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Abstract: A novel series of benzimidazole ureas 3a–h were elaborated using 2-(1H-benzoimidazol-2-yl)
aniline 1 and the appropriate isocyanates 2a–h. The antioxidant and possible antidiabetic activities of the
target benzimidazole-ureas 3a–h were evaluated. Almost all compounds 3a–h displayed strong to mod-
erate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA,
compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family
was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and
MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the ma-
jority of the compounds tested had good to moderate activity. The most favorable results were obtained
with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 µM),
3e (IC50 = 20.7 ± 0.06 µM), and 3g (IC50 = 22.33 ± 0.12 µM) had good α-amylase inhibitory poten-
tial comparable to standard acarbose (IC50 = 14.21 ± 0.06 µM). Furthermore, the inhibitory effect of
3c (IC50 = 17.47 ± 0.03 µM), 3e (IC50 = 21.97 ± 0.19 µM), and 3g (IC50 = 23.01 ± 0.12 µM) on α-
glucosidase was also comparable to acarbose (IC50 = 15.41± 0.32 µM). According to in silico molecular
docking studies, compounds 3a–h had considerable affinity for the active sites of human lysosomal acid
α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined
compounds had potential anti-hyperglycemic action.

Keywords: benzimidazole-ureas; isocyanates; antioxidant; enzyme inhibition; diabetes mellitus;
molecular docking simulation

1. Introduction

Diabetes mellitus (DM) is a broad and complex endocrine disease, which is a major
global health issue. It is a disease characterized by marked multiple organ dysfunction and
failure caused by hyperglycemia resulting from insulin deficiency or dysregulation of the
insulin action pathway [1].
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Type 2 diabetes is brought on by a confluence of genetic factors linked to impaired
insulin secretion and insulin resistance, as well as environmental factors such as obesity,
overeating, a lack of exercise, stress, and aging. However, type 1 diabetes is the result of
an autoimmune reaction to proteins of the islets cells of the pancreas [2]. Since 2019, an
estimated 463 million people (8.8% of the adult population) have been diagnosed with
diabetes; type II diabetes represents about 85% to 95% of all diabetes cases in developed
countries, with an even higher percentage in developing nations [3,4].

α-Amylase is a calcium-based metalloenzyme that degrades saccharides into maltose
by cleaving α (1–4) glycosidic bonds. It is abundant in human pancreatic juice and saliva,
as well as in the saliva of some other mammals [5]. The small intestine contains some
α-glucosidases, such as the hexamer-based hydrolyze enzyme, which converts polysaccha-
rides and disaccharides into glucose by processing the non-reducing terminal 1,4-linked
α-glucose residues. In diabetes, the inhibition of these two enzymes becomes very impor-
tant as it reduces the digestion rate of carbohydrates, resulting in less glucose absorption in
the bloodstream [6]. Three drugs are commercially available for diabetes: naturally derived
glycosidase inhibitor molecules (acarbose, miglitol, and voglibose), as well as many other
types of drugs [7] (Figure 1).
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There appears to be a strong direct correlation between antioxidant and anti-diabetic
effects; this relationship may be attributed to the significant role of oxidative stress in
hyperglycemia and overall diabetic complications [8]. The evaluated levels of blood
glucose are combined with the overproduction of free radicals “reactive oxygen species” [8].
In addition, part of the immunogenic damage to beta cells of the pancreas is mediated
by ROS [9]. Therefore, natural and synthetic antioxidant compounds, e.g., phenolics and
flavonoids, are promising candidates for the protection, treatment, and management of
diabetic complications [10,11].

Furthermore, free radical scavengers and chelators have been reported for their poten-
tial role in diabetes management, such as reducing the vascular relaxation and neurovas-
cular impairments associated with hyperalgesia, improving endoneurial blood flow, and
overall reducing the production of OH- and the initiation of lipid peroxidation associated
with vascular reactivity impairment and nerve function in diabetes [12].
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Benzimidazole species have an excellent structural range that covers large biological
and therapeutic application fields. The research describing the importance of structures
containing benzimidazole cores has been extensively developed and possesses a wide
range of bioactive activities, including antifungal [13], antitubercular [14,15], antiulcer and
antimicrobial [16], antileishmanial [17], antiglycation and antioxidant [18], antimycobac-
terial [19], anti-HIV [20], antitumor [21], antiproliferative [22], anti-inflammatory [23,24],
antiviral [25], and antihelminthic activities [26]. Several candidates of this class were tested
for anti-tumor properties and showed activities against several tumor cell lines, including
breast cancer, human cells, and human lung cancer cells [27–33].

In addition, some benzimidazole derivatives are well recognized for their antidiabetic
potential, especially as potent α-glucosidase and α-amylase inhibitors. A multitude of
benzimidazole derivatives were reviewed as α-amylase inhibitors including benzimidazole
bearing sulfonamide [34], 2-arylbenzimidazole [35], 2-mercaptobenzimidazole [36], 2-
aminobenzimidazole derivatives [37], substituted benzimidazole analogs [38], 2-(2-methyl-
5-nitro-1H-imidazol-1-yl)ethylaryl ether [39], and benzimidazole-based Cu (II)/Zn (II)
complexes [40].

Moreover, some benzimidazole structures having 5-bromo-2-arylbenzimidazole [41],
conjugated biphenylbenzimidazole [42], benzimidazole linked with morpholine or piper-
azine [43], oxadiazole bearing benzimidazole motif [44], substituted arylbenzimidazol at
para-position bridged with thiazolidinone [45], benzimidazole linked with Schiff base [46],
benzimidazole bearing triazole [47], hybrid benzimidazole quinolinyl oxadiazole squele-
ton [48], hybrid benzimidazole with thiourea [49], and fluoro-2-substitued-1H-benzimidazol
substituted with morpholine [50] were reported as α-glucosidase inhibitors. In this context,
benzimidazole derived from 5-oxo-pyrido triazepine and aminomethyloxo-pyrimido [51],
benzoylaryl benzimidazole [52], benzimidazol with substituted benzylidene containing
2,4-thiazolidinedione, diethyl malonate, and methylacetoacetate [53], and benzimidazole
bridged with triazole [54] also exhibited excellent α-amylase and α-glucosidase activities.

