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Abstract: Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic
bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth.
Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to
a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release
antibacterial agents in response to low pH has gained attention as a targeted therapy for dental
caries. Release is triggered by high levels of acidogenic species and their reduction may select for the
establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified
by the modification of the delivery system to target adhesion to the plaque biofilm to extend the
retention time of antimicrobial agents in the oral cavity. In this review, recent developments of
different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This
review critically discusses the current state of the art and innovations in the development and use of
smart delivery materials for dental caries treatment. The authors’ views for the future of the field are
also presented.

Keywords: pH-responsive delivery systems; pH-responsive release mechanism; tooth-binding;
dental caries

1. Introduction

Dental caries is a common disease that can occur throughout life and is one of the most
prevalent global health problems [1,2]. Although not as intensely studied as other diseases,
it affects the vast majority of adults and 60–90% of school-age children in industrialized
countries. Thanks to a variety of public health initiatives, including effective fluoride expo-
sure and improved health care practice, dental caries is often well-controlled in developed
countries, while an opposite rising trend is observed in low- and middle-income nations.
Traditional therapeutic dental care is a significant financial burden in many developed coun-
tries, and apart from the economic consideration dental caries can have a negative impact
on quality of life, as it leads to pain, the avoidance of food and social embarrassment [2–4].

Dental caries is caused by dental plaque, a polymicrobial biofilm that attaches to
pellicle, a glycoprotein film that covers all oral surfaces [5]. The key modulators for the
development of the cariogenic plaque biofilm are high levels of acidogenic and aciduric bac-
teria, consisting of members of the mutans Streptococci group which includes Streptococcus
mutans [6]. S. mutans is a highly cariogenic bacterium, capable of fermenting carbohydrates
to lactic acid, which initiates the demineralization of the inorganic component of teeth [7,8].
Further, insufficient salivary calcium phosphates and low pH in the oral environment
can also contribute to the proliferation of other aciduric and acidogenic bacteria while
inhibiting the growth of the beneficial microbiota, ultimately leading to dysbiosis [9–12].

Nonrestorative therapeutic treatments have been widely explored for clinical care,
mainly through dental plaque control using antimicrobial agents and remineralisation
processes to arrest the loss of dental tissues. These include the use of sodium fluoride
(NaF), ammonium fluoride, silver diamine fluoride (SDF), chlorhexidine and silver nitrate,
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all of which aim to reduce clinical intervention [13–17]. Although reviews of these thera-
peutic agents indicated that they are effective in arresting caries [18–21], few innovations
have been introduced to improve clinical outcomes and reduce the incidence of caries in
the population [22].

In recent decades, with developments in nanotechnology, novel pH-responsive con-
trolled drug delivery vehicles have attracted great attention and have been widely devel-
oped for biomedicine, especially in treatments for cancer, cardiovascular diseases, hyper-
tension and peptic ulcers [23]. These “smart materials” target detrimental changes in the
environment (pH responsive) and produce a controlled release under pathologic conditions,
unlike conventional therapy [24]. Similarly, targeted delivery using pH-triggered release
technology can be directly applied to the treatment of dental caries. The pH of the localised
carious environment can be as low as 4.5, compared to the normal physiological pH range
of 6.2 to 7.6 [25]. The main advantage in using these “smart materials” is that they target
the dysbiotic biofilm and promote the establishment of the healthy commensal microbiome
by selectively reducing the numbers of aciduric bacteria.

This focussed review critically discusses pH-responsive delivery vehicles encapsulated
with various therapeutic agents for the treatment of dental caries. It includes preparation
and fabrication methods, drug loading processes and innovations in targeting the dysbiotic
oral biofilm. We also discuss similar pH-responsive delivery platforms used in other fields,
as well as their potential applications in dentistry.

2. Search Strategy

Frequently used databases were searched, including PubMed, Web of Science, Science
Direct, and Ovid Medline, for relevant publications with no date restrictions, in accordance
with the guidance from the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statements for methodological quality assessment [26]. Keywords
used for the search in all databases were “pH-responsive”, “pH-sensitive” and “dental
caries”. pH-responsive/sensitive delivery vehicles for dental caries treatment were the
main focus for data and information extraction, and any subjects not relating to this were
excluded. Research articles with keywords in the abstracts and content focusing on the
topic of this review were included. An additional plain Google search was performed
using the above-mentioned selection criteria (see Figure 1). Pertinent references from the
bibliographies of the consulted articles were also examined for applicable references that
were not shown by the database and also to ensure an effective follow up of the relevant
studies for the present review.
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3. Nanoparticle Formulation and pH-Responsive Release Mechanism

pH-responsive nanocarriers are the most widely used drug delivery systems in the
oral cavity. To enable pH-responsive release, nanocarriers are generally fabricated with pH
responsive groups such as amines or acid-labile bonds. pH changes induce the protona-
tion/deprotonation or lysis of the chemical bonds, resulting in drug release [27]. Various
polymers are used for the preparation of nanocarriers, and the following sections categorise
nanocarriers by their polymer composition.

3.1. DMAEMA

DMAEMA (dimethylaminoethyl methacrylate) is a cationic monomer and its polymer
(p(DMAEMA)) has often been used as a drug delivery vehicle due to its pH-responsive
properties. The chemical structure (Figure 2) of DMAEMA contains a tertiary amine group
which has a pKa of 7.5. It undergoes structural changes (swelling) in acidic conditions
due to the protonation of the tertiary amino moity, and becomes hydrophilic. When the
environmental pH is above its pKa, the amine group will be deprotonated and becomes
hydrophobic [28,29], which is an important property in loading hydrophobic drugs.
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Horev et al. (2015) and Zhou et al. (2016) used a two- step reversible addition–
fragmentation chain transfer (RAFT) polymerization method to synthesise a delivery vehi-
cle which allowed the modulation of the polymer molecule weights and polydispersity in-
dices (PDI) [30,31]. In the first step, poly (dimethylaminoethyl methacrylate) p(DMAEMA)
was synthesised by introducing DMAEMA and dimethylformamide (DMF) into a reac-
tion vessel with a chain transfer agent (CTA). The initiator (2,2-azobisisobutyronitrile)
was then added, and the polymerization reaction occurred at 60 ◦C for 6 h. In the
next step, p(DMAEMA) was used as a macro CTA and crosslinked with DMAEMA, 2-
propylacrylic acid (PAA), and butyl methacrylate (BMA) monomers (25:25:50%, respec-
tively) to form p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA) diblock copolymers with
2,2-Azobisisobutyronitrile (AIBN) as the initiator. The copolymers were then self-assembled
into micelles due to the hydrophobic interactions among BMA residues in the p(DMAEMA-
co-BMAco-PAA) core blocks.

