similar display of protein distribution;
Figure S1. Western blots. Proteins from the lysates of cells co-transfected with indicated plasmids
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