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Abstract: Gastrointestinal cancers are characterized by a frequent incidence, a high number of
associated deaths, and a tremendous burden on the medical system and patients worldwide. As
conventional chemotherapeutic drugs face numerous limitations, researchers started to investigate
better alternatives for extending drug efficacy and limiting adverse effects. A remarkably increasing
interest has been addressed to chitosan and cyclodextrins, two highly versatile natural carbohydrate
materials endowed with unique physicochemical properties. In this respect, numerous studies
reported on fabricating various chitosan and cyclodextrin-based formulations that enabled prolonged
circulation times, improved cellular internalization of carried drugs, preferential uptake by the
targeted cells, reduced side effects, enhanced apoptosis rates, and increased tumor suppression
rates. Therefore, this paper aims to briefly present the advantageous properties of these oligo- and
polysaccharides for designing drug delivery systems, further focusing the discussion on nanocarrier
systems based on chitosan/cyclodextrins for treating different gastrointestinal cancers. Specifically,
there are reviewed studies describing promising solutions for colorectal, liver, gastric, pancreatic,
and other types of cancers of the digestive system towards creating an updated framework of what
concerns anticancer chitosan/cyclodextrin-based drug delivery systems.

Keywords: gastrointestinal cancers; drug delivery systems; chitosan-based nanocarriers; cyclodextrin-
based delivery systems; inclusion complexes; novel antitumor approaches

1. Introduction

Cancer is a prominent group of fatal diseases that pose tremendous challenges to the
healthcare systems and affect millions of patients worldwide [1,2]. Globally, gastrointestinal
cancers are among the most commonly occurring types of cancers, accounting for more than
25% of the total cancer incidence cases and more than 33% of cancer-related deaths [3–5].

Chemotherapeutic, radiotherapeutic, and surgical approaches have been used to treat
gastrointestinal cancers, leading to various degrees of success, yet they have also been
associated with numerous negative aspects. Specifically, these conventional strategies
exhibit low cancer inhibition efficiency, non-specific drug delivery, and severe adverse
effects [6]. Moreover, classic chemotherapeutic drugs have reduced water solubility, lack
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stability, allow only a short drug cycle time, exhibit poor bioavailability, require high
doses for reaching the tumor site in an optimum concentration, and produce systemic side
effects [5,7,8].

Thus, it is essential to improve drug behaviors by loading them into specialized
carriers. In this respect, a plethora of nanomaterials have been researched for fabricating
biocompatible delivery systems for anticancer drugs [5,7]. Including chemotherapeutics
in engineered nanovehicles is promising for reducing unwanted cytotoxicity, improving
solubility and stability, and ensuring controlled and sustained drug release [9,10].

One attractive alternative to designing carriers for anticancer medicines implies using
cyclodextrins. These cyclic oligosaccharides of natural origin are recognized for their safe
profile, ability to encapsulate various moieties within their cavity, and the possibility of
facile chemical modification [1,5]. An equally appealing strategy supposes the use of
chitosan for developing state-of-the-art cancer delivery systems. Specifically, this natural
polymer benefits from biocompatibility, biodegradability, good serum stability, long-term
circulation time, and mucodhesiveness [6,11–13].

Therefore, given their favorable physicochemical properties, chitosan and cyclodextrins
have drawn increasing attention for elaborating better-performing anticancer therapeutics.
In this context, this paper takes a comprehensive path in discussing chitosan/cyclodextrin-
based drug delivery systems for gastrointestinal cancers, starting by describing the char-
acteristics of interest of these saccharides for this particular type of delivery, and further
moving to their applicability in colorectal, liver, gastric, pancreatic and other types of
cancers of the digestive system.

2. Properties of Interest of the Carbohydrate Materials for Drug Delivery
2.1. Chitosan

Chitosan represents a safe, natural polymer obtained from chitin (Figure 1), a highly
abundant polysaccharide found in marine crustaceans [14–17]. Chitosan has been rendered
promising in numerous applications, including food technology and medical and phar-
maceutical uses [18,19]. Safe for human consumption, chitosan has been used as a food
additive in several countries, approved for biomedical devices, such as hemostatic dress-
ings and bandages, and as a coating agent for contact lenses [20]. Moreover, its appealing
biological properties recommend this natural polymer for tissue engineering, gene delivery,
and drug-carrying systems [16,17].
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Chitosan is recognized for its nontoxicity, biocompatibility, biodegradability, hemo-
compatibility, wound healing efficiency, homeostasis, and exudate absorption capacity.
This polymer also exhibits attractive biological activities, including antitumor, antioxidant,
and antimicrobial effects [22–25]. Furthermore, it can be combined or conjugated with
other polymers (e.g., alginate, polylysine, poly(γ-glutamic acid), and short-chain amylose),
providing materials with improved characteristics [17,24].

In addition, chitosan possesses mucoadhesive properties and an abundance of modi-
fiable functional groups (i.e., hydroxyl, amine, and carboxyl groups) that facilitate trans-
mucosal drug delivery [12,26]. Thus, after being adsorbed to the mucous membrane along
the gastrointestinal tract, chitosan holds promise as a carrier for different agents that cannot
be otherwise delivered to certain areas of the digestive system [17,27]. In particular, given
its antitumor potential, this polysaccharide can be employed for carrying and releasing
chemotherapeutic drugs to gastrointestinal cancer-affected regions [28].

The anticancer activity of chitosan has been correlated with its cationic nature, molec-
ular weight, and deacetylation degree, with negligible toxicity to healthy cells [20]. Struc-
turally, this natural polymer contains randomly distributed β-(1→4)-linked deacetylated
and N-acetylated units of D-glucosamine (Figure 1). Depending on the source and prepara-
tion methods, chitosan can have a molecular weight in the range of 5 to 1000 kDa and a
deacetylation degree (DD) between 30 and 95% [29,30]. It has been reported that an increase
in the DD is correlated with an increase in the chitosan charge density, leading to improved
drug transportation and enhanced epithelial permeability [30]. From the polymerization
degree point of view, low molecular weight (LMW, ∼5 kDa) polysaccharide interactions
were observed to be influenced by the intrinsic charge of chitosan, while for high molecular
weight (HMW, ∼135 kDa) polymer interactions, the main influencing element was chain
flexibility [31].

Furthermore, this polymer has been noted to undergo protonation and solubilization
to a greater extent in acidic environments, which are characteristic of tumoral tissues.
Moreover, through its high zeta potential, chitosan can effectively interact with the nega-
tively charged membranes of cancer cells and endothelial cells of the tumor vasculature,
altering cell membrane permeability, entering the cell, and exerting its anticancer effects by
suppressing matrix metallopeptidase 9 (MMP 9) protein production [20]. Additionally, this
polymer reportedly interferes with cell metabolism, inhibiting cell growth or inducing cell
apoptosis [32].

In its nanoparticulate form, chitosan allows the slow/controlled release of carried
agents, improving drug solubility, stability, and efficacy [32,33]. Through their reduced
dimensions and ability to transiently open the tight junctions between epithelial cells,
chitosan nanocarriers can safely and effectively deliver encapsulated drugs, increasing their
retention time and enhancing the cellular uptake probability of hydrophilic therapeutic
agents [16].

Chitosan exhibits a plethora of beneficial functional characteristics; however, its ap-
plication in drug delivery is limited by a few issues. This carbohydrate has a high hy-
drophilicity and swelling degree but reduced thermal stability and ductility. Its poor
solubility at physiological pH (pH 7.4) is often considered a limitation in drug delivery
applications, as chitosan is generally transformed to its chemical derivatives through acy-
lation, carboxymethylation, quaternization, and thiolation reactions [29,30]. However, in
the context of anticancer applications, the insolubility of this natural polysaccharide can be
considered an advantage, enabling drug release only at the affected location characterized
by an acidic pH.

It has also been reported that as chitosan-based carriers pass through the intestines,
their features gradually alter, especially their DD. Given that DD can further impact carrier
characteristics, including the swelling ratio, mucoadhesion, and drug release profile, all of
which have a significant impact on the delivery system’s performance, it is advised to take
these factors into account when developing chemotherapeutic carriers aimed at short-term
biodegradation applications [34].
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2.2. Cyclodextrins

Cyclodextrins are natural cyclic oligosaccharides obtained from the enzymatic hydrol-
ysis of starch. Natural cyclodextrins comprise six, seven, or eight glucose units linked by
α-1,4 glycosidic bonds, being called α, β, and γ-cyclodextrin, respectively [35–37] (Figure 2).
These chemical compounds present a hollow truncated cone morphology with an exter-
nal hydrophilic surface and internal hydrophobic cavity [37–41]. Given their convenient
structure and ease of chemical modification, cyclodextrins represent versatile excipients for
drug delivery [38,40,42].
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The structural arrangement of cyclodextrins permits the inclusion of hydrophobic
drugs into their cavity, generating host–guest complexes by noncovalent interactions, which
are of great use in pharmaceutical applications [40]. The formation of inclusion complexes
does not necessitate complicated chemical reactions, which are mediated by intermolecular
forces, such as hydrogen bonding, van der Waals forces, hydrophobic interactions, and
ionic interactions, depending on whether or not the drug is charged [47,48].

Such inclusion complexes can improve the apparent water solubility of the drugs and
enhance their stability for reaching the target area in an appropriate concentration while
also reducing unwanted side effects [40,49]. Furthermore, it is possible to obtain reversible
host–guest complexes between cyclodextrins and different moieties, thus allowing not only
efficient encapsulation but also cargo release at the desired site [50–52]. In more detail,
inclusion complexes are formed under a dynamic association/dissociation equilibrium
between free guest molecules, un-complexed cyclodextrins, and the complex, with the
process direction being dictated by the value of formation/stability constant (Kf) (Figure 3).
The higher the value of this constant, the more stable the inclusion complex [53–55].
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Cyclodextrins also benefit from commercial availability, biocompatibility, biodegradabil-
ity, low immunogenicity, lack of toxicity to humans, and ease of functionalization, being excel-
lent nanocarriers for improving the bioavailability of poorly hydrophilic drugs [41,42,50,56].
Additionally, by hosting therapeutic agents, cyclodextrins increase their shelf life, re-
duce/eliminate their unpleasant taste and odor, and prevent drug–drug or drug–excipient
interactions [57–59]. Moreover, cyclodextrins’ surfaces can be modified by binding specific
ligands that ensure targeted drug delivery to tumor cells in which the correlated receptors
are overexpressed while being rarely expressed in healthy cells (e.g., folate, biotin, and glu-
cose receptors) [40]. Another way in which cyclodextrins can achieve targeted delivery of
their freight is through controlled degradation of inclusion complexes based on pH changes
that result in the loss of hydrogen between the host and guest compounds. Additionally,
inclusion complexes may disassemble through heating or enzymatic cleavage of α-1,4 links
between glucose units [45].

