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Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are class II biopharmaceutics classification
system drugs. The poor aqueous solubility of NSAIDs can lead to limited bioavailability after oral
administration. Metformin (MET), a small-molecule compound, can be used in crystal engineering
to modulate the physicochemical properties of drugs and to improve the bioavailability of orally
administered drugs, according to the literature research and preliminary studies. We synthesized two
drug–drug molecular salts (ketoprofen–metformin and phenylbutazone–metformin) with NSAIDs
and thoroughly characterized them using SCXRD, PXRD, DSC, and IR analysis to improve the poor
solubility of NSAIDs. In vitro evaluation studies revealed that the thermal stability and solubility of
NSAIDs-MET were substantially enhanced compared with those of NSAIDs alone. Unexpectedly, an
additional increase in permeability was observed. Since the structure determines the properties, the
structure was analyzed using theoretical calculations to reveal the intermolecular interactions and
to explain the reason for the change in properties. The salt formation of NSAIDs with MET could
substantially increase the bio-absorption rate of NSAIDs, according to the in vivo pharmacokinetic
findings, which provides an experimental basis for developing new antipyretic and analgesic drugs
with rapid onset of action.

Keywords: NSAIDs; metformin; drug–drug salt; theoretical calculation

1. Introduction

Antibiotics, antipyretics, anti-inflammatory and anticancer drugs, hormones, and en-
docrine function regulators are commonly administered drugs in clinical practice. Although
some are used as first-line drugs in clinical treatment with improved pharmacological ef-
fects and low adverse reactions, they have defects in their physicochemical properties,
such as low solubility, poor permeability, strong moisture attraction, poor mechanical
properties, and thermal stability [1]. According to statistics, 40% of existing pharmaceutical
products and approximately 90% of new chemicals have limited water solubility, resulting
in low oral bioavailability and restricted routes of administration [2]. Thermal stability is
a critical determinant in the process of drug development. Determining the temperature
range in which a drug maintains its structure integrity and therapeutic effect is essential
for optimizing storage conditions, facilitating technological advancements, and acquir-
ing the appropriate formulation technology [3]. Additionally, gastrointestinal irritation
is a common adverse effect of some medications; the topical or transdermal route of ad-
ministration can help reduce this and shows improved therapeutic effects [4]. However,

Pharmaceutics 2024, 16, 382. https://doi.org/10.3390/pharmaceutics16030382 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics16030382
https://doi.org/10.3390/pharmaceutics16030382
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-5525-169X
https://orcid.org/0000-0002-3159-4126
https://doi.org/10.3390/pharmaceutics16030382
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics16030382?type=check_update&version=1


Pharmaceutics 2024, 16, 382 2 of 16

the stratum corneum still limits the penetration of these substances, resulting in limited
bioavailability [5]. Self-emulsifying drug delivery systems, pH adjustment, particle size
reduction, super-critical fluid processing, inclusion complexes, micelle solubilization, solid
dispersions, nanosuspensions, cocrystals, salts, and nanocrystals are common formulation
strategies to address these challenges [6–8].

In 2020, anti-inflammatory drugs were among the three most researched drug classes,
accounting for 19% of all published papers, according to the Web of Science article database.
Increasing numbers of scientific articles have demonstrated the significance of NSAIDs over
the past decade [9]. Although NSAIDs differ considerably in their chemical class, they all
inhibit prostaglandin production. This is accomplished through the inhibition of cyclooxy-
genase activity [10]. This group of drugs comprises antipyretic, anti-inflammatory, an-
tiplatelet, antitumor, and analgesic drugs [11,12]. Although many drugs with a single ther-
apeutic effect have been developed, such as antipyretic, analgesic, and anti-inflammatory
drugs, NSAIDs are preferred and commonly administered due to their multiple therapeutic
actions [13]. However, despite their high intestinal permeability, these class II biopharma-
ceutics classification system (BCS) drugs exhibit limited absorption in the stomach and
intestines due to its poor water solubility. Thermodynamic studies reported that some
NSAIDs also have poor thermal stability (e.g., ketoprofen and ibuprofen) [14].

Basic small molecules, including piperazine, betaine, ligustrazine, and metformin
(MET), effectively modulate the physicochemical properties of acidic drugs. Of these small
molecules, MET has undergone the most extensive research. It is an oral first-line drug for
treating type 2 diabetes that prevents the liver from producing glucose by increasing insulin
sensitivity in peripheral tissues and reducing hepatic gluconeogenesis [15]. Furthermore,
MET has no hypoglycemic effect on normal people [16]. Metformin–hydrochloride (MET-
HCl), chemically defined as a salt to enhance solubility and stability, is the most commonly
prescribed formulation [17]. Clinical trial data have demonstrated that MET is safe for most
individuals and unsafe for patients with severe hepatic, cardiac, or renal insufficiency [18].