The urea structure involves one of the most significant intermediates in organic and
medicinal chemistry. This edifice is useful to develop biological active compounds, includ-
ing anticancer, antiviral, antibacterial, and antihypertensive agents, which are clinically ap-
proved therapeutics [55–58]. Due to its remarkable structure, urea can stably form hydrogen
bonds with target proteins and receptors. Furthermore, a targeted urea scaffold was used
to find antidiabetic agents covering hybrid-urea pyrimidine-triazole [59], thiadiazole-urea
bearing quinazolinone [60], sulfonylamino pyridinylbenzothiazol-urea [61], pyrimidine
hybrid phenylaminourea [62], diarylurea containing quinazoline [63], urea moiety with
coumarin-chalcone derivatives [64], and diarylurea linked with benzothiophene [65].

Following the previous scientific report, we elaborated herein a new target structure,
containing both benzimidazole and diarylurea moieties in one component. Our purpose
was to combine their properties, which represent a new route to improve the effectiveness
of bioactive molecules (Figure 2).

There is a critical need to find better drugs to treat type I and type II diabetes.
The discovery of new α-glucosidase and α-amylase inhibitor agents is an interesting
method of obtaining such drugs. To contribute to the advancement of the design and the
discovery of new bioactive species [66–71], we combined the two patterns, benzimidazole
and urea, in the same molecule, allowing for potential antidiabetic agents, and having
good anti-oxidant activity.

A simple route to novel hybrid benzimidazole urea compounds 3a-h was utilized from
the reaction of 2-(1H-benzimizadol-2-yl) aniline 1 and appropriate isocyanates substrates
2a-h. The evaluation of antioxidant, α-amylase, and α-glucosidase activities was assessed.
To estimate the interaction with α-amylase and α-glucosidase enzymes, an in silico molecu-
lar docking study of benzimidazole-urea was performed.



Pharmaceutics 2023, 15, 457 4 of 22Pharmaceutics 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 2. Design of novel hybrid benzimidazole connected with urea. 

There is a critical need to find better drugs to treat type I and type II diabetes. The 
discovery of new α-glucosidase and α-amylase inhibitor agents is an interesting method 
of obtaining such drugs. To contribute to the advancement of the design and the discovery 
of new bioactive species [66-71], we combined the two patterns, benzimidazole and urea, 
in the same molecule, allowing for potential antidiabetic agents, and having good anti-
oxidant activity. 

A simple route to novel hybrid benzimidazole urea compounds 3a-h was utilized 
from the reaction of 2-(1H-benzimizadol-2-yl) aniline 1 and appropriate isocyanates 
substrates 2a-h. The evaluation of antioxidant, α-amylase, and α-glucosidase activities 
was assessed. To estimate the interaction with α-amylase and α-glucosidase enzymes, an 
in silico molecular docking study of benzimidazole-urea was performed. 

2. Results and Discussion 
2.1. Chemistry 

The synthesis of target benzimidazole-ureas 3a-f was realized from commercially 
available 2-(1H-benzoimidazol-2-yl)aniline 1 and six different isocyanates 2a-f. In a first 
attempt, the reaction of 2-(1H-benzoimidazol-2-yl)aniline 1 and naphthylisocyanate 2b in 
anhydrous acetone produced the expected benzimidazole-urea 3b with a moderate yield 
of 60% (Scheme 1). 

Figure 2. Design of novel hybrid benzimidazole connected with urea.

2. Results and Discussion
2.1. Chemistry

The synthesis of target benzimidazole-ureas 3a-f was realized from commercially
available 2-(1H-benzoimidazol-2-yl)aniline 1 and six different isocyanates 2a-f. In a first
attempt, the reaction of 2-(1H-benzoimidazol-2-yl)aniline 1 and naphthylisocyanate 2b in
anhydrous acetone produced the expected benzimidazole-urea 3b with a moderate yield of
60% (Scheme 1).
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Scheme 1. Synthesis of benzimidazole-urea 3a–f from 2-(1H-benzoimidazol-2-yl)aniline 1 and
isocyanates 2a–f.

To enhance the performance of this synthetic method, different reaction conditions were
studied. The principal reaction parameters, including the solvent and number of equivalent
reagents, were varied using the same substrates (1 and 2b). Among the investigated solvents:
tetrahydrofuran, acetone, dichloromethane, and mixtures of dichloromethane/acetone, this
latter mixture, in the respective proportions of 80/20, gave the best results with total substrate
conversion and a 90% reaction yield.

As a result of optimizing the equivalent number of the substrate 2b suitable for the
reaction process, the substrate was fully converted with 1.5 equivalents of the isocyanate 2b.
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1,4-phenelenediisocyanate 2g and 1,4-bis(isocyanatomethyl)cyclohexane 2h reacted
with two equivalents of substrate 1 to afford the corresponding products 3g and 3h in good
yields, 93% and 85%, respectively (Scheme 2).
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The reactions progressed easily, offering good yields of the proposed substrates 3a-h,
and the results are collected in Table 1. It is worth noting that the reaction yields of the
aryl substrates were higher than those of the alkyl and cycloalkyl ones. The low reaction
yields as well as the rates of the reactions observed with alkyl and cycloalkyl isocyanate
substrates may be due principally to the low reactivity of such radicals, which exert an
inductive effect that decreases the isocyanate carbon electrophilicity.

The structure of novel prepared benzimidazole urea was determined by spectroscopic
data from 1H and 13C NMR, FT-IR, and HRMS. The IR spectra of compound 3a showed the
absorption at 3249 cm−1 related to the NH group of the benzimidazole ring. The spectra
also displayed stretching at 1672, 1586, and 1536 cm−1 assigned to (C=O), (C=N), and
(C=C), respectively.

The 1H NMR spectra of compound 3a showed a band at 13.08 ppm attributed to the
NH group of benzimidazole. The amino proton of the urea group resonated at 12.02 ppm.
Aromatic protons resonated in the range of 9.69–7.01 ppm. The compound 3a was identified
with 13C NMR. The spectra exhibited a singlet at 153.2 ppm corresponding to the carbon
atom of the urea carbonyl group. In addition, the carbon of the benzimidazole ring appeared
at 151.45 ppm. The high-resolution mass spectra of compound 3a revealed the presence of
a molecular peak with m/z: 328.12280 attributed to [M]+ compatible with the formula for
C20H16N4O (see Supplementary Materials).
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Table 1. Benzimidazole-ureas 3a-h synthesis from 2-(1H-benzoimidazol-2-yl)aniline 1 and isocyanates
2a-h a.