Thus, cyclodextrin-based delivery vehicles present desirable physicochemical and
pharmacokinetic properties without compromising consumer safety [48]. Related to an-
ticancer drugs, these oligosaccharides were reported as efficient carriers for overcoming
chemotherapeutics’ poor water solubility and instability, masking their unwanted features,
and improving drug bioavailability. Therefore, using cyclodextrin-based oral delivery
nanoformulations holds promise for enhancing therapeutic effects against various types of
cancer cells while prolonging the lifespan of healthy and regenerative cells [39,48].

Some limitations may hinder the use of cyclodextrins for guest complexation, including
the small cavity size of α-cyclodextrin, poor aqueous solubility of β-cyclodextrin, and low
productivity of γ-cyclodextrin. Nonetheless, these drawbacks can be overcome through
chemical modification (e.g., amination, methylation, etherification, and esterification) of
native cyclodextrins, creating derivatives with improved properties [58,60,61]. One more
potential issue of cyclodextrin-based medicines is their low complexation efficiency for
solid dosage forms, which restricts their application to potent therapeutic agents. Namely,
as the drug’s mass increases, the necessary cyclodextrin mass increases, leading to an
increased formulation bulk for low-potency drugs. Consequently, a single-dose tablet will
not contain a sufficient amount of the drug with low complexation efficiency, whereas
larger-diameter tablets can make swallowing more difficult. Therefore, techniques to
improve complexation efficiency—such as using water-soluble polymers—are essential for
lowering the formulation’s host molecule content and encouraging patient adherence to
treatment [62].
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3. Drug Delivery Systems Based on Chitosan/Cyclodextrins for the Treatment of
Gastrointestinal Cancers

Given the appealing characteristics of chitosan and cyclodextrins for designing perfor-
mant drug delivery vehicles for gastrointestinal cancers, numerous researchers worldwide
have investigated these carbohydrate materials, reporting encouraging results. To overview
their findings, the following subsections discuss the developments registered with these
oligo-/polysaccharides for treating colorectal, liver, gastric, pancreatic, and other digestive
system cancers.

3.1. Colorectal Cancer

Colorectal cancer (CRC) represents a top killing disease, being the third most frequent
form of cancer and the second in terms of death incidence. Thus, it is essential to improve
this disease’s prevention, detection, and treatment towards increasing the length and im-
proving the quality of lives of CRC patients [47,63]. Despite chemotherapy being a common
treatment choice, this strategy lacks specificity, affecting both tumor cells and rapidly
growing healthy cells. Moreover, conventional colon-targeted drug delivery systems are
generally degraded and absorbed in the upper gastrointestinal tract before reaching the
desired site [28,47,64].

3.1.1. Drug Delivery Systems Based on Cyclodextrins

Numerous recent studies focused on developing colon-specific targeted drug delivery
vehicles, with cyclodextrins among the preferred nanocarriers. For instance, Al-Abboodi
et al. [65] have prepared an inclusion complex between hydroxypropyl-β-cyclodextrin and
clausenidin (Clu/HPβCD) that allowed constant drug release with time and an enhanced
drug solubility. Moreover, it was proved that Clu/HPβCD imparted higher cytotoxicity
to colon cancer HT-29 cells than the free drug while reducing the effect on normal cells.
Concerning the mechanism of action, it was noticed that the inclusion complex triggered
reactive oxygen species (ROS)-mediated cytotoxicity in tumor cells, leading to cell cycle
arrest and death by apoptosis associated with caspase activation.

Another example is offered by Altoom et al. [66], who have synthesized aβ-cyclodextrin/
phillipsite composite for the delivery of oxaliplatin. The authors reported significant cyto-
toxicity in HCT-116 cancer cells, a considerable increase in the cytotoxic effect compared
to the free drug, and a controlled release behavior for the chemotherapeutic agent while
maintaining a safe profile in normal colorectal cells.

A recent study by Alfassam et al. [67] has investigated the delivery of oxaliplatin
and 5-fluorouracil using diatomite’s bio-siliceous frustules functionalized with polymeric
chains of β-cyclodextrin as carriers. The results revealed sustained and prolonged drug
release (up to 100 h) for the tested delivery system, characteristics further reflected by the
enhanced cytotoxic effects on HCT-116 cancer cells.

Differently, Akkin et al. [68] proposed the fabrication of a cyclodextrin nanoplex based
on a charge interaction for carrying 5-fluorouracil and Interleukin-2 (IL-2). Drug-loaded
nanoplexes exhibited desirable intestinal permeability and higher anticancer activity than
free drug solution when tested on CT-26 mouse colon carcinoma cells, demonstrating
cumulative release rates of both cargos of more than 80% in 12 h. Thus, the authors
concluded that the developed delivery system is a good candidate for cancer treatment
advancement, offering a synergistic effect and co-transport of chemotherapeutic drugs and
immunotherapeutic molecules while protecting the healthy tissues from unwanted toxicity.

Zhang et al. [69] have developed a supramolecular system [Pt(IV)-SSNPs] based on
poly(β-cyclodextrin) for delivering an adamantyl-functionalized platinum(IV) prodrug
[Pt(IV)-ADA2]. Their evaluation of the nanocarrier revealed a longer blood circulation
time, effective tumor accumulation, successful therapeutic agent uptake by CT-26 cells, cell
cycle arrest in G2/M and S phases, apoptosis induction in targeted cells, and insignificant
cytotoxicity to major organs.
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A different innovative solution is provided by Elamin et al. [70]. The researchers have
fabricated a dual targeting supramolecular complex composed of folate-appended methyl-
β-cyclodextrin (FA-M-β-CyD) and adamantane-grafted hyaluronic acid. The supramolec-
ular complex exhibited enhanced cytotoxic activity in HCT-1116 cells compared to FA-
M-β-CyD alone, benefiting from a more efficient cellular internalization and mitophagy
induction in targeted cells. Moreover, when tested in a mouse model of colorectal cancer,
the synthesized complex significantly ameliorated the growth of tumor polyps, demon-
strating its antiproliferative potential against tumor cells with overexpressed FR-α and
CD44 receptors.

Sun et al. [71] have also tackled the advantages of using folate-targeted delivery sys-
tems. Specifically, the authors have co-encapsulated ginsenoside Rg3 (Rg3) and quercetin in
folate-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticles
(Figure 4). The obtained nanoformulation considerably extended the blood circulation
time and improved tumor targeting in an orthotopic colorectal cancer mouse model. The
proposed drug delivery alternative ensured a longer survival of animals in combination
with anti-PD-L1, proving its potential for colorectal cancer therapy.
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of action. Abbreviations: CD—cyclodextrin; QTN—quercetin; PEG—polyethylene glycol; FA—folate;
PD-L1—programmed death-ligand 1; CTL—cytotoxic T lymphocyte; ER—endoplasmic reticulum;
ROS—reactive oxygen species; ICD—immunogenic cell death; CRT—calreticulin; ATP—adenosine
triphosphate; HMGB1—high-mobility group box 1; DAMP—damage-associated molecular patterns;
DC—dendritic cells. Reprinted from an open-access source [71].

One more folate-targeted delivery strategy is proposed by Zou and colleagues [72],
who have created amphiphilic cationic cyclodextrin nanoparticles modified with PEGylated
folate loaded with docetaxel and small interfering RNA (siRNA). Thus, a dual freight
was carried selectively to colorectal cancer cells, ensuring both chemotherapeutic activity
and gene therapy. Explicitly, the nanoformulation enhanced the apoptotic effect of the
encapsulated drug by RelA expression downregulation. Hence, the nanosystem could
significantly retard tumoral growth without imparting toxicity to normal cells.
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Another nanoparticulate formulation is offered by Ünal et al. [73]. The researchers
have synthesized cationic nanoparticles for camptothecin encapsulation using two different
amphiphilic cyclodextrins coated with polyethyleneimine or chitosan for the nanocarrier
preparation. This drug loading strategy allowed for higher cytotoxicity in HT-29 cells
compared to the free drug solution, while tests on Caco-2 cells revealed enhanced drug
permeability and considerably higher mucosal penetration of the cationic nanoparticle form.

Bai et al. [74] have fabricated channel-type nanoparticles based on host–guest com-
plexes comprising mannose-modified γ-cyclodextrin and regorafenib. In addition to its role
as a carrier, the host molecule also played a role in targeting and tumor microenvironment
(TME) regulation. The nanoparticles were able to attenuate inflammation and inhibit TAM
activation via macrophage targeting and improved the antitumor effect of the included
drug via the potentiation of kinase suppression, thus holding promise as a targeted, safe,
and effective strategy against colorectal cancer.

Alternatively, Ameli and Alizadeh [75] have employed a pH-responsive acrylic/maleic
copolymer combined with β-cyclodextrin for delivering capecitabine to colon cancer cells.
The study demonstrated that the prepared delivery vehicles allowed targeted and controlled
drug release, liberating the cargo inside the colon in a proportion higher than 80%.

On a different note, Hosseinifar et al. [76] have created a hydrogel-based delivery
strategy for 5-fluorouracil by crosslinking alginate with modified β-cyclodextrin. The
hydrogels have proven cytocompatible while highly and rapidly accumulating in HT-
29 cells and causing a considerable cell death extension by apoptosis compared to free
5-fluorouracil.

An interesting selective drug delivery system has been recently developed by Baek
et al. [77]. The researchers proposed the use of a renal-clearable zwitterionic cyclodex-
trin (i.e., hepatkis-(6-deoxy-6-((phenylboronic acid-tetraethyleneglycol-l-glutamic acid Nα-
sulfobetaine)-octaethyleneglycol-caproamide))-β-cyclodextrin) (PBA-(ZW)-CD) for trans-
porting doxorubicin and ulixertinib. The obtained results were promising for colorectal
cancer targeting, with the authors reporting enhanced tumor accumulation, facilitated
elimination, and improved antitumor efficacy compared to free drugs.