Pharmaceutical cocrystals (or salts) are multiple-component systems with an active
pharmaceutical ingredient (API) typically complexed in a stoichiometric ratio to cocrystal
conformer (CCF) through non-covalent interactions like hydrogen bonding, Π-stacking,
and dispersion forces. Increasing interest in the study of drug cocrystals and salts has
been observed recently [19]. The big difference between a cocrystal and a salt is whether
proton transfer occurs between the API and the CCF. Those with intermolecular proton
transfer are called salts, while those without intermolecular proton transfer are cocrys-
tals [20]. Salting can significantly improve solubility, stability, thermal properties, and other
physicochemical properties, and it potentially improves in vivo bioavailability [21,22]. This
approach is popular in the pharmaceutical industry as it improves the physicochemical
properties of the API without changing its chemical structure compared to the complete
drug development route.

Therefore, we used crystal engineering to synthesize drug–drug multi-component
solids. Since MET is a strongly basic drug (pKa = 12.4), the pKa difference between the
carboxyl groups with NSAIDs is >3. Thus, it is easy to form drug–drug salts [23–25]. We
hope to use the excellent solubility of MET to improve the solubility and bio-absorption
of NSAIDs. Diclofenac, niflumic acid, diflunisal, mefenamic acid, tolfenamic acid, and
flurbiprofen are NSAIDs reported as salts with metformin [17,26]. These salts increased the
solubility of NSAIDs; however, none were subjected to systematic pharmacokinetic experi-
ments to evaluate their biological activity. Therefore, we prepared ketoprofen–metformin
(KET-MET) and phenylbutazone–metformin (PBU-MET) using the liquid-assisted grinding
method. We characterized the structure of NSAIDs-MET using the SCXRD, PXRD, FTIR,
and DSC methods. Additionally, solubility and permeability evaluations were performed
to investigate the improvement in the solubility and permeability of NSAIDs-MET. In vitro
evaluation experiments showed that MET improved the thermal stability, solubility, and
permeability of NSAIDs in drug molecular salts. The mechanism for improving these
physicochemical properties was explained using theoretical calculations. The excellent



Pharmaceutics 2024, 16, 382 3 of 16

improved physicochemical properties of NSAIDs-MET encouraged us to investigate the
changes in their in vivo bio-absorption further. Therefore, an in vivo pharmacokinetic
study in rats was conducted. The results showed that salt formation substantially increased
the absorption rate of NSAIDs, which is important for developing new dosage forms
of drugs, developing other pharmacological activities, and providing additional routes
of administration.

2. Materials and Methods
2.1. Materials

Ketoprofen (purity > 98%), phenylbutazone (purity > 98%) and metformin–HCl
(purity > 98%) were purchased from Jiuding Chemistry Biotechnology Co., Ltd. (Shanghai,
China). All other reagents were of analytical grade and commercially available.

2.2. Salt Synthesis

We synthesized NSAIDs–MET through liquid-assisted griding of the mixture of
NSAIDs and MET with a 1:1 stoichiometric ratio, which was ground with 2 mL methanol
for approximately 20 min. About 80 mg of the powdered sample of NSAIDs–MET was
dissolved in 6 mL methanol–water. Subsequently, the solution was filtered and crystallized
after five days. Fine block-shaped crystals, which were suitable for SCXRD, were obtained
by slow evaporation. Figure 1 displays the molecular structures and possible mechanisms
of proton transfer of the compounds.
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Figure 1. The molecular structures of ketoprofen, phenylbutazone, and metformin and possible
mechanisms of proton transfer.

2.3. Characterization
2.3.1. Single Crystal X-ray Diffraction (SCXRD) Analysis

Single crystal X-ray data were measured on a Rigaku XtaLAB Synergy four-circle
diffractometer using Cu Kα radiation (λ = 1.54178 Å) (Rigaku, The Woodlands, TX, USA).
All intensity data were collected at 293 K. Data were corrected for absorption effects using
the CrystalClear software (https://www.rigaku.com/downloads/software/crystalclear/
index.html (accessed on 4 March 2024)) (Rigaku, USA). Crystal structures were solved using
direct methods and refined employing the SHELXL and Olex2 suite of programs, and the
final refinements were performed using the full-matrix least-squares methods [27–29]. All
non-hydrogen atoms were refined anisotropically. Hydrogen atoms connected to carbon,
nitrogen, and oxygen atoms were all placed in idealized positions.

https://www.rigaku.com/downloads/software/crystalclear/index.html
https://www.rigaku.com/downloads/software/crystalclear/index.html
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2.3.2. Powder X-ray Diffraction (PXRD) Analysis

PXRD experiments were performed on a Rigaku D/max-2550 powder X-ray diffrac-
tometer with Cu Kα radiation (λ = 1.54178 Å) (Rigaku, Tokyo, Japan). The powder samples
were scanned continuously with a coverage of 3–40◦ at a constant rate of 8◦/min. Simulated
PXRD patterns were calculated using Mercury software (v2023.1.0, Cambridge Crystallo-
graphic Data Center, Cambridge, UK) at a starting angle of 3◦, a final angle of 40◦, a step
size of 0.02◦, and a full width at half maximum of 0.15◦.

