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Abstract: Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic
liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV,
with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public
health and medical need as recognized by the World Health Organization. However, due to the high
variability of the virus and its ability to escape the immune response, HCV rapidly accumulates
mutations, making vaccine development a formidable challenge. An effective vaccine must elicit
broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from
basic research through clinical development, the antigen of choice is considered the E1E2 envelope
glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent
subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of
robust humoral and cellular responses leading to broad virus neutralization due to the relatively low
immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches
to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution
structures to guide them. Another challenge has been the development of a delivery platform in
which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV
immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their
ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they
can interact with both the cellular and humoral components of the immune system. This review
focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational
design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2
vaccine. Both aspects are considered important in the development of an effective HCV vaccine that
can effectively address viral diversity and escape.

Keywords: HCV E1E2; structure; nanoparticles; vaccine

1. Introduction

An estimated 58 million people are infected with hepatitis C virus (HCV) worldwide
with 1.5 million new infections occurring each year [1]. HCV infection is a major medical
and public health burden in which approximately 75% of infections become chronic, which
can lead to liver cirrhosis or hepatocellular carcinoma, and it is a leading cause of liver-
related deaths. The number of deaths associated with HCV infection in the United States
has been increasing, and it is the primary indication for liver transplantation in the Western
world [2–4]. The development of direct-acting antivirals (DAAs) has led to cure rates over
90% with HCV treatment, but they do not prevent reinfection. Moreover, DAA treatment
is inaccessible to those infected in developing and in developed countries due to high
costs and/or infrastructure limitations [5–7]. Additionally, the diagnosis of HCV infection
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often occurs at a late stage after infection due to the asymptomatic “silent nature” of the
virus, and successful DAA treatment may not alter the risk for cancer. Reinfection is a
particular problem after successful treatment in subjects with continued at-risk behavior
such as injection drug use. For these reasons, the most viable method for controlling HCV
infections worldwide is through the development of an effective prophylactic vaccine [8].

The structural characterization of the E2 glycoprotein has provided substantial infor-
mation on the major antigenic sites that are the targets of bnAb binding, particularly as
it pertains to binding to primary CD81 receptor binding domain [9–17]. More recently,
the cryo-EM structural characterization of the E1E2 heterodimer, either as a membrane-
extracted E1E2 heterodimer [18] or as a soluble, secreted E1E2 heterodimer ectodomain [19],
was a major advance in the field to better understand the structural antigenic features of
this complex molecule. This knowledge will greatly facilitate a structure-based design
approach in order to optimize immune responses to the major bnAb antigenic determinants.
However, the development of a vaccine will be challenging for multiple reasons [20–23].
These include the genetic diversity of HCV of at least seven HCV genotypes that differ up
to 30% in nucleotide sequence (which can be further subdivided into over 90 subtypes),
flexibility of the conformational regions, glycan shielding of neutralizing epitopes, the
presence of immunodominant non-neutralizing “decoy” epitopes, and the tendency for
membrane-solubilized E1E2 antigen preparations to form aggregates [21,24–29]. Moreover,
direct cell-to-cell transmission of the virus, systemic circulation of virions associate with
lipoproteins, and the downregulation of major histocompatibility complex (MHC) expres-
sion are other mechanisms for the virus to escape protective immunity [26,30–32]. Although
immune correlates of protection have yet to be defined for HCV, there is broad agreement
that both B and T cell immunity contribute to the control of acute HCV infection [22,33,34].
Thus, the expectation is that an ideal vaccine will elicit high bnAb titers directed against
multiple conserved E1E2 epitopes to ensure broad neutralization [35–39], in conjunction
with cytotoxic and tissue-resident memory T cells in order to achieve immunity and protec-
tion against a high diversity of HCV isolates.