Entry Isocyanate 2 Benzimidazole Urea 3 Time b (h) Yield c (%)

1
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a Reaction conditions: 1 (1 mmol, 1 equiv.); isocyanate 2 (1.5 mmol, 1.5 equiv.) in 40 mL of dichloromethane
and 10 mL of acetone. b TLC (eluent: Ether/Hexane: 50/50) is used to determine reaction time. c Yields were
measured after purification.

2.2. Biology
2.2.1. Antioxidant Activity

Four in vitro assays were used to determine the antioxidant activity of the compounds
3a-h. The methods used provide information about the compounds’ reducing capacity
(TAC and FRAP methods), scavenging capability (DPPH-SA), and metal chelating activity
(MCA). Table 2 gives the antioxidant levels for the compounds, measured in a comparable
manner using three different in vitro mechanisms, namely, reducing, scavenging, and metal
chelating activities.

Table 2. Antioxidant activities of target benzimidazole-urea 3a-h.

Compounds 3 TAC DPPH-SA FRAP MCA

3a 1.33 ± 0.46 1.17 ± 0.07 6.53 ± 0.03 1.62 ± 0.10

3b 5.16 ± 0.69 0.96 ± 0.06 9.25 ± 0.20 1.55 ± 0.07

3c 4.43 ± 0.53 1.61 ± 0.02 8.65 ± 0.29 1.55 ± 0.22

3d 2.47 ± 0.42 2.89 ± 1.07 5.67 ± 0.69 1.46 ± 0.10

3e 2.52 ± 0.80 1.70 ± 0.01 2.75 ± 0.15 1.47 ± 0.09

3f 8.50 ± 0.87 1.55 ± 0.03 5.99 ± 0.02 1.40 ± 0.07

3g 10.06 ± 1.51 3.86 ± 0.04 16.12 ± 0.29 1.36 ± 0.09

3h 2.25 ± 0.65 1.09 ± 0.03 6.79 ± 0.50 2.95 ± 0.21
TAC: total antioxidant capacity (trolox equivalent per 1 mM of the compounds), DPPH-SA: 2,2-diphenyl-1-
picrylhydrazyl scavenging activity (trolox equivalent per 1 mM of the compounds), FRAP: ferric reducing
antioxidant power (trolox equivalent per 1 mM of the compounds), MCA: metal chelating activity (EDTA
equivalent per 1 mM of the compounds).

In the series of benzimidazole ureas 3a-h, compound 3g demonstrated the highest
reducing power for molybdenum (VI) with 10.06 ± 1.51 mM trolox equivalents in the total
antioxidant capacity (TAC). The results of reducing activity also revealed that some com-
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pounds reduced molybdenum (VI) ions selectively in the TAC. For instance, compounds
3b, 3c, and 3f showed significant molybdenum (VI) reducing activity compared to other
compounds at levels of 5.16 ± 0.69, 4.43 ± 0.53, and 8.50 ± 0.87 mM trolox equivalents.

Regarding Table 2, the results of the ferric reducing antioxidant power (FRAP) of
compounds 3a-h indicated higher activities of derivatives 3a and 3c with 9.25 ± 0.20 and
8.65 ± 0.29 mM trolox equivalents, respectively. The most potent compound 3g yielded the
best results, with 16.12 ± 0.29 mM trolox equivalents.

The results of DPPH-SA of hybrid benzimidazole urea revealed the potency of deriva-
tives 3d and 3g as free radical scavengers. Compound 3d presented good activity with
2.89 ± 1.07 mM trolox equivalents. Compound 3g also gave an excellent result with
3.86 ± 0.04 mM trolox equivalents. The other compounds exerted moderate DPPH-SA
activity at values ranging from 1.70 to 0.96 mM trolox equivalents.

The metal chelating activity (MCA) of compounds 3a-h manifested potential activity
for the compound 3h at the MCA level of 2.95 ± 0.21 mM EDTA equivalents due to the
presence of two urea groups. In addition, compounds 3a-c exhibited moderate MCA in the
range of 1.36–1.62 mM EDTA equivalents.

The overall antioxidant activities of compounds 3a-h confirmed that the majority
manifested excellent to moderate activities. Benzimidazole-urea 3b and 3c displayed
good activity with the three-antioxidant methods TAC, FRAP, and MCA. Targeted com-
pound 3g represented the most derivatives in this family, manifesting excellent activity
in three methods: TAC, FRAP, and DPPH-SA. It is worth noting that compound 3g also
had significant activity for the TAC method, with 10.06 ± 1.51 mM trolox equivalents.
Compound 3g also gave higher activity with 16.12 ± 0.29 mM trolox equivalents for the
FRAP method. Concerning the DPPH-SA method, compound 3g also gave the best results
with 3.86 ± 0.04 mM trolox equivalents.

2.2.2. α-Amylase and α-Glucosidase Inhibition Activity

All the synthesized novel hybrid benzimidazole urea compounds 3a-h were subjected
for the evaluation of their possible α-amylase and α-glucosidase inhibitory activities. It
is worth noting that the majority of the analogs were found to have good to moderately
active IC50 values ranging from 18.65 ± 0.23 to 28.33 ± 0.02 µM for α-amylase inhibition
and with the IC50 values ranging from 17.47 ± 0.03 to 29.01 ± 0.12 µM for α-glucosidase
inhibition except compounds 3a, 3b, and 3h. The inhibitory activities of α-amylase and
α-glucosidase, according to Table 3, revealed that the tested compounds in the current
study demonstrate higher activities than those reported in previous studies [47,72].

Table 3. α-amylase and α-glucosidase inhibition activity of benzimidazole-urea 3a-h.