The loading of farnesol inside the micelles was achieved via sonication, with a loading
ratio up to 22 wt% and a loading efficiency of 100%. Farnesol is a hydrophobic antibacterial
agent, but has limited antibiofilm effects after topical applications. The pH-responsive
delivery vehicle was therefore used to enhance drug efficacy through high affinity binding
and pH-responsive drug release. The farnesol release half-life was 7 h and 15 h at pH 4.5
and pH 7.2, respectively, indicating pH-responsive release behaviour. Moreover, nearly
all farnesol (75%) was released within 12 h at pH 4.5, in contrast to the 30 h required for
complete release at pH 7.2. At physiological pH (pH 7.2), DMAEMA was protonated and
PAA was deprotonated, creating an amphiphilic core for farnesol, while at an acidic pH
(pH 4.5) DMAEMA was completely protonated and PAA was neutralized. Electrostatic
repulsion occurs due to protonation between the micelle corona and the core, leading to the
disruption of micelle structures and drug release (see Figure 3). Significant antibiofilm ac-
tivity of farnesol-loaded nanoparticles was observed, with an 80% decrease in the S. mutans
biofilms’ viability compared to a modest 20% reduction in the free farnesol treated group.
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In addition, nanocarriers by themselves did not show any antibacterial/antibiofilm activity.
The enhanced antibiofilm effect was likely due to the greater binding between the positively
charged nanoparticles at acidic conditions and the negatively charged microbial surfaces, as
well as the pH-triggered drug release, which prolonged the farnesol retention and increased
drug bioavailability at the pellicle–biofilm interface as well as inside the biofilm [30,31].
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Peng et al. (2022) also used DMAEMA to synthesise poly(DMAEMA-co-HEMA) to
encapsulate chlorhexidine (CHX); the overall structure was known as p(DH)@CHX, and the
loading capacity and encapsulation efficiencies of CHX in poly(DMAEMA-co-HEMA) were
16.03% and 80.15%, respectively. When placed in an acidic environment, the amine groups
in the DMAEMA polymer become protonated, resulting in structural changes (swelling)
and causing the subsequent release of CHX. Results from the release study confirmed
that p(DH)@CHX released CHX significantly faster in the acidic environment than in the
neutral environment, with 60% of CHX released in the acidic condition compared to 30% in
pH 7.4 after one hour [29]. CHX is considered a gold standard antiplaque agent (mouth
rinse) in dental clinical practice and has been widely used for its broad-spectrum antibac-
terial effects [32]. Nevertheless, the long term application of CHX is not recommended
due to several disadvantages, including cytotoxicity, and few extenuating effects on oral
biofilm [33–35]. In the study, the p(DH)@CHX retained the same antibacterial/antibiofilm
effect as free CHX, and both reduced lactic acid production and biofilm viability to 80%, re-
spectively, compared to the control, yet no significant improvement was credited for using
the delivery vehicle, except for a lower cytotoxicity. Therefore, more efforts are required to
optimize the current delivery system and to enhance adhesion to the biofilm [36].

3.2. Polyethylene Glycol (PEG)

Poly (ethylene glycol) (PEG) is the one of the most frequently used hydrophilic poly-
mers used in drug delivery and nanotechnology. Considered a gold standard with “stealth”
properties, it has fewer interactions with blood components, thus avoiding the rapid blood
clearance seen with other drug carriers, and has excellent biocompatibility [37,38]. Fur-
thermore, PEG can be used to stabilize polymeric nanocarriers as it decreases the chance
of agglomeration of the particles via steric stabilization, increasing the stability of the
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produced formulations during storage and application [39,40]. In addition, PEG is highly
soluble in organic solvents, making modification in the end-group comparatively simple,
and it is also suitable for biological applications because of its water solubility and low
intrinsic toxicity [37]. Due to these superior properties, self-assembled micelles using poly
(ethylene glycol) (PEG) as the corona-forming block have been investigated further [41],
as they can be modified with pH-responsive groups or acid-labile bonds which respond
to low pH, causing structural changes that release the drug. Relevant research regarding
self-assembled micelles using PEG as the corona-forming block for pH responsive drug
delivery systems is listed in Table 1.

Table 1. List of PEG micelles used as pH-responsive drug delivery systems.

Carrier Composition Therapeutic Agent Pathogen Used for
Antibacterial/Antibiofilm Test

pH-Responsive
Release Mechanism Reference

PEG-b-PAECOEMA/CA CHX S. mutans

PAECOEMA/CA block is
pH-sensitive and the degradation
of citraconic amides converts the

charge of the carrier from negative
to positive, thus positively

charged CHX is released via
charge repulsion

[42]

mPEG-b-PDPA Bedaquiline S. mutans

The protonation of the PDPA
segment converts the hydrophobic
core to hydrophilic when the pH

falls below the pKa (pH < 6),
causing the dismantling of the

nano structure and thus releasing
the hydrophobic drug [43]

[44]

PEG-b-PLL/PBA-d.egradable micelles NaF and TA S. mutans

Catechol groups in TA interact
with phenylboronic acid (PBA) in
the PEG-b-PLL/PBA blocks and
form the pH-sensitive boric acid

ester link, which is subject to acid
cleavage under

cariogenic conditions

[45]