For this review, we will focus on structure-guided approaches to enhance a B cell
immune response to E1E2 antigenic determinants that are a primary component of the
host defense against HCV infection. It is worth highlighting that such approaches are
more complex than sterilizing immunity as observed for hepatitis A, B, and E vaccines [24].
During an acute infection, spontaneous viral clearance occurs in about 25 percent of indi-
viduals, which is typically correlated with a robust neutralizing antibody response early in
infection [40–43]. The rate of clearance of a reinfection is improved with a shorter course of
infection and an increased likelihood of viral clearance compared with primary infection,
suggesting that pre-existing immunity is important [44–48]. In support of this observation,
bnAbs passively administered to humanized mice or chimpanzees protects against HCV
infection [38,49,50]. Also, passive immunization with anti-HCV antibodies before HCV
challenge prevented infection in animal models [38,50–53]. However, the passive immu-
nization of chimpanzees with antibodies from a HCV-infected patient that neutralized the
infectivity of several HCV genotypes in the cell culture only suppressed infection with a
homologous virus challenge and failed to protect against heterologous virus strains [51].
Moreover, in a human clinical study using membrane-extracted E1E2 formulated with
MF59, an oil-in-water adjuvant, broadly neutralizing antibodies were observed but only in
a small fraction of patients in which most patients had low titers and limited the breadth
of neutralization [54,55]. Therefore, approaches to enhance immunogenicity such as the
development of adjuvant systems that enhance both cellular and humoral immunity and
the design of nanoparticle platforms that permit the multivalent presentation of E1E2 and
use of novel adjuvants will be essential to achieve immunity against the broad diversity of
HCV isolates.
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2. HCV E1E2 Diversity

As previously noted in the literature [20,31], HCV E1E2 glycoproteins possess high
sequence diversity, which is a major reason that HCV is a challenging vaccine target.
This diversity is highlighted in Figure 1, which shows a phylogenetic tree generated with
representative E1E2 sequences for 69 HCV genotypes and subtypes. As can be seen in the
figure, between subtypes of the same genotype, there is often 10% or more in sequence
divergence, while greater divergence is observed between genotypes (20–30%). E1E2
sequence variability is not uniform across glycoprotein residues and domains [20,31]; the
sequences are punctuated by highly variable regions, including hypervariable regions
(HVRs) 1 and 2 and the inter-genotypic variable region (IgVR) in E2. However, other E1E2
regions and sites are highly conserved [20,31], including cysteine residues that form known
or putative disulfide bonds, and the majority of N-glycosylation sites (4 sites in E1 and
11 sites in E2 in the genotype 1a H77 strain). Many conserved sites have been confirmed to
be important for E1E2 folding and/or function through systematic mutagenesis studies of
E2 and E1E2 [56–58]. As shown in Figure 1, currently available experimentally determined
E1E2 and E2 glycoprotein structures, which are discussed in greater detail in the next
section, only account for a few genotypes and subtypes, while they do represent three
out of four globally prevalent subtypes noted by others (1a, 1b, 2a, and 3a) [59]. Of
note, a recently described but currently unreleased cryo-EM structure contains a modified
genotype 3a (S52 isolate) E1E2 [60].
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Figure 1. HCV sequence diversity and representative available structures. The HCV E1E2 genotype
and subtype reference sequences were downloaded from the LANL HCV database [61] and are
shown as an unrooted phylogenetic tree, with branches and labels colored according to the genotype.
The subtypes with currently available experimentally determined E2 or E1E2 glycoprotein structures
are labeled, with representative structures (Protein Data Bank code, HCV strain, and protein) given.
Multiple-sequence alignment and phylogenetic clustering was performed with the MAFFT web
server [62], and the unrooted tree was generated with iTOL [63]. Genotype 7b and 8a reference
sequences were not available in the LANL HCV reference sequence set and were downloaded from
NCBI (Genbank IDs KX092342, MH590698).

A key feature of HCV diversity is the virus’s capability to form quasispecies in infected
individuals and to actively escape the immune response [64]. This immune escape was
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highlighted in a clinical trial of a neutralizing monoclonal antibody, HCV1, that targets
the highly conserved AS412 site (residues 412–423) in E2 [65,66]. Following liver trans-
plantation and monoclonal antibody therapy, which led to dramatic viral reduction, viral
rebound was observed in all treated patients along with rare mutations directly within
the epitope, at residues 415 or 417 [66,67]. These mutations disrupted HCV1 antibody
binding through the mutation of a key epitope side chain or shift in a glycosylation site
within the epitope [67]; the latter escape mechanism was also observed for another antibody
targeting that E2 site [68]. Other E1E2 polymorphisms associated with resistance and es-
cape have been noted previously [31], with certain polymorphisms outside known epitope
sites leading to broad viral resistance or sensitivity [69,70], possibly in some cases due to
effects on E1E2 dynamics and putative “open” and “closed” conformational states [71].
While not yet delineated by experimental structural studies, the open and closed states
have been associated with the dynamics and conformations of HVR1 on E2, with the more
neutralization-sensitive open state becoming prevalent when HVR1 is engaged by the
SR-BI coreceptor or deleted by mutagenesis [72].

