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Abstract: The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in
the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of
pharmacy: novel drug delivery systems. These systems are designed to address the limitations of
conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility,
and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to
advance and converge, the development of efficient and safe drug delivery systems, including bio-
pharmaceutical formulations, has garnered significant attention both domestically and internationally.
This article presents an overview of the latest advancements in drug delivery systems, categorized
into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent
drug delivery systems, and drug delivery devices, based on their main objectives and methodologies.
Additionally, it critically analyzes the technological bottlenecks, current research challenges, and
future trends in the application of novel drug delivery systems.

Keywords: novel drug delivery system; targeting technology; carrier; nanotechnology; three-dimensional
printing (3DP) technology

1. Introduction

DDS represents a promising technological advancement with extensive applications,
engineered to release drugs in a controlled manner and at a predetermined rate and deliver
them to specific tissues or cell types. Recent drug delivery systems, such as nanoparticles,
molecularly imprinted polymers, and 3D printing technology, have emerged as cutting-
edge research topics. DDS is a pivotal strategy for achieving targeted and precise drug
delivery. Table 1 succinctly introduces the challenges and solutions associated with drug
molecular delivery.

By leveraging multidisciplinary approaches, DDS is dedicated to the development of
drug delivery systems and devices that can modulate the metabolism, potency, toxicity,
immunogenicity, and biorecognition of drugs, thereby enhancing the microenvironment
in which the drug operates and facilitating its uptake by the body [1]. Compared to
conventional formulations, DDS offers several key advantages: (1) enhanced drug stability
and minimized degradation; (2) optimized drug distribution, leading to increased target
concentration, and reduced adverse reactions; (3) precise drug localization, timing, and
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targeted release, such as breaking through the blood–brain barrier for drug delivery and
(4) decreased therapeutic dosage, reduced the toxicity, and elevated therapeutic index. DDS
not only delivers drugs to the affected area but also encompasses four core functions: drug
targeting, controlled release, enhanced drug absorption and improved drug stability. These
functions align with the most critical demands in clinical drug applications.

Table 1. The challenges and solutions to drug molecular delivery.

Drug Molecular Challenges Solutions

Protac (Proteolysis
Targeting Chimeras)

High molecular weight, poor
bioavailability, poor stability

Antibody drug conjugates (ADC)
Three-dimensional printing(3DP)

Transdermal preparation
Implanted catheter

Peptides and Proteins Immunogenicity,
short half-life,

Polymeric nanoparticles (PNPs)
Peptide drug conjugate (PDC)

Implanted catheter

Anti-body Toxicity,
Immunogenicity,

Cell drug delivery systems
Antibody drug conjugates (ADC)

Implanted catheter

Nucleic acid
Extrahepatic delivery,

Immunogenicity,
Enzyme degradation,

Liposomal drug delivery systems
Viral drug delivery systems

Bioparticle drug delivery systems
Coupling targeted drug delivery systems

Cell Unstable drug characteristics,
Poor tissue permeability

Liposomal drug delivery systems
Polymeric nanoparticles (PNPs)

The research on DDS spans multiple disciplines, intersecting and collaborating with
each other. This review presents the latest research advancements in DDS from four
perspectives: carrier-based and coupling-based targeted drug delivery systems, intelligent
drug delivery systems, and drug delivery devices, aligning with the primary objectives
and methods of drug delivery systems (Figure 1). Additionally, the review analyzes and
discusses the technological bottlenecks in the application of novel drug delivery systems,
as well as the challenges and future development trends of current research.
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2. Carrier-Based Drug Delivery Systems
2.1. Nano-Based Drug Delivery Systems (NDDSs)

“Nanotechnology” initially proposed in 1959 [2], is currently experiencing rapid scien-
tific and industrial growth, and its integration with biotechnology, information technology
and cognitive science has propelled life sciences into a new era. Nanotechnology possesses
unique physical, chemical, and biological properties, and the resulting nano formulations
are anticipated to find extensive applications in the biomedical field. The application of
nanotechnology in constructing drug delivery systems can effectively enhance drug solu-
bility, stability, and tumor targeting, and mitigate toxic side effects [3]. A diverse array of
materials is employed in the construction of NDDSs, encompassing liposomes, nanodrugs,
polymer micelles, hydrogels, and inorganic nanodrug delivery systems [4,5].

2.1.1. Liposomes

Liposomes, characterized by their ordered bilayers of lipids forming enclosed vesicles,
possess a hydrophobic shell and a hydrophilic core, with a particle size ranging from
20 to 1000 nm [6,7]. Owing to their distinctive composition and structure, liposomes
exhibit excellent biocompatibility and can be metabolized normally. Consequently, they
can enhance drug solubility and mitigate drug toxicity [8–10]. Liposomes are capable of
encapsulating both hydrophilic and hydrophobic drugs [11], thereby protecting them from
degradation and preventing drug accumulation in other tissues and organs [12] (Figure 2).
The development of liposome drug delivery systems grounded in nanotechnology has
taken nearly half a century to be integrated into clinical practice; this advancement has
catalyzed a quantum leap in the development of anti-tumor, anti-bacterial infection drugs
and vaccines. For instance, in the case of the anticancer agent resveratrol, the utilization of
solid lipid nanoparticles for its delivery led to a significantly increased brain concentration
of resveratrol in Wistar rats compared to free resveratrol, indicating high penetration into
brain tumors and minimal systemic toxicity [13].
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In tumor therapy, liposome-encapsulated radiosensitizers can augment X-ray radi-
ation to tumor sites. Zhao et al. [14] designed an antigen-capturing stapled liposome
(ACSL) with a robust structure and bioactive surface, capable of capturing and transport-
ing tumor-associated antigens (TAAs) from lysosomes to the cytoplasm of dendritic cells
(DCs), thereby enhancing TAA cross-presentation and inducing a robust T cell-dependent
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antitumor response and immune memory following local irradiation. Liposomes encap-
sulating the anticancer agent doxorubicin have notably diminished the cardiotoxicity
associated with doxorubicin and reduced the occurrence of adverse reactions, including
myelosuppression, alopecia, nausea, and vomiting [15]. Studies have indicated that the
anticoccidial activity of decoquinate nanoliposomes (DQNLs), fabricated through thin-film
dispersion-ultrasonic methods, was substantially augmented [16].

Liposomes are a prevalent strategy for facilitating drug permeation across the blood–
brain barrier. Liposomes modified with transferrin have demonstrated efficient drug
transport capabilities. In a glioma-bearing mouse model, the therapeutic efficacy of lipo-
somes exhibited minimal systemic toxicity and significant regression of gliomas following
non-invasive systemic administration [17]. The combination of lichenin liposomes and ri-
fampicin has been employed in the treatment of multidrug-resistant tuberculosis, markedly
enhancing the antibacterial activity of rifampicin [18,19]. The carbohydrate recognition
domain (CRD) of the C-type lectin pathogen recognition receptor, DC-SIGN, can be specif-
ically targeted by antifungal liposomes, thereby augmenting the antifungal efficacy of
liposomal Amphotericin B (AmB) both in vitro and in vivo [20].

Lipid nanoparticles (LNPs) represent a pivotal technology within liposome delivery
systems and have emerged as a substantial advancement in the field of oligonucleotide-
based therapeutic agents. LNPs are a specialized subset of liposomes devoid of hydrophilic
cavities, composed of cationic phospholipids and negatively charged nucleic acid compo-
nents that are electrostatically complexed, forming multilayer cores interspersed between
lipid layers. Oligonucleotides encapsulated within LNPs are safeguarded during delivery,
remaining intact and undegraded by enzymes and are effectively delivered to cells, where
the contents of the carrier particles are released and translated into therapeutic proteins.
The Southwest Medical Center of the University of Texas in the United States has unveiled
a groundbreaking strategy called Selective Organ Targeting (SORT). This innovative ap-
proach involves the incorporation of SORT molecules into a diverse array of LNPs, enabling
the precise targeting of extrahepatic tissues [21,22]. The synergy of SORT in conjunction
with various gene editing techniques has significantly advanced the field of gene therapies,
particularly those targeting proteins within specific tissues. Shuai et al. [23] have pioneered
a novel LNP delivery system (iPLNPs), which incorporates novel phospholipids (iPhos)
with enhanced endocytic escape capabilities. By manipulating the chemical structure and
proportion of iPhos, organ-selective delivery can be achieved with remarkable precision. In
a separate study, Min et al. [24] identified a novel LNP variant featuring an amide bond
in its tail, which can be finetuned to target various lung cell types by adjusting its head
structure. In 2022, researchers at the University of Pennsylvania administered mRNAs
encapsulated within LNPs to mice with heart failure, effectively modifying T cells and
restoring their cardiac function. Building upon this success, in 2023, they developed and
synthesized ionizable LNPs capable of delivering mRNA to the placenta without crossing
into the fetal compartment, potentially offering a new treatment avenue for pregnancy
complications such as preeclampsia [25]. At the Fred Hutchinson Cancer Research Center
in Seattle, researchers have harnessed the power of gene editing to create chimeric antigen
receptor (CAR) T cells from patient-derived T cells [26]. This cutting-edge technology,
facilitated by the LNP delivery system, ensures that the encapsulated CAR gene can access
the nucleus via nuclear localization, positioning it as an emerging and promising cancer
therapy. The modified mRNA-targeted LNPs have demonstrated remarkable potential in
reducing fibrosis and restoring cardiac function post-injury, while also generating transient,
yet effective CAR T cells in vivo. These CAR T cells hold immense promise as a versatile
therapeutic platform for the treatment of a wide array of diseases [27]. In addressing the
challenge of exogenous mRNA penetrating the cytoplasm without undergoing degradation
by nucleases, COVID-19 mRNA vaccines have universally employed lipid nanoparticles
(LNPs) as their delivery vectors. This innovation has significantly advanced the vaccines’
efficacy, stability, and safety profiles [28]. The Nanoprimer technology has been shown to
reduce the uptake of LNPs by the reticuloendothelial system (RES), thereby enhancing the
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bioavailability of LNPs encapsulating human erythropoietin (hEPO) mRNA or factor VII
(FVII) siRNA. This results in a substantial increase in hEPO production (by 32%) or FVII
silencing (by 49%) [29]. Furthermore, Swingle and colleagues have developed an ionizable
lipid specifically for the formulation of LNPs intended for mRNA delivery to placental
cells. The leading LNP formulation, encapsulating VEGF-A mRNA, induced placental
vasodilation, highlighting the potential of mRNA LNPs as a protein replacement therapy
for treating placental disorders during pregnancy [25].