Differently, Fai and colleagues [78] proposed the use of a natural-based drug. Specif-
ically, the authors encapsulated within β-cyclodextrin a hydrogenated active metabolite
of curcumin (i.e., tetrahydrocurcumin) and further loaded this inclusion complex in chi-
tosan particles towards create an innovative drug delivery vehicle (THC IC-loaded CPs).
When tested against human colon cancer Caco-2 cells, THC IC-loaded CPs displayed an
immediate cellular uptake, showing cytotoxicity in a dose-dependent manner.

Low et al. [79] have utilized β-cyclodextrin as host molecules for delivering curcumin
to colorectal cancer cells. The authors reported that the inclusion complex significantly
decreased cancer cell viability, migration, and invasion rates, while augmenting apoptosis
rates in SW480 and HCT-116 cells through caspase 3 activation. It was also observed that
the encapsulation strategy improved the aqueous dispersion of curcumin, holding promise
for extending its chemotherapeutic application. Additionally, preliminary toxicity results
demonstrated the safety of the delivery system in human cancer therapy. Nonetheless, the
researchers concluded that further in-depth in vivo studies and clinical trials are required
to prove the efficiency against colorectal cancer and other types of malignancies.

One more natural-based alternative is presented by Vukic et al. [80], who have utilized
acetylshikonin (AcSh) (i.e., a red pigment from the roots of Boraginaceae family plants)
as the guest molecule for β-cyclodextrin host. In comparison to free AcSh, the inclusion
complex demonstrated a stronger short-term effect on HCT-116 cells and superior long-term
outcomes in both HCT-116 and MDA-MB-231 cell lines, and its effectiveness was correlated
with pronounced cell cycle arrest, autophagy inhibition, and enhanced intracellular ROS
accumulation.

For clarity, the above-discussed studies have been summarized in Table 1.
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Table 1. Overview of cyclodextrin-based drug delivery systems for colorectal cancer.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Hydroxypropyl-β-cyclodextrin Clausenidin

Greater cytotoxic effect on colon cancer HT-29
cells than the free drug

Treated HT-29 cells displayed cell cycle arrest
and death by apoptosis

Reduced side effects

[65]

β-Cyclodextrin/phillipsite
composite Oxaliplatin

Greater cytotoxic effect on colon cancer HCT-116
cells than the free drug

Controlled release behavior
Safe in normal colorectal cells

[66]

Diatomite’s bio-siliceous frustules
functionalized with polymeric

chains of β-cyclodextrin
Oxaliplatin and 5-fluorouracil

Greater cytotoxic effect on colon cancer HCT-116
cells than free drugs

Significant sustained and prolonged drug release
[67]

Cyclodextrin nanoplex 5-fluorouracil and IL-2

Greater cytotoxic effect on colon cancer CT-26
cells than the free drug solution

Suitable intestinal permeability for
oral administration

[68]

Supramolecular complex composed
of [Pt(IV)-SSNPs] based on

poly(β-cyclodextrin)

Adamantyl-functionalized
platinum(IV) prodrug

[Pt(IV)-ADA2]

Effective tumor accumulation and negligible
cytotoxicity to major organs

Greater cytotoxic effect on colon cancer CT-26
cells than the free drug solution

Allows prodrug conversion to cisplatin in the
reducing environment of the tumor tissue

[69]

Supramolecular complex composed
of FA-M-β-CyD and
adamantane-grafted

hyaluronic acid

-

Greater cytotoxic effect on colon cancer HCT-116
cells than FA-M-β-CyD alone

Efficient cellular internalization, resulting in
mitophagy-mediated cell death

Antiproliferative potential

[70]

Folate-targeted
PEG-modified amphiphilic
cyclodextrin nanoparticles

Rg3 and quercetin

Prolonged blood circulation
Enhanced tumor targeting in a colorectal cancer

mouse model
Lengthened animals survival in combination

with anti-PD-L1

[71]

Amphiphilic cationic cyclodextrin
nanoparticles modified with

PEGylated folate
Docetaxel and siRNA

Significantly retarded tumoral growth
Enhanced apoptotic activity of docetaxel with

downregulation of RelA expression
[72]

Nanoparticles made of two
different amphiphilic cyclodextrins

coated with polyethylenimine
or chitosan

Camptothecin

Greater cytotoxic effect on colon cancer HT29
cells than the free drug

Enhanced Caco-2 cell permeability
Significantly higher mucosal penetration than

the free drug

[73]

Channel-type nanoparticles made
of mannose-modified

γ-cyclodextrin
Regorafenib

Attenuates inflammation and inhibits
TAM activation

Suppresses tumor cell proliferation and lesion
neovascularization, and remodels the TME

[74]

Acrylic/maleic copolymer
combined with β-cyclodextrin Capecitabine pH-responsive delivery system

Targeted and controlled drug release [75]

Alginate-based hydrogel
crosslinked with modified

β-cyclodextrin
5-Fluorouracil

Greater cytotoxic effect on colon cancer HT-29
cells than the free drug

High and rapid accumulation in tumor cells,
resulting in apoptosis

[76]



Pharmaceutics 2024, 16, 43 10 of 33

Table 1. Cont.

Drug Delivery System Carried Agent(s) Main Observations Ref.

PBA-(ZW)-CD Doxorubicin and ulixertinib

Enhanced tumor accumulation compared to
free drugs

Improved antitumor efficacy in heterotopic and
orthotopic colorectal cancer models

Tumor penetration comparable to free drugs

[77]

β-Cyclodextrin loaded in
chitosan particles Tetrahydrocurcumin

Immediate cellular uptake in colon cancer
Caco-2 cells

Displayed a dose-dependent cytotoxic activity
[78]

β-Cyclodextrin Curcumin

Greater cytotoxic effect on SW480 and HCT-116
cells than free curcumin

Decreased cancer cell viability, migration rates,
and invasion rates

Increased apoptosis rates by caspase 3 activation
Improved water dispersibility

[79]

β-Cyclodextrin Acetylshikonin

Greater cytotoxic effect on HCT-116 and
MDA-MB-231 cells than the free

therapeutic agent
More pronounced cell cycle arrest and

autophagy inhibition
Increased accumulation of intracellular ROS

[80]

3.1.2. Drug Delivery Systems Based on Chitosan

Important recent advancements have also been noted in colorectal cancer-targeted
delivery vehicles based on chitosan. For example, Khan and colleagues [81] have de-
veloped folate-decorated lipid chitosan hybrid nanoparticles as innovative carriers for
5-fluorouracil that can target HT-29 and HCT 116 cancer cell lines (recognized for their
overexpression of folate receptors). The nanosystem allowed for sustained drug release
with enhanced chemotherapeutic internalization, resulting in a greater cytotoxic effect on
desired cell lines than non-targeted CLPN-2 and the free drug solution. In addition, the
safety, biocompatibility, and stability of the presented delivery approach were confirmed
by in vivo tests.

The same targeting strategy was employed by Soe et al. [82], who fabricated folic acid-
conjugated chitosan/chondroitin sulfate self-assembled nanoparticles encapsulated with
bortezomib (Figure 5). The researchers reported that this nanosystem permitted selective
drug cellular uptake and apoptosis of HCT-116 and HT-29 cells without affecting lung
cancer cells (A549), which do not express folate receptors. Thus, the delivery system has
been proven effective for chemotherapeutic release to colorectal tumors.

Almeida et al. [83] have designed a delivery system for camptothecin based on micelles
made of amphiphilic chitosan modified with PEG and oleic acid. Drug-loaded micelles
exhibited significant anticancer effects against HCT-116, Caco-2, and HT-29 colorectal
cells in vitro. Moreover, in vivo tests with an HCT-116 xenograft model demonstrated
the capacity of the new treatment to considerably reduce tumor growth, while in a more
relevant colorectal carcinoma model, it has also been proven to decrease the tumor incidence
and inflammation signs.

Another interesting delivery possibility has been presented by Shirani-Bidabadi
et al. [84]. The authors have developed chitosan–hyaluronic acid–protamine sulfate poly-
plexes loaded with a CRISPR/Cas9 plasmid to reverse oxaliplatin resistance in HT-29
cells. The designed system displayed efficient gene delivery, downregulating ERCC1 and
restoring drug sensitivity while maintaining negligible toxicity towards healthy cells. Thus,
it offers a potential solution for overcoming oxaliplatin resistance.
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Alternatively, Sadreddini et al. [32] have created carboxymethyl dextran–chitosan
nanoparticles for the co-delivery of doxorubicin and snail siRNA. This novel carrier system
demonstrated a significant capacity for downregulating MMP-9 and Vimetin while upreg-
ulating E-cadherin in HCT-116 cells. Thus, the treatment with dual-agent nanoparticles
produced cell death by apoptosis and migration inhibition in targeted colorectal cancer
cells, enhancing its anticancer potential through changes in EMT genes.

Differently, Tian et al. [85] proposed the use of pH-responsive bufadienolide (BU)
nanocrystals decorated with a chitosan quaternary ammonium salt. This delivery strategy
has proven effective, improving BU internalization, enhancing apoptosis rates, decreasing
the mitochondrial membrane potential, and leading to the escalation of ROS levels within
tumor cells. Moreover, in vivo experiments revealed effective targeting of intestinal sites,
a prolonged retention time, and anti-colon cancer activity via Caspase-3 and Bax/Bcl-2
ratio pathways.

Another pH-responsive system was developed by Narayan and colleagues [86].
Namely, they have constructed mesoporous silica nanoparticles capped with chitosan–
glucuronic acid, which they loaded with capecitabine. These colorectal cancer-targeting
nanovehicles demonstrated the pH-sensitive and controlled release of the transported
drug, achieving higher cellular uptake in HCT-116 cells. Consequently, the nanoparticles
could effectively reduce tumors, aberrant crypt foci, dysplasia, and inflammation, while
unwanted drug-associated toxicity was diminished.
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Hanna et al. [87] have intercalated methotrexate chemotherapeutic in a delivery system
composed of poly(3-hydroxybutyrate)/chitosan–graft poly (acrylic acid) conjugated with
sodium hyaluronate. The nanocarrier managed to transport the drug in a targeted manner
towards Caco-2 cells, ensuring enhanced cytotoxicity through an increase in ROS occurrence
and influence on genes related to apoptosis and antioxidant enzymes within treated cells.