Compounds 3 α-Amylase Inhibition
IC50 ± SEM (µM)

α-Glucosidase Inhibition
IC50 ± SEM (µM)

3a 40.7 ± 0.06 42.97 ± 0.19

3b 41.7 ± 0.06 45.97 ± 0.19

3c 18.65 ± 0.23 17.47 ± 0.03

3d 25.65 ± 0.03 27.47 ± 0.13

3e 20.7 ± 0.06 21.97 ± 0.19

3f 28.33 ± 0.02 29.01 ± 0.12

3g 22.33 ± 0.12 23.01 ± 0.12

3h 43.04 ± 0.02 44.99 ± 0.09

Acarbose 14.21 ± 0.02 15.41 ± 0.32
SEM = Standard error mean for triplicate values.

Consulting Table 3, the results indicate that compounds 3c (IC50 = 18.65 ± 0.23 µM),
3e (IC50 = 20.7 ± 0.06 µM), and 3g (IC50 = 22.33 ± 0.12 µM) manifested a good α-amylase
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inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 µM) (Table 3).
The same observation was mentioned with compounds 3c (IC50 = 17.47 ± 0.03 µM),
3e (IC50 = 21.97± 0.19 µM), and 3g (IC50 = 23.01± 0.12 µM), which exerted anα-glucosidase
inhibitory potential comparable also to standard drug acarbose (IC50 = 15.41 ± 0.32 µM).

As illustrated in Figure 3, compounds 3d and 3f displayed a moderate α-amylase
inhibitory potential with IC50 = 25.65 ± 0.03 and IC50 = 28.33 ± 0.02 µM, respectively.
The same results were mentioned with 3d analogs with IC50 = 27.47 ± 0.13 and 3f with
IC50 = 29.01 ± 0.12 µM for α-glycosidase inhibition.
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Figure 3. Benzimidazole-ureas 3a-h inhibition activity against α-amylase and α-glucosidase.

Indeed, the whole molecule played an important role in the inhibitory potential;
however, limited SAR was rationalized by emphasizing the effects of varying structural
features such as different substitutions on nitrogen of the amide side chain of urea, on the
inhibitory potential in terms of IC50 values.

Comparing the inhibitory potential of benzimidazole-urea derivatives with phenyl sub-
stitution 3a (IC50 = 40.7 ± 0.06 µM for α-amylase; IC50 = 42.97 ± 0.19 µM for
α-glucosidase), naphthyl substitution 3b (IC50 = 41.7 ± 0.06 µM for α-amylase;
IC50 = 45.97 ± 0.19 µM for α-glucosidase), and di-cyclohexyl urea substitution 3h
(IC50 = 43.04 ± 0.02 µM for α-amylase inhibition; IC50 = 44.99 ± 0.09 µM for α-glucosidase)
manifested weak activities for both α-amylase and α-glucosidase inhibition.

Amongst the other benzimidazole urea derivatives, compound 3d bearing a cyclohexyl
side on nitrogen (IC50 = 25.65 ± 0.03 µM α-amylase inhibition; IC50 = 27.47 ± 0.13 µM
α-glucosidase inhibition) and compound 3f containing a butyl chain on nitrogen
(IC50 = 28.33 ± 0.02 µM α-amylase inhibition; IC50 = 29.01 ± 0.12 µM α-glucosidase
inhibition) exerted moderate activities for both α-amylase and α- glucosidase inhibition.

Derivative 3c having a methoxy phenyl group displayed a significant
α-amylase and α-glucosidase inhibitory activity. Substrate 3e with an isopropyl group
and 3g substituted with a di-phenyl urea group on nitrogen also exhibited good inhibitory
potential compared to standard acarbose.

In summary, in the series of aromatic substituents, compounds containing phenyl group
3a and naphthyl group 3b exhibited a weak activity for inhibition of both α-glucosidase and
α-amylase. The excellent results were shown with target analog 3c bearing 4-methoxyphenyl,
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showing remarkable inhibitory action against both α-amylase and α-glucosidase. The inclu-
sion of a methoxy substituent in the phenyl group at the para-position significantly improved
activity, which might be attributed to the favorable interaction for the inhibition activity of
both α-amylase and α-glucosidase (Figure 4).
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In the series of alkane and cycloalkane, it is clear that compounds 3d and 3f exhibited
higher potential activity in comparison with aromatic compounds 3a and 3b. This observa-
tion is explained based on the donor effect of cyclohexyl and butyl groups when compared
to phenyl or naphthyl groups. The same result was observed with compound 3e bearing
an isopropyl group manifesting a good inhibition of enzyme α-amylase and α-glucosidase.
The above observation was interpreted by the sufficient donor effect of the isopropyl group,
which exerted a favorable interaction and demonstrated the highest activity. Compound 3g
also indicated a strong inhibition of α-amylase and α-glucosidase compared with 3d and
3f. The presence of two phenylbenzimidazoles in the structure of compound 3g allowed
favorable interactions involving a good inhibition activity of α-amylase and α-glucosidase
(Figure 4).

2.3. In Silico Docking Study

The objective of the in-silico study was to clarify and rationalize the type of interactions
of the new benzimidazole urea 3a-h in the target catalytic site. Molecular docking is a
useful tool in the design of structure-based drugs. The optimized structures of the most
potent benzimidazole urea 3c, 3e, and 3g used in the docking study are presented in
Figure 5. We notice that the most stable structures for 3c and 3e had a cis structure with
intramolecular interactions. The most stable structure of 3g had almost a Ci symmetry also
with intramolecular interactions.

Benzimidazole urea derivatives showed good values of binding energies with α-
amylase (HPA) human pancreatic and also the human lysosomal acid-α-glucosidase
(HLAG) (Table 4).

Our study was interested in explaining the interactions of the most effective analogs
molecules 3c, 3e, and 3g manifesting appropriate interactions (2D) and (3D) with the
different amino acids illustrated in Figures 6 and 7. Due to their high inhibition activity
amongst molecules, the structures 3c, 3e, and 3g were chosen for docking studies with 5E0F.
Table 4 reveals that compounds 3c, 3e, and 3g with potent inhibitory activities occupied
suitable positions at the binding center of HPA, with energies of −8.8, −8.0, and −11.2
kcal.mol−1, respectively.
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Table 4. Complexes with HPA and HLAG docking binding energies (kcal.mol−1).