Additionally, microbiota transplantation is a pivotal strategy for both the preven-
tion and treatment of diseases. However, the development of oral bacterial therapies
is constrained by low bioavailability and inadequate gastrointestinal retention. Lipid
membrane-coated bacteria (LCB) represent a straightforward yet highly effective method
for encapsulating gut microbes through biointerfacial supramolecular self-assembly. Bac-
teria encapsulated with additional self-assembled lipid membranes have demonstrated
significantly enhanced survival against environmental challenges, with minimal alterations
in viability and bioactivity. Moreover, they have improved the therapeutic efficacy of oral
administration in two murine models of colitis [30]. Liposomes, as the most extensively
studied and successful nanocarriers in clinical applications to date, offer the benefits of low
toxicity, excellent biodegradability, non-immunogenicity, and the capacity to safeguard the
encapsulated drug from degradation [31]. However, liposomes still have shortcomings,
such as low drug loading capacity, poor stability, high production costs, potential toxic side
effects, and significant variability in accumulation at tumor sites [32]. The future research
and development direction of LNP delivery systems is mainly focused on upgrading tar-
geting and responsiveness to internal and external stimuli (e.g., temperature, ultrasound,
enzymes, etc.), so as to achieve precise treatment [33].

2.1.2. Tocosome

Tocosome, a sophisticated colloidal and vesicular bioactive carrier system, predomi-
nantly comprises alpha-tocopherol phosphate (TP), a derivative of vitamin E. Vitamin E
naturally exists in eight distinct forms, with alpha-tocopherol being the most prevalent,
abundant, and biologically active. TP stands out for its narrow particle size distribution,
commendable encapsulation efficiency, minimal immunogenicity, exceptional biocompat-
ibility, and augmented dissolution and penetration capabilities, all of which contribute
to its prolonged stability [34]. The multifaceted attributes of Tocophersolan render it an
adaptable constituent in the engineering of drug delivery systems. Tocosomes, akin to
liposomes, are composed of amphiphilic molecules that form bilayer colloidal structures,
displaying analogous behaviors in drug delivery mechanisms and release patterns, despite
their unique chemical compositions [35].

Clinical research has underscored the myriad health advantages of TP, including
its role in atherosclerosis prevention, cardioprotection, anti-inflammatory effects, and
inhibition of tumor metastasis [36–38]. Alongside TP, Tocopherol formulations incorporate
various phospholipid and cholesterol combinations, which have been effectively utilized in
the encapsulation and controlled release of the anticancer agent 5-fluorouracil [34].

Sunitinib malate and sorafenib tosylate are both targeted therapies for metastatic
kidney cancer, functioning through distinct pathways to impede angiogenesis and tumor
proliferation. Fariba and colleagues have pioneered the development of a coated tocosome
by blending chitosan (CS) with poly(N-isopropylacrylamide) (PNIPAAm), employing
the Mozafari method [39,40]. This temperature-sensitive tocosomal nanocarrier boasts
enhanced stability, ideal particle size, and the potential for industrial-scale production,
positioning it as a promising and robust drug delivery system for the anticancer drugs
sunitinib malate and sorafenib tosylate.

Tocophersolan (TPGS) is a distinctive multidirectional polymer, a polymerized syn-
thetic derivative of vitamin E. TPGS has been sanctioned by the FDA as a secure phar-
maceutical excipient. Taxol and docetaxel (DTX) epitomize a category of highly potent,
low-toxicity, spectroscopic natural anticancer agents, predominantly utilized in the treat-
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ment of ovarian, breast, and bronchial cancers, among others. Their mode of action involves
inhibiting cancer cell growth by facilitating microtubule assembly and preventing micro-
tubule disassembly [41]. Qi et al. [42] modified TPGS with cholesterol to create a novel
carrier material, TPGS-CHMC, which possesses a lower critical micelle concentration
(CMC). TPGS-CHMC diminished mitochondrial membrane potential and cell membrane
fluidity in paclitaxel-resistant ovarian cancer cells (A2780/T). In A2780/T tumor-bearing
nude mice, TPGS-CHMC/DTX micelles exhibited significantly enhanced antitumor efficacy
and reduced toxicity compared to the free DTX solution.

2.1.3. Polymer Nanoparticles

Polymer nanoparticles (PNPs) are colloidal particles with diameters spanning from
10 to 1000 nm [43]. Liposomes with larger particle sizes are less prone to traverse the en-
dothelial layer or blood–brain barrier, whereas PNPs with smaller particle sizes can readily
permeate these barriers to reach the target site. Common PNPs include synthetic polymers
such as polylactic acid, poly (lactide-co-glycolide) (PLGA), polyamino acids, and natural
polymers like chitosan, alginate, gelatin, and albumin [44]. Research has demonstrated
that the PNP drug delivery system is biodegradable, capable of reducing systemic toxicity
and irritation, delaying drug degradation, improving drug release kinetics, and enhancing
biocompatibility, drug safety, and efficacy [45,46]. Manipulating the degradation/bond scis-
sion of polymers can also modulate the in vivo release kinetics and facilitate the clearance
of delivery carriers in vivo.

Surface PEGylation of nanomedicines significantly extends their circulation time in
the bloodstream and enhances their permeability and retention (EPR) effect. Therefore
a Near Infrared (NIR) light-triggered dePEGylation/ligand-presenting strategy has been
developed, relying on the thermal decomposition of azo bonds. This approach involves
the self-assembly of Dox/Pz-IR nanoparticles from long PEG chain polymers (Pz-IR)
connected by thermo-labile azo molecules, cRGD conjugated IR783 (rP-IR) with short PEG
chains and doxorubicin. The Dox/Pz-IR nanoparticles achieve an optimal synergistic
effect of photothermal chemotherapy at mild temperatures through progressive tumor
accumulation, a precisely regulated photothermal effect and NIR-photothermal therapy
(PTT) induced pulsated drug release [47]. Van De Ven et al. [48] utilized PLGA as the
carrier material and amphotericin B to prepare drug-loaded nanoparticles, demonstrating
no significant hemolytic toxicity in vitro and a good safety profile and antifungal effects.

Overcoming the regulatory barrier of the blood–brain barrier (BBB) to deliver drugs to
the brain remain a significant research challenge. One strategy is the use of nanomedicines
capable of crossing the BBB and delivering therapeutic molecules to specific sites in the
brain (Figure 3).
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Dendrimers, macromolecules with a dendritic structure formed by repetitive and linear
linkage of oligomers via branching units, have shown promise in this regard. Hydroxy
polyamidoamine (PAMAM) dendrimers can traverse the BBB and blood-cerebrospinal
fluid barriers, effectively delivering small molecule drugs to targeted sites, particularly in
injured brain tissue [49]. PAMAM dendrimers with a size of 6.7 nm exhibit longer blood
circulation times and greater accumulation in the brain compared to those with a size of
4.3 nm [50]. Furthermore, PAMAM dendrimers with cationic surface properties have been
shown to cross the BBB and localize in neurons and glial cells following carotid artery
administration [51].

Chitosan, functioning as a distinct receptor on the fungal membrane, has been utilized
by Tang et al. [52] to develop chitosan-binding peptide-modified PLGA nanoparticles
encapsulating itraconazole. These nanoparticles possess the unique ability to recognize
chitosan on fungal surfaces, thereby exerting a pronounced targeting effect on Crypto-
coccus neoformans. Additionally, Chitosan nanoparticles adorned with rhamnolipids (RL)
have been loaded with the antimicrobial phytochemical isoliquiritigenin (ISL) (isl@rl-cs).
This formulation is capable of concurrently eliminating the biofilm of methicillin-resistant
Staphylococcus aureus (MRSA) throughout all stages and mitigating the associated inflam-
mation [53].

Researchers at Sloan Kettering Cancer Center have recently unveiled a fucoidan-based
nanocarrier that targets endothelial P-selectin, enabling penetration of the blood–brain
barrier. Nanoparticles encapsulating the small molecule anti-tumor agent vismodegib were
effectively delivered to brain tumor tissues via P-selectin-mediated transport, significantly
enhancing the drug’s therapeutic efficacy [54].

Molecularly imprinted polymers (MIP), also termed “synthetic antibodies”, are pro-
duced through molecular imprinting technology (MIT). The fundamental concept of MIP
involves the formation of a template molecule-functional monomer complex through
covalent or non-covalent interactions, followed by polymerization in the presence of a
cross-linking agent, and ultimately the removal of the template molecule to create a binding
site or cavity that matches the template in terms of size, shape, and chemical affinity [55].
Owing to the precise selectivity and affinity of MIP for the template molecule, sustained
drug release can be achieved.