Feng et al. [88] have fabricated nanogels made of chitosan and carboxymethyl chitosan
to deliver doxorubicin hydrochloride to colorectal cancer cells. Using different crosslinkers
for nanogel formation, the authors observed that the materials with a positive zeta potential
could be more effectively taken up by tumor cells, significantly reducing their cell viability.
Moreover, through their improved mucoadhesion and limited permeability, these nanogels
successfully enhanced the contact time of the formulation onto the intestinal mucosa and
augmented the local concentration of the therapeutic agent.

A recent study by Bhattacharya et al. [89] focused on developing chitosan–carrageenan
nanoparticles for the delivery of imatinib mesylate-poly sarcosine. Based on the experi-
mental results, the authors concluded that these polysaccharide-based nanosystems are
promising for the treatment of colon cancer, having great potential in actively targeting and
reducing the dose-dependent toxicity of the carried drug.

On a different note, Sorasitthiyanukarn et al. [90] have combined chitosan and al-
ginate into nanoparticles capable of encapsulating curcumin diethyl diglutarate for oral
delivery. This natural chemotherapeutic loading approach was reported to have improved
physicochemical stability, digestibility, and bioaccessibility under simulated gastrointestinal
conditions and cellular uptake in Caco-2 cells.

Another combination of natural polymers for anticancer drug delivery has been
reported by Leonard et al. [91]. Specifically, the researchers have synthesized a composite
from chitosan and thiolated pectin as a vehicle for 5-fluorouracil. The system was noted to
possess superior mucoadhesivity while maintaining selective cytotoxicity (i.e., the delivery
system presented targeted cytotoxicity towards HT-29 cells, with milder effects on normal
HEK-293 cells).

A more complex delivery vehicle for 5-fluorouracil was proposed by Yusefi and col-
leagues [92]. The authors have fabricated chitosan-coated magnetic cellulose nanowhiskers.
The synthesized nanocomposite displayed desired saturation magnetization and thermal
stability, an elevated drug encapsulation capacity, pH-dependent swelling, and fitting
drug release performance. Through their appealing physicochemical properties, these
nanowhiskers had a high tumor-penetrating ability, presenting a strong activity against
colorectal cancer cells.

Another magnetic-based carrier was fabricated by Wu et al. [93]. Explicitly, they
created superparamagnetic chitosan-based nanocomplexes able to deliver SN-38 (in the
form of the water-soluble polymeric prodrug poly(L-glutamic acid)-SN-38). The developed
system could significantly enhance tumor accumulation and ensure cellular internalization
through the application of a local magnetic field. This strategy enabled superior targeting
and antitumor efficacy, leading to an up to 81% tumor suppression rate in a colorectal
cancer model in mice.

Wu et al. [94] have also published a study on colorectal cancer therapeutics, includ-
ing superparamagnetic nanoparticles. The authors have integrated Fe3O4 nanoparticles
within chitosan-based polyelectrolyte complexes to create a targeted delivery system for
irinotecan under a magnetic field. The complexes ensured a high drug encapsulation
capacity and demonstrated better anticancer efficacy than the free drug due to improved
cell internalization and desirable tumor-targeting ability.

A summary of the mentioned studies concerning chitosan-based delivery vehicles for
colorectal cancer treatment is realized in Table 2.
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Table 2. Overview of chitosan-based drug delivery systems for colorectal cancer.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Folate-decorated lipid
chitosan hybrid nanoparticles 5-Fluorouracil

Greater cytotoxic effect on colon cancer HT-29 and
HCT-116 cells than the free drug

Enhanced cellular uptake
Biphasic release pattern: initial burst release followed by

a sustained release for 48 h

[81]

Folic acid-conjugated
chitosan/chondroitin sulfate
self-assembled nanoparticles

Bortezomib

Enhanced cellular uptake and apoptosis in folate
receptor-expressing colorectal cancer cells than in lung

cancer cells
pH-dependent release profile

[82]

Micelles made of amphiphilic
chitosan modified with PEG

and oleic acid
Camptothecin

Significant anticancer effects against HCT-116, Caco-2,
and HT-29 cells

Considerable reduction of tumor incidence and
inflammation signs

Safety profile for normal tissues

[83]

Chitosan-hyaluronic
acid-protamine

sulfate polyplexes
CRISPR/Cas9

Efficient gene delivery to HT-29 cells
Downregulated ERCC1 and restored drug sensitivity in

oxaliplatin-resistant cells
[84]

Carboxymethyl
dextran–chitosan

nanoparticles
Doxorubicin and siRNA

Induced apoptosis and inhibited migration of
HCT-116 cells

Significantly modified EMT gene expression
[32]

Chitosan quaternary
ammonium salt Bufadienolide nanocrystals

Effective targeting of intestinal sites
Antitumor activity through Caspase-3 and Bax/Bcl-2

ratio pathways
Significant apoptosis induction

Enhanced ROS generation

[85]

Mesoporous silica
nanoparticles capped with
chitosan–glucuronic acid

Capecitabine

Higher uptake in HCT-116 cells
Reduction in tumors, aberrant crypt foci, dysplasia,

and inflammation
Alleviation of toxic features

[86]

Poly(3-
hydroxybutyrate)/chitosan-

graft poly (acrylic acid)
conjugated with sodium

hyaluronate

Methotrexate

Greater cytotoxic effect on colon cancer Caco-2 cells than
the free drug

Enhanced ROS generation
Increased apoptosis rates and elevated levels of DNA

breakage inside tumor cells

[87]

Nanogels made of chitosan
and carboxymethyl chitosan Doxorubicin

Effective cellular internalization in colorectal cancer cells
Prolonged contact time of the formulation onto the

intestinal mucosa and an improved local
drug concentration

[88]

Chitosan–carrageenan
nanoparticles

Imatinib mesylate-poly
sarcosine

Great potential for active targeting
Promising for reducing the dose-dependent toxicity of

carried freight
[89]

Chitosan–alginate
nanoparticles

Curcumin diethyl
diglutarate

Significantly enhanced stability, digestibility,
bioaccessibility, and cellular uptake in Caco-2 cells [90]

Chitosan–thiolated
pectin composite 5-Fluorouracil Targeted cytotoxicity towards HT-29 colorectal cells

with milder cytotoxicity towards normal HEK-293 cells [91]

Chitosan-coated magnetic
cellulose nanowhiskers 5-Fluorouracil

Appropriate physicochemical properties to ensure a
high tumor-penetrating capacity

pH-dependent swelling and drug release performance
Potent killing effects against colorectal cancer cells

[92]
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Table 2. Cont.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Superparamagnetic
chitosan-based
nanocomplexes

Poly(L-glutamic acid)-SN-38
prodrug

Significant enhancement of tumor-targeted
accumulation and cellular uptake

Superior targeting and antitumor efficacy in colorectal
cancer model mice

[93]

Chitosan-based
polyelectrolyte complexes

embedded with
superparamagnetic

nanoparticles

Irinotecan

Greater anti-colon cancer cell efficacy than the free drug
Effective internalization by colon tumor cells

Favorable tumor-targeting ability under the guidance of
a magnetic field

[94]

3.2. Liver Cancer

Worldwide, liver cancer represents the most common fatal malignancy, posing a
major burden on public health [95,96]. Moreover, the poor prognosis of the disease is
accentuated by its diagnosis in advanced stages. The conventional treatment route assumes
chemotherapy and immunotherapy, yet these approaches exhibit negative effects. Some
of their limitations include severe adverse reactions, multiple drug resistance, a high
clearance rate, undesired drug distribution to the specific site of liver cancer, and a low
concentration of drug that finally reaches liver cancer cells. Therefore, liver cancer patients
necessitate better therapeutic alternatives and novel strategies often implying the use of
natural compounds and/or nanotechnological approaches [96,97].

3.2.1. Drug Delivery Systems Based on Cyclodextrins

Numerous studies have researched the potential of cyclodextrin-based formulations
for chemotherapeutics delivery to liver cancer cells. For instance, Yang et al. [98] have
created inclusion complexes between β-cyclodextrin and benzimidazole as promising alter-
natives for hepatocellular carcinoma. These targeted supramolecular prodrug complexes
were able to ensure an accelerated chemotherapeutic release under acidic conditions, al-
lowing efficient uptake into HepG2 cells and subsequently augmented cytotoxicity. Thus,
the pH-sensitive system could inhibit liver cell proliferation by inducing cell apoptosis.

Wei et al. [99] have also fabricated a delivery system with a drug-liberating capac-
ity in acidic environments. The researchers have utilized a pH-responsive cyclodextrin
derivative (R6H4-CMβCD) for creating nanoparticles suitable for curcumin encapsulation
and targeted transport. These nanocarriers were noted to improve cellular uptake and
ensure enhanced accumulation in hepatoma cells. Additionally, the nanoparticles could
avoid lysosome action via the “proton sponge effect”, producing higher apoptosis rates
and excellent antitumor outcomes without affecting other major organs.

A different targeting method was proposed by Wu and colleagues [100]. Specifically,
the authors have developed light/redox dual stimuli-responsive β-cyclodextrin-gated
mesoporous nanoparticles functionalized with an azobenzene/galactose-grafted polymer
as an innovative doxorubicin carrier to hepatocellular carcinoma cells. This nanosystem
allowed the controlled and targeted release of its freight, ensuring a more efficient delivery
into HepG2 cells and enhanced cytotoxicity compared to HeLa and COS7 cells.

A study conducted by Fan et al. [101] has focused on the encapsulation of doxorubicin
into folic acid–polyethylene glycol–β-cyclodextrin nanoparticles. The developed delivery
system improved drug solubility ensured controlled medicine release, and allowed targeted
drug delivery to HepG2 cells while maintaining desirable blood compatibility. Thus, it
offers great promise for improving liver cancer treatment.

A similar strategy was tackled by Li and colleagues [102], who have loaded melarso-
prol into folate-targeted polyethylene glycol-modified amphiphilic cyclodextrin nanopar-
ticles. This nanoformulation ensured cell-specific uptake, cytotoxicity, apoptosis, and
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migration inhibition in hepatocellular carcinoma cells, effects that further contributed to
prolonging tested animals’ survival without imparting toxicity to healthy organs.