2.3.3. Differential Scanning Calorimetry (DSC) Analysis

DSC thermograms were recorded with DSC 1 (Mettler Toledo, Greifensee, Switzer-
land) and STARe Evaluation software 16.0. Approximately 3–5 mg was weighed into an
aluminum crucible, sealed using a lid with a hole, and then heated at a constant rate of
10 ◦C/min over a temperature range of 30–300 ◦C under atmospheric conditions.

2.3.4. Infrared Spectroscopy (IR) Analysis

IR experiments were performed on a Spectrum 400 Fourier transform infrared spec-
trometer (PerkinElmer, Waltham, MA, USA). The experimental conditions included an
attenuated total reflection accessory, a spectral scanning range of 4000–400 cm−1, a resolu-
tion of 4.000 cm−1, and a scan number of 16.

2.4. Solubility Experiments

Samples for the solubility studies were prepared following the shake-flask method [30].
The test samples were pre-sieved through a 100 mesh sieve to obtain powders with similar
particle size ranges. Saturated solutions were obtained by stirring an excess of NSAIDs and
NSAIDs-MET in 1 mL of buffer at pH 1.2, pH 4.5, and pH 6.8 and water at 25 ◦C. After 48 h,
the samples were filtered through 0.22 µm microporous membrane filters and measured
directly using high-performance liquid chromatography (HPLC). The experiments were
repeated three times.

The concentrations of NSAIDs were quantified on an Agilent high-performance liquid
chromatography system (Agilent 1260 series, Jersey City, NJ, USA) with an Odyssil C18
column (4.6 mm × 250 mm, 3 µm). The mobile phase was prepared with acetonitrile-1%
glacial acetic acid (70:30), the flow rate was 1 mL·min−1, and the column temperature was
set at 30 ◦C.

2.5. Intrinsic Dissolution Rate (IDR) Experiments

Samples containing 150 mg of NSAIDs (in equivalence) were compacted into round
discs of 8 mm diameter using a flat-faced round punch (FU KESI, Shanghai, China). The
static disc method was performed at 100 rpm in 900 mL of pH 6.8 buffer at 37 ± 1 ◦C for
30 min. At specific time intervals, 1.5 mL of each solution was collected as a sample, and an
equal volume of fresh buffer was added immediately. The obtained solutions were filtered
through a 0.22 µm microporous membrane filter and measured directly using HPLC. See
Section 2.4 for the experimental conditions. The experiments were repeated three times.

2.6. Permeability Experiments

Permeability experiments with NSAIDAs and NSAIDAs-MET were measured by the
modified Franz diffusion cell apparatus through a cellulose nitrate membrane (0.45 µm,
Cytiva, Freiburg im Breisgau, Germany). The membrane was placed in between the donor
and recipient compartment, to which 5 mL of a buffer medium (pH 6.8) was added. After
the buffer medium was kept at 37 ± 0.2 ◦C and rotated at 100 ± 5 rpm, approximately
15 mg of NSAIDs (in equivalence) were placed on the membrane. At predetermined
time intervals, 0.5 mL of the sample was withdrawn from the receptor compartment and
replaced with fresh medium. Finally, the concentration of NSAIDs was analyzed by HPLC.
See Section 2.4 for experimental conditions. The experiments were repeated three times.
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The apparent permeability coefficient (Papp) of oral drug-permeable membranes can
represent the magnitude of drug transport capacity, and the formula is shown below [31].

Papp = (dQ/dt)/(A × C0) (1)

where Papp is in cm·s−1, dQ/dt is the drug transport per unit time (µg·min−1), A is
the surface area of the membrane, and C0 is the initial concentration (µg·min−1). The
cumulative drug transport concentration, TRcum, was corrected for the fact that rehydration
after each sample diluted the drug permeation.

TRcum = An + VSn/VR × ∑ n−1
i=0 Ai (2)

where An is the measured permeability value for the nth sample, VSn is the sampling
volume, and VR is the receiving cell volume.

2.7. Dynamic Vapor Sorption (DVS) Experiment

The hygroscopicity of NSAIDs–MET was studied based on a dynamic vapor sorption
experiment (DVS Adventure, Surface Measurement Systems, London, UK). The samples
were studied at 25 ◦C in the humidity range of 0–90% relative humidity (RH). Each humidity
step was performed when a change in weight of less than 0.02% occurred within 10 min,
with a maximum retention time of 120 min.

2.8. Theoretical Calculation

Theoretical computations were conducted using density functional theory with the
Gaussian 16 program [32]. Geometric optimization was performed exclusively on the
hydrogen atoms at the B3LYP-D3/6-311G (d, p) level, while the heavy atoms were held
at their original X-ray coordinates. Single-point energies were calculated at the B3LYP-
D3/6-311+G (2d, 2p) level [33]. Wavefunction analysis was carried out using the Multiwfn
3.8 software [34]. The voids of the crystals were calculated using a mercury void module, a
probe radius = 1.2 Å, and a grid spacing = 0.3 Å [35].