Recent observations have highlighted that HCV phenotypic diversity, based on the
analysis of viral neutralization sensitivity and resistance, often does not directly map
onto the overall E1E2 sequence identities and known genotypes and subtypes [73–75],
likely due in part to the importance of the polymorphisms noted above. These studies
have separately identified the representative reference panels of HCV strains, spanning
levels of sensitivity and resistance that can prospectively be used to perform standardized
assessments of antibodies and immune sera, analogous to a commonly used global panel
of HIV strains [76]; however, a single coordinated panel of HCV strains, versus multiple
panels, would be advantageous for the HCV research community.

3. HCV E2 and E1E2 Structure

Antibody responses against the HCV E1E2 glycoprotein have been mapped struc-
turally and by mutagenesis to various antigenic domains and regions on the E1 and
E2 subunits, which include the targets of broadly neutralizing, strain-specific, and non-
neutralizing antibodies [77]. Antigenic targets on the E2 subunit have been named using
different nomenclatures, including antigenic domains A–E, antigenic regions 1–5, or epi-
topes I–III (Figure 2) [38,78]. The most characterized broadly neutralizing antibodies inhibit
entry by restricting host CD81 receptor binding and map to a region known as the neutral-
izing face of E2, which includes overlapping antigenic domains B, D, and E and antigenic
region 3 (Figure 2). A contiguous helical region within the stem of E1 also has been defined
as a neutralizing antibody target [79–82]. Antigenic regions 4 and 5, defined by neutralizing
antibodies AR4A and AR5A, also confer broad recognition across HCV genotypes but, in
contrast to other sites, depend on an intact E1E2 heterodimer for antibody recognition [83].

To date, numerous structures of truncated or modified forms of the E2 subunit
ectodomain in complex with antibodies have been determined, including those belonging
to genotypes 1a, 1b, 2a, and 6b [9–12,84–86]. The first of these structures, which utilized a
truncated E2 protein spanning residues 412–645, defined the overall architecture of the glob-
ular E2 core, which was found to contain a central β-sandwich flanked by front and back
layers made of loops and short stretches of secondary structure elements [9]. While the core
structure of E2 has been found to be largely conserved across genotypes despite sequence
diversity, some regions of E2 have been observed to adopt conformational differences, even
within the same genotype. These include β-hairpin and extended conformations of the
AS412 (domain E) epitope and conformational flexibility of the E2 front layer [13,79,80,86].
Moreover, the CD81 binding site of E2 (residues 418–422 and 520–539) undergoes sub-
stantial conformational changes when bound to the large extracellular loop of CD81 [87].
These findings coupled with previous studies showing substantial flexibility and functional
interplay between the E2 HVR1, the front layer, and the CD81 binding site, underscore the
inherent structural plasticity of some regions of E2 that are thought to underlie differences
in susceptibility to antibody neutralization [71,88,89].
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Figure 2. Structure and antigenic regions/domains of the E1E2 heterodimer. Shown is the struc-
ture of engineered E1E2 heterodimer ectodomain1, shown in cartoon and semi-transparent surface
representation. The E1 and E2 subunits are colored blue and orange, respectively, with mapped
antigenic surfaces colored according to the antigenic region (AR) or antigenic domain (AD) targeted:
neutralizing face (purple), AR-4 (pink), AR-5 (dark blue), AD-C (teal), and AD-A (light green). The
CD81 binding loop and the bridging/base domains are colored yellow and wheat, respectively.
N-linked glycans are depicted as gray sticks.