Quercetin (3,3,4,5,7-pentahydroxyflavone, QC) is a potent anticancer agent that exerts
its antioxidant effects by upregulating endogenous free radical defenses and inhibiting
tumorigenesis and tumor progression signaling pathways. However, the clinical application
of quercetin for chemoprotection is limited by its hydrophobicity, poor gastrointestinal
absorption, and extensive heterologous metabolism in the intestine and liver. A highly
selective magnetic molecularly imprinted polymer (MMIP) with a core-shell structure was
synthesized by a sol-gel process in the presence of template QC using Tragacanth Gum
(TG) crosslinker, Fe3O4/SiO2 nanoparticles, and N-vinyl imidazole (VI) functionalized
monomers. The synthesized MMIP nanogel is biocompatible due to the presence of TG,
possesses a strong adsorption capacity, is easily separable, and specifically recognizes the
template QC [56]. Therefore, MIP and MMIP materials are anticipated to serve as polymeric
devices for applications in rapid drug separation and drug delivery.

Polysaccharide nanoparticles (PNPs) have demonstrated significant advancements in
the field of drug delivery, with notable achievements in the understanding of their mech-
anisms of action, environmental interactions, activity profiling, and composite material
development. However, the exploration into their potential toxicity, polymer stability,
and drug delivery mechanisms remains incomplete [57]. To bridge this gap, future re-
search must delve into a comprehensive and meticulous analysis of the pharmacokinetics,
safety profiles, immunogenicity, and other critical aspects of polymer nanodrug delivery
systems. This will enable the effective modulation of the physicochemical properties of
these systems.
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2.1.4. Polymer Micelle

Polymer micelles, currently in widespread use, are assembled colloidal aggregates
formed by amphiphilic block copolymers in an aqueous environment [58]. They are
distinguished by their structural integrity, hydrophobic drug solubilization capabilities
and minimal toxicity. With a particle size ranging from 10 to 100 nm, these micelles can
evade phagocytosis by the reticuloendothelial system, thereby extending their systemic
circulation time [59]. Moreover, the hydrophilic shell of the micelles not only prevents drug
loss in the serum but also resists complement system activation, which can prematurely
quickly clear drugs before they can take effect [60].

In the past three decades, polymer micelles have been extensively employed as carriers
for highly potent, highly toxic, and poorly soluble small molecule drugs [61]. Notably, in the
realm of antifungal therapy, Albayaty et al. [62] developed an acid-base responsive micellar
system for the encapsulation of itraconazole, which boasts a high drug loading capacity and
a strong affinity for Candida albicans biofilms, significantly inhibiting their activity. Poly mi-
celles also hold the potential to be loaded with combinations of multiple chemotherapeutic
agents for targeted tumor delivery, thereby reducing chemotherapy-related adverse reac-
tions and enhancing the survival rate and quality of life for patients with pancreatic cancer.
This innovation addresses key challenges in chemotherapy [63]. The micelles developed by
Zhang et al. [64], known as Cela/GCTR, possess remarkable characteristics that make them
promising candidates for the delivery of hydrophobic anti-tumor agents in the treatment of
hepatocellular carcinoma. These micelles exhibit sustained release in the bloodstream and
rapid release within tumor microenvironments. The hydrophobic segments are strategically
positioned at the core of the nanoparticles to encapsulate hydrophobic drugs, while the
hydrophilic segments form the outer corona, maintaining the micelle’s structure in aqueous
environments. By attaching specific ligands to the hydrophilic corona, these micelles can
traverse the blood–brain barrier via transcytosis and subsequently release their therapeutic
cargo upon intracellular disruption. Various block copolymer micelles, including PAA-
PEG [65], PLA-PEG, DGL-PEG, PTMC-PEG, and PDSGM-PEG, have been documented to
facilitate the transport of therapeutic agents across this barrier. Notably, PLA-PEG micelles
loaded with paclitaxel (PTX) and modified with the t-Lyp1 ligand demonstrated enhanced
accumulation and internalization in glioma cells, effectively inhibiting tumor progression
in animal models [66]. Furthermore, advanced wormlike polymer micelles composed of
PEG-grafted poly (2-diisopropyl methacrylate) (PDPA) copolymers (mPEG-b-PDPA) have
been engineered to degrade in response to changes in the brain tumor microenvironment,
thereby releasing drugs directly into the target tumor [67].

Micelles are also extensively utilized in traditional Chinese medicine preparations,
enabling precise control over particle size, encapsulation efficiency, and drug loading
for ingredients such as emodin, curcumin, baicalin, and paclitaxel ensuring slow and
sustained release. However, due to the minute size of the monomer molecules derived
from the extraction and separation processes of traditional Chinese medicine, their current
application is largely confined to the synthesis of monomers, with limited research on the
direct conversion of traditional Chinese medicine extracts into micelles [68].

Internationally, pharmaceuticals based on polymer micelles have been granted mar-
keting authorization, while domestically, such polymer micelle drugs are still undergoing
clinical trials. Despite the existing limitations in clinical application duration and the
long-term safety assessment of formulation development, the numerous advantages of
polymer micelles are poised to propel their ongoing enhancement and broad application in
the delivery of hydrophobic drugs.

2.1.5. Hydrogel

Hydrogels, which are polymer networks either physically or chemically crosslinked,
possess the unique ability to swell in the presence of water and interact with certain organic
solvents [69]. The hydrogel nanodrug delivery system exhibits remarkable biocompatibility,
biodegradability, and low toxicity, facilitating the sustained release of targeted drugs.
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In the context of tumor therapy, the anti-tumor immune response following radiation
therapy is often insufficient, necessitating the use of immune adjuvants to augment the
efficacy of antigen-presenting cells. Wang et al. [70] have engineered a hydrogel nanomotor
activated by near-infrared light, capable of penetrating tumor tissue and releasing drugs
intracellularly, thereby enhancing the immune activation capabilities of the body and
achieving a synergistic effect through the integration of phototherapy, chemotherapy, and
immunotherapy. Soft hydrogel presents an excellent material option for the repair of
various tissue defects. Li et al. [71] have developed an anti-swelling nanofiber hydrogel
that boasts high biocompatibility and biodegradability, effectively facilitating fibroblast
migration and accelerating angiogenesis during the wound healing process. Sun et al. [72]
have developed an innovative hydrogel nanodrug delivery system, which is designed to
carry ligands that bind competitively to ATP released from tumor cells upon treatment with
oxaliplatin or X-ray irradiation. This system promotes the release of immune adjuvants,
thereby enhancing the synergistic therapeutic effect of the treatment.

In the realm of veterinary medicine, Gao et al. [73] have engineered a thermosensitive
gel vaccine delivery system that exhibits excellent biocompatibility, degradability, and
sustained release capabilities. The Newcastle disease temperature-sensitive gel nucleic
acid vaccine, formulated with a recombinant plasmid, has been shown to elicit a robust
humoral and cellular immune response, thereby enhancing the body’s antiviral defenses
and prolonging the duration of immune protection. Recently, the Shanghai Veterinary Re-
search Institute of the Chinese Academy of Agricultural Sciences has created an innovative
supramolecular nanofiber hydrogel (Hydrogel RL) that incorporates antimicrobial pep-
tides. In vitro studies have demonstrated that Hydrogel RL maintains sustained release is
biocompatible, and exhibits potent antibacterial activity against methicillin-resistant Staphy-
lococcus aureus (MRSA). This development holds promise for combating multidrug-resistant
bacteria and addressing healing stagnation resulting from chronic wound infections [74].

The hydrogel system’s resistance to degradation in the gastrointestinal tract allows
for sustained drug release. Azad et al. have observed that calcium alginate beads with
hydrogel properties remain undegraded in the stomach and are released in the intestinal
tract. Moreover, their strong adhesive properties contribute to improved drug retention
in the intestinal mucosa [75]. However, the oral hydrogel system has not demonstrated
significant progress in clinical trials to date, primarily due to the rapid disintegration of the
hydrogel upon contact with substantial intestinal fluids during oral administration. This
issue demands focused attention in future research and development endeavors [76].

The hydrogel nanodrug delivery system has demonstrated notable advantages in
modulating drug release kinetics, enabling the remote and controlled release of drugs,
and facilitating the site-specific targeting of drugs. Nevertheless, challenges persist in the
clinical application of this technology. Current studies on drug release within hydrogels are
largely confined to in vitro experiments or heavily reliant on the internal microenvironment
of tumors. Assessing whether hydrogels maintain their response characteristics following
in vivo implantation will be a pivotal research focus for hydrogel nanodrug delivery
systems moving forward [77]. Moreover, the development of hydrogels necessitates more
precise control over the properties of the hydrogel drug delivery carriers and the release
kinetics under various trigger conditions. It is evident that highly controllable and precisely
adjustable hydrogels possess an expansive application potential in the future [78].

2.1.6. Metal and Inorganic Nanoparticles

In the realm of nanomedicine delivery systems, metal and inorganic nanoparticles,
synthesized through physical or chemical methods from metallic or inorganic materials,
represent a diverse and promising category. These nanomaterials are distinguished by
their exceptional physical and chemical properties, including a high specific surface area,
enhanced bioavailability, low toxicity, and compatibility with most organic solvents, Conse-
quently, they have found extensive application in the combined treatment of tumors [79].
Nanographene oxide, carbon nanotubes, mesoporous silica, calcium-based nanomaterials,
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magnetic nanoparticles, copper nanoparticles, and gold nanoparticles are all significant
metallic and inorganic nanocarriers that continue to advance the field of nanomedicine.