Alternatively, Bognanni et al. [103] have designed cross-linked γ- and β-cyclodextrin
polymers as carriers for doxorubicin and oxaliplatin. Moreover, γ-cyclodextrin molecules
have been functionalized with arginine–glycine–aspartic acid or arginine moieties to target
integrin receptors from tumoral cells. When tested against liver and lung carcinoma cell
lines it was found that the developed system could considerably enhance the antiprolifera-
tive activity of doxorubicin in HepG2 cells only, while the cytotoxicity of oxaliplatin was
increased in both cell lines. The improved anticancer effects were correlated with a higher
accumulation of the chemotherapeutic inside the cells, while the functionalization strategy
resulted in no additional effect compared to the precursor polymer.

Yang et al.’s research group [104,105] focused on grafting pullulan to β-cyclodextrin
to create an efficient doxorubicin nanocarrier for liver-specific delivery. For example, they
have synthesized glycyrrhetinic acid–β-cyclodextrin grafted pullulan nanoparticles that
allowed slow drug release, high cellular uptake, and better therapeutic outcomes [104].
Another drug delivery system developed by the same research group [105] consists of
biotinylated β-cyclodextrin-grafted pullulan. These doxorubicin-loaded nanoparticles
could inhibit tumor cell growth, given their enhanced accumulation in the liver, while the
cardio–renal toxicity was considerably reduced.

Another interesting doxorubicin carrier was proposed by Daga and colleagues [106],
who have loaded this drug into GSH-responsive cyclodextrin-based nanosponges. These
delivery systems displayed a good safety profile, with comparable cytotoxicity and hepatic
accumulation to free doxorubicin. Moreover, the developed nanosponges were successfully
taken up through active mechanisms and were able to escape the efflux drug pump, thus
aiding in circumventing drug resistance.

One more innovative nanovehicle of interest for liver cancer treatment has been
constructed by Wen et al. [107]. The authors have coated a β-cyclodextrin-cholic acid–
hyaluronic acid polymer onto magnetite-graphene oxide and further loaded the nanomate-
rial with camptotechin. These multiple targeted features allowed for a strong antitumor
effect, given that the chemotherapeutic action worked in synergy with the photothermal
activity of the nanomaterial towards inhibiting liver cancer cell growth. Specifically, in
addition to their drug-release capacity, the nanocomposites induced local hyperthermia
that produced tumor cell apoptosis under near-infrared radiation.

On a different note, Ercan and colleagues [108] have elaborated blank self-assembled
polycationic amphiphilic β-cyclodextrin nanoparticles and tested their activity against
HepG2 cells. Without encapsulating any drug, the developed nanoformulation could
exert anti-proliferative activity on hepatocellular carcinoma cells, triggering apoptosis and
restoring tumor cell chemosensitivity.

The above-discussed studies have been synthesized in Table 3 to offer a clearer perspec-
tive on the recent developments in cyclodextrin-based drug delivery systems for liver cancer.

Table 3. Overview of cyclodextrin-based drug delivery systems for liver cancer.

Drug Delivery System Carried Agent(s) Main Observations Ref.

β-Cyclodextrin Benzimidazole pH-sensitive drug release with efficient uptake by HepG2 cells
Inhibited liver cell proliferation through apoptosis induction [98]

Cyclodextrin derivative
(R6H4-CMβCD)-based

nanoparticles
Curcumin

pH-sensitive drug release with efficient uptake by hepatoma cells
High apoptosis rates in targeted cells with excellent

anticancer effects
[99]

β-Cyclodextrin-gated
mesoporous nanoparticles

functionalized with an
azobenzene/galactose-

grafted polymer

Doxorubicin
Redox-sensitive drug release accelerated under UV irradiation
Enhanced cytotoxicity to HepG2 cells compared to HeLa and

COS7 cells
[100]
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Table 3. Cont.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Folic acid–polyethylene
glycol–β-cyclodextrin

nanoparticles
Doxorubicin

Targeted and controlled medicine release to HepG2 cells
Good encapsulation efficiency, blood compatibility, enhanced

drug solubility
[101]

Folate-targeted polyethylene
glycol-modified amphiphilic
cyclodextrin nanoparticles

Melarsoprol

Achieved cell-specific uptake, cytotoxicity, apoptosis, and
migration inhibition in targeted cells

Prolonged the survival of mice with orthotopic tumors without
causing side toxicity

[102]

Cross-linked γ- and
β-cyclodextrin polymers

Doxorubicin
and oxaliplatin

Greater cytotoxic effect on cancer cells than the free drugs
Higher accumulation of the chemotherapeutic inside the cells [103]

Glycyrrhetinic
acid–β-cyclodextrin-grafted

pullulan nanoparticles
Doxorubicin

High cellular uptake, with significant drug accumulation in the
liver and a decreased concentration in the heart and kidneys

Slow drug release
Better therapeutic outcomes than the free drug

[104]

Biotinylated
β-cyclodextrin-grafted

pullulan
Doxorubicin

High cellular uptake, with significant drug accumulation in the
liver and a decreased concentration in the heart and kidneys

Sustained drug release
Inhibited tumor cell growth

[105]

GSH-responsive
cyclodextrin-based

nanosponges
Doxorubicin

Comparable cytotoxicity and hepatic accumulation to the
free drug

Contribute to overcoming drug resistance by being taken up by
tumor cells through an active mechanism and escaping the efflux

drug pump

[106]

Magnetite–graphene oxide
coated with a

β-cyclodextrin–cholic
acid–hyaluronic acid polymer

Camptothecin Strong antitumor effect
Induced local hyperthermia that produced tumor cell apoptosis [107]

Polycationic amphiphilic
β-cyclodextrin nanoparticles -

Induced apoptosis and the lowered cell proliferation rate of
HepG2 cells

Hindered multidrug resistance
[108]

3.2.2. Drug Delivery Systems Based on Chitosan

Several recent promising anti-liver cancer formulations have also been reported to
be based on chitosan. As an example, Ye et al. [109] have encapsulated doxorubicin into
chitosan- and folic acid-functionalized chitosan nanoparticles. The two nanomaterials
exhibited similar drug release rates. However, the use of the targeting agent resulted in
higher cytotoxicity levels, promoting apoptosis, arresting the cell cycle at the G2/M phase,
and upregulating p53.

Song and colleagues [110] have recently synthesized multifunctional thiolated chitosan
derivatives, which they further loaded with arsenic trioxide through glutathione-sensitive
bonds. This structure allowed the drug to be released in a proportion of 95% after 24 h in
the glutathione environment, while only low leakage was noted in physiological condi-
tions. Therefore, the nanocarrier permits a targeted release, resulting in enhanced tumor
intracellular accumulation of the transported chemotherapeutics while reducing unwanted
adverse effects on healthy organs. Moreover, when tested on the HepG2 mouse tumor
model, the nanosystem proved highly effective in treating liver cancer, inducing an 86.4%
tumor inhibition rate.

An alternative targeting vehicle was proposed by Yan et al. [111]. The authors have
fabricated a redox-responsive micelle for doxorubicin and pheophorbide A based on poly-ε-
caprolactone linked to carboxymethyl chitosan through a disulfide bond and functionalized
with the glycyrrhetinic acid targeting ligand. This complex system could effectively extend
the average residence time in circulation, leading to enhanced intracellular uptake by
HepG2 cells. Moreover, the developed nanoplatform could exert synergistic activity with
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the carried drugs, improving inhibition efficiency and endowing the system with photo–
chemo theranostic and NIR imaging capabilities.

Differently, several research groups have focused their studies on the delivery of
natural-based chemotherapeutic agents. For instance, Huang et al. [112] have loaded
curcumin into galactosylated chitosan-modified nanoparticles based on PEG-PLGA for
targeting asialoglycoprotein receptor (ASGPR) expressed on hepatocellular carcinoma cells.
The fabricated nanosystems were effectively internalized by HepG2 cells, successfully
accumulating and releasing curcumin within tumor sites. Thus, the nanocarriers offered a
superior tumor growth inhibitory potential compared to the free drug while maintaining
excellent biocompatibility with normal tissues.

Sorasitthiyanukarn et al. [113] have alternatively employed chitosan/alginate nanopar-
ticles for the delivery of curcumin diglutaric acid, given its better solubility and antinocicep-
tive effects compared to curcumin. The developed nanoparticles exhibited slow cumulative
release of the incorporated agent, and the release pattern was attributed to Fickian dif-
fusion and the erosion of carrier polymeric materials. The nanosystem demonstrated
higher in vitro cellular uptake in Caco-2 cells and better antitumoral activity against Caco-2,
HepG2, and MDA-MB-231 cancer cells, holding promise as a useful tool in future oral-
administered anticancer therapeutics.

One more natural-based possibility has been envisaged by Yang and colleagues [114],
who have created a delivery system for zedoary turmeric oil (ZTO). Namely, the authors
have encapsulated ZTO into chitosan-coated solid lipid nanoparticles, obtaining a promis-
ing delivery platform for this otherwise volatile and insoluble agent. The researchers
reported that the use of the chitosan coating resulted in higher liver accumulation com-
pared to uncoated particles, leading to significantly improved bioavailability and enhanced
cellular internalization.

A different natural chemotherapeutic was used by Zhang et al. [115]. Specifically,
the researchers have loaded ginsenoside compound K into micelles made of deoxycholic
acid–O-carboxymethyl chitosan and A54 peptide. This drug transport system ensured a
pH-responsive and sustained release behavior, allowing a significantly stronger in vitro
cytotoxicity against HepG2 and Huh-7 cells than the free chemotherapeutic. Moreover, the
developed micelles could promote the protein expression levels of caspase-3, caspase-9,
and poly (ADP-ribose) polymerase, augmenting anticancer activity.

An innovative chitosan-based formulation has also been proposed by Harisa et al. [116].
The research group has synthesized erythrocytes loaded with pravastatin–chitosan nanogels
that were able to maintain a sustained drug release over 48 h. The nanosystem could reduce
the cellular viability of HepG2 cells by 28% compared to unloaded erythrocytes, showing
good promise for the targeted treatment of liver cancer.

For clarity, Table 4 presents the above-detailed studies in a more concise manner.