CaCl2 + PEG-Pasp Doxycycline (DOXY) P. intermedia

DOXY-loaded polymeric
PEG-PAsp template-assisted

CaCO3 mineralized nanoparticles
could maintain their mineral

structure and keep DOXY from
releasing under normal pH in

health oral environment, while in
acidic pH the DOXY is released

due to the dissolution of the
CaCO3 mineral cores

[46]

PPi-PEGhyd-Far Farnesal (Far) S. mutans Via an acid-labile hydrazone bond [47]

Zhao et al. [42] synthesised a cationic poly (ethylene glycol)-block-poly(2-(((2-aminoethyl)
carbamoyl) oxy) ethyl methacrylate) (PEG-b-PAECOEMA), then modified with citraconic
anhydride (CA) to form negatively charged PEG-b-PAECOEMA/CA as the pH-responsive
delivery vehicle for CHX. PEG-b-PAECOEMA/CA could encapsulate cationic CHX via
electrostatic interactions and self-assemble into core–shell polyionic complex micelles
(PICMs). In this structure, the neutral PEG block was used for the stabilization of the
polymer and the PAECOEMA/CA block as the pH sensitive group. In neutral conditions,
the PAECOEMA/CA block was negatively charged because of the carboxylate groups at
the end, facilitating the encapsulation of the cationic CHX inside the core via electrostatic
interactions, and exposing PEG as the shell. The loading efficiency and encapsulation
efficiency of CHX in CA-PICMs were detected at 16.48% and 75.02%, respectively. In a
healthy oral microenvironment, the synthesised PICMs were relatively stable, but in acidic
environments, citraconic amide was degraded and transformed to a positively charged
primary amine (Figure 4), facilitating the rapid release of CHX from the micelles via
electrostatic repulsion. Nearly 69% of CHX was released from CA-PICMs in the first 3 h,
compared to 39% at pH 7.4 during the same interval, confirming the pH responsive release
profile of CHX from PICMs. Furthermore, they also demonstrated the pH-responsive
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bacterial killing of CA-PICMs on S. mutans biofilms grown on hydroxyapatite (HA) discs,
which was represented by an abundance of dead bacteria (dyed red) after the treatment
with CA-PICMs via live/dead bacterial staining, with a similar dead/live bacteria ratio to
the CHX group. Although no antibacterial effect was found in the delivery vehicle (PEG-b-
PAECOEMA/CA), CA-PICMs were less cytotoxic to human oral keratinocyte (HOK) cells
compared to the corresponding free CHX, which greatly reduced the negative impact of
CHX on oral tissues.
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Figure 4. Schematic illustration of the chemical structure of PEG-b-PAECOEMA copolymers and
the mechanism of the pH-responsive drug release. PEG-b-PAECOEMA block is negatively charged
in neutral conditions. As citraconic amide of PEG-b-PAECOEMA/CA micelles degrades in acidic
environments, the primary amine at the end of PEG-b-PAECOEMA becomes protonated and is
positively charged [42].

Zhang et al. (2021) used mPEG-b-PDPA to produce a pH-responsive core–shell nano
micelle [44]. 2-(Diisopropylamino) ethyl methacrylate (DPA) copolymer was used to form
the hydrophobic core for loading bedaquiline (a hydrophobic antibacterial agent). The
loading ratio and encapsulation efficiency of bedaquiline in mPEG-b-PDPA were 37 and
92.5%, respectively. The micelles acted as a pH-responsive agent that shifted the core from
hydrophobic to hydrophilic via protonation as the pH dropped below 6 (see Figure 5).
This caused the swelling and disassembly of the micelles and subsequent drug release. At
pH 5, the cumulative release of bedaquiline from micelles was 92.2% in 3 h, but no more
than 35% was detected at pH 7 in the first 12 h. This nanocarrier not only enabled the
targeted release of the therapeutic agent under acidic environments, it also improved the
working concentration in the local acidic area to exert a greater antibacterial/antibiofilm
effect. In the antibacterial model at pH 5, free micelles did not show an inhibitory effect
against planktonic S. mutans, while the 1% bedaquiline-loaded micelles group (equivalent
to ~25 µg mL–1 bedaquiline) significantly reduced the growth of S. mutans to less than
50% of the control. In addition, the live/dead staining images of the S. mutans biofilm
revealed that most bacteria in the biofilm were dead (dyed red) in the 1% bedaquiline-
loaded micelles group, as opposed to the massive green cells observed in the control and
free micelle groups. Cytotoxicity studies using periodontal ligament stem cells showed
that the micelles were not toxic, suggesting a good potential for clinical application for the
treatment of dental caries.