Zhao et al. [80] have integrated copper ions and other substances into oxidative stress
amplifiers, thereby sensitizing immunotherapy through chemotherapy. This approach has
reversed the immunosuppressive tumor microenvironment, augmented immunotherapy
efficacy, and significantly curtailed the growth of primary distal tumors. Their work
offers novel insights into the development of combined therapy strategies for inhibiting
tumor growth and metastasis. Gong et al. [81] have developed a phosphorus and nitrogen-
doped hollow carbon quantum dot DOX carrier, which has been shown to enhance the
intranuclear delivery and tumor accumulation of DOX, thereby effectively inhibiting tumor
growth. The multifunctional CuS nanocomposite designed for the combined administration
of oligonucleotides and docetaxel promotes the infiltration of Tc cells and enhances the
therapeutic efficacy of breast cancer when used in conjunction with photothermal and
photodynamic therapies [82].

In the field of veterinary medicine, Raposo et al. [83] have prepared and tested the
effects of gold nanoparticles loaded with cobalt and zinc compounds on canine cancer cells.
Their findings indicate that these nanoparticles are readily surface-modified and more
effective in delivering cytotoxic substances than free compounds. Silver has been shown
to act on bacterial enzymes and proteins, thereby inhibiting the production of bacterial
toxins [84]. Nanosilver nanoparticles (AgNPs) prepared using nanotechnology, not only
exhibit the characteristics of nanomaterials but also enhance the antibacterial effect of
silver [85]. The potential antibacterial mechanisms of silver nanoparticles (AgNPs) may
include disruption of normal bacterial morphology by inhibiting the synthesis of cell wall
peptidoglycans and inhibition of bacterial growth by inhibiting the cell division protein
FtsZ and the chromosomal replication initiation protein DnaA [86].

Livestock manure serves as a reservoir for a multitude of antibiotic resistance genes
(ARGs), and its accumulation of livestock manure on land may foster the emergence of
antibiotic-resistant bacteria and facilitate the dissemination of ARGs. Nanoscale zero-valent
iron (nZVI), with its expansive surface area and unique physicochemical properties, can
effectively reduce the concentration of antibiotics and mitigate the risk of ARG transmission
during composting processes [87]. Additionally, copper nanoparticles have demonstrated
efficacy in both the prevention and treatment of mastitis [88].

The reactivity of inorganic nanoparticles necessitates surface modification with biocom-
patible materials to serve as non-invasive nanomedicines. Among these, gold nanoparticles
are the most extensively utilized inorganic nanomedicines in biomedical applications due
to their ease of synthesis, surface modification capabilities, and high biocompatibility.
Research has shown that gold nanoparticles can exploit cleavable bonds within endo-
somes to facilitate transport across the blood–brain barrier while simultaneously inhibiting
blood reflux.

Rodrigues et al. [89] conjugated transferrin (Tf) and rabies virus glycoprotein (RVG)
peptide to the surface of liposomes, targeting transferrin and nicotinic acetylcholine re-
ceptors. They characterized the function of these liposomes in traversing the blood–brain
barrier using an in vitro triple co-culture BBB model. The liposome RVG-Tf was found
to continuously transfect and effectively transport primary neuronal cells in an in vitro
blood–brain barrier model, and it was observed to enhance the penetration of the blood–
brain barrier in vivo. Wang et al. [90] prepared transferrin-modified liposomes (Tf-PL) for
the targeted delivery of acetylcholinesterase (AChE) therapeutic gene to liver cancer cells.
These liposomes exhibited higher transfection efficiency than Lipo 2000 and demonstrated
a superior targeting effect on liver cancer SMMC-7721 cells in vitro. Furthermore, the
subcutaneous injection of Tf-PL/AChE significantly inhibited the growth of liver cancer
xenografts in nude mice. Lu et al. [91] have engineered a core-shell nanosphere featuring a
liquid phase eutectic gallium-indium core and a thiolated polymer shell. This innovative
nanomedicine is a convertible liquid metal system capable of fusing and subsequently
degrading under weakly acidic conditions. This mechanism facilitates the release of dox-
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orubicin in acidic endosomes following cellular internalization, thereby demonstrating
enhanced chemotherapeutic efficacy in xenograft tumor-bearing mice.

While inorganic nanomaterials can be precisely tailored to meet various drug delivery
requirements, their toxicity, biological distribution, and clearance mechanism in vivo are
yet to be fully elucidated. To expedite the clinical application of inorganic nanomedicine
delivery systems, future research should prioritize the investigation of drug retention
effects in vivo and the enhancement of drug clearance processes.

2.2. Biomimetic Drug Delivery Systems

Traditional drug carriers are often plagued by suboptimal biodistribution, abbreviated
blood circulation times, and diminished delivery efficiency. Nanostructured drug carriers
have the potential to modify the pharmacokinetics and biodistribution of drugs; however,
they are prone to recognition as foreign entities by the reticuloendothelial system, which
can impede their arrival at intended target sites [92,93]. As nanotechnology, biocoupling,
and bioengineering tools continue to advance, researchers are gaining deeper insights into
the interactions between natural substances—such as cells and pathogens—and the body’s
cellular systems. This understanding has catalyzed efforts to mimic these structures and
functions for therapeutic applications [94]. Hence, the study of endogenous carriers with
minimal toxicity and robust biocompatibility is of paramount importance. In recent years,
biomimetic drug delivery systems utilizing biological carriers such as cells, extracellular
vesicles, viruses, and bacteria have emerged as a focal point in the field of drug delivery.

In recent years, biomimetic drug delivery systems based on biological carriers such
as cells, extracellular vesicles, viruses, and bacteria have become a research hotspot in
the field of drug delivery [95]. The biological carrier inherits the structure and function
of the original donor, functioning as an endogenous substance to mitigate unnecessary
immune responses and evade direct elimination by monocytes and macrophages. More-
over, these carriers can also mimic the structure of highly infectious agents or pathogens
within the body, replicating their internal processes or mechanisms of action, and ensuring
the precise delivery of medication to the target site for optimal therapeutic effect. Conse-
quently, biological carriers are esteemed as a highly promising system for targeted drug
delivery [96].

2.2.1. Cell Membrane Delivery Carrier

The cell membrane delivery carrier represents a swiftly evolving, multifaceted drug
delivery system. It maintains a membrane structure akin to somatic cells, offering superior
biocompatibility and minimal toxicity, which confers it unparalleled advantages over other
drug delivery vehicles [97]. Cell-based drug delivery systems can be readily fabricated with
minimal loss of membrane proteins and intact membrane structures, thereby endowing
the carrier with a diverse array of biological functions and target specificity [98]. Owing
to its distinctive attributes, such as prolonged circulation time, adaptable morphology,
low immunogenicity, and precise targeting, it is increasingly recognized as an ideal drug
delivery carrier [99]. Biomimetic nanosystems derived from various natural cells and
hybrid cell membranes have demonstrated their efficacy in effectively managing targeted
drug delivery systems. These systems can reduce the immune system’s clearance rate,
extend blood circulation time, enhance drug loading and targeting, and thereby amplify
the therapeutic efficacy against tumors [100].

Currently, the primary carriers employed for cell delivery encompass red blood cells,
platelets, various white blood cells, stem cells and cancer cells. Among them, the red
blood cell drug delivery system, with its abundant raw materials and strong targeting
ability, has achieved remarkable results in the treatment of various diseases through its
further development and expansion [101]. Cao’s team has developed cell membrane-
coated bacteria (CMCB) utilizing red blood cell membranes and its potential as a powerful
tumor imaging agent has been demonstrated through evaluation results in various mouse
models [102]. Platelets accumulate at the wound site following surgical resection, causing



Pharmaceutics 2024, 16, 674 12 of 36

inflammation of the tumor microenvironment and playing a repairing role. Wang et al. [103]
coupled anti-PDL1 monoclonal antibodies to the surface of platelets, effectively releasing
anti-PDL1 through platelet-derived particles during platelet activation, thereby reducing
tumor recurrence and metastasis in the postoperative period.

The nanoparticles coated on T cell membranes contain T cell surface antigens crucial
for the binding of the human immunodeficiency virus HIV, which can simulate host cell
functions to neutralize the virus. As a novel therapeutic agent against HIV infection, they
have shown great potential [104]. In recent years, chimeric antigen receptor (CAR)–T
cells have emerged in various DDS due to their ability to modify patients’ own T cells to
recognize tumor antigens and activate local cytotoxic immune responses. Ma et al. [105]
found that CAR-T cells can specifically recognize tumor-associated antigens, and CAR-T
membrane-encapsulated NPs can be used for the highly specific treatment of liver cancer.
Although CAR-T cell therapy has been successful in clinical practice, issues such as long
duration of treatment and high cost have limited its development for the treatment of B-cell
malignancies. In their groundbreaking work, Agarwalla et al. [106] have delineated an
implantable Multifunctional Alginate Scaffold (MASTER) designed for T-cell engineering
and release. This innovative scaffold facilitates the swift generation of CAR-T cells, enabling
their deployment into the bloodstream to regulate the proliferation of remote tumors. Such
a development promises to streamline the delivery of these therapies, thereby mitigating
the complexities and resource demands typically associated with their administration.
Presently, CAR-T cell therapy is primarily indicated for B-cell carcinoma, although its
efficacy may be compromised by a multitude of factors. To address this, investigators at
the Memorial Sloan Kettering Cancer Center have engineered a novel CAR-T cell variant,
termed synthetic enzyme-armed killer (SEAKER) cells. These cells, upon engagement with
tumor cells, demonstrate augmented anticancer efficacy in vitro and in vivo settings when
coupled with small-molecule prodrugs [107].