2.9. In Vivo Pharmacokinetic Study

A total of 20 male Sprague Dawley rats (230 ± 20 g) were supplied by the Experimental
Animal Center of the Institute of Materia Medica, Chinese Academy of Medical Sciences.
Animals were housed and handled under suitable humidity, temperature, and light. The
rats were allowed to acclimate for one week with free access to water and standard rodent
food. This study was approved by the Animal Ethics Committee of the institution and
conducted in accordance with the Guideline for Animal Experimentation of the Institute of
Materia Medica, Chinese Academy of Medical Sciences.

The rats were randomly divided into four groups (n = 5 per group), and NSAIDs
(100 mg/kg) or NSAIDs-MET were administered to each rat. After administration, 400 µL
blood samples were collected through the retro-orbital venous plexus at 0, 5, 15, 30, 60,
120, 180, 240, 360, 480, 600, 720, and 1440 min. The samples were centrifuged at 5000 rpm
(10 min), and the supernatants of samples were stored at −80 ◦C until analysis.

After the plasma samples were thawed at room temperature, 100 µL of plasma was
mixed with 20 µL of aminopyralid or naproxen solution (100 µg/mL, as the internal stan-
dard, IS) in a 1.5 mL EP tube. After 1 min of mixing and vortexing, 1 mL of ethyl acetate was
added. The mixture was centrifuged at 5000 rpm for 10 min, and 800 µL of supernatant was
separated and blown dry under nitrogen at 40 ◦C. The supernatant was then dried under
nitrogen at 40 ◦C. After adding 50 µL of methanol, vortexing for 1 min, and centrifuging
for 10 min at 12,000 rpm, 20 µL of the supernatant was extracted and analyzed by HPLC.
Plasma concentration–time curves and some important pharmacokinetic parameters were
obtained using DAS 2.0 software. The data obtained were expressed as mean ± standard
deviation (mean ± SD).
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3. Results and Discussions
3.1. Characterization Analysis
3.1.1. SCXRD Analysis

Based on the calculations in Figure 1, we speculate on the potential sites of proton
transfer. The pyrazolidinedione in the structure of PBU can resonate from the keto reciprocal
to the enol form, which undergoes proton transfer [36]. The proton transfer of KET occurs
at the hydrogen on the carboxyl group. The MET configuration has three possible sites
for proton acquisition: the orange blob indicates the global minima of the electrostatic
potential, and the blue grid iso-surface shows the iso-surface map of the electrostatic
potential. Calculations show that the two sites of the structure in the green box have
closer minima, and it is hypothesized that protons should tend to transfer to this site and
form hydrogen bonds with the corresponding compounds, as confirmed in single crystals.
Table 1 lists the detailed crystallographic information for the salts. In this, the O1 atom
of KET-MET, as well as the C6 and C7 atoms of PBU-MET, were made to be disorderly.
Figure 2 shows the H bond motifs between API and MET, packing, and voids of the crystal
structures, where the blue part on the right indicates the solvent accessible volume. The
KET-MET void volume is 2.2% of then unit cell volume, while PBU-MET is 29.7% of the
unit cell volume.

KET-MET crystallizes in a 1:1 stoichiometric ratio in a monoclinic crystal system with
space group P21/c (Z = 4). Each asymmetric unit contains one KET cation and one MET
anion. Consistent with speculative results, proton transfer occurs from the carboxyl acid
group of KET to the N4 atom of the MET molecule, thus resulting in the formation of
a charge-assisted N4-H4A···O2 ionic interaction (Figure 2a). KET is hydrogen-bonded
to neighboring METs via N1-H1A···O3 and N1-H1B···O3 to form the D1

1(2) motif. The
two asymmetric units of KET-MET form a centrosymmetric dimer via hydrogen bonding
to N1-H1A···O3 and N2-H2A···O2 (R2

2(8) motif). The dimer is connected by N2-H2B···N3
hydrogen bonds between neighboring METs to form chains extending along the c-axis.
These chains are connected by N4-H4A···O2 hydrogen bonds between the MET and the
KET to form a planar structure. The stacking of these hydrogen bonding interactions forms
the three-dimensional structure.

Table 1. Crystal cell parameters and structure refinement of the salts.

KET-MET PBU-MET

Formula C16H13O3·C4H12N5 C19H19N2O2·C4H12N5
Crystal size (mm) 0.20 × 0.20 × 0.20 0.20 × 0.20 × 0.20
Molecular weight 383.45 436.74
Temperature (K) 293 (2) 293 (2)
Crystal system monoclinic trigonal

Space group P21/c R3
α (Å) 10.513 (1) 40.224 (1)
b (Å) 22.394 (2) 40.224 (1)
c (Å) 8.807 (1) 9.958 (1)

a (deg) 90 90
β (deg) 93.628 (5) 90
γ (deg) 90 120

Volume (Å3) 2069.45 (19) 13,953.5 (7)
Z 4 18

Density (g/cm3) 1.231 0.936
R1 (I 2σ(I)) 0.0656 0.0624

wR2 (I 3σ(I)) 0.1798 0.1770
Goodness-of-fit on F2 1.039 1.058

Completeness (%) 99.9% 98.9%
CCDC deposition no. 2,324,339 2,324,340
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PBU-MET crystallizes in a 1:1 stoichiometric ratio in a trigonal with the space group
R3 (Z = 18). Upon binding to metformin, each asymmetric unit consists of a PBU cation
and a MET anion. Protons are transferred from O2 on the enolitic structure of the PBU to
the N4 atoms of the MET molecule, thus resulting in the formation of a charge-assisted
N4-H4D···O2 ionic interaction (Figure 2b). The two asymmetric units of PBU-MET form
a chain structure along the a-axis through N3-H3B···O1, N4-H4C···O2, and N4-H4D···O2
hydrogen bonds. These chains are interconnected through N6-H6C···O1 hydrogen bonds
between PBU and MET (D1