PEG-based polymers can also be modified with acid liable bonds, which are cleaved
upon changes in pH and release therapeutic agents. For example, Xu et al. (2023) [45]
developed MAL-PEG-b-PLL/PBA-based polymeric micelles (PM) and loaded them with
sodium fluoride (NaF) and tannic acid (TA) for the treatment of dental caries. In this
nano-construct, the phenylboronic acid group in PBA forms a pH-sensitive boric acid
ester bond with tannic acid via phenylboronic acid-catechol interactions, which can be
cleaved under acidic (cariogenic) conditions. Poly(l-lysine) (PLL) is positively charged at
physiological pH and interacts with TA (negatively charged) to form core–shell structure
micelles. NaF was co-loaded during the micelles’ assembly. The loading content (LC) and
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loading efficiency (LE) of NaF in the nanocarrier were 5.5% and 20.9%, respectively. For
TA, the LC and LE were 8.3% and 31.7%, respectively. The pH-responsive cleavage of the
boronate ester enabled a controlled release of TA and NaF, the release rate for which were
70% and 80%, respectively, within 24 h at pH 5.0, much faster than those at pH 7.4 (45% and
50%, respectively). The constructed nanoparticles (PMs@NaF-SAP) were also coated with
the salivary-acquired peptide DpSpSEEK (SAP) to enable selective binding to the tooth
enamel surface. The pH-responsive antibacterial/antibiofilm effect of PMs@NaF-SAP was
comparable to CHX (ca. 25% of reduction in biofilm formation compared to control), but
with less cytotoxicity, and produced minimal changes in the oral microbiota diversity.
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Yi et al. (2020) exploited acid-labile bonds as a pH-responsive release mechanism for
PPi-PEGhyd-Far polymeric micelles [47]. Farnesal (Far) is a hydrophobic derivative of
farnesol and has proven anti-caries efficacy [48,49]. To increase the therapeutic bioavailabil-
ity, Farnesal was linked to PEG via an acid-labile hydrazone bond to form PEG-hyd-Far
for enhanced solubility, which was then further conjugated to pyrophosphate (PPi) and
self-assembly to form PPi-Far-PMs for enamel-targeting delivery. The HPLC method was
utilised for determining the Far loading and encapsulation efficiencies in PPi-Far-PMs,
which were 9.51 ± 0.40% and 78.30 ± 1.40%, respectively. The pH responsive release profile
of PPi-Far-PMs was confirmed, with 90% of Far being released within 24 h at pH 4.5 in
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contrast to 40.6% at pH 7.4. Additionally, the in vivo anti-caries study showed that blank
PMs had no antibacterial effect, while PPi-Far-PMs significantly reduced the amount of
S. mutans compared to CHX (less than 30%). The collective evidence suggested that this
delivery system could be used for the targeting delivery of antibacterial agents in the oral
environment, and also as a potential treatment or prevention tool for dental caries.

3.3. Chitosan

Chitosan (CS) is a copolymer that is produced by deacetylating chitin in the presence of
alkaline chemicals [50]. It is the only known naturally occurring polycationic polysaccharide
that can form complexes with anionic molecules [51–53] due to its biodegradability and
biocompatibility. These features have inspired innovative nanotechnology and glycol-
chemistry to produce CS-based nanoparticles as a promising drug delivery vehicle in
biomedical and pharmaceutical industries [54–56].

Nguyen et al. (2017) reported the preparation of stable, spherical, and monodis-
perse CS nanoparticles for loading with NaF using sodium tripolyphosphate (TPP) as
a crosslinker. The loading capacities of fluoride for chitosan nanoparticles prepared in
0.2% NaF and 0.4% NaF were determined at 33 and 113 ppm (µg/g), respectively, and the
corresponding entrapment efficiencies (%EE) were 3.6 and 6.2%, respectively. A high level
(55% at pH 5 and 43% at pH 7 at 24 h) of fluoride release was observed at pH 5 compared
to pH 7 [57]. The same method was applied by Zhu’s group for the preparation of histatin
(HTNs)-loaded CS nanoparticles, which was based on their transition from liquid to gel via
ionic interactions with a polyanion [58]. Briefly, histatin (HTN3), which has demonstrated
properties in tooth homeostasis and dental caries prevention, was first mixed with CS
solution. The mixture then went through ionic gelation with TPP to form HTN3-loaded
CS nanoparticles. Results showed that the loading ratio of HTN3 in the CS nanoparticles
was tunable, without altering the particle size or dispersity. And the pH responsive release
profile of CS nanoparticles was confirmed, as they selectively swelled under acidic condi-
tions, which accelerated the release of HTN3 (58% ± 9% at pH 4 and 2% ± 2% at pH 6.8).
However, CS nanoparticles loaded with or without HTN3 showed a significant reduction in
bacterial viability (by half) compared to the control and almost the same antibiofilm effects
against S. mutans with a lower biofilm mass. Specifically, the average wet biofilm mass
was detected at a descending trend, i.e., 15 ± 2 mg for the control group, 12 ± 1 mg for
HTN3, 8 ± 2 mg for fluoride, 7 ± 1 mg for unloaded CNs, and 6 ± 1 mg for HTN3-loaded
CNs. This result indicated the bacterial inhibitory effects of CNs by themselves, and no
significant contribution of HTN3 was observed for the antibiofilm/antibacterial activity.
Even though CNs can be considered a potential nanocarrier, future studies could consider
optimizing the mass ratio between CNs and HTN3 to increase the loading amount of HTN3
in CNs for a better synergistic antibacterial/antibiofilm effect.

3.4. Mesoporous silica Nanoparticles

Mesoporous silica nanoparticles (MSNs) are a group of inorganic porous materials
that have been extensively studied as a drug delivery platform since 2001 [59–62]. This
is due to their favourable properties, including tuneable pore size, large pore volumes
that allow for high cargo loading, and high specific surface area, which facilitates surface
functionalization [63–67]. Through surface modification, MSNs can be engineered to be
stimuli-responsive controlled release systems, with the release of medications triggered by
intracellular stimuli or the alterations in the microenvironment of the diseased sites [68–71].
For the treatment of dental caries, MSN-based pH-responsive delivery is of special interest
as a stimuli-responsive system.

Akram et al. (2021) synthesized poly-L-glycolic acid (PLGA)-grafted MSNs and
incorporated chlorhexidine (CHX) [72]. A typical method using cetyltrimethylammonium
bromide (CTAB) as a structure-directing agent/template and tetraethylorthosilicate (TEOS)
as the silica source was used for synthesis. This was followed by functionalization with
L-glutamic acid γ-benzyl ester (BLG) on the surface to form PLGA-grafted MSNs (MSN-
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PLGA). CHX was then incorporated into MSN-PLGA via simple immersion, sonication, and
centrifugation. The loading and encapsulation efficiency were 24% and 96%, respectively.
A pH-dependent release of CHX from the CHX-loaded/MSN-PLGA was observed, and
the cumulative release of CHX reached up to 70% at pH 5.0 after 24 h, substantially higher
than that at pH 7.4 (49%). The difference in release profiles was attributed to the tendency
of both MSN and PLGA to fracture at low pH [73]. The antibiofilm effect was evaluated
using an MTT assay, and the best performance was demonstrated by the 50:50:50 CHX-
loaded/MSN-PGA-treated group after 24 h, for which the S. mutans biofilm viability was
decreased to less than 20% compared to 90% in the MSN-PLGA treated group. In addition,
the biofilm viability remained lower than 30% even after 30 days, indicating a continuous
release of CHX at a low pH. All experimental nanoparticles demonstrated low cytotoxicity
profiles, with the viability levels of the treated dental pulp stem cells (DPSCs) all above
80%. Although the current results suggested that the MSN-PLGA was promising as a
pH-responsive nanocarrier delivery system for CHX, further research is recommended to
include multi-species bacterial biofilms to confirm antimicrobial activity. In addition, future
research will also investigate whether resin infiltration has an impact on the release profile
of the nanoparticles after mixing with commercial dentin adhesive systems.