The cell membranes of macrophages and other phagocytic cells are known to pos-
sess pattern-recognition receptors that can identify and recognize pathogens and serve
as natural ligands for targeted drug delivery. Li et al. [108] have enveloped collagen-
based nanoparticles with macrophage membranes, thereby enhancing biocompatibility,
amplifying nanoparticle accumulation at sites of infection, and bolstering antibacterial
efficacy. Tumor cell membranes, with their inherent tumor-targeting capabilities, have
been exploited by Guo et al. [109] to create biomimetic nanoparticles (gct@cm NPs) that
encapsulate tumor cell membranes, thereby achieving tumor-specific targeting. Harris et al.
have demonstrated that nanoparticles coated in cancer cell membranes (CCM) exhibit a
dual mechanism of shielding and targeting, with the modified drug delivery system being
preferentially internalized by tumor cells while minimizing uptake by liver cells [110].

Huang et al. investigated the potential clinical application value of different cell
membrane-encapsulated nanocarriers for the targeted delivery siRNA. This approach has
demonstrated efficacy when compared to exosomes and other delivery systems. Notably,
biomimetic cell membrane-coating nanotechnology emerges as a promising strategy for
targeted siRNA delivery in cancer therapy [111].

The integration of natural cell membrane functions with nanocarrier properties in a
cellular biomimetic drug delivery system offers a promising avenue for diverse applications
(Figure 4). These cell-derived membrane biomimetic nanocarriers exhibit prolonged circu-
lation times, excellent biocompatibility, and robust immune evasion capabilities. However,
the current research is still in its nascent stages, necessitating further investigation into the
toxicity, biodistribution, and immune responses of these nanocarriers. Despite this, the
inherent benefits of nanocarriers and the abundant availability of cell membranes hold
significant potential for therapeutic advancements [112].



Pharmaceutics 2024, 16, 674 13 of 36Pharmaceutics 2024, 16, x FOR PEER REVIEW 14 of 37 
 

 

 
Figure 4. Cellular biomimetic drug delivery system integrating natural cell membrane functions and 
nanocarrier functions. 

Exosomes, a type of extracellular vesicles, have been the subject researches of exten-
sive research since 2013, particularly those with diameters ranging from 40 to 100 nanome-
ters. These nanoscale vesicles, secreted by the majority of cells, exhibit inherent stability, 
biocompatibility, minimal immunogenicity and low toxicity. Their unique ability to target 
specific cells makes them ideal biological nanocarriers for biomedical applications [105]. 
Moreover, exosomes are preferentially enriched in tumor tissues compared to normal tis-
sues. By conjugating tumor-targeting ligands to exosomes, specific and targeted delivery 
can be achieved [115–117], facilitating the delivery of proteins, peptides, nucleic acids, and 
other compounds via various routes such as intravenous, intraperitoneal, oral, and in-
tranasal administration. Tumor-derived exosomes, when employed as carriers, can effec-
tively target cancer cells, safeguarding therapeutic compounds from degradation by the 
extracellular environment, while also maintaining their biocompatibility and low immu-
nogenicity [118]. Exosomes secreted by dendritic cells are rich in antigen-presenting and 
costimulatory molecules, capable of activating T cells, enhancing the function of natural 
killer cells, and promoting tumor eradication [119]. Exosomes derived from immune cells 
possess immunomodulatory properties and therapeutic potential, expressing various an-
tigens on their surface that are instrumental in antigen presentation, immune activation, 
and metabolic regulation for cancer cell elimination, thereby playing a significant role in 
cancer therapy [120]. Recent studies have demonstrated that custom-engineered exo-
somes can be produced by implanting cells into the body [121]. For instance, engineered 
exosomes produced by implanting cells into live mice have been shown to sustainably 
deliver mRNA to the brain for the treatment of Parkinson’s disease, opening up a novel 
avenue for the in vivo production of engineered exosomes [122].  

Engineering exosomes have significantly enhanced the efficacy and precision of ther-
apeutic agent delivery, making them integral to targeted therapeutic research across var-
ious diseases, including oncology, inflammatory conditions, and degenerative disorders. 
These engineered exosomes possess multifaceted functions such as therapeutic agent 
loading, target modification, evasion of mononuclear phagocytic system (MPS) phagocy-
tosis, intelligent control, and bioimaging, positioning them as cutting-edge multifunc-
tional nano-delivery systems [123]. 

In contrast to synthetic nanocarriers, extracellular vesicle drug delivery systems ex-
hibit substantial advantages in terms of targeting, safety, and pharmacokinetics. Nonethe-
less challenges in extraction, low separation efficiency, high heterogeneity, limited 

Figure 4. Cellular biomimetic drug delivery system integrating natural cell membrane functions and
nanocarrier functions.

2.2.2. Extracellular Vesicle Delivery Carrier

In the realm of extracellular vesicle (EV) delivery systems, these small vesicles released
by cells contain biologically active molecules such as proteins and miRNAs. EVs serve as
biocompatible carriers with inherent material transport properties, low immunogenicity,
and no cytotoxic or mutagenic effects. They possess favorable circulatory stability, bio-
compatibility, physicochemical stability, and the ability to traverse biological barriers [113].
Specifically, macrophage-derived EVs are capable of penetrating the blood–brain barrier,
interacting with cancer cells, and accumulating within them [114].

Exosomes, a type of extracellular vesicles, have been the subject researches of extensive
research since 2013, particularly those with diameters ranging from 40 to 100 nanometers.
These nanoscale vesicles, secreted by the majority of cells, exhibit inherent stability, biocom-
patibility, minimal immunogenicity and low toxicity. Their unique ability to target specific
cells makes them ideal biological nanocarriers for biomedical applications [105]. Moreover,
exosomes are preferentially enriched in tumor tissues compared to normal tissues. By
conjugating tumor-targeting ligands to exosomes, specific and targeted delivery can be
achieved [115–117], facilitating the delivery of proteins, peptides, nucleic acids, and other
compounds via various routes such as intravenous, intraperitoneal, oral, and intranasal
administration. Tumor-derived exosomes, when employed as carriers, can effectively target
cancer cells, safeguarding therapeutic compounds from degradation by the extracellular
environment, while also maintaining their biocompatibility and low immunogenicity [118].
Exosomes secreted by dendritic cells are rich in antigen-presenting and costimulatory
molecules, capable of activating T cells, enhancing the function of natural killer cells,
and promoting tumor eradication [119]. Exosomes derived from immune cells possess
immunomodulatory properties and therapeutic potential, expressing various antigens
on their surface that are instrumental in antigen presentation, immune activation, and
metabolic regulation for cancer cell elimination, thereby playing a significant role in cancer
therapy [120]. Recent studies have demonstrated that custom-engineered exosomes can
be produced by implanting cells into the body [121]. For instance, engineered exosomes
produced by implanting cells into live mice have been shown to sustainably deliver mRNA
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to the brain for the treatment of Parkinson’s disease, opening up a novel avenue for the
in vivo production of engineered exosomes [122].

Engineering exosomes have significantly enhanced the efficacy and precision of thera-
peutic agent delivery, making them integral to targeted therapeutic research across various
diseases, including oncology, inflammatory conditions, and degenerative disorders. These
engineered exosomes possess multifaceted functions such as therapeutic agent loading,
target modification, evasion of mononuclear phagocytic system (MPS) phagocytosis, in-
telligent control, and bioimaging, positioning them as cutting-edge multifunctional nano-
delivery systems [123].

In contrast to synthetic nanocarriers, extracellular vesicle drug delivery systems exhibit
substantial advantages in terms of targeting, safety, and pharmacokinetics. Nonetheless
challenges in extraction, low separation efficiency, high heterogeneity, limited targeting
capabilities, and reduced intracellular drug efficacy currently hinder the clinical application
of extracellular vesicles [124,125]. Despite being in the nascent stages of research, exosomes
hold immense promise as diagnostic biomarkers and anti-tumor drug carriers. Moreover,
artificial extracellular vesicles or extracellular vesicle mimics have emerged as a focal
point in the field of extracellular vesicle drug delivery, given their advantages of sterility,
mass-producibility, and ease of regulation [126,127].

2.2.3. Virus Delivery Carrier

Virus nanoparticles (VNP), derived from bacteriophages and animal and plant viruses,
represent a novel class of nanoparticle carriers. These VNP, ranging in size from 10 to
1000 nm, include some infectious varieties. The inherent ability of viruses to infect cells
has highlighted their potential as delivery vectors. The first instance of drug delivery
utilizing viruses as carriers was realized in 1977. Viral vectors are extensively employed in
both in vivo and in vitro in vivo and in vitro drug delivery research, largely due to their
exceptional efficiency in gene delivery and expression [128].

At present, the primary virus vectors encompass three main categories: lentivirus
(LV), adenovirus (ADV) and adeno-associated virus (AAV). The most extensive application
domain is within gene therapy, where 70–80% of gene therapy programs are executed
through virus vectors. The cutting-edge gene editing technology, CRISPR, holds significant
promise in the treatment of congenital diseases and tumors [129]. In 2014, Cheng et al.
developed an in vivo gene editing-based adenovirus CRISPR/Cas9 system, which should
achieve a tissue-specific gene knockout level, resulting in phenotypic changes [130].