Compounds 3 α-Amylase (E kcal/mol) α-Glucosidase (E kcal/mol)

3a −8.8 −8.7

3b −10.3 −9.9

3c −8.8 −8.2

3d −8.6 −8.6

3e −8.0 −7.6

3f −7.8 −7.6

3g −11.2 −10.0

3h −10.4 −10.0

Presented in Figure 6, the structure of 3c presented (π-σ) interaction with Leu162 (3.47 Å),
two (π-π) interactions with Trp59, and one (π-π) interaction with Tyr62 (4.39 Å). The same type
of interactions: two (π-π) interactions with Trp59 and one (π-π) interaction with Tyr62 (4.44 Å),
existed in molecule 3e. Compound 3g presented many interactions with the protein: one
hydrogen bond with His305 (2.57 Å); (π-ion) interactions with Glu233, His201, and Asp300;
(π-π) interactions with Tyr151 and Trp59; (π-σ) interaction with Ile235; (π-Alkyl) interaction
with Ala235.

The study of Ramasubbu et al. [73] showed that residues Asp 236, Glu233, Arg 61,
Asp300, Lys 200, Leu165, and Asp197, and some of the aromatic and non-polar residues,
Tyr 258, Ile235, His305, His299, Trp58, Ala307, Tyr62, Trp59, Ser163, and His101, defined
the catalytic site of α-amylase. Williams and coworkers [74] reported that the inhibition
property of myricetin with α-amylase has an appropriate position in the catalytic site of
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α-amylase through four hydrogen bonds with Gln63, His101, and Asp197, and possessing
two hydrophobic interactions with Leu165 and Tyr62.
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The data indicated that the structures of 3c, 3e, and 3g had interactions with the
catalytic site through Trp59, Trp58, Leu165, Tyr62, and Gln63 remaining from the catalytic
HPA site. This confirms that 3c, 3e, and 3g are good inhibitors for HPA.

The compounds 3c, 3e, and 3g showing high inhibitory effects with HLAG gave
important values of binding energies with the catalytic site of 5NN8, as mentioned in
Table 4. These values were −8.2, −7.6, and −10.0 kcal mol−1, respectively.

Illustrated in Figure 7, the structure 3c had one hydrogen bond with Ser676 (2.99 Å);
(π-anion) interactions with Asp282 and Asp616; (π-π) interaction with Phe649; (π-Alkyl)
interaction with Leu650. The molecule 3e had two hydrogen bonds with Asp616 (2.64 Å
and 2.69 Å) and (π-anion) interactions with Asp518 and Asp282. Compound 3g had one
hydrogen bond with Asp616; (π-anion) interaction with Asp518; three (π-π) interactions
with Phe649, Phe525, and Trp481.

Roig-Zamboni et al. [75] observed that when 1-deoxynojirimycin is inserted into the
catalytic site of HLAG, it has a high inhibitory activity. This molecule has interactions with
Trp376, Asp404, Leu405, Ile441, Trp481, Trp516, Asp518, Met519, Arg600, Trp613, Asp616,
Asp645, Arg672, His674, and Phe649. Our data indicate that our structures 3c, 3e, and 3g
interacted with the HLAG catalytic site via many similar residues (Trp376, His674, Trp481,
Trp376, Trp516, Trp481, Trp516, Asp518, Met519, Asp518, Arg600, Asp518, and Asp616).
The different complexes of 3c, 3e, and 3g were stabilized by these interactions and suggests
that this stabilization contributed to the inhibitory activity.

3. Conclusions

A prominent series of benzimidazole-urea analogs 3a-h was designed and synthesized
from 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The an-
tioxidant and antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated.
When measured using four different methods, the antioxidant data revealed that the most
desired benzimidazole-urea exhibited high activity. The results indicated that among the
series, compounds 3a and 3b displayed good inhibition with three methods: FRAP, MCA,
and DPPH-SA. The most potent antioxidant compound was 3g, which demonstrated strong
activity in all four methods. Furthermore, the ability of benzimidazole-urea scaffolds to
inhibit α-glycosidase and α-amylase was investigated. According to our predictions, the
majority of tested compounds exhibited good to moderate activities. The results indicated
that compounds 3e and 3g exhibited good inhibition for both enzymes, α-amylase, and
α-glucosidase. Compound 3c bearing the 4-methoxy moiety on the phenyl group at the
para-position was found to be a more potent inhibitor of α-amylase, and α-glucosidase
similar to the standard drug acarbose. The study confirms that compounds 3c, 3e, and
3g have strong in vitro antioxidant properties, as well as α-glucosidase and α-amylase
inhibition activities comparable to those of acarbose, suggesting that they could be used as
anti-diabetic medications.

4. Experimental
4.1. General Details

Without any further purification, all commercially available reagents were used. Un-
less otherwise specified, all reactions were carried out in a dry nitrogen-protected atmo-
sphere using oven-dried glassware. FT-IR spectra were recorded on an Agilent (Agilent
Technologies, Inc. Headquarters, address: 5301 Stevens Creek Blvdv, Santa Clara, CA 95051,
USA) apparatus type Cary 600 in the range of 400–4000 cm−1. A Bruker (Bruker Daltonics
Inc., Bremen, Germany) NMR spectrometer Avance III HD 400 MHz was used to analyze
1H and 13C NMR spectra at 400 and 100 MHz, respectively. All spectra were recorded and
referenced to TMS using DMSO d6 as the solvent. According to an internal standard of
residual DMSO d6 at 2.50 ppm, chemical shifts in 1H NMR spectra were mentioned in parts
per million (ppm) on the scale. Spin multiplicities are denoted by the letters s (singlet), brs
(broad singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Chemical shifts in 13C
NMR spectra were also indicated in ppm from the peak position of DMSO d6 (39.52 ppm).
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The values of the coupling constant J are given in hertz (Hz). High-resolution mass spectra
were recorded on an Agilent 6545 LC/Q-TOF MS (Agilent Technologies, Inc. Headquar-
ters, address: 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA). Using the Stuart
SMP30 apparatus (New Jersey 07740, États-Unis), the melting points in open capillary
tubes were determined. For analytical TLC, Silica Gel 60 F254 plates (Sigma 40–60 m) were
employed, and the chromatogram was developed using a UV lamp 254 nm. DMSO-d6
(99.9 atom % D; CAS no. 2206-27-1) were purchased from Sigma-Aldrich and used without
further purification.