In order to structurally characterize the HCV E1E2 envelope complex in a more native-
like form, cryo-EM has recently become the technique of choice (Figure 3). Notably, this
technique yielded the first structure of a full-length membrane-extracted form of the E1E2
heterodimer of genotype 1a bound by neutralizing antibodies [18]. This structure resolved
the overall configuration of the E1E2 heterodimer, including regions of E1 and the C-
terminus of E2, and defined, for the first time, the AR4 site of vulnerability. Subsequently,
our group determined a cryo-EM structure of sE1E2.SZ (of genotype 1b), an engineered
soluble form of the E1E2 heterodimer ectodomain that we developed for vaccine efforts by
replacing the transmembrane domains of E1 and E2 with a soluble self-assembling coiled-
coil scaffold (Figure 3) [19]. Both heterodimer structures were found to share a similar E1E2
fold and architecture despite belonging to different genotypes and diverging in amino acid
sequence by ~20%. The liberation of sE1E2.SZ from membrane therefore preserved its
native-like conformational state [19]. Analysis of the structures revealed several common
features of the E1E2 heterodimer. The E1–E2 interface was made up entirely of non-covalent,
predominantly hydrophobic interactions. A substantial contribution of two conserved E1
N-linked glycans, N196 and N305, to the interface accounted for roughly a third of the E1
interface with E2 [19]. In both structures, a portion of the C-terminal domain of E2 was
resolved (residues 646–704), termed the base or bridging domain, and was found to pack
against the back layer of the E2 core and against E1, accounting for roughly 70% of the E2
interface with E1. This domain also contained the epitope of E1E2-specific neutralizing
antibody AR4A, which was found to be one of the most highly conserved epitopes defined
to date [19].

Several domains of E1 were also resolved in the E1E2 structures [18,19]. The E1
N-terminal domain (NTD), spanning residues 192–205, was found to consist of two anti-
parallel β-strands that packed against variable region 2, post-variable region 3, and the
bridging/base domain of E2. The E1 NTD also contained the N-linked glycan at position
N196, which, along with N305, was previously found to be critical for heterodimer in-
tegrity [58,81,90]. The E1 core domain, residues 206–255, consisted of a cluster of β-strands
and contained two N-linked glycans, N209 and N250. The C-terminal loop (CTL) domain
of E1, spanning residues 295–312, contained the N305 glycan that, as noted above, packed
against the bridging/base domain of E2. The CTL also contained the epitope for E1-specific
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neutralizing antibodies IGH520/IGH505 and IGH526 [18,79–82]. Missing from both struc-
tures, however, was the region linking the E1 core and C-terminal loop (residues 256–294),
which has been proposed to contain the putative fusogenic machinery [91–93].
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Recently, a cryo-EM structure of a full-length membrane-extracted dimer of E1E2
heterodimers has also been reported, although not yet released, indicating that possible
higher-order oligomers may represent the native state of the E1E2 glycoprotein on HCV
virions [60]. Interestingly, flexible regions of E2 and E1 that were not resolved in previous
structures, including parts of HVR1, AS412, and membrane-embedded portions of the E2
and E1 stem regions, were reportedly resolved in this structure. The structural definition
of these regions will likely provide further insight into the underlying structural features
of E1E2 that play a role in membrane fusion and possibly those that define phenotypic
differences in susceptibility to antibody neutralization [60].