Fullriede et al. (2016) developed poly(4-vinylpyridine) (PVP)-modified nanoporous
silica nanoparticles (NPSNPs) for the delivery of CHX [74] and tested their antibacterial
activity against S. mutans and Staphylococcus aureus (S. aureus). The methodology for
loading CHX into a nanocarrier was via the simple incubation of the CHX solution with
nanoparticles for 3 days, and D-gluconic acid was used to adjust the pH to 3 to open the
pores. The PVP-modified NPSNPs were able to incorporate 24 wt% CHX. PVP also served
as a pH-responsive gatekeeper, as it blocked the pore openings under physiological pH
and prevented the release of CHX. However, in acidic conditions (e.g., bacterial infection),
the PVP polymer chains became protonated and repelled each other due to electrostatic
repulsion, leading to opened pores and CHX being released (Figure 6). This assumption
was later confirmed by the cumulative release of CHX at pH 4 compared to pH 7.4. A pH-
responsive burst release of CHX occurred in the first 12 h at pH 4 and reached 260 µg mg−1;
this was higher than the 220 µg mg−1 released at pH 7.4. Following the burst release, a
constant release of small amounts of CHX was observed at both pH 4 and 7. Antibacterial
efficacy was performed on S. mutans and S. aureus planktonic suspensions as well as
biofilms, and the results showed a strong antibacterial effect against both planktonic
suspensions at higher concentrations than 5 µg mL−1, reducing the bacterial viability
to less than 20%, while no obvious antibacterial effect was observed for the delivery
vehicle. However, no antibiofilm effect was found against the corresponding mature
biofilms across all experimental concentrations of CHX-loaded NPSNPs. The cytotoxicity
study of gingival fibroblasts revealed that the cytocompatibility of NPSNPs loaded with
CHX was up to 25 µg mL−1. Although the biological evaluation of CHX-loaded NPSNPs
provided a therapeutic window where fibroblasts were still viable at a bacterial inhibition
concentration, more optimization work is still required. For example, an increased loaded
amount of CHX in combination with a better chemical crosslinker to compact the polymer
corona may explain the poor antibacterial effect against biofilms and the unwanted release
of CHX at physiological pH.

To achieve maximum antibacterial efficacy and given that the oral biofilm was charac-
terized for locally acidic and reducing microenvironments, Lu’s group (2018) incorporated
redox-active disulfide bonds into the mesoporous silica nanoparticle (MSNs) framework for
the dual delivery of both silver nanoparticles and CHX [75]. The developed Ag-MSNs had
a large pore size and therefore were able to load higher levels of CHX (21.5% ± 2.2%). The
release of CHX and Ag ions happened in a GSH- and pH-responsive manner, where 55% of
CHX and 0.5 ppm of Ag ion were released at pH 5.5 with 5 mM of GSH after 24 h compared
to 15%, and 0.15 ppm at pH 7.4 without GSH. This supported the assumption that the
disintegration of the Ag-MSN matrix consisting of disulfide bridges was accelerated under
acidic and reducing conditions. S. mutans biofilm was used as a model for the investigation
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of the antibacterial/antibiofilm activity using Ag-MSNs@CHX, the minimum inhibitory
concentration (MIC) was 12.5 µg/mL, and the minimum bactericidal concentration (MBC)
was 25 µg/mL. For the antibiofilm test, the Ag-MSNs@CHX group demonstrated the
highest biofilm inhibition, with biofilm viability reduced to around 20% at the minimal
biofilm inhibitory concentration (MBIC) (50 µg/mL) compared to the control (100% biofilm
viability) and Ag-MSNs groups (50%), and the inhibition occurred over 72 h. This indicated
a strong synergistic antibiofilm effect due to the continuous release of CHX and silver
ion over the long term. Cytotoxicity studies with human immortalized oral epithelial
cells (HIOECs) showed that the encapsulation of CHX in the Ag-MSNs nanocarrier could
significantly reduce the toxicity of CHX, although the Ag-MSNs@CHX-treated group only
retained 60% cell viability after 6 h incubation.
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Figure 6. Illustration of the CHX release mechanism from PVP-modified NPSNPs [74]. PVP blocked
the nanopores under physiological conditions, preventing CHX release from the carrier, whereas
in acidic conditions PVP polymer chains were protonated and straightened up due to electrostatic
repulsion and CHX from the reservoir.

3.5. Tertiary Amine Modified Restorative Resin

Secondary caries has frequently been observed in resin composite restorations [76,77],
characterized by resin surface degradation which increased surface roughness and de-
creased hardness; at the same time, the unpolymerized monomer and dentin binding agent
were eluted from composites, promoting the growth of cariogenic microorganisms [78–81].