Table 4. Overview of chitosan-based drug delivery systems for liver cancer.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Chitosan and folic
acid-functionalized

chitosan nanoparticles
Doxorubicin

Inhibited tumor cell growth by promoting apoptosis
and arresting cell cycle at G2/M phase through the

p53/PRC1 pathway
[109]

Multifunctional thiolated
chitosan derivatives Arsenic trioxide

Glutathione-sensitive drug release
Significantly improved tumor intracellular

accumulation of the carried drug
High tumor inhibition rate in mice with liver cancer

[110]

Micelles based on
poly-ε-caprolactone linked to

carboxymethyl chitosan
through a disulfide bond and

functionalized with
glycyrrhetinic acid

Doxorubicin and
pheophorbide A

Redox-responsive drug release
Enhanced intracellular uptake by HepG2 cells

Synergistic activity with the carried drugs
Enhanced near-infrared imaging performance

[111]
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Table 4. Cont.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Galactosylated
chitosan-modified

nanoparticles based
on PEG-PLGA

Curcumin Effectively internalized by HepG2 cells
Greater inhibition of tumor growth than free curcumin [112]

Chitosan/alginate
nanoparticles Curcumin diglutaric acid

Slow cumulative release of the carried agent in
simulated gastrointestinal fluids without enzymes and

in body fluid
Better anticancer activity against Caco-2, HepG2, and

MDA-MB-231 cells compared to the free drug

[113]

Chitosan-coated solid
lipid nanoparticles Zedoary turmeric oil

Significantly improved bioavailability
Higher liver accumulation than uncoated particles
Chitosan coating enhanced the internalization of

particles by cells due to charge attraction

[114]

Micelles made of deoxycholic
acid–O-carboxymethyl

chitosan and A54 peptide
Ginsenoside compound K

pH-responsive and sustained drug release
Greater cytotoxic effect on colon cancer HepG2 and

Huh-7 cells than the free drug
Promoted protein expression levels of caspase-3,

caspase-9, and poly (ADP-ribose) polymerase

[115]

Erythrocytes loaded with
chitosan nanogels Pravastatin Sustained drug release over 48 h

Reduced the cellular viability of HepG2 cells [116]

3.3. Gastric Cancer

Gastric cancer represents the 4th leading origin of tumors and the 3rd most frequent
cause of cancer-related deaths [117]. Other unfortunate characteristics of gastric cancer
comprise high incidence rates of metastasis and low rates of early diagnosis, radical resec-
tion, and 5-year survival. The usual treatment route assumes radical surgery followed by
chemotherapy in patients diagnosed with gastric cancer in early disease stages, a therapeu-
tic strategy that generally results in a 90% survival rate in 5 years after the intervention.
However, patients with advanced gastric cancer stages do not have the possibility of
surgery and have a high metastasis risk; these factors lead to a poor prognosis. There-
fore, developing performant unconventional drug delivery systems is in high demand for
creating an efficient treatment for gastric cancer [12,118].

Several studies have been conducted on the encapsulation into oligo-/polysaccharides
of certain drugs of interest for gastric cancer. For example, Gaur et al. [119] have reported on
the preclinical efficacy of CRLX101, a nanoparticulate structure containing a cyclodextrin-
based polymer and camptothecin. In vitro tests demonstrated high cytotoxicity against
gastric cancer cell lines, while in vivo studies registered potent antitumor activity. In
addition, there was a significant decrease in the expression of the carbonic anhydrase,
VEGF, and CD31 proteins in treated tumors, proving hypoxia and angiogenesis inhibition.

On a different note, other researchers have directed their efforts to create innovative
drug delivery vehicles based on chitosan. One such case is represented by the study by
Wu and colleagues [117], who have designed and fabricated cholesterol-loaded chitosan
nanoparticles for the delivery of salinomycin and siRNA (siRNA@C-SAL). The siRNA@C-
SAL was able to induce superior cytotoxicity in SNU-668 and SGC-791 cells without
causing any significant adverse effects on healthy organs. Moreover, no weight loss was
observed when using this treatment in tumor-bearing mice, reconfirming the safe profile of
this formulation.

An alternative strategy was recently proposed by Bandi et al. [120]. The researchers have
developed a multi-layered mucoadhesive gastric patch (based on a chitosan–hydrocaffeic
acid conjugate) for the delivery of regorafenib. When tested in a rat model, the fabricated
patches ensured a constant plasma drug concentration, sustaining its release for 8 days
after oral administration. This delivery approach resulted in a significant tumor volume
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reduction in athymic nude mice over 7 days, recommending the platform as a long-acting
oral drug delivery system.

Differently, Jiang et al. [121] have prepared chitosan oligossacharide-conjugated sele-
nium (COS-Se) as a novel anticancer therapy. The unconventional chemotherapeutic could
enhance phagocytosis and the secretion of anti-inflammatory cytokines in mouse peritoneal
macrophages. Furthermore, COS-Se produced a considerable immuno-enhancing effect by
promoting the phagocytic, spleen, and thymus indexes without imparting cytotoxicity to
normal cells. It also significantly inhibited the proliferation and migration of gastric cancer
cells, remarkably repressing gastric adenocarcinoma growth while keeping a nontoxic
activity towards normal fibroblast cells.

An interesting material proposal was also made by Zhang et al. [122], who utilized
N-deoxycholic acid glycol chitosan as the carrier and a gastric cancer angiogenesis marker
peptide (i.e., GX1) conjugated with PEG–deoxycholic acid as the targeting ligand for
fabricating a drug vehicle suitable for docetaxel delivery. This innovative nanostructure
allowed sustained drug release accelerated by an acidic pH, a liberating behavior that
enhanced cellular uptake and resulted in stronger cytotoxicity against co-cultured gastric
cancer cells and human umbilical vein endothelial cells than the free drug. In addition,
the delivery system significantly inhibited tumor growth in SGC791 tumor-bearing mice
without producing any weight loss in treated animals.

Alternatively, Chi et al. [123] have prepared novel polymer–drug conjugates from
carboxymethyl chitosan and norcantharidin. The developed vehicles could significantly
reduce the systemic toxicity of the carried drug while enhancing its antitumor efficacy
in vivo. Explicitly, this innovative delivery system produced a 59.57% tumor suppression
rate against SGC-7901 gastric tumors in BALB/c nude mice, an anticancer activity that was
further correlated with the upregulation of TNF-α and Bax and downregulation of VEGF,
Bcl-2, MMP-2, and MMP-9 expression. Thus, these conjugates are promising and feasible
therapeutic options for managing gastrointestinal tumors by inhibiting tumor metastasis
and inducing apoptosis in vivo.

Wang et al. [124] have rather focused on the anticancer properties of metal oxide
nanoparticles. Explicitly, the authors have obtained chitosan-modified amino-magnetic
nanoparticles for supporting copper oxide nanoparticles (Figure 6). The as-described
nanocomposite leads to the very low cell viability of human gastric and colorectal carcinoma
cell lines, showing particular promise for treating gastro-duodenal cancers. The high
anticancer effect was correlated with the desirable antioxidant activity of the system.
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Moving to natural chemotherapeutic agents, Issarachot et al. [125] have recently cre-
ated superporous hydrogels made of chitosan–PVA blends for the delivery of a resveratrol
solid dispersion. The authors reported an efficient drug release sustained over 12 h. The
formulation showed slightly less cytotoxicity towards AGS cells than pure resveratrol while
displaying a similar anti-inflammatory activity against RAW 264.7 cells to indomethacin.

Another interesting example is offered by Catchpole et al. [126], who created inclusion
complexes between New Zealand propolis and α-, ß-, and γ-cyclodextrins. The formulated
complexes displayed strong proliferation-inhibitory activity against four human gastroin-
testinal cancer cell lines, including gastric carcinoma cells. The delivery systems had
also reportedly exerted potent anti-inflammatory and lipid antioxidant activities, effects
that were not only correlated with the encapsulated propolis components (i.e., flavonoids,
phenolic acids, and caffeate-type esters) but also with the synergism between the carrier
cyclodextrins and these bioactive agents.

The above-discussed studies have been summarized in Table 5 to provide an at-glance
perspective on the novelties of cyclodextrin and chitosan-based drug delivery systems for
gastric cancer.

Table 5. Overview of cyclodextrin and chitosan-based drug delivery systems for gastric cancer.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Cyclodextrin-based
polymer nanoparticles Camptothecin

High in vitro cytotoxicity and strong antitumor
activity in vivo

Considerably decreased carbonic anhydrase, VEGF,
and CD31 protein expression

[119]

Cholesterol-loaded
chitosan nanoparticles Salinomycin and siRNA

Superior in vitro cytotoxicity against two gastric
carcinoma cells (i.e., SNU-668 and SGC-791)

No significant adverse effects
[117]

Chitosan–hydrocaffeic acid
conjugate gastric patch Regorafenib

Sustained drug release for 8 days after
oral administration

Significant reduction in the tumor volume over 7 days
[120]

Chitosan oligosaccharide Selenium

Effectively elevated phagocytosis and increased the
secretion of anti-inflammatory cytokines in mouse

peritoneal macrophages
Possessed a significant immuno-enhancing effect with

no cytotoxicity

[121]

N-deoxycholic acid–glycol
chitosan functionalized with
GX1–PEG–deoxycholic acid

Docetaxel Sustained drug release accelerated by an acidic pH [122]

Carboxymethyl chitosan Norcantharidin

Upregulated the expression of TNF-α and Bax
Downregulated the expression of VEGF, Bcl-2, MMP-2,

and MMP-9
Enhanced antitumor efficacy against SGC-7901 cells,
inhibiting tumor metastasis and inducing apoptosis

in vivo

[123]

Chitosan-modified
amino-magnetic nanoparticles Copper oxide nanoparticles Very low cell viability of human gastric and colorectal

carcinoma cell lines [124]

Superporous hydrogels made
of chitosan–PVA blends Resveratrol solid dispersion Efficient drug release, sustained over 12 h

Exhibited anti-inflammatory activity [125]

α-, ß-, and γ-Cyclodextrins New Zealand propolis

Inhibited the proliferation of four human
gastro-intestinal cancer cell lines (i.e., DLD-1,

HCT-116, NCI-N87, and KYSE-30)
Strongly anti-inflammatory in vitro

Strong lipid antioxidant activity

[126]
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3.4. Pancreatic Cancer

Pancreatic cancer is one of the most lethal cancers, as it has an aggressive metastatic
progression with less than a 10% 5-year survival rate after diagnosis. Being asymptomatic
in the early stages, this disease is often discovered quite late. Moreover, pancreatic cancer
treatment is impeded by the inaccessible anatomical position of this organ and the inability
of chemotherapeutic agents to penetrate the dense extracellular matrix surrounding pan-
creatic tumor cells [9,127–129]. This unfortunate context has led to the prediction that, by
2030, pancreatic cancer will become the second leading cause of cancer death in the absence
of better-suited therapeutics [9].