4. Structure-Based Vaccine Design

To generate an effective vaccine for HCV and overcome the challenges of HCV diver-
sity and immune evasion [31], recent efforts have increasingly explored the use of reverse
vaccinology and structure-based vaccine design [94,95] to generate optimized vaccine
antigens that will elicit broadly neutralizing antibodies that target key conserved sites on
E1E2 [96]. These follow successful structure-based designs of antigens for other variable or
dynamic viruses, including prefusion RSV F [97] and influenza hemagglutinin stem [98]
antigens, which have both been in clinical trials, and recently approved for use in the case
of prefusion RSV F [99,100]. Structure-based HCV antigen designs have included stabilized
and scaffolded conserved epitopes [101–103], optimized E2 antigens with truncated or
removed variable regions [104,105] or a targeted proline substitution to stabilize a key
epitope [106], as well as display of E2 self-assembling protein nanoparticles [104]; these and
other HCV antigen designs and strategies are described in a review by Guest and Pierce [96].
One recent success in this area is the design of stabilized and secreted E1E2 ectodomains
with a coiled-coil scaffold, which maintained the antigenicity of native full-length E1E2
and elicited neutralizing antibodies [107,108]. Others designed a soluble “E2E1” construct
with E1 and E2 ectodomains permuted, which was presented on self-assembling nanopar-
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ticles in a mosaic format representing six HCV strains; while this successfully elicited
cross-neutralizing antibodies in vivo, the lack of binding by E1E2-specific antibody AR4A
indicates that the permuted design does not reflect native E1E2 assembly [109]. Some E2
and E1E2 design strategies are shown in Figure 4.
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Several recent advances and findings provide possible avenues to pursue in future
HCV antigen design efforts. Importantly, the current availability of experimentally deter-
mined E1E2 structures, as discussed in the previous section, enables the structure-based
design of E1E2, rather than E2 alone or individual epitopes as in previous work, to optimize
its stability, antigenicity, or other features. Additionally, putative “open” and “closed”
states of E2 and E1E2 [71], or HVR1 entropy [88], which, as noted above, have been as-
sociated with viral neutralization sensitivity, can be utilized to tune E1E2 antigenicity,
particularly if sufficient structural and dynamic details underlying those states can be
defined. Of relevance, a recently described cryo-EM structure with E1E2 in dimeric form
seems to provide details of a preferred conformation of HVR1 which was corroborated by
AlphaFold2 structural modeling [60].

Other (non-structural) rational antigen design approaches represent promising strate-
gies to address HCV diversity and escape. Frumento et al. identified E1E2 ectodomains asso-
ciated with spontaneous viral clearance and improved neutralizing antibody breadth [110]
that may useful in a vaccine, versus the H77 glycoprotein sequences which are commonly
used in E2 and E1E2 antigens. Another strategy is the use of consensus ectodomains,
which was utilized in HCV E2 [111] and HIV envelope glycoprotein [112,113] antigen
designs. Finally, an additional means to address HCV diversity could be the use of multiple
representative designed or natural E1E2 antigens in a vaccine that are representative of
prevalent genotypes; given the previous success of self-assembling mosaic nanoparticles to
display diverse coronavirus spike receptor binding domain antigens [114], an analogous
strategy could be explored for displaying diverse representative HCV antigens, as recently
reported [109]. Due to the wide diversity of HCV E1E2 sequences between and within
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genotypes, it is not clear whether a single E1E2 sequence (consensus or naturally derived)
would effectively represent the breadth of HCV genotypes or subtypes in the context of a
vaccine, versus targeting individual genotypes or subtypes, or utilizing a set of represen-
tative immunogens. However, given the many known broadly neutralizing monoclonal
antibodies that target conserved E1E2 sites [38,56,83,115–117] that would be present on
most E1E2 antigens, it is likely that single antigens can elicit such broadly neutralizing
antibodies, as seen in mice, non-human primates, and humans [54,108,118]. Whether the
antibodies induced by such antigens can provide sufficiently effective and broad protection
is an open question; future studies investigating and comparing the immunogenicity and
protection of these strategies and approaches can help address this.