4.2. Chemistry: Benzimidazole-Ureas 3a–h Synthesis: General Procedure

The reaction was carried out under a nitrogen atmosphere. In a 100 mL round bottom
flask, 0.52 g (2.5 mmol) of 2-(1H-benzoimidazol-2-yl) aniline was placed in 20 mL of
dichloromethane and 5 mL of acetone, and the appropriate isocyanate (3.75 mmol) was
added dropwise in 20 mL of dichloromethane and 5 mL of acetone. The reaction was stirred
under reflux. TLC and diethyl ether/hexane (50/50) as the eluent were used to monitor
the reaction progress (see Table 3). After filtering the reaction mixture, the raw solid was
purified through recrystallization from ethanol (see Supplementary Materials).

1-(2-(1H-benzo[d]imidazol-2-yl)phenyl)-3-phenylurea 3a: White precipitate, yield: 84%;
M.p. = 129–131 ◦C; IR (cm−1) ν: 3249 (NH), 1672 (C=O), 1586 (C=N), 1536 (C=C); 1H NMR
(400 MHz, DMSO-d6) δ(ppm): 13.08 (s, 1H, NH), 12.02 (s, 1H, NH), 9.69 (s, 1H, NH),
8.40 (d, 1H, J = 8.44 Hz, Harom), 7.78 (m, 1H, Harom), 7.56 (d, 3H, J = 7.68 Hz, Harom),
7.45 (td, 1H, J = 8.44 Hz, Harom), 7.33–7.28 (m, 1H, Harom), 7.17 (td, 1H, J = 8.00 Hz, Harom);
7.01 (t, 1H, J = 7.36 Hz, Harom); 13C NMR (75 MHz, DMSO-d6) δ(ppm): 153.2 (C=O),
151.45 (C=N), 142.7, 140,3, 139.8, 134.1, 130,7, 129.1, 127.7, 123.6, 122.6, 122.4, 121.7, 120.9, 119.7,
119.3, 115.7, 111.8; HRMS: m/z for C20H16N4O calcd: 328.1324, found: 328.12280 [M]+.

1-(2-(1H-benzo[d]imidazol-2-yl)phenyl)-3-(naphthalen-1-yl)urea 3b: White precipitate,
yield: 90%; M.p. = 203–205 ◦C; IR (cm−1) ν: 3394 (NH), 1647 (C=O), 1586 (C=N), 1518 (C=C);
1H NMR (400 MHz, DMSO-d6) δ(ppm): 13.01 (s, 1H, NH), 12.04 (s, 1H, NH), 9.45 (s, 1H,
Harom), 8.50 (d, 1H, J= 8.48 Hz, Harom), 7.72–7.71 (dd, 1H, Harom), 8.03–7.95 (m, 2H, Harom),
7.85 (d, 1H, Harom), 7.56 (d, 1H, J = 7.44 Hz, Harom); 7.53–7.51 (m, 4H, Harom), 7.53 (td,
2H, J = 8.48 Hz, Harom), 7.22–7.13 (m, 3H, Harom); 13C NMR (75 MHz, DMSO-d6) δ(ppm):
154.6 (1C, C=O), 151.3 (C=N), 139.9, 134.6, 134.4, 130.7, 129.6, 128.5, 127.8, 126.5, 126.36,
126.34, 125.9, 123.5, 123.4, 122.22, 121.7, 120.7, 115.75, 111.6; HRMS: m/z for C24H18N4O
calcd: 378.1481, found: 378.33484 [M]+.

1-(2-(1H-benzo[d]imidazol-2-yl)phenyl)-3-(4-methoxyphenyl)urea 3c: White precipitate,
yield: 80%; M.p. = 197–199 ◦C; IR (cm−1) ν: 3405 (NH), 1646 (C=O), 1587 (C=N), 1533 (C=C);
1H NMR (400 MHz, DMSO-d6) δ(ppm): 13.11 (s, 1H, NH), 12.08 (s, 1H, NH), 9.49 (s, 1H,
NH), 8.53 (d, 1H, J = 8.3 Hz, Harom), 8.11 (d, 1H, J = 7.16 Hz, Harom), 7.80–7.78 (m, 1H, Harom),
7.63–7.61 (m, 1H, Harom), 7.54–7.45 (m, 3H, Harom), 7.41–7.31 (m, 2H, Harom), 7.17 (t, 1H,
J = 7.28 Hz, Harom), 6.95 (d, 1H, J = 8.96 Hz, Harom); 6.90 (d, 1H, J = 9.00 Hz, Harom), 3.76
(s, 3H, OCH3); 13C NMR (75 MHz, DMSO-d6) δ(ppm): 154.8 (C=O), 153.6 (C=N), 153.5, 151.5,
142.8, 140.1, 134.1, 130.7, 127.7, 123.6, 122.3, 121.5, 120.7, 119.3, 115.8, 115.2, 114.9, 114.7, 114.0,
111.8, 55.5; HRMS: m/z for C21H18N4O2 calcd: 358.1430, found: 358.33315 [M]+.

1-(2-(1H-benzo[d]imidazol-2-yl)phenyl)-3-cyclohexylurea 3d: White precipitate, yield:
75%; M.p. = 330–332 ◦C; IR (cm−1) ν: 3335 (NH), 1654 (C=O), 1587 (C=N), 1531 (C=C);
1H NMR (400 MHz, DMSO-d6) δ(ppm): 13.04 (s, 1H, NH), 11.67 (s, 1H, NH), 8.52 (d, 1H,
J = 8.36 Hz, Harom), 8.02 (d, 1H, J = 7.36 Hz, Harom), 7.80–7.78 (m, 1H, Harom), 7.59–7.57
(m, 1H, Harom), 7.39 (t, 1H, J = 7.40 Hz, Harom); 7.28–7.27 (m, 2H, Harom), 7.08 (t, 2H, J = 7.24 Hz,
Harom), 3.58 (m, 1H, CHN), 1.91–1.89 (m, 2H, CH2), 1.75–1.60 (m, 3H), 1.37–1.22 (m, 5H); 13C
NMR (75 MHz, DMSO-d6) δ(ppm): 154.9 (C=O), 151.7 (C=N), 140.7, 134.1, 130.6, 127.7, 123.5,
122.3, 120.8, 128.0, 119.1, 116.5, 115.4, 114.8, 111.7; 55.3, 49.2, 33.5, 25.7, 25.4; HRMS: m/z for
C20H22N4O calcd: 334.1794, found: 334.19339 [M]+.