To address this problem, Liang et al. (2020) synthesised two monomers based on
tertiary amine (TA), DMAEM (dodecylmethylaminoethyl methacrylate) and HMAEM
(hexadecylmethylaminoethyl methacrylate), and incorporated them into an adhesive resin
to make TA-modified resins (TA@RAs). TA@RAs showed antibacterial effects only in
an acidic environment, as the nitrogen atoms of TA were protonated in low pH and
formed quaternary ammonium monomers (QAMs) for bacterial killing [82,83]. The pH-
responsive antibiofilm effect of TA@RAs was observed against S. mutans biofilms, with
bacterial viability significantly decreased to less than 20% at a low pH compared to that at
a pH above 5.5 (more than 70%). 16S rRNA gene sequencing results showed significantly
higher microbial diversity in the DMAEM/HMAEM group than in the control group,
which further confirmed the pH-responsive antibacterial effect of TA@RAs, indicating
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the potential of TA@RAs in preventing secondary caries and shifting the oral microbial
community towards a healthy and balanced condition [84].

4. Innovation in Binding to Tooth Surfaces and Extracellular Matrix

Dental caries is caused by cariogenic bacteria, which exist and benefit from the de-
velopment of biofilms (dental plaque) that cover the pellicle-coated tooth surfaces and
produce acid through carbohydrate fermentation, resulting in the demineralization of tooth
enamel [85,86]. The biofilm extracellular polymeric matrix provides protection to bacteria
from environmental changes such as pH, osmolarity, mechanical and shear forces [87–89].
It also restricts the penetration of antibiotics, making sessile bacteria more resistant to
antibacterial compounds compared to planktonic bacteria. This opens the possibility for
bacteria to develop antimicrobial resistance [90,91]. In addition, the ineffectiveness of many
common antimicrobial agents against cariogenic biofilms is attributed to the insufficient
retention time of the therapeutic agent on the topically applied dental surfaces, and poor
drug bioavailability within the biofilm matrix [92–94].

Therefore, the key to improving the antibiofilm efficacy is to increase the retention
time and maintain a high working concentration of the therapeutic at the “at-risk” area.
This can be achieved by the effective binding of the nanocarrier to the biofilm matrix.
Furthermore, the acidic pH of the cariogenic biofilm can also be utilised for better bind-
ing, micelle disintegration and pH responsive drug release [95–97]. Other factors, such
as polymer size, ionic strength, charge density, etc., may also be explored for surface
binding [98–100]. In addition, biomolecules that bind to specific sites, such as the proteins
in pellicle or carbohydrates/glycosyl links in the biofilm matrix, can be considered for
improving binding [101–104].

Cationic diblock co-polymer nanoparticles such as p(DMAEMA) were reported to
have a high binding affinity to tooth surface and glucose-coated biofilm surfaces due to
surface tertiary amine residues [30,31,105]. Horev et al. (2015) produced micelle nanoparti-
cles which consisted of cationic poly (dimethylaminoethyl methacrylate) (p(DMAEMA))
coronas and pH-responsive p(DMAEMA-co-BMA-co-PAA) cores. The demonstrated a
high binding affinity to the negatively charged tooth surface (hydroxyapatite and pellicle),
and exopolysaccharides (EPS) via electrostatic interactions were attributed to the multi-
valent binding of tertiary amines of p(DMAEMA) [30]. Basically, the absorption of the
p(DMAEMA) nanoparticles by hydroxyapatite (the mineral component of tooth enamel)
was dependent on the protonation degree of the tertiary amine residues of the p(DMAEMA)
corona. The binding was strong at the acidic condition (pH 4.5), as the DMAEMA residues
(pKa~7.2) were fully protonated and bound effectively to the negatively charged pellicle,
the bacterial membrane and the biofilm surface [93,106–109]. At the physiological condition
(pH 7.2), half of the DMAEMA residues were protonated and attached the nanoparticles to
the negatively charged sites of the dental surface via electrostatic attraction [107–110]. In
contrast, DMAEMA residues were deprotonated at a high pH (pH 10.5), and thus no bind-
ing to HA (0.5%) was found and only a small amount were detected on the saliva-coated
HA (25.9%) and Gtf-derived EPS (glucans)-coated HA (36.2%). Overall, the protonation
dependent binding capability of p(DMAEMA)) coronas makes it a desirable targeting
moity for the low pH cariogenic sites, and a suitable delivery construct when used in
combination with the pH-responsive p(DMAEMA-co-BMA-co-PAA) core for existing or
novel antimicrobial agents’ delivery. And the application can be extended beyond mouth
to other biofilm-related infections.

Targeted binding to hydroxyapatite, which is the major component of tooth enamel,
could be a highly desirable technique to prevent rapid clearance and extend the residency
duration of the drug in the oral cavity. Xu et al. (2023) [45] conjugated the salivary-
acquired peptide sequence-DpSpSEEK (SAP) [111,112] to nanoparticles (PMs@NaF-SAP)
for selective binding to tooth enamel and to tolerate the buffering effect of saliva in the
oral environment. Generally, the orally exposed tooth surface is covered by the salivary
pellicle, which consists of a variety of salivary proteins. Among these proteins, statherin
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in particular is in high abundance with calcium-binding domains that bind selectively to
HA within seconds or minutes, leading to the rapid formation of pellicles on the tooth
surface [111–114]. And the predominant domain of statherin immobilised on the HA
surface is the N-terminal hexapeptide sequence DpSpSEEK (SAP) [115]. This peptide
sequence, after conjugating to PMs@NaF, provided the nanoconstruct PMs@NaF-SAP
with strong tooth enamel adhesion. In combination with the pH responsiveness of PMs,
PMs@NaF-SAP significantly enhanced the efficacy and retention time of NaF and TA in the
oral cavity and exerted effective antibiofilm effects without changing the oral microbiota
diversity or cytotoxicity on cells and tissues. All in all, this developed smart delivery
system can be used for other antimicrobial agents (or co-loaded in PMs@NaF-SAP) and
translated to clinical products such as mouthwash, spray or paint for caries prevention,
treatment and restoration therapy.