5. Multivalent Delivery Platforms and Considerations

Subunit vaccines are often poorly immunogenic; a phenomenon routinely attributed to
their size as particulate antigens have been known for quite some time to be highly immuno-
genic [119–123]. There is recent data in a study by Aung et al. [124] that puts a finer point
on this concept. In that study, the authors showed that subunit vaccines were trafficked pri-
marily to the subcapsular sinus or extracellular regions of lymph nodes and subsequently
degraded by metalloproteases. Such degradation eliminates conformation-dependent epi-
topes on the associated antigens and hampers the immune response. Nanoparticle-sized
antigens were localized instead to follicular dendritic cells (FDCs) where they remained
intact and preserved such conformation-dependent epitopes and thus elicited a more robust
immune response. In light of these recent observations and the historical data, it seems clear
that increasing the size of a subunit vaccine is beneficial and thus a number of strategies
have been developed toward that end. One strategy is to employ an adjuvant system that,
when formulated with the antigen, produces a nano- or microparticulate vaccine. Common
adjuvant systems in use to make particulate subunit vaccines are aluminum salts (Alum),
polymers like poly(D,L-lactic-co-glycolic) acid (PLG), oil and water emulsions like MF59,
liposomes and other vesicles, and micelle-forming adjuvants. Micelles can be particularly
advantageous for membrane-anchored antigens as the formulation process creates rosettes
of antigens covering the exterior of the micelle. These kinds of formulations have been
used in vaccines for influenza (Flublok) and SARS-CoV-2 (NVX-CoV2373) [125–131]. A
second strategy to develop particulate vaccines is to construct virus-like particles (VLPs).
VLPs are non-infectious but more closely mimic the native virion than subunit vaccines
and other particulate platforms by using viral structural proteins to self-assemble in a
similar manner to the virus. Energix (hepatitis B virus) and Gardasil (human papilloma
virus) are two prominent VLP-based vaccines. A third strategy for increasing the size
of a subunit vaccine is the use of protein-based nanoparticles. These nanoparticle plat-
forms are typically naturally occurring or engineered protein shells that allow for the
multivalent display of subunit vaccines on the exterior [132–138]. These assemblies can
be formed in cis, where the subunit vaccine and nanoparticle protomer are expressed as a
single open reading frame and assembly yields a 100% occupied nanoparticle, or in trans
where the nanoparticle shell and subunit vaccine are produced separately and coupled
post hoc, as in the case of the SpyCatcher-SpyTag system [139]. Each of these platforms
is being explored for a potential HCV vaccine candidate [104,109,140]. The first studies
by Yan et al. [140] and He et al. [104] used the E2 ectodomain and a modified E2 core
ectodomain, respectively, as proof-of-principle antigens to be appended to nanoparticles.
Given the importance of the E1E2 complex, and in particular the AR4/AR5 antigenic region
in viral clearance [37,110], a nanoparticle-presenting native E1E2 should be a high priority
for HCV vaccine development. One nanoparticle study has been conducted with E1 and
E2 [109], but this used a permuted E2-E1 version of the antigen which does not retain the
native AR4/AR5 antigenic domain.

While the above platforms address the question of size in the context of a vaccine
against HCV, the question that still remains is how to accommodate HCV diversity in the
context of a particulate adjuvant, a VLP, or a nanoparticle. As described in the previous
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section, this problem can be overcome by the use of consensus sequences or mosaic vaccines
composed of multiple antigens encompassing different genotypes or phenotypes contained
within a single vaccine (Figure 5). These approaches have been used for vaccine trials
against HIV and SARS-CoV-2 [114,141–149] and, importantly, are compatible with the
adjuvant and nanoparticle platforms, but it is unclear if such approaches are compatible
with VLPs. An additional approach is to use cocktails of different genotypic or phenotypic
representatives mixed together after preparation and validation. This is the most straight-
forward approach but requires a brute-force regimen of multiple separate preparations and
validations for each different member of the cocktail. Which one of the above approaches is
most likely to yield an effective HCV vaccine is currently an open question that will need
to be evaluated experimentally.

Viruses 2024, 16, x FOR PEER REVIEW 9 of 18 
 

 

[104,109,140]. The first studies by Yan et al. [140] and He et al. [104] used the E2 ectodo-
main and a modified E2 core ectodomain, respectively, as proof-of-principle antigens to 
be appended to nanoparticles. Given the importance of the E1E2 complex, and in particu-
lar the AR4/AR5 antigenic region in viral clearance [37,110], a nanoparticle-presenting na-
tive E1E2 should be a high priority for HCV vaccine development. One nanoparticle study 
has been conducted with E1 and E2 [109], but this used a permuted E2-E1 version of the 
antigen which does not retain the native AR4/AR5 antigenic domain. 