To enhance the stability, cellular targeting, and therapeutic efficacy of CRISPR drug
delivery systems, both viral and non-viral vectors can be utilized concurrently to amalga-
mate the benefits of both vector types. For instance, in 2016, Yin et al. [131] employed AAV
vectors to deliver sgRNA, while liposome materials were used to deliver Cas9 protease
RNA. The combined deliver of the two vectors to a liver injury mouse model mitigated the
symptoms of liver damage and lowered the CRISPR off-target rate.

With the swift advancement of biological sequencing technology, researchers have
recognized the diversity of protein family sequences. Machine learning (ML) models
trained directly on experimental data provide a means to harness the full potential diversity
of engineered proteins. Bryant et al. [132] applied deep learning to design variants of
adeno-associated virus 2 (AAV2) capsid proteins that can effectively load DNA, which
has vast potential applications in generating improved viral vectors and protein thera-
pies. Fibroblast activating protein (FAP) expression is detected in the tumor stroma in
over 90% of cancers, making it an optimal target site for tumor-specific adenovirus de-
livery. A sophisticated gene therapy platform, termed SHREAD (Shielded, Retargeted
Adenovirus), has been meticulously engineered to selectively target cells based on specific
surface markers, effectively converting them into biofactories capable of secreting ther-
apeutic molecules [133]. Human adenovirus serotype 5 (Ad5), a prevalent viral vector,
was demonstrated by Hartmann et al. to be retargeted to FAP+ fibroblasts both in vitro
and in vivo settings. This approach facilitated the efficient delivery and in situ release
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of therapeutic agents within the tumor microenvironment (TME), thereby significantly
inhibiting tumor growth [134].

As their name implies, oncolytic viruses (OVs) possess the unique ability to dissolve
tumors. Wu et al. [135] developed a novel viral strategy for covert tumor targeting, where
OVs were treated with liquid nitrogen shock to eliminate pathogenicity, achieving targeted
tumor delivery and preventing viral clearance in the bloodstream.

While viral vectors offer high transfection efficiency, they are not devoid of safety
concerns and limited loading capacity, which can be limiting for large-scale production.
Strategies such as the removal of non-essential viral genes to mitigate toxicity or the
construction of self-inactivating viral vectors can enhance the safety profile of these vec-
tors [136].

2.2.4. Bacterial Delivery Carrier

The fusion of chemical biotechnology with bacterial systems has paved the way for
bacterial-based drug delivery systems. Engineered bacteria, for instance, are extensively uti-
lized for targeted drug delivery due to their remarkable capability to detect changes in host
physiological and pathological indicators, coupled with their superior in vivo transport
capabilities [137–139]. Some bacteria exhibit a propensity towards hypoxic microenviron-
ments, enabling them to deliver drugs to such challenging environments [140–142]. In
addition to the noted interactions, there are specific associations between fungi and bacte-
ria [143] such as, Streptococcus adhering to Candida albicans through cell surface polysaccha-
ride receptors and peptide adhesins and peptide adhesins. Similarly, Lactobacillus acidophilus
and Lactobacillus salivarius can recognize and coaggregate with Candida albicans through
polysaccharide receptors, offering insights for the development of targeted antifungal
drugs [144–147].

Solomon et al. have engineered a delivery system encapsulates paclitaxel with bacterial
vesicles, capable of targeting the overexpressed epidermal growth factor receptor (EGFR)
in solid tumor cells, thereby exerting potent anti-tumor effects in xenograft models. The
challenge lies in maintaining the control over the physicochemical properties of nanoparti-
cles while emulating bacterial immunogenic traits to activate the immune system. In this
context, the bacterial outer membrane emerges as an appealing immune stimulant that,
when integrated with nanoparticles, can fine-tune their physical and chemical attributes,
giving rise to bacterial membrane coated nanoparticles (BM-NP) [148]. Gao et al. [149]
used Escherichia coli as a model organism to coat nanoparticles with the outer bacterial
membrane, creating BM-NP. These BM-NP demonstrated, through in in vivo experiments
in mice, a significantly enhanced capacity to activate dendritic cells, stimulate antibody
production, and induce T cell responses against E. coli infection compared to the use of
the bacterial outer membrane alone. Wang et al. [150] induced the secretion of extracel-
lular matrix Formby bacteria to form a natural biofilm, encapsulating probiotics, which
significantly improved gastrointestinal tolerance and mucosal adhesion in both mice and
pigs. Futhermore, in mice colonized with Staphylococcus aureus, this approach resulted in
significantly enhanced decolonization effect.

Bacteria-based DSS have demonstrated considerable advancements in both research
and clinical trials. However, they continue to encounter challenges in practical clinical
applications, including the scaling up of production, enhancing bacterial survival during
drug delivery, precise control of bacterial colonization, dosage determination, and potential
biosafety issues. Researchers are committed to bring about in biomedical science by broad-
ening the scope of application in this field through biological and chemical engineering
strategies [139].

2.2.5. Bioparticle Delivery Carrier

Various biological particles, such as virus-like particles (VLPs), have gained significant
attention as effective carriers for RNA delivery. The viral structural proteins that form
the viral capsid can naturally interact with RNA packaging signals (PS) and facilitate the
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transfer of RNA between cells in the form of VLP. However, the binding specificity of this
capsid protein from retroviruses (such as HIV-1) is not particularly strong, and it can also
package other RNA molecules. The selectivity of VLPs for RNA molecules can be improved
by fusing RNA binding proteins or incorporating specific recognition sequences into RNA
molecules. It is important to note that this approach may potentially interfere with the
assembly or secretion process of VLP.

Segel et al. [151] identified an endogenous protein, PEG10, capable of forming VLPs
from human cells and preferentially binds and promoting the vesicular secretion of its
mRNA, selectively encapsulating and delivering other RNAs. Utilizing human PEG10,
they developed a system for packaging, secreting, and delivering specific RNAs, termed
selective endogenous cell delivery encapsulation (SEND). Derived from human viruses, this
system elicits a smaller immune response than existing virus vectors and lipid nanoparticles,
and it can efficiently deliver gene editing tools into mouse and human cells to achieve
the editing of target genes. The eVLP developed by Banskota et al. has demonstrated
its proficiency in mediating highly effective base editing in human and mouse cells, as
well as in various tissues and organs of mice, with exceptionally low off-target rates.
This innovative system effectively integrates the key benefits of both viral and nonviral
delivery methods, positioning it as a promising candidate for therapeutic macromolecular
delivery [152].

Endosymbiotic bacteria, a specialized class of microorganisms capable of parasitizing
host cells and secreting biological factors that regulate host cells, have evolved intricate
delivery systems. One such system is the extracellular contraction injection systems (eCISs),
a syringe-like macromolecular complexes that inject carried proteins into eukaryotic cells.
Kreitz et al. [153] chose an eCIS from Photorhabdus asymbiotica (Photorhabdus virulence
cassette, PVC) for their research. The PVC system has the potential to be reprogrammed
for delivering various proteins to human and mouse cells, holding significant promise for
applications in gene therapy, nucleic acid delivery and biological control.

The biomimetic drug delivery system represents an advanced integration of biological
carriers and functional agents, inheriting the superior properties of natural carriers. Fol-
lowing modification, these systems also exhibit improved permeability, carrying capacity,
and specificity [154]. Currently, the biomimetic drug delivery system faces critical chal-
lenges, including the elucidation of its in vivo mechanism of action, in vitro modification
techniques, and the impact of drug loading on the system itself. In addition, the separation
and purification of cell membranes remain an issue that demands attention [155]. Among
the promising biomimetic drug delivery systems, mixed cell membrane stands out for its
prolonged circulation time and active localization properties [156]. As research progresses,
biomimetic drug delivery systems are poised to become ideal candidates for efficient and
targeted drug delivery systems.

3. Coupling Targeted Drug Delivery Systems

In recent years, the field of drug delivery has witnessed remarkable advancements,
particularly in the realm of targeted delivery technologies. Among these, antibody–drug
conjugates (ADCs) have emerged as a cutting-edge approach, where a targeting molecule
is chemically bonded to a drug molecule, creating a sophisticated therapeutic agent ca-
pable of self-directed delivery to tumor sites upon successful development. An ADC
comprises three essential components: antibodies, linker chains, and drugs. The antibodies
serve as the delivery vehicle, binding with high specificity to tumor-associated antigens,
thereby directing the drug to the intended site. When used in conjunction with conven-
tional chemotherapy, ADCs have demonstrated enhanced efficacy compared to traditional
chemotherapy alone, holding immense promise for targeted therapies (Figure 5). To date,
the U.S. Food and Drug Administration (FDA) has approved 13 types of ADCs for the treat-
ment of various blood and solid organ cancers (Table 2) [157]. CD276 is a promising cancer
treatment target, and Feng et al. [158] referenced the literature to develop a fully human
CD276 monoclonal antibody–drug conjugate that significantly improved the therapeutic
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index and provides an advanced ADC development platform for effective and selective
targeting of various types of solid tumors. Xu et al. [159] have developed a novel ADC
targeting trophoblast cell-surface antigen 2 (TROP2) for the treatment of TROP2-positive
pancreatic cancer.
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Table 2. Cont.