1(2) motif) to form a planar structure. According to the calcula-
tions, the void volume of PBU-MET accounts for about one-third of the unit cell volume.
The molecule forms a supramolecular structure with a special void structure by stacking,
and the unique void structure provides the basis for its enhanced solubility.

3.1.2. PXRD Analysis

As a mature approach, PXRD is commonly used in the structural characterization of
polymorphic substances, which can give important information on the formation, purity,
and crystallization degree [37]. Figure 3 shows the PXRD patterns of the NSAID-MET
samples obtained using the liquid-assisted grinding method. The PXRD patterns showed
significant differences in the number, intensity, and topological profile of the diffraction
peaks, and these differences proved the formation of a new phase. Additionally, Figure 3
depicts a high degree of fit of the sample PXRD profile to the simulated profile of the
SCXRD data. The results indicate the crystallinity and high purity of the prepared samples
and can be used for subsequent experimental studies.
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3.1.3. DSC Analysis

DSC was used to assess the thermal stability of the new phase and to determine its
melting point. The figure shows the thermal characteristics of NSAIDs-MET obtained
through DSC. As can be seen from Figure 4, the KET-MET and PBU-MET salts exhibited
only a single heat absorption peak at 166.69 ◦C and 154.89 ◦C, indicating the absence of
solvent molecules, which is consistent with the SCXRD results. Furthermore, in contrast
to MET and NSAIDs, all salts exhibited higher melting points, indicating higher thermo-
dynamic stability [38]. This may be due to the formation of charge-assisted hydrogen
bonds, which are stronger with high interaction strengths and exhibit an increased melting
point. Theoretical calculations of the electron densities at BCP (+3, −1) and the estimated
strength for the major hydrogen bond proved our conjecture [39]. The melting point was
positively correlated with the hydrogen bonding strength and interaction energy, with
stronger hydrogen bonding strength and interaction energy showing higher melting points.
Consistent with the results of the DSC experiments, a significant increase was observed in
the hydrogen bond strength and interaction energy after the formation of the salt, which
is manifested by the increase in the melting point of NSAIDs-MET. The hydrogen bond
strengths (N-H···O, −13.22 kJ/mol) and interaction energies of KET-MET (−93.83 kJ/mol)
are higher than those of PBU-MET (−10.36 and −84.49 kJ/mol), which is consistent with
the fact that the melting point of KET-MET is higher than that of PBU-MET, indicating that
KET-MET is more thermally stable.

3.1.4. IR Analysis

Infrared spectroscopy is a fundamental tool for functional group identification of
molecular assemblies based on the physical state and hydrogen bonding interactions [40].
Changes in these groups, such as the formation of a new solid state resulting in hydrogen
bonding, influence the vibrational modes associated with the functional groups. Conse-
quently, IR studies of NSAIDs and NSAIDs-MET were performed as shown in Figure 5. At
approximately 1715 cm–1, pure NSAIDs exhibit a distinct peak associated with the C=O
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stretching vibration. NSAIDs-MET salts absorb weakly in the range of 1680–1720 cm−1

and strongly at 1600–1660 cm−1. The asymmetric C-O stretching of the carboxylic acid
was observed to move towards lower wavelengths, indicating that the carboxylic acid
is converted to carboxylate ions through interactions with NSAIDs and MET. Thus, this
characteristic spectrum could suggest the formation of carboxylate salts. Furthermore, this
is similarly supported by the appearance of a broad band of carboxylates at approximately
3100–2500 cm−1 in the spectra of NSAIDs-MET.
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Similarly, metformin N-H stretching vibration occurred at 3418 cm−1. After the
formation of NSAIDs-MET, N-H stretching vibration appeared at 3327 and 3370 cm−1,
respectively. There is a shift compared to a single NH2 wave number. The guanidine group
exhibited a C=N stretching pattern between 1580 and 1685 cm−1 [41], which occurred at
1600 cm−1 in the experiment, which is very close to the reported value. In contrast to the
C=N stretching vibration of metformin, the C=N stretching pattern in the NSAID-MET
correlated state moved towards a lower wave number, demonstrating the newly formed
intermolecular hydrogen bond between the two molecules.