3.4.1. Drug Delivery Systems Based on Cyclodextrins

Thus, researchers have concerted their efforts towards developing efficient delivery
systems that would allow the carried drugs to reach target tumor sites [128]. Tackling the
recognized benefits of cyclodextrins, scientists have elaborated several formulations based
on these oligosaccharides that showed encouraging results.

Kano et al. [130] have recently synthesized cyclodextrin-conjugated α-bisabolol and
tested it against pancreatic cancer cells. The authors reported significant modifications of
cytomorphology, apoptosis induction, and the suppression of phosphorylation of focal
adhesion kinase. Moreover, testing this treatment in subcutaneous xenograft models
reduced the tumor volume compared with control groups and lower Ki67-positive cells
than in gemcitabine-treated groups. The research concluded that this formulation could
improve the prognosis of pancreatic cancer patients, yet further investigations should
be performed to determine the precise mechanisms of its antitumor effects to facilitate
subsequent clinical applications.

Alternatively, Iacobazzi et al. [131] have created stable complexes between hydroxy-
propyl-β-cyclodextrin as host molecules and PTA34 and PTA73 as guests. The results
obtained through in vitro studies revealed that the formed complexes had high antitu-
mor activity against pancreatic ductal adenocarcinoma (PDAC) cells, leading to a strong
G2/M phase arrest followed by the induction of apoptosis. More recently, Bhattacharyya
et al. [132] have used the same host compounds for creating improved PDAC therapeutics.
Nonetheless, the researchers used difluorinated curcumin as the guest molecule, obtaining
complexes with increased antiproliferative activity. The anticancer effects of the inclusion
complex were reflected in its ability to inhibit colony and spheroid formation and capacity
to induce cell cycle arrest and apoptosis in PDAC cells.

On a different note, Higashi et al. [128] have mixed adamantane-modified bromelain
and multisubstituted-PEGylated β-cyclodextrins to create a drug delivery system for pan-
creatic cancer. The resulting host–guest complexes exhibited long blood retention and high
tumor accumulation, providing strong antitumor activity. Moreover, this drug formulation
also worked as an enhancer of the anticancer effects of conventional chemotherapeutics if
pre-administered.

An interesting treatment alternative has been proposed by Dora et al. [133]. Namely,
the authors have prepared β-cyclodextrin nanosponges loaded with erlotinib and tested
their potential against pancreatic cell lines (i.e., MIA PaCa-2 and PANC-1). A higher
intracellular uptake was noted for the nanoformulation compared with the free drug,
leading to improved toxicity in the target cells. Furthermore, the increased solubility,
dissolution, and oral bioavailability of the chemotherapeutic agent in this form allow drug
dose reduction and the subsequent limitation of dose-related adverse effects.

The discussed studies have been summarized in Table 6.
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Table 6. Overview of cyclodextrin-based drug delivery systems for pancreatic cancer.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Cyclodextrin α-Bisabolol

Considerable changes in the cytomorphology of
pancreatic tumor cells

Reduced tumor volume and lower Ki67-positive cells
Induced tumor cell apoptosis and suppressed the

phosphorylation of focal adhesion kinase

[130]

Hydroxy-propyl-β-
cyclodextrin PTA34 and PTA73

High antitumor activity towards PDAC cells
Strong G2/M phase arrest followed by the induction

of apoptosis
[131]

Hydroxy-propyl-β-
cyclodextrin Difluorinated curcumin Inhibited colony and spheroid formation

Induced cell cycle and apoptosis in PDAC cell lines [132]

Multisubstituted-PEGylated
β-cyclodextrins

Adamantane-modified
bromelain

High antitumor activity due to long blood retention
and increased tumor accumulation

Enhancer of the anticancer effects of conventional
chemotherapeutics

[128]

β-Cyclodextrin nanosponges Erlotinib
Higher intracellular uptake and cytotoxicity in MIA
PaCa-2 and PANC-1 cells compared to the free drug

Reduced dose-related side effects
[133]

3.4.2. Drug Delivery Systems Based on Chitosan

Several other studies have focused on enhancing the activity of anticancer drugs by
integrating them into chitosan-based nanoformulations [127]. For instance, David and
colleagues [134] have used chitosan nanoparticles for the co-delivery of quercetin and
5-fluorouracil. The authors reported encouraging results, with the dual-loaded delivery
system displaying considerable toxicity towards the primary pancreatic cancer cell line,
MIA PaCa2, in both 2D and 3D cultures.

Differently, Zhou et al. [135] have fabricated folate–chitosan–gemcitabine core-shell
nanoparticles and evaluated their effects against metastatic pancreatic adenocarcinoma
cells (i.e., COLO357). The authors reported that the developed nanosystem significantly
inhibited target cell proliferation and accumulated in human pancreatic cancer xenografts,
while the delivery systems without functionalization agents were mainly found in normal
liver tissues.

Zeng et al. [136] have proposed the utilization of a celastrol–chitosan oligosaccharide
conjugate for pancreatic cancer drug delivery. The nanocarrier system considerably inhib-
ited tumor growth, induced apoptosis, and suppressed tumor metastasis while keeping
reduced cytotoxicity towards hepatic cells than free celastrol. Considering that the devel-
oped formulation could increase antitumor efficacy, prolong the drug circulation time, and
reduce subacute toxicity, the authors concluded that it holds promise as an alternative
treatment for pancreatic cancer patients.

Another chitosan-based delivery system has been recently developed by Naeeni
et al. [137]. Specifically, the researchers have encapsulated a natural bioactive compound
(i.e., lawsone) into a liposomal nanoparticle coated with chitosan–folate. The nanosystem
presented strong free radical scavenging activity and could significantly inhibit pancreatic
cancer cell proliferation. In addition, it notably enhanced cellular uptake and considerably
upregulated the Caspase 3, 9, and Bax genes responsible for apoptosis.

Thakkar and colleagues [138] have alternatively fabricated chitosan-coated solid lipid
nanoparticles loaded with ferulic acid and aspirin as a pancreatic cancer chemopreventive
strategy. The dual cargo delivery system significantly reduced cell viability in MIA PaCa-2
and Panc-1 cell lines, increasing apoptosis rates in the target cells and suppressing tumor
growth. Moreover, an immunohistochemical analysis of tumor tissues revealed lowered
expression of the proliferation proteins PCNA and MKI67, while the apoptotic proteins
p-RB, p21, and p-ERK1/2 had increased expression levels.
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For clarity, Table 7 summarizes the above-discussed studies, offering a concise view of
promising chitosan-based drug delivery systems for pancreatic cancer.

Table 7. Overview of chitosan-based drug delivery systems for pancreatic cancer.

Drug Delivery System Carried Agent(s) Main Observations Ref.

Chitosan nanoparticles Quercetin and 5-fluorouracil Significant toxicity towards MIA PaCa2 pancreatic
cancer cells [134]

Folate-functionalized
chitosan nanoparticles Gemcitabine

Better absorption rate than nonfunctionalized carriers
Preferential accumulation in human pancreatic

cancer xenografts
Significant inhibition of COLO357 cell proliferation

[135]

Chitosan oligosaccharide Celastrol

Significantly inhibited tumor growth, induced
apoptosis, and suppressed tumor metastasis of

pancreatic cancer
Lowered hepatic cytotoxicity

[136]

Liposomal nanoparticles
coated with chitosan–folate Lawsone

Strong free radical scavenging properties
Significant inhibition of pancreatic cancer

cell proliferation
Increased cellular uptake

Upregulated the Caspase 3, 9, and Bax genes

[137]

Chitosan-coated solid
lipid nanoparticles Ferulic acid and aspirin Significantly reduced cell viability in MIA PaCa-2

and Panc-1 cells [138]

3.5. Other Cancers of the Digestive System

In addition to the above-discussed cancer types, several advancements have been
reported for other malignant diseases of the digestive system. The few identified studies
reporting on the use of chitosan- and cyclodextrin-based delivery systems for digestive
cancers outside the gastrointestinal tract are further described in this subsection.

A study by Deng et al. [139] has reported on fabricating a novel T7 peptide-modified
pH-responsive targeted nanosystem co-loaded with curcumin and docetaxel for treating
esophageal cancer (Figure 7). This complex nanocarrier could effectively transport a dual
freight, ensuring drug release in a pH-responsive manner, enhancing cellular uptake,
and improving growth suppression in a KYSE150 esophageal cancer model. Moreover,
synergistic antitumor activity was observed, confirming once more the potential of this
combined therapy for esophageal cancer.

A recent drug delivery system against esophageal cancer was also proposed by Su and
colleagues [140]. The researchers have synthesized inclusion complexes between curcumol
and β-cyclodextrin and tested their efficacy in parallel with radiation administration
in vitro and in vivo. The in vitro evaluation revealed synergistic anticancer effects, noting
inhibited proliferation, reduced colony formation, increased apoptosis, inhibition of DNA
damage repair, and radiosensitization of esophageal cancer cells. In vivo tests further
confirmed a stronger antitumoral activity of the combined therapeutic approach than for
each monotherapy alone.

Additionally, one of the mentioned cyclodextrin-based formulations [119] that was
previously preclinically tested against gastric cancer has also reached the stage of human
testing. Specifically, clinical trial NCT01612546 [141] has employed the CRLX101 nanophar-
maceutical for treating patients with advanced or metastatic stomach, gastroesophageal, or
esophageal cancer. The enrolled people had unresectable tumors that had been previously
treated with at least one regimen of chemotherapy. CRLX101 was used to deliver the
cytotoxic topoisomerase-1 inhibitor camptothecin into tumor cells to interrupt their growth.
This study’s approach assumed nanoformulation administration for more than 60 min on
days 1 and 15 at 15 mg/m2, a treatment that was repeated every 28 days for six courses
in the absence of disease progression or unacceptable toxicity. The patients who reached



Pharmaceutics 2024, 16, 43 24 of 33

a stable phase of the disease or were in better condition after completing the six courses
could further receive 6 months of additional treatment.
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Several studies worth mentioning have focused on chitosan-based formulations. For
instance, Hu et al. [142] have elaborated nanocomposites made of chitosan–sodium alginate–
polyethylene glycol–crocin and investigated their effects on esophageal cancer KYSE-150
cells. The proposed unconventional therapeutic decreased the viability of tumor cells
without affecting normal Het-1A cells. Furthermore, the nanosystem augmented ROS
production, decreased MMP levels, induced apoptotic cell death, inhibited the migration of
KYSE-150 cells, and decreased GSH and SOD activity.