Generic Name Trade Name Target Payload/Payload Class Payload
Action Approval Year

Brentuximab
vedotin Adcetris CD30 MMAE/auristatin microtubule

inhibitor 2011

Gemtuzumab
ozogamicin Mylotarg CD33 ozogamicin/calicheamicin DNA

cleavage 2017; 2000

In the 1960s to 1970s, scientific research revealed that lactose could bind to the asialo-
glycoprotein receptor (ASGP-R) on the liver’s surface, leading to its internalization. Among
lactose analogs, GalNAc (N-acetylgalactosamine) exhibits the most potent binding affinity.
GalNac (N-acetylated galactosamine) conjugation has since become the most prevalent
small nucleic acid drug delivery system, following its pioneering use by Alnylam Phar-
maceuticals. In recent studies conducted by Alnylam researchers, it has been discovered
that O-hexadecyl (C16) modified siRNA can effectively penetrate the central nervous
system, eyes, or lungs and produce gene knockout effects for a duration of up to three
months [160]. This innovative modification represents a departure from the conventional
GalNac conjugation and signifies a significant advancement in overcoming the limitations
of liver-targeted drugs.

Wang et al. have reported the development of an Active Tissue Targeting via Anchored
Click Chemistry (ATTACK) technique, which enables the selective labeling of cancer cells
in vitro [161]. This method involves the modification and labeling of the cell surface with a
glycoside-containing azide (Ac4ManNAz), resulting in a significantly higher surface azide
content in tumor cells due to their heightened affinity for sugars. The resulting conjugates
possess the capability to recognize azides and irreversibly target tumor cells, facilitating the
release of toxins or other therapeutic agents through click chemistry. Shaqi biopharmaceu-
ticals has developed the Click Activated Protodrugs Against Cancer (CAPAC™) platform,
SQ3370, which comprises a tumor-localizing biopolymer and a doxorubicin protodrug.
SQ3370 has achieved controlled, tumor-specific drug release, with the potential for clinical
application [162].

The Peptide-drug conjugate (PDC) integrates the advantages of peptides, featuring
a small molecular weight, biodegradability, and a lack of immunogenic reactions. By
modifying the amino acid sequence of the peptide chain, the conjugated hydrophobicity
and ionization of PDC can be changed, thereby addressing issues of poor water solubility
and untimely metabolism. This modification also enhances the permeability of cells and
tissues, overcoming the difficulty of clinical development of small molecule drugs due
to poor physicochemical properties. Some specific peptide carriers can also surmount
tumor resistance and achieve drug delivery across the blood–brain barrier. Moreover,
compared to ADC technology, PDCs offer various industrial benefits in comparison to ADC
technology, including improved uniformity, reduced production costs, and shorter cycle
times. It can significantly improve the circulation stability and targeting of drugs and has
been extensively employed in drug delivery. Gong et al. developed a PDC drug, OPDC3,
which can target cells with high peptidase activity and is expected to be a novel drug for
the treatment of malignant tumors in various blood systems [163].

In addition to ADC and PDC drugs, there are a variety of clinically available con-
jugated drugs that achieve delivery functions, including antibody cell conjugated drugs
(ACC), viral drug conjugates (VDC), antibody fragment conjugated drugs (FDC), anti-
body oligonucleotide conjugates (AOC), antibody immunostimulatory conjugates (ISAC),
antibody biopolymer conjugates (ABC), etc.
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4. Intelligent Drug Delivery System
4.1. Stimulation Responsive

Stimulus-responsive drug delivery systems refer to drugs that are not released or
are released extremely slowly until they reach the target tissue or organ, and are released
in an adjustable or programmable manner once they reach the target location. With the
advancement of synthetic biology, genetic engineering, and photogenetics technology,
intelligent cell factories based on small molecules and light signal responses are gradually
becoming feasible. Stimulus-responsive drug delivery systems utilize endogenous trigger-
ing factors such as pH, reactive oxygen species, and enzyme content, as well as exogenous
triggering factors such as temperature, light, magnetic field, ultrasound, electric pulse, and
high-energy radiation to trigger or enhance drug release, and control the drug release to be
turned on and off on demand via remote devices [164–167].

The stomach’s secretion of gastric acid establishes a distinct pH environment within
the stomach, which is notably different from that of other digestive tissues. Leveraging
this unique characteristic, researchers have engineered a pH-sensitive intelligent drug
delivery system. Feng and colleagues enhanced the gut microbiota’s surface with an in-
testinal nanocoating, thereby prompting the reactivation of the gut flora [168]. This coating
ensures that the bacteria remain dormant upon oral administration, thereby preventing
damage from the acidic stomach environment. Following gastric emptying, the subsequent
decrease in pH serves as a catalyst for the revival of bacterial activity. This on-demand
reactivation of bacteria offers a robust platform for the advancement of highly precise
bacterial-mediated biological agents. Similarly, the activation of thermosensitive drug
delivery systems can enhance the efficacy of drug release, addressing the issue of excessive
heat that can impede drug delivery in various pathological conditions, such as tumor sites
and inflammation [169]. Cheng et al. prepared PMEECL-b-POCTCL dual block copolymer
with a critical dissolution temperature of 38 ◦C [170]. Above this temperature threshold,
the polymer micelles dissolve, releasing Nile Red and doxorubicin. Additionally, Celsion
is developing a heat-activated liposome encapsulation agent for doxorubicin, which is
intended for the treatment of various cancers, including breast cancer.

Light stands as the most optimal external stimulus for intelligent drug delivery sys-
tems. Chromophores such as azobenzene, spiropyran, succinic acid, and triphenylmethane
can confer photosensitivity to these systems. Indocyanine green (ICG) is an excellent
near-infrared dye, and Huang’s research demonstrated that nanomaterials loaded with
novel indocyanine green offer advantages in controlled drug release, improved drug sta-
bility, targeted delivery, and enhanced drug utilization [171]. Jin et al. have developed
a photothermal/reactive oxygen species dual-response biodegradable drug delivery sys-
tem that responds to both photothermal and reactive oxygen species stimuli, designed
for the synergistic treatment of hepatocellular carcinoma with 880 nm laser and reactive
oxygen species. This system enables the on-demand release of therapeutic agents directly
within the tumor microenvironment, thereby enhancing the efficacy of photothermal and
photodynamic chemotherapy treatments [172].

Magnetic stimulation represents a non-invasive therapeutic approach. The unique
magnetic properties of Fe3O4 nanoparticles can be harnessed in conjunction with nan-
otechnology to develop highly precise magnetic-sensitive nanodelivery systems. These
systems facilitate the targeted delivery of magnetic nanoparticle-conjugated drugs [173,174].
Hosseini et al. [175] have synthesized superparamagnetic iron oxide nanoparticles for the
delivery of anti-cancer therapeutics, demonstrating the potential of this approach.

Ultrasound, known for its high safety, excellent tissue permeability, and cavitation
effect, can significantly enhance drug delivery when used in conjunction with microbubbles.
The thermal and mechanical effects induced by ultrasound can transiently elevate vascular
permeability and destabilize drug-loaded nanoparticles, thereby triggering drug release
and amplifying therapeutic efficacy in diseased tissues. Zhu et al. [176] encapsulated
paclitaxel in lipid microbubble shells and did not observe significant liver and kidney
damage when it was applied in animal models. Ultrasound examination results showed
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that it can effectively identify the restenosis area of the iliac artery and effectively inhibit
neointimal proliferation at the injury site. Paris et al. [177] have developed an innovative
ultrasound-responsive drug delivery system based on mesoporous silica nanoparticles,
which released doxorubicin from its nanopores under ultrasound irradiation.

In addition, Yin et al. have developed an engineered cell whose activity is modulated by
protocatechuic acid (PCA), an abundant compound [178]. The results indicate that PCA can
effectively regulate RNA expression, control the CRISPR-Cas9 system, and modulate insulin
release, showcasing the potential of PCA as a regulatory switch in therapeutic applications.

4.2. Nanobots

Nanorobots represent sophisticated artificial intelligence systems designed to mimic
the intricate biological nanomachines involved in vital life processes and significant bio-
logical events [179]. These nanomachines are capable of autonomously navigating their
environment and interacting with cells or tissues by harnessing various forms of ambient
energy [180]. With dimensions ranging from 1 to 100 nanometers, nanorobots are partic-
ularly suitable for targeted drug delivery within the human circulatory system and for
minimally invasive diagnostic and therapeutic interventions, thanks to their minute size
and capacity to navigate through complex and narrow human tissue networks [181–183].

The DNA octahedral framework manufactured by Wang et al. [184] has demonstrated
the capability to transport precise quantities of monovalent nucleic acid aptamer-drug con-
jugates (CA4-FS) directly into solid tumors, facilitating the release of drugs and achieving
highly targeted delivery of chemical therapeutics. Xu et al. [185] ingeniously engineered a
nanorobot using myocardial cells. Yasa et al. [186] have created a composite algae nanorobot
that can maintain movement and survival capabilities in biological media. An orally ad-
ministered robotic drug delivery capsule known as RoboCap has been developed to locally
clear the mucus layer, enhance luminal mixing, and deposit the drug payload in the small
intestine, thereby significantly enhancing drug absorption. Studies have indicated that
the administration of vancomycin (a 1.4 kDalton glycopeptide) and insulin (a 5.8 kDalton
peptide) via RoboCap increased bioavailability by 20 to 40 times (p < 0.05) compared to
conventional oral administration, both in vitro and in vivo models [187].

VLPs require multiple injections for the treatment of abdominal metastases due to
the expansive peritoneal space and rapid excretion rates. Scientists at the University
of California have harnessed the power of hydrogen, produced through the reaction of
magnesium metal with acidic solutions, to propel the targeting delivery of VLPs to tumor
tissue. This innovative approach offers fresh insights into the development of tumor
immunotherapy strategies for various malignancies within the peritoneal cavity.