3.2. Solubility Studies

As one of the factors affecting drug absorption, transport, metabolism, and excretion,
solubility is a fundamental and major challenge for researchers attempting to manipulate
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and evaluate drug properties throughout the drug design and development process [42].
Solubility is closely related to oral bioavailability; thus, increasing solubility is a common
way to increase the bioavailability of insoluble drugs. Herein, the solubility of NSAIDs and
NSAIDs-MET was investigated by suspending excess solids in different buffers. Figure 6
and Table 2 indicate that the solubility of NSAIDs and NSAIDs-MET increases as the pH
of the buffer increases. NSAIDs have the highest solubility in buffer media at pH 6.8,
while their solubility in water is low, corresponding to poor water solubility. Although
NSAIDs-MET did not increase the solubility of NSAIDs in buffers at pH 1.2 and 4.5, it
was considerably soluble at pH 6.8 and in water. The solubility of KET-MET in pH 6.8
buffer and water is 14.7 times and 522.6 times that of KET. Compared with PBU, the
solubility of PBU-MET in water is increased by an astonishing 3630 times, significantly
improving the water solubility of insoluble NSAIDs. This may be due to the formation
of a salt; API and SF are in the ionic state and are more likely to dissociate by interacting
with solvents such as water, thus providing the basis for increased solubility. This also
explains the low solubility of NSAIDs-MET under acidic conditions, mainly because the
NSAIDs ions in it revert to a neutral molecular state. Thus, the solubility is essentially the
same as that of the raw material [43]. Moreover, the molecules are looser due to the void
structure in the molecular structure of PBU, which is another reason for its high solubility.
It is worth noting that pH 6.8 represents the pH environment present in human small
intestines, where most absorption occurs. Accordingly, the increased solubility at pH 6.8
may provide the basis for more adequate absorption [44]. Furthermore, the satisfactory
solubility characteristics and solution stability of these salts serve as the basis for subsequent
IDR and permeability studies.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 10 of 17 
 

 

respectively. There is a shift compared to a single NH2 wave number. The guanidine group 
exhibited a C=N stretching paĴern between 1580 and 1685 cm−1 [41], which occurred at 
1600 cm−1 in the experiment, which is very close to the reported value. In contrast to the 
C=N stretching vibration of metformin, the C=N stretching paĴern in the NSAID-MET 
correlated state moved towards a lower wave number, demonstrating the newly formed 
intermolecular hydrogen bond between the two molecules. 

3.2. Solubility Studies 
As one of the factors affecting drug absorption, transport, metabolism, and excretion, 

solubility is a fundamental and major challenge for researchers aĴempting to manipulate 
and evaluate drug properties throughout the drug design and development process [42]. 
Solubility is closely related to oral bioavailability; thus, increasing solubility is a common 
way to increase the bioavailability of insoluble drugs. Herein, the solubility of NSAIDs 
and NSAIDs-MET was investigated by suspending excess solids in different buffers. Fig-
ure 6 and Table 2 indicate that the solubility of NSAIDs and NSAIDs-MET increases as the 
pH of the buffer increases. NSAIDs have the highest solubility in buffer media at pH 6.8, 
while their solubility in water is low, corresponding to poor water solubility. Although 
NSAIDs-MET did not increase the solubility of NSAIDs in buffers at pH 1.2 and 4.5, it was 
considerably soluble at pH 6.8 and in water. The solubility of KET-MET in pH 6.8 buffer 
and water is 14.7 times and 522.6 times that of KET. Compared with PBU, the solubility of 
PBU-MET in water is increased by an astonishing 3630 times, significantly improving the 
water solubility of insoluble NSAIDs. This may be due to the formation of a salt; API and 
SF are in the ionic state and are more likely to dissociate by interacting with solvents such 
as water, thus providing the basis for increased solubility. This also explains the low sol-
ubility of NSAIDs-MET under acidic conditions, mainly because the NSAIDs ions in it 
revert to a neutral molecular state. Thus, the solubility is essentially the same as that of 
the raw material [43]. Moreover, the molecules are looser due to the void structure in the 
molecular structure of PBU, which is another reason for its high solubility. It is worth 
noting that pH 6.8 represents the pH environment present in human small intestines, 
where most absorption occurs. Accordingly, the increased solubility at pH 6.8 may pro-
vide the basis for more adequate absorption [44]. Furthermore, the satisfactory solubility 
characteristics and solution stability of these salts serve as the basis for subsequent IDR 
and permeability studies. 

 
Figure 6. Solubility statistics of NSAIDs and NSAIDs-MET at different pH conditions. 
Figure 6. Solubility statistics of NSAIDs and NSAIDs-MET at different pH conditions.

Table 2. Solubility of NSAIDs and NSAIDs-MET in pH 1.2, pH 4.5, and pH 6.8 buffer and water.