1-(2-(1H-benzo[d]imidazol-2-yl)phenyl)-3-isopropylurea 3e: White precipitate, yield:
65%; M.p. = 196–198 ◦C; IR (cm−1) ν: 3355 (NH), 1654 (C=O), 1587 (C=N), 1532 (C=C);
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1H NMR (400 MHz, DMSO-d6) δ(ppm): 13.07 (s, 1H, NH), 11.73 (s, 1H, NH), 8.53 (d, 1H,
J = 8.40 Hz, Harom), 8.03 (d, 1H, J = 7.32 Hz, Harom), 7.78 (m, 1H, Harom), 7.58 (m, 1H, Harom),
7.39 (t, 1H, J = 7.40 Hz, Harom); 7.28–7.27 (m, 2H, Harom), 7.08 (t, 2H, J = 7.28 Hz, Harom),
3.95–3.90 (m, 1H, CHN), 1.19 (s, 6H, 2CH3); 13C NMR (75 MHz, DMSO-d6) δ(ppm): 154.9
(C=O), 153.0 (C=N), 151.7, 148.7, 142.7, 140.7, 134.0, 130.6, 127.7, 123.5, 122.7, 122.3, 121.8,
120.8, 119.9, 119.2, 118.6, 116.5, 115.4, 114.7, 111.7, 111,2, 110.5; HRMS: m/z for C17H30O2N2
calcd: 294.23073, found: 294.23016 [M]+.

1-(2-(1H-benzo[d]imidazol-2-yl)phenyl)-3-butylurea 3f: White precipitate, yield: 60%;
M.p. = 196–198 ◦C; IR (cm−1) ν: 3407 (NH), 1651 (C=O), 1510 (C=N), 1512(C=C); 1H NMR
(400 MHz, DMSO-d6) δ(ppm): 7.91 (dd, 1H, J = 7.64 Hz, Harom), 7.74–7.71 (m, 1H, Harom),
7.65–7.63 (m, 1H, Harom), 6.94 (m, 2H, NH2), 6.82–6.78 (m, 2H, Harom), 3.61 (m, 2H, CH2N),
1.19 (s, 6H, 3CH2); 13C NMR (75 MHz, DMSO-d6) δ(ppm): 148.7, 144.6, 143.4.0, 132.7, 132.0,
125.1, 122.5, 122.3, 121.8, 119.3, 118.4, 116.5, 115.4, 112.3, 111,9, 110.5, 72.3, 28.4; HRMS: m/z
for C18H20N4O calcd: 308.1637, found: 308.18590 [M]+.

1,1’-(1,4-phenylene)bis(3-(2-(1H-benzo[d]imidazol-2-yl)phenyl)urea) 3g: White pre-
cipitate, yield: 93%; M.p. = 190–192 ◦C, IR (cm−1) ν: 3326 (NH), 1652 (C=O), 1588 (C=N),
1527 (C=C); 1H NMR (400 MHz, DMSO-d6) δ(ppm): 13.05 (s, 2H, 2NH), 11.97 (s, 2H, 2NH),
9.53 (s, 2H, NH), 8.45 (d, 2H, J = 6.35 Hz, Harom), 8.05 (d, 2H, J = 6.35 Hz, Harom), 7.78–7.69
(m, 2H, Harom), 7.58–7.57 (m, 2H, Harom), 7.50–7.41 (m, 12H, Harom); 13C NMR (75 MHz,
DMSO-d6) δ(ppm): 153.45, (C=O), 151.47 (C=N), 142.7, 139.9, 142.7, 140.7, 134.9, 134.1,
130.7, 127.7, 123.5, 122.3, 121.61, 120.8, 120.7, 119.4, 119.1, 115.6, 114.5; HRMS: m/z for
C34H26N8O2 calcd: 578.2179, found: 578.20871 [M]+.

1,1′-(cyclohexane-1,4-diylbis(methylene))bis(3-(2-(1H-benzo[d]imidazol-2-yl) phenyl)
urea) 3h: White precipitate, yield: 85%; M.p. = 190–192 ◦C, IR (cm−1) ν: 3410 (NH), 1651
(C=O), 1587 (C=N), 1512 (C=C); 1H NMR (400 MHz, DMSO-d6) δ(ppm): 13.01 (s, 2H, 2NH),
11.8–11.5 (s, 2H, 2NH), 8.58–8.45 (m, 2H, Harom), 8.07–7.88 (m, 2H, Harom), 7.85–7.33 (m,
8H, Harom), 7.32–7.14 (m, 6H, Harom), 7.14–7.87 (m, 4H, Harom), 3.1–3.9 (m, 4H, 2CH2N),
0.5–2.1 (m, 10H); 13C NMR (75 MHz, DMSO-d6) δ(ppm): 155.1, 155.0 (C=O), 151.7, 151.6
(C=N), 142.8, 140.6, 140.5, 134.1, 130.8, 130.6, 127.8, 127.7, 123.4, 122.4, 120.9, 120.8, 120.3,
120.0, 119.1, 116.5, 115.4, 115.1, 114.8, 111,8, 49.7. 48.8; 47.2, 44.6, 34.0, 33.9, 33.3, 32.5, 31.7,
29.5, 28.4, 28,2; HRMS: m/z for C36H36N8O2 calcd: 612.2961, found: 612.34533 [M]+.

4.3. Biology
4.3.1. Antioxidant Study
Total Antioxidant Capacity (TAC)

An amount of 2 mL of freshly prepared 0.6 M solution of sulfuric acid, a solution of
ammonium molybdate (4 mM), and a buffer solution of sodium phosphate (28 mM) were
placed in small glass test tubes and thoroughly mixed with the compound solution (200 µL in
DMSO with a concentration of 1 mM) [76]. An amount of 2 mL of molybdate reagent was
mixed with 200 µL of distilled water to make a blank test. The cylinders were warmed to
85 ◦C for 1.5 h before cooling to ambient temperature. At 695 nm, the produced blue color
was assessed with a UV spectrophotometer, with the blank reading having to serve as the
auto-zero point. The TAC results were calculated using the Trolox standard calibration curve.