Other moieties such as pyrophosphate (PPi) [116,117] were conjugated to PEG-hyd-
Far [47] polymeric micelles (PMs) to mediate the rapid and effective adherence of the
PM to tooth enamel. PPi is a biodegradable tooth-binding moiety. Owing to its high
affinity for enamel, dentin and tartar [118], it has been widely used in dental care products
for abrasion, whitening and anti-tartar activity [119]. Yi’s group (2020) linked PEG with
the hydrophobic antimicrobial agent (Far) via an acid-labile hydrazone bond to make
PEG-hyd-Far, for enhancing the solubility and pH-responsive release of Far in low pH
environments [47]. And they further modified it with PPi to endow the PPi-PEGhyd-Far
polymeric micelles with enamel-targeting capability. The results showed that PPi-Far-PMs
bound more efficiently to hydroxyapatite than Far-PMs, and persisted for up to 12 h. The
anti-caries efficacy of Far was significantly enhanced, suggesting that this drug delivery
platform was suitable for routine use in dental caries management.

5. Lessons from Other Fields That Could Be Adopted in Dentistry

pH-responsive drug delivery systems are considered “smart” as they are designed to
deliver therapeutic agents in a controlled manner and release in response to pH changes,
which overcomes the drawbacks of conventional drug formulations and increases ther-
apeutic efficacy [120]. They have been extensively used in a wide variety of non-dental
applications [121,122], especially in the field of wound healing [123–125] and cancer ther-
apy [126–128]. The results are due to the pH levels of some malignancies, the inflamma-
tory tissue and the wounded area being different from healthy tissue. Infected wounds
have been found to have a pH above 7, and the value may reach up to 9.6 depending
on the wound severity, while healthy skin is slightly acidic, with a pH between 4 and
6.3 [124,129,130]; thus delivery systems have been engineered to release antimicrobial
agents at a high pH to maximize the therapeutic efficacy. On the other hand, cancer tissue
is reported to be slightly acidic (pH < 6.5) compared to healthy tissues [131,132], and a
low pH is also found in intracellular compartments [133,134], such as the early endosome
(pH ≈ 5.5–6.0) and lysosomes (pH~4.5–5.0), which can be exploited for the intracellular
release of anticancer drugs [135,136]. Since this review had a central focus on dental
caries treatment which targets a responsive release in low pH conditions, the delivery
systems used in cancer therapy may be adaptable. Recent examples of commonly used
pH-responsive delivery vehicles used in cancer therapy are summarized in Table 2; only a
few examples have been selected from of a large number of publications and discussed as a
potential design reference in dentistry.
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Table 2. List of commonly used pH-responsive drug delivery vehicles in cancer therapy.

Organic NPs Inorganic NPs

Nanocarrier Reference Nanocarrier Reference

Liposome [137–140] Magnetic nanoparticles [141–143]

Polymeric micelles [140,144–146] Metal organic frameworks [147–149]

Dendrimers [150,151] Carbon nanotubes [152,153]

Solid lipid nanoparticles [154,155] Quantum dots [150]

Nano-emulsions [156] Gold nanoparticles [157,158]

Hydrogels [159–161]

Biodegradable poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) are widely
used as drug delivery vehicles. To avoid the premature release of anticancer drugs in
healthy tissue, Hu et al. (2020) developed the tannic acid−Fe (III) complex-modified
PLGA nanoparticle platform (TPLGA NPs) for the delivery and pH-responsive release of
doxorubicin (DOX) [162]. DOX was loaded inside the PEGylated-PLGA inner core with an
encapsulation efficiency of 62.84 ± 7.76%, and then coated with an Fe (III)−TA complex
outer shell. At low pH conditions, the hydroxyl groups in the Fe (III)−TA complex became
protonated, which resulted in the rapid disassembly of the coated shell, which further
sped up the hydrolysis of ester bonds in the PLGA polymer, leading to the accelerated
release of DOX. In high pH conditions, Fe (III)−TA maintained its tricomplex structure and
served as the coated shell, slowing down the hydrolysis of the polymer and the subsequent
DOX release [163,164]. Moreover, using an MTT assay, blank TPLGA NPs were nearly non-
cytotoxic against breast cancer cells, indicating that the pH responsive delivery platform
could be a promising method to enhance the safety and efficacy of therapeutic agents. It is
noteworthy that tannin acid (TA) in the nano-platform had a high binding affinity to both
the pellicle layer and free salivary enzymes [165,166], which could be used for extending
the residential time of the delivered nanoparticles in the oral environment and blocking
specific receptors for bacterial attachment [167,168].

Hsu’s team synthesised hydrophilic PEGylated chitosan segments which were conju-
gated to hydrophobic 4-(dodecyloxy)benzaldehyde (DBA) molecules via the formation of
acid-sensitive benzoic-imine bonds [145], which self-assemble in an aqueous solution to
form core-shell polymeric micelles (PMs). Indocyanine green (ICG) was used as a model
drug, and was encapsulated into the hydrophobic chitosan/DBA core. The result was a
high drug loading efficiency of ca. 89.3%, covered by the hydrophilic PEG shells to enhance
aqueous stability. In vitro IGC release showed a pH-responsive release, with a cumulative
release of IGC of 23% within 1 h at pH 5.0; this compared to 9% at pH 7.4. This was at-
tributed to the cleavage of benzoic-imine bonds at a low pH, leading to structural transition
and accelerating the efflux of ICG. Cytotoxicity studies were performed using MCF-7 cells,
and the results indicated that PMs were nontoxic. Thus, chitosan-g-mPEG/DBA micelles
(CPDMs) are considered a promising pH-responsive delivery platform for cancer theragnos-
tic applications. Likewise, the platform may have potential in dental caries treatment. The
hydrophobic chitosan/DBA core could be used to load hydrophobic antibacterial agents
such as Far, while the PEG shells could increase the water solubility in oral environments.
Moreover, chitosan could be a binding agent targeting the negatively charged surface of
bacteria [169] to reduce bacterial adherence [170]. Further, chitosan is a naturally occurring
antimicrobial agent used as a mouth rinse for the treatment of oral mucositis [171,172], and
thus a synergistic antibacterial therapy for dental caries might be expected when used in
combination with other agents.