Solubility (mg/mL)

Compound pH 1.2 Buffer pH 4.5 Buffer pH 6.8 Buffer Water

KET
KET-MET

0.076 ± 0.0358 0.494 ± 0.0394 4.555 ± 0.1932 0.118 ± 0.0529
0.049 ± 0.0433 0.567 ± 0.0278 66.987 ± 1.2080 61.668 ± 8.0857

PBU
PBU-MET

0.006 ± 0.0022 0.001 ± 0.0006 1.326 ± 0.0849 0.005 ± 0.0041
0.007 ± 0.0007 0.010 ± 0.0075 6.327 ± 1.3960 18.152 ± 1.4396
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3.3. Intrinsic Dissolution Rate (IDR) Studies

We conducted IDR studies from the dynamics perspective to ascertain the degree
to which NSAID-MET salts influence the dissolution rate of pure NSAIDs. This research
established a scientific basis for modifying the in vivo properties of the salt. The results
provided by solubility showed a great enhancement in the pH 6.8 buffer; therefore, the
IDR experiment was conducted in this condition. Since KET-MET dissolves completely in
approximately 15 min, only the first 15 min of sampling time points were considered in the
calculation. PBU was not detected at concentrations in the first 6 min due to poor solubility
and was also not considered in the calculations. Figure 7a displays the calculated IDR
average values of NSAIDs-MET at pH 6.8 compared to pure NSAIDs. The results showed
that both the dissolution rate and the cumulative dissolution amount of NSAIDs-MET
were more increased than those of NSAIDs alone. The dissolution rate of KET-MET was
astonishingly 25.8 times higher than that of KET. The reason for the substantial increase in
the dissolution rate of NSAIDs-MET may be that when the salt is immersed in an aqueous
environment, due to the good aqueous solubility of MET, it can be dissolved into solution
first, resulting in the disintegration of the NSAID-MET salt. The amorphous-like state of
the NSAID molecules, which has a much higher internal energy, is exposed to a solvent
and may be rapidly dispersed and dissolved in solution [45]. Overall, the results of the IDR
experiments were consistent with those of the solubility experiments. NSAIDs-MET had
a higher IDR and showed greater advantages than NSAIDs in solubility, suggesting that
NSAIDs-MET has great potential for improving the pharmacokinetics and bioavailability
in vivo.
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3.4. Permeability Studies

Maintaining the balance between solubility and permeability is a key task for drugs [46].
Membrane permeability is a major determinant in the drug transport, especially during
absorption from the administration site to the blood and distribution from the blood to tis-
sues [47]. Consequently, the satisfactory dissolution behavior encouraged us to investigate
the changes in permeability of NSAID-MET salts further to evaluate the effect of elevated
dissolution characteristics on permeability. To this end, permeability experiments with
NSAID-MET salts were performed using a modified Franz diffusion device [26]. Figure 7b
illustrates the plot with the average of the results. The highest cumulative drug diffusion
rate (1.593 mg·cm−1·min−1) was observed for PBU-MET at 30 min, which was 11.3 times
higher than that of PBU. In addition, the apparent permeability coefficient of PBU-MET
is 4.15 times that of PBU. Although KET itself has excellent permeability, its Papp has
increased after the formation of KET-MET, which is 1.1 times greater than that of KET. It
proved that the membrane diffusion ability of NSAIDs was enhanced after salt formation
with MET. Interestingly, consistent with the results of solubility and IDR experiments, the
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amount of salt diffusing through the membrane was KET-MET > PBU-MET. The increased
permeability of NSAIDs in salt may be attributed to the improved solubility of MET, which
may lead to higher concentration gradients across the membrane as the driving force. In
addition, there are two possible reasons for the change in permeability based on changes
in molecular structure. The first reason is the possible change in lipophilicity after salt
formation [48]. The higher the log p value, the relatively higher the concentration in the
lipid phase and the higher the lipid solubility, and therefore, the salt exhibits a higher
permeability. The other reason is that the introduction of metformin makes the spatial
site resistance larger, causing an increase in permeability, or the electronegative group of
metformin enhances its permeability [49]. Although NSAIDs themselves belong to BCS
class II, which has better permeability, the increased permeability in this study may provide
more options for the route of administration and the possibility of developing different
active pharmaceuticals [50]. Since NSAIDs-MET provides an excellent basis for enhancing
solubility and permeability, this encourages further in vivo bioavailability evaluation.

3.5. DVS Studies

DVS is a dynamic analysis used to study the changes in drug weight caused by water
absorption as humidity increases. It is known from the literature that MET is highly
hygroscopic. It absorbs a large amount of water after 60% RH, and the weight change is
approximately 80%, leading to the deliquescence of the drug in a short period due to water
adsorption [51–53]. Given the extremely strong hygroscopicity of MET, the investigation
and validation of the hygroscopicity of NSAIDs-MET after salt formation was an important
part of our study. Figure 8 displays the weight change values of NSAIDs-MET in the range
of 0–90% relative humidity, which can be observed to determine the hygroscopic behavior
in air. Surprisingly, when MET and NSAIDs were combined to form a multi-component salt,
the weight of the sample did not change by more than 1% even at 90% relative humidity.
This indicates that the introduction of metformin does not introduce its own hygroscopic
properties into the new product while improving its physicochemical properties, such as
solubility, permeability, and stability, and the new compound can be stably stored at room
temperature and relative humidity.
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3.6. In Vivo Pharmacokinetics