While the above platforms address the question of size in the context of a vaccine 
against HCV, the question that still remains is how to accommodate HCV diversity in the 
context of a particulate adjuvant, a VLP, or a nanoparticle. As described in the previous 
section, this problem can be overcome by the use of consensus sequences or mosaic vac-
cines composed of multiple antigens encompassing different genotypes or phenotypes 
contained within a single vaccine (Figure 5). These approaches have been used for vaccine 
trials against HIV and SARS-CoV-2 [114,141–149] and, importantly, are compatible with 
the adjuvant and nanoparticle platforms, but it is unclear if such approaches are compat-
ible with VLPs. An additional approach is to use cocktails of different genotypic or phe-
notypic representatives mixed together after preparation and validation. This is the most 
straightforward approach but requires a brute-force regimen of multiple separate prepa-
rations and validations for each different member of the cocktail. Which one of the above 
approaches is most likely to yield an effective HCV vaccine is currently an open question 
that will need to be evaluated experimentally. 

 
Figure 5. Multivalent presentation of E1E2 antigens. Coupling to a nanoparticle increases the size 
and valency of E1E2 antigen presentation. Flexible attachment methods allow for the presentation 
of genetically diverse sequences as consensus (striped), mosaic (multiple colors), or cocktails of mul-
tiple representative genome sequences. 

6. Conclusions 
Since its discovery in 1989, HCV has been a particularly vexing pathogen for vaccine 

development, in large part due to its high sequence diversity. However, significant ad-
vances have provided avenues to potentially overcome this. First, despite significant se-
quence variability among the different genotypes and subtypes, highly-conserved regions 
have been defined and characterized as antigenic regions [38,83,150–158] that give rise to 
bnAbs and can serve as potential targets for rational vaccine design. Second, after signifi-
cant struggles, structural studies were successful first for modified truncated versions of 

Figure 5. Multivalent presentation of E1E2 antigens. Coupling to a nanoparticle increases the size
and valency of E1E2 antigen presentation. Flexible attachment methods allow for the presentation of
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6. Conclusions

Since its discovery in 1989, HCV has been a particularly vexing pathogen for vac-
cine development, in large part due to its high sequence diversity. However, significant
advances have provided avenues to potentially overcome this. First, despite significant
sequence variability among the different genotypes and subtypes, highly-conserved re-
gions have been defined and characterized as antigenic regions [38,83,150–158] that give
rise to bnAbs and can serve as potential targets for rational vaccine design. Second, after
significant struggles, structural studies were successful first for modified truncated versions
of the E2 ectodomain [9,10], and subsequently for a more complete E2 ectodomain [11] in
complex with neutralizing and non-neutralizing antibodies. More recently, the structure
of membrane-extracted E1E2 in a complex with multiple bnAbs was determined by cryo-
EM [18], providing the first look at the antigenic domain AR4, which is bound by the bnAb
AR4A, and correlates with viral clearance [37,110]. In addition, our group developed a
soluble, secreted form of the E1E2 complex, with the idea that an E1E2 antigen liberated
from the membrane would prove more amenable to vaccine design efforts. The structure of
the secreted E1E2 complex [19] shows that it preserves the native architecture of the E1E2
ectodomain outside the context of the membrane. This catalogue of structures (plus other
structures likely to be determined) can be used for structure-based vaccine design of an
E1E2-based HCV vaccine. Third, the development of nanoparticle platforms, both protein-
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and adjuvant-based, allows a multivalent presentation of E1E2 as a means to enhance its
immunogenicity. Moreover, advances in these nanoparticle platforms such as plug-and-
display technology [139] allows for the potential development of mosaic E1E2 vaccines. It
is not known what means of incorporating sequence diversity into an E1E2 vaccine will be
successful, so making as many options as possible available is critical for successful vaccine
development. Additional improvements such as incorporating pan DR epitope (PADRE)
peptides [159–162] into nanoparticles could potentially boost the cellular immune response
to an E1E2-based vaccine, thereby further enhancing its potency. PADRE is an artificial
T-cell epitope that elicits a strong CD4+ T helper response in vitro, and can therefore be
used to boost the overall cellular immune response without perturbing the nanoparticle
system. Like pieces of a puzzle, these and other breakthroughs from research on HCV
and other pathogens have come together to put the field of HCV vaccine development
in a position to overcome the hurdle of HCV sequence diversity. This progress has the
potential to deliver a HCV vaccine that elicits the breadth of neutralization required to
achieve containment and eventual eradication.
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