Apart from the delivery of anticancer agents, chitosan can also be used to coat meso-
porous silica nanoparticles (MSNs) as a gate keeper for drug loading. For example, Moorthy
et al. (2019) used metal–ligand complex coordination approaches to fabricate MSNs with
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chitosan oligosaccharide (COS) to form MSNs@COS NPs. These were designed for the
pH-responsive drug delivery of DOX (anticancer drug) [173]. DOX loading efficiency
was estimated to be around 63%, and the in vitro release showed an obvious pH depen-
dent behaviour, with a negligible amount of Dox release (~5%) observed at pH 7.4 in
24 h compared to 95% at pH 4.0. The pH dependency maybe due to the protonation of the
amine and hydroxyl groups under acidic conditions, resulting in electrostatic repulsion
and dissociation of the metal–ligand complex [174–177]. This was then followed by the
detachment of the COS polymer layer from the surface of the Dox-MSNs@COS NPs and
the subsequent DOX release from the mesoporous channels.

Similar examples can be seen in other fields; Popat’s group (2012) also reported the
development of phosphonate-functionalized MSNs (MCM-41-PO3−), into which ibuprofen
was loaded into pores during a 24 h incubation. These were then capped with chitosan
via phosphoramidate chemistry, which is the formation of covalent bonding between
the primary amine of chitosan and the phosphonate group on the surface of MSNs. In
physiological conditions, chitosan is insoluble and forms a gel-like shell coating the MSN
surface; this prevents the ibuprofen being released at pH 7.4. While at a low pH (pH
below its isoelectric point at 6.3), amino groups on chitosan were protonated, leading to the
swelling of the polymeric matrix and allowing the drug release through diffusion [178].

Nanostructured iron oxide materials such as Fe3O4 can also be employed as the pH-
responsive delivery vehicle. Wu et al. (2010) synthesised hollow Fe3O4 nanoparticles (NPs)
according to the published hydrothermal method [179], and subsequently loaded L-arginine
(L-Arg) into the hollow cavity of the NPs via incubation for 24 h. They used the pH-sensitive
poly (acrylic acid) (PAA) to coat the NP surface and seal L-Arg inside the Fe3O4 NPs under
neutral conditions (LPFe3O4 NPs) [180]. The pH-responsive release of L-Arg from LPFe3O4
NPs was confirmed, with a cumulative release of L-Arg of 72.9% at pH 5.0 in 8h, while only
48.67 and 38.9% was released at pH 6.0 and 7.4, respectively. The low-pH-triggered release
behaviour may be due to the protonation of PAA under acidic conditions, which loosens
the polymer shell because of electrostatic repulsion, resulting in open pores and L-Arg
release. The cytotoxicity of PAA-coated Fe3O4 (PFe3O4) and LPFe3O4 NPs were evaluated
by incubating with normal 3T3 fibroblast cells for 24 h, and results showed that neither of
the NPs were cytotoxic to 3T3 cells (cell viability above 90% up to 100 µg/mL), indicating
the excellent biocompatibility of PFe3O4 and LPFe3O4 NPs. Notably, Arginine is a semi-
essential amino acid and can be easily accessed via dietary sources [181]. It is also the main
component in saliva, and raises the salivary pH by producing alkali in the form of ammonia
via the arginine deiminase pathway (ADS) in bacteria. This could be used to neutralize
biofilm acidification resulting from bacterial fermentation [182]. Evidence from the past few
years suggests that arginine plays an important contribution in reducing biofilm build-up,
caries-like lesions and dentinal hypersensitivity [183,184]. In addition, positive responses to
arginine treatment were received from people with active caries, as arginine modulates the
oral microbiota by normalizing the oral microbiota of the caries-active group to that of caries-
free controls. This was determined using typical species abundance, microbial structure
and at the transcript level. Furthermore, using arginine in combination with fluoride
is of high importance for patients with high caries risk, as the synergistic effect could
better promote the growth of alkali-producing Streptococcus sanguinis, while suppressing
the acidogenic/aciduric S. mutans, significantly attenuating enamel demineralization and
delaying the caries progress [185]. Therefore, PAA or modified hollow Fe3O4 NPs loaded
with arginine and fluoride might have promising potential for dental caries treatment.

6. Conclusions and Future Perspectives

The human oral cavity consists of approximately 700 identified microbial species
(Dewhirst et al., 2010), all of which contribute to the diversity and complexity of the oral
microbiota. A sugar-rich diet and/or poor oral hygiene can shift the composition of the
oral microbiome and lead to the proliferation of certain cariogenic bacteria that lower the
pH and result in dental caries [6]. The use of pH-sensitive nanoparticles for drug delivery
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have outstanding advantages as the acid sensitivity of the delivery vehicle can respond
to cariogenic bacterial species and trigger a controlled release of therapeutic agents in
a pathogenic environment without influencing the growth of commensal species. This
review summarises pH-responsive delivery vehicles based on their compositions and their
mechanisms of pH-responsive drug release. However, compared to the wide range of
drug delivery systems (DDS) that have been used for cancer treatment, DDS that target
dental caries have been limited to cationic polymeric micelles, silica nanoparticles and
chitosan nanoparticles. There are still many areas to be explored, including nanoparticles
(liposome, PLGA, dendrimer) and hydrogels (hydroxypropyl methylcellulose (HPMC) and
carboxymethyl cellulose (CMC)), which have been used in the pharmaceutical industry
with proven safety. Also, to increase the drug loading efficiency, DDS should be carefully
chosen, in addition to considering the use of surfactants. Innovative strategies for specific
binding to tooth surfaces are also important for DDS, as they not only help to prolong the
drug residential time in the oral cavity, but also maximize the antibacterial/antibiofilm
efficacy. Although there are still problems that need to be addressed in the development
of pH-responsive DDS, considering the advantages in precision drug delivery and the on-
demand release of therapeutic agents for enhanced therapeutic impacts, the pH-responsive
DDS may prove to be an excellent “adjuvant” for dental caries treatment.
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