DPPH Scavenging Activity (DPPH-SA)

The ability of the compounds to scavenge free radicals was tested against DPPH-stable
free radicals. The degree of reduction in the DPPH violet color is directly proportional to
the scavenging efficacy of the compounds. According to the method of Aroua et al. [52],
1 mL of the DMSO solutions of the tested compounds (1 mM final concentration) was
thoroughly mixed in test tubes with the DPPH solution prepared at the concentration of
300 µM in methanol. After 30 min at room temperature, the reduction in DPPH-violet
color was measured at 517 nm. The DPPH-SA of the compounds was calculated using the
DPPH-Trolox calibration curve.
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Ferric Reducing Antioxidant Power (FRAP) Assay

The FRAP reagent is a 1:1:10 mixture of TPTZ (2,4,6-Tris(2-pyridyl)-S-triazine, 10 mM
prepared in 40 mM HCl), FeCl3.6H2O (20 mM), and acetate buffer (300 mM, pH 3.6) [77].
Accurately, 0.1 mL of the samples (final concentration 1 mM in DMSO) was thoroughly
mixed with 2 mL of the FRAP reagent and incubated at room temperature for 30 min. At
593 nm, the absorbance was measured. The compounds FRAP activity was calculated
using the FRAP-trolox calibration curve in trolox equivalent.

Iron Chelating Activity Assay (MCA)

Using the method of Zengin et al. [78] with modification, the ability of compounds
to chelate iron compared to the EDTA was estimated. To inchoate the color, a compound
solution in DMSO (2 with a final concentration of 1 mM) plus ferrous chloride (25 µL,
2 mM, FeCl2) was added to 100 µL of ferrozine. At 562 nm, the absorbance of the mixture
was measured in comparison to a blank (prepared similarly to a test without ferrozine).
The chelating activity of the extract was calculated in equivalents to the EDTA standard
calibration curve.

4.3.2. α-Amylase and α-Glucosidase Inhibition Assay
α-Amylase Inhibition Assay

The α-amylase inhibition activity was measured using the previously reported method-
ologies [52]. An amount of 500 µL of test sample (10–1000 M) and 500 µL of substrate
α-amylase (source: Aspergillus oryzae) solution (0.5 mg/mL) in 0.2 mM phosphate buffer
(pH 6.9) were incubated for 10 min at 25 ◦C. Following pre-incubation, 500 µL of 1% starch
solution in 0.02 M sodium phosphate buffer (pH 6.9) was added and incubated for 10 min
at 25 ◦C. An amount of 1 mL of dinitro salicylic acid color reagent was used to stop the
reaction. The tubes were then placed in boiling water for 5 min before being cooled to room
temperature. After diluting the solutions with 10 mL of distilled water, the absorbance
at 540 nm was measured. The standard medication was acarbose [79]. The percentage of
enzyme inhibition was calculated using the following equation:

% of Enzyme Inhibition =
(Absorbance of control – Absorbance of compound)× 100

Absorbance of control
(1)

The IC50 values, concentrations necessary to reduce α-amylase activity by 50%, were
measured and used Graph Pad Prism Software and a non-linear correlation graph plotting
percentage inhibition (x axis) versus concentrations (y axis) (Version 5).

α-Glucosidase Inhibition Assay

The inhibition of α-glucosidase activity was measured using a modified version of
a previously published method [80]. In 100 mL of phosphate buffer (pH 6.8) containing
200 mg of bovine serum albumin, one milligram of α-glucosidase (Saccharomyces cere-
visiae, Sigma-Aldrich, St. Louis, MO, USA) was dissolved (Merck, Darmstadt, Germany).
The reaction mixture was made up of 10 µL of sample at various concentrations (10–1000 M),
490 µL of phosphate buffer pH 6.8, and 250 µL of 5 mM p-nitrophenyl-D-glucopyranoside
(Sigma-Aldrich, Buchs, Switzerland). After a 5 min preincubation at 37 ◦C, 250 µL of
α-glucosidase (0.15 unit/mL) was added and incubated at 37 ◦C for 15 min. The reaction
was stopped by adding 2000 µL Na2CO3 200 mM. α-glucosidase activity was measured
using a spectrophotometer UV-Vis (Shimadzu 265, Kyoto, Japan) at 400 nm by measuring
the amount of p-nitrophenol released from p-NPG. As a positive control for α-glucosidase
inhibitor, acarbose was used [81]. The IC50 value was defined as the concentration of
the extract required to inhibit 50% of α-glucosidase activity under the assay conditions.
Equation (1) was used to calculate the percentage of inhibition.
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4.4. Statistical Analysis

The IC50 values, concentrations necessary to inhibit the α-amylase and α-glucosidase
activities by 50%, were determined using Graph Pad Prism Software (Version 5) and a non-
linear regression graph plotting percentage inhibition (x axis) versus concentrations (y axis).

4.5. Molecular Docking

The new benzimidazole-urea 3a-h and their interactions with HPA and HLAG were
studied by molecular docking in order to clarify the appropriate position for the ligands in
the catalytic site of the proteins. We imported HPA (PDB code: 5E0F) and HLAG (PDB code:
5NN8) from the Protein Data Bank. Molecules of water and co-crystallized ligand from the
receptors were removed. AutoDockTools1.5.2 (ADT) was used to add Gasteiger charges
and polar hydrogens to the files, which were then converted to PDBQT format [82,83]. A
docking grid was chosen by ADT. The grid box in HPA was centered at x = −7.946 Å,
y = 10.438 Å, and z = −21.863 Å using a grid of x = 80, y = 72, and z = 66 points. The grid
box for HLAG was centered at x = −12.175 Å, y = −35.415 Å, and z = 88.753 Å using a grid
of x = 74, y = 70, and z = 90 points. A spacing of 0.375 Å was chosen.

The optimization of the compounds was performed using a conjugate gradient AMMP
implemented in VEGA ZZ software [84]. The file format was converted from PDB to PDBQT
using ADT. The docking calculations were performed by AutoDock Vina software [85] with
an exhaustiveness parameter of 32. ADT allowed the analysis of the conformations obtained
from the docking calculations. The ligand–receptor interaction types were determined
using Discovery Studio Visualizer [86].
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