Differently, Mazzarino et al. [143] have concentrated their efforts on improving oral
cancer treatment. In this respect, the researchers have created an innovative delivery system
using polycaprolactone nanoparticles coated with chitosan encapsulating curcumin. This
formulation has reportedly produced a considerable reduction in SCC-9 human oral cancer
cell viability in a concentration- and time-dependent manner.

Graciano et al. [144] have alternatively created chitosan gels loaded with toluidine
blue O, a photosensitizer with potential in photodynamic therapy. The carrier system
had desirable features for buccal delivery, enhancing photosensitizer retention in the oral
mucosa and inducing apoptosis after laser irradiation.
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One more interesting therapeutic alternative for oral cancer treatment was proposed
by Mariadoss and colleagues [145], who have encapsulated phloretin into chitosan nanopar-
ticles. These nanosystems were registered to enhance the mitochondria-mediated apoptotic
mechanism as they stimulated ROS production, depletion of cellular antioxidants, and cell
cycle arrest.

3.6. Summative Discussion

The recent efforts of scientists worldwide have materialized in a series of oligo-
/polysaccharide-based drug delivery systems with great promise in treating various diges-
tive system cancers. Being able to transport a wide range of chemotherapeutics, chitosan
and cyclodextrin-based carriers have been exploited in numerous studies aimed at finding
improved anticancer strategies, especially against colorectal, liver, gastric, and pancreatic
malignant tumors.

Chitosan and cyclodextrins exhibit unique intrinsic properties of interest for design-
ing gastrointestinal-specific drug delivery systems. Specifically, chitosan benefits from
preferential protonation and solubilization in acidic environments, has a high zeta poten-
tial that enables effective interactions with the negatively charged membranes of cancer
cells and endothelial cells of the tumor vasculature, and can transiently open the tight
junctions between epithelial cells, increasing the cellular uptake probability of delivered
chemotherapeutics [16,20]. On the other hand, cyclodextrin-based inclusion complexes
allow controlled degradation with pH changes (losing the hydrogen bonds between host
and guest molecules) or in the presence of heat/enzymes that lead to α-1,4 link cleavages
between glucose units [45]. In addition, utilizing cyclodextrins in drug formulations has
the advantage of enabling selective tumor uptake due to neoplastic cells’ high glucose
consumption [146].

Moreover, the ease of functionalization of these carbohydrate materials allowed re-
searchers to create targeted formulations that can release drugs in response to certain
stimuli. Among the preferred modifications is the creation of folic acid-conjugated systems
that can target tumoral cells with overexpressed folate receptors, a strategy that was tackled
in many studies focused on both cyclodextrin- [70–72,101,102] and chitosan-based carri-
ers [81,82,109,135,137]. A frequent stimuli-responsive option is also the generation of pH-
sensitive formulations, which have been found to be used against most cancer types. Nu-
merous research teams have successfully fabricated pH-responsive cyclodextrin [59,82,83]
and chitosan-based drug delivery systems [69,70,99,105], leading to promising in vitro and
in vivo results. Another common approach consists of developing hyaluronic acid-grafted
systems that reach desired sites by targeting CD44 receptors on tumor cells. This targeting
strategy has been considered for several cyclodextrin- [70,107] and chitosan-based delivery
vehicles [84]. The enhanced mucoadhesion of chitosan-based systems was also consid-
ered an efficient alternative for augmenting the local concentration of encapsulated drugs
for colorectal cancer [88,91] and gastric cancer [120]. Chitosan has also been reported as
a component of magnetic composite materials, permitting the development of delivery
systems that can be guided by an external magnetic field for reaching colorectal [92–94]
and gastric tumors [124]. Several targeting alternatives among the reported studies were
noted to be specific for liver cancer, including redox-responsive delivery systems [100,111],
GSH-responsive formulations [106,110], carriers grafted with a glycyrrhetinic acid targeting
ligand [104,111], vehicles functionalized with arginine–glycine–aspartic acid or arginine
moieties to target integrin receptors [103], and galactosylated carriers for targeting asialogly-
coprotein receptor (ASGPR) expressed on hepatocellular carcinoma cells [112]. In contrast,
a distinct targeting option for gastric cancer assumed the utilization of angiogenesis marker
peptide (i.e., GX1) conjugated with PEG–deoxycholic acid as the targeting ligand [122].

Concerning the administration routes for the developed formulations, the most com-
mon approaches were oral and intravenous delivery possibilities, with the preference
between the two depending on the carrier material and cancer type. Specifically, in the case
of colorectal cancer, cyclodextrin-based drug delivery vehicles were generally designed
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and tested for intravenous administration, being usually grafted with the aforementioned
ligands for actively targeting overexpressed receptors on tumor cells [69–72,77]. Several
formulations have also been developed for oral administration [65,68,73,75]; however, so
far, they have been only tested in vitro, and it can only be assumed that they will be able to
protect the therapeutic cargo throughout the gastrointestinal tract before reaching tumors
in the colon/rectum, requiring in vivo studies to confirm these hypotheses. The opposite
situation was observed for chitosan-based vehicles employed in colorectal cancer treatment,
as the mucoadhesion and pH-sensitivity of this material attracted more interest towards
developing orally administered chemotherapeutics [83,85,86,90,92]. On the other hand,
creating chitosan-based delivery vehicles for intravenous administration imposed different
targeting strategies, such as the use of folic acid to ensure selectivity towards cells with
overexpressed folate receptors [82], loading with an imatinib mesylate drug that acts as
a tyrosine kinase inhibitor, with specific targets of BCR-ABL and c-KIT kinases [89], and
creating composites with magnetic nanoparticles to be guided under the application of
an external magnetic field [93,94]. Regarding gastric cancer, only one of the proposed
formulations was designed for oral administration considering the mucoadhesion of chi-
tosan [120], whereas other carriers were developed to be injected intravenously (with
targeting based on chitosan’s intrinsic properties [117,123] and the addition of GX1 as a
targeting ligand [122]), intraperitoneally [119], and subcutaneously [121]. In what concerns
liver and pancreatic cancers, their sites are not located in the digestive tube. Thus, the
preferred administration route was observed to be intravenous injection. Specifically, in the
case of cyclodextrin-based delivery vehicles for liver cancer, most formulations assumed
intravenously administered carriers either functionalized with active targeting ligands
(i.e., folic acid [101,102], biotin [105], glycyrrhetinic acid [104], and hyaluronic acid [107])
or GSH-responsive systems [106]. Only one formulation was developed for oral admin-
istration characterized by pH-responsive drug delivery and increased gastrointestinal
stability [99]. On the other hand, chitosan-based systems for intravenous injection against
liver cancers were endowed with GSH-responsive [110], redox-responsive [111], and active
ASGPR-targeting properties [112]. One study also reports using an oral chitosan-based
formulation that ensured desirable stability in a simulated gastrointestinal environment,
with slow cumulative drug release displayed in simulated gastrointestinal fluids without
enzymes and in body fluid [113]. As for pancreatic cancer, cyclodextrin-based formulations
were reported for intravenous injection [128,130], oral delivery [133] (demonstrated by
in vivo studies to facilitate absorption and avoid pre-systemic metabolism, increasing the
bioavailability of the carried drug), and potential suitability for both oral and parenteral
administration [131] (only tested in vitro). Differently, among the chitosan-based formu-
lations designed for a specific type of administration for fighting pancreatic cancer, one
was engineered for intravenous delivery via folate receptor targeting [135], and two were
developed for oral administration based on the intrinsic properties of this natural poly-
mer [136,138]. Both of these were able to prolong the circulation time of loaded drugs and
ensure desirable intestinal absorption.

Despite the encouraging results obtained through in vitro and in vivo tests, there is
a long way until the described formulations can enter the market. Until now, there has
only been one study that reached clinical testing, while the other developed formulations
require more in-depth investigations before being tested on humans. Moreover, from
the point of view of their fabrication, the discussed delivery systems have only been
produced at a laboratory scale. Thus, moving towards large-scale production assumes a
critical step for technology transfer, yet it requires a long list of considerations. Scaling
up to industrial manufacturing is challenging, especially regarding the reproducibility,
controlled production, targetability, and functionality of delivery nanosystems, green
synthesis routes, contamination risks, complex stepwise operations, safety concerns, and
cost-effectiveness [147–149].
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4. Conclusions and Future Perspectives

To summarize, innovative drug delivery vehicles with high anticancer performance
can be obtained by taking advantage of the unique physicochemical properties of cyclodex-
trins and chitosan. Through their efficiency in carrying chemotherapeutic agents to the
targeted areas of the digestive system, these oligo- and polysaccharides hold much promise
in developing better treatment solutions for colorectal, liver, gastric, pancreatic, esophageal,
and oral cancers. The versatility of these carbohydrate materials in terms of functionaliza-
tion and encapsulation possibilities offers an alternative to conventional chemotherapeutic
administration with great potential.

Numerous chitosan- and cyclodextrin-based formulations have been tested in vitro
and in vivo, leading to encouraging results, such as prolonged circulation times, improved
cellular internalization of carried drugs, preferential uptake by the targeted cells, reduced
side effects, enhanced apoptosis rates, and increased tumor suppression rates. Moreover,
some nanocarriers were reported to work in synergy with the transported natural or
synthetic chemotherapeutic, augmenting its anticancer activity or sensitizing otherwise
drug-resistant cells.

Nonetheless, the vast majority of reviewed studies have only achieved preclinical
testing stages. There is only one clinical trial on a cyclodextrin-based formulation for
stomach, gastroesophageal, and esophageal cancer treatment. All the other proposed
delivery systems have proven effective against gastrointestinal cell cultures or in small
laboratory animals affected by this group of diseases. Thus, given the importance of finding
better-performing anticancer therapeutics, the multitude of novel drug delivery systems
should be researched in more depth, in animals more similar to humans, and then in clinical
trials to ensure their rapid translation to clinical settings.

To conclude, by overviewing the most recent studies in the field and creating an
updated background of what concerns chitosan-/cyclodextrin-based drug delivery systems
for gastrointestinal cancers, this paper hopes to serve as an inception point for further
research and technological advancements to widen cancer treatment possibilities.
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