The plasma concentration–time profiles of NSAIDs and NSAIDs-MET after oral admin-
istration are shown in Figure 9. The calculated pharmacokinetic parameters are summarized
in Table 3. The Cmax of KET-MET (125.77 ± 39.89 mg/L) was elevated compared to the
pure KET (112.00 ± 17.05 mg/L), whereas the Cmax of PBU-MET was slightly decreased in
comparison to the PBU. The bioavailability of KET in KET-MET was 114% of KET alone, as
measured by AUC0-∞. Contrary to the predictions made by prior experimental findings,
the in vivo bioavailability of PBU was diminished although PBU-MET enhanced its solu-
bility and permeability in vitro. T1/2 delays of the NSAIDs in NSAIDs-MET suggest that
salt formation can affect the duration of action of NSAIDs in vivo. Despite the decreased
bioavailability of PBU-MET, the increase in MRT0-∞ and decrease in CLz/F suggest that
PBU-MET has a longer retention time and slower clearance in vivo than pure PBU, which fa-
cilitates the efficacy of PBU in vivo and has a higher safety profile. Interestingly, the plasma
concentration–time profiles of KET-MET and PBU-MET showed unique bio-absorption
properties. This may be because after solid gavage administration, some of the salts are
destroyed in the acidic environment of the stomach, and the undestroyed salts are rapidly
absorbed through the intestines, showing higher blood concentrations in the pre-drug
period. The drug with a destroyed salt structure showed slower bio-absorption, consistent
with the shape of the plasma concentration–time graph of NSAID APIs. Furthermore, the
in vitro solubility evaluation experiments proved our speculations. NSAIDs-MET showed
poor solubility in the simulated gastric acid pH environment, whereas in the simulated
intestinal pH environment, NSAIDs-MET showed a significant improvement in solubility
than NSAIDs. Therefore, this implies that the preparation of salt enteric-soluble formu-
lations, which maintain the drug in salt form to facilitate intestinal absorption, might be
crucial in enhancing drug bioavailability and showing a rapid anti-inflammatory response.
This is essential for future research.
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Table 3. Pharmacokinetic parameters after oral administration of NSAIDs and NSAIDs-MET in rats
(x ± s, n = 5).

Parameter KET KET-MET PBU PBU-MET

AUC0-t (mg/L*h) 1150.30 ± 133.78 1214.72 ± 305.84 1593.36 ± 457.03 1532.80 ± 501.89
AUC0-∞ (mg/L*h) 1995.02 ± 1011.62 2273.14 ± 155.47 1631.16 ± 435.64 1570.51 ± 504.48

MRT0-t (h) 12.87 ± 0.90 11.27 ± 1.22 9.75 ± 1.68 9.78 ± 1.74
MRT0-∞ (h) 26.16 ± 10.27 25.01 ± 2.14 10.25 ± 2.07 10.30 ± 2.41

t1/2z (h) 13.04 ± 8.75 15.90 ± 1.65 3.07 ± 120 3.59 ± 1.38
Tmax (h) 8.00 ± 2.00 0.67 ± 0.29 8.00 ± 2.00 9.60 ± 1.67

CLz/F (L/h/kg) 0.06 ± 0.02 0.07 ± 0.01 0.10 ± 0.04 0.07 ± 0.02
Vz/F (L/kg) 0.90 ± 0.34 1.519 ± 0.05 0.30 ± 0.20 0.49 ± 0.15
Cmax (mg/L) 112.00 ± 17.05 125.77 ± 39.89 164.76 ± 43.81 149.04 ± 28.52
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4. Conclusions

The structures of NSAIDs and NSAIDs-MET were characterized using SCXRD, PXRD,
DSC, and IR. The melting points of the drug multicomponent salts were significantly
higher than those of the two APIs, indicating higher thermal stability after salt formation.
The results of the DVS study demonstrated that the introduction of metformin improved
the physicochemical properties of NSAIDs-MET without inducing a high hygroscopicity
similar to that of metformin. The solubility results showed that NSAIDs-MET could signifi-
cantly enhance the solubility and intrinsic dissolution rate of NSAIDs in a pH 6.8 medium
and water. The permeability experiments based on increasing the solubility of NSAIDs-
MET showed that the Papp of the KET-MET and PBU-MET salts were 1.1 and 4.15 times
higher than those of the salts, effectively improving permeability. The simultaneous en-
hancement of solubility and permeability may be associated with safety issues. However,
it simultaneously provides more basis for lowering the drug dosage or developing other
active formulations. This is an in vitro method that mimics the in vivo environment, and
its in vitro–in vivo correlation needs further validation. Perhaps performing cell perme-
ability evaluation experiments such as Caco-2 and MDCK would be a more desirable
approach. The in vivo pharmacokinetic experiments showed that maintaining the salt state
significantly increased the absorption rate of NSAIDs, allowing them to show rapid anti-
inflammatory effects and high bioavailability. Considering that the salt may be destroyed
in the stomach, the preparation of enteric formulations may overcome this obstacle, and
this will also be an important direction for our future research. We demonstrated that
NSAIDs-MET significantly improved the thermal stability, solubility, permeability, and
bio-absorption rate of NSAIDs. This provided a research basis for developing new drug
multicomponent solids and designing new dosage forms.
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