The application of targeted drug delivery nanorobot technology holds the promise
of delivering therapeutic agents directly to diseased tissues, thereby minimizing adverse
effects on healthy organs and tissues. This precision significantly enhances treatment
efficacy, reduces the duration of therapy, and cuts down on healthcare costs, thereby
facilitating its integration into clinical practice [188,189].

4.3. DNA Origami Technology

In the realm of DNA origami technology, scientists exploit the unique properties
of DNA molecules and the principles of base pairing to fold long strands of DNA into
intricate structures, which are then stabilized by shorter DNA strands. This technology has
witnessed remarkable advancements in the assembly of complex structures.

This technology has witnessed remarkable advancements in the assembly of com-
plex structures. However, the surface charge of DNA can impede the deposition of other
components, a challenge addressed through the collaboration between Fan Chunhai and
Hao Yan, who developed DNA-SiO2 composite materials [190]. Building on this foun-
dation, the National Center for Nanoscience and Technology in China has engineered a
DNA nanorobot for intravenous administration. This nanorobot is capable of specifically
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delivering thrombin to tumor-associated blood vessels, triggering intravascular thrombosis
and subsequent tumor cell death, thereby effectively inhibiting tumor growth [179].

The rapid advancement of DNA structural nanotechnology has unveiled DNA origami
as a promising platform for drug delivery, offering expansive p potential in the biomedical
domain. The self-assembled DNA materials derived from this technology are distinguished
by their exceptional design flexibility, programmability, surface customizability, and favor-
able biocompatibility. These attributes promise to address critical issues such as low drug
solubility, inadequate targeting, and high biological toxicity.

Despite these advantages, the translation of DNA origami into clinical utility confronts
significant obstacles. A comprehensive understanding of the in vivo properties of DNA
origami carriers is imperative, encompassing pharmacokinetics, intracellular trafficking,
distribution, and clearance mechanisms. The potential encapsulation of DNA origami struc-
tures by protein coronas or uptake by macrophages upon entering the bloodstream could
compromise their efficacy. Strategies such as encapsulating DNA origami with cationic
shells, including polyethylene glycol [191] and peptide-based coatings, have demonstrated
enhanced stability in physiological environments and prolonged circulating half-life [192].
Bastings et al. have shown that larger, more compact DNA structures can improve cellular
uptake efficiency [193], while Jiang et al. have highlighted the renal enrichment effect of
DNA origami structures [194]. These findings offer valuable insights into the behavior of
DNA origami both in vitro and in vivo settings.

Furthermore, although DNA is an endogenous biomolecule, it may trigger immune
responses under certain circumstances, necessitating the meticulous sequence design of
the DNA strands [195]. The large-scale production of high-purity DNA nanostructures
is also a critical challenge for the development of DNA origami carriers intended for
clinical use. In addressing the aforementioned issue, Praetorius and colleagues developed
a biotechnological method for the large-scale synthesis of DNA short strands, significantly
reducing the cost of producing DNA origami structures and accelerating their clinical
application as delivery vehicles [196].

As our understanding of DNA origami technology, pharmacokinetics, in vivo metabolic
pathways, and interactions with disease targets deepen, future treatments are anticipated
to leverage personalized and tailored DNA origami carrier systems. The DNA origami
field is currently experiencing rapid growth, poised to unlock significant potential in the
biomedical arena in the years to come.

4.4. Three-Dimensional Printing (3DP) Technology

Three-dimensional printing (3DP) refers to the computer-aided fabrication of three-
dimensional objects through a layer-by-layer printing and assembly process. In 1996,
Michael J. Cima of the Massachusetts Institute of Technology (MIT) first reported the
application of powder bed fusion 3DP technology in the pharmaceutical domain [197,198].
Subsequently, with the emergence of pharmaceutical companies dedicated to 3DP and
the growth of the pharmaceutical 3DP industry, this technology has garnered increased
attention. 3DP technology offers a more streamlined approach compared to conventional
manufacturing techniques, capable of efficiently producing objects with intricate geometries
or complex internal structures. Its high level of control and flexibility make it particularly
suited for the manufacture of personalized and innovative pharmaceutical formulations.
In recent years, the pharmaceutical industry has shown a keen interest in 3DP technology,
driven by its digital and customizable production capabilities. After extensive technical
validation, the FDA has granted approval for Spritam (levetiracetam), the inaugural 3D-
printed medication developed by Aprecia for the management of epilepsy. This innovative
approach to pharmaceutical customization, offering precise dosage and release profiles,
enhances both the efficacy and safety of treatment, with potential benefits extending to the
management of psychiatric and neurological disorders. Wojtylko et al. have conducted a
review of the application of 3D printing in solid dosage forms for the treatment of such
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conditions, highlighting its capacity to cater to the unique needs of pediatric patients and
mitigate supply chain disruptions [199].

In addition, 3DP is making strides in various domains within the pharmaceutical
sector. The straightforward degradation kinetics of biodegradable implants have led to the
utilization of 3D printing for the generation of patient-specific implants. The employment
of reductive polymerization techniques has facilitated the precision fabrication of small-
scale medical devices, a practice currently applied in the manufacture of implants for the
eye [200], cardiovascular system [201], and other anatomical locations. Studies have shown
that 3D printing can simulate complex 3D microenvironments within the body, including
the lung, gastrointestinal tract, and vascular system, as well as micro-robotic drug delivery
systems. By utilizing materials such as hydrogels [202], poly(N-isopropylacrylamide) (PNI-
PAm) [203], 3D printing is also being adapted for drug delivery applications, addressing
challenges related to resolution and scalability. As material manufacturing capabilities are
integrated into 3D printing technology, the advent of 4D printing systems has emerged.
This transformative technology has the capacity to dynamically respond to external stimuli
such as temperature, light, or electric fields over time, enabling structural or functional
self-transformation. This advancement has the potential to address the limitations of con-
ventional therapies and to expand the frontiers of biomedical research through diverse and
innovative applications [204].

Both the FDA and the Center for Drug Evaluation (CDE) of China have embraced
a positive and inviting stance towards the integration of 3D printing (3DP) within the
pharmaceutical sector. Nonetheless, the advancement and industrialization of 3DP in
the realm of pharmaceuticals are confronted with considerable obstacles. Technological
development demands rigorous research into the utilization of excipients in pharmaceutical
procedures and in the design of drug formulations as well as in vivo and in vitro studies, the
validation of release mechanisms, the elucidation of pharmacokinetics, and the assessment
of the medicinal properties of novel three-dimensional structured drugs. Regarding the
application of technology, it is imperative to refine the pertinent regulations concerning
the continuous production technology of 3DP pharmaceuticals to guarantee the future
commercialization of associated products.

Currently, digital and intelligent transformation stands as an essential pathway for
the high-quality progression of the biopharmaceutical industry. As a critical component of
this sector, the intelligent advancement of the pharmaceutical industry is non-negotiable.
Lauded as the new “singularity” by the industry, 3DP drug technology represents a founda-
tional revolution in pharmaceutical technology, offering a pivotal solution for the intelligent
evolution of the pharmaceutical industry. Globally, the 3DP pharmaceutical industry is
still in its nascent stages, and while the prospects for the development of 3DP drugs are
promising, the process of its industrialization is prolonged and encumbered.

5. Extracorporeal Device
5.1. Microneedles

Microneedles (MN) represent an advanced transdermal drug delivery system, facili-
tating the passage of therapeutic agents of varying sizes into the skin. These devices can
be designed to respond to certain endogenous or exogenous stimuli, such as pH value,
reactive oxygen species (ROS), enzymes, light, temperature, and mechanical forces. This
responsiveness allows for the controlled release of active compounds within the epidermis
and dermis [205], thereby enhancing the stability of the drug and the delivery of various
biomolecules [206]. Typically, microneedles are characterized by their height, which ranges
from 10 to 2000 µm, and their width, which spans from 10 to 50 µm. Arrays of microneedles
are designed to pierce the stratum corneum of the skin without contacting pain nerves,
ensuring a painless and non-invasive delivery process that promotes both efficiency and
patient compliance.

Microneedles are categorized into two types: solid and hollow. Solid microneedles are
commonly fabricated from metallic materials or non-degradable polymers. For instance,
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Fitaihi et al. have developed an innovative ocular drug delivery system that utilizes
a dissolvable MN array containing PLGA microparticles loaded with dexamethasone
for scleral drug deposition [207]. This MN system demonstrated adequate mechanical
strength to penetrate the porcine sclera. Additionally, He et al. [208] prepared two types of
microneedles to enhance the in vitro transdermal delivery of progesterone drugs, thereby
improving patient convenience and compliance.

Hollow microneedles function as micro-sized injectors and have been effectively uti-
lized for insulin delivery. The integration of microneedle arrays with nanosuspensions
can augment the solubility of diclofenac [209]. The application of such nanomixed suspen-
sion microneedles to the skin has been documented to facilitate the delivery of diclofenac
through the stratum corneum [210].

In addition, Yim et al. have developed grooved MNs that can be embedded into the
skin through mechanical fracture under simple shear actuation. By fabricating an easy-to-
operate applicator that provides adequate shear force, the tip of TCA-MN can be accurately
delivered to the skin with a high probability (98% or more). The grooved MN platform has
been proven capable of loading the required amount of drug and delivering it in the correct
dosage [211]. A glucose-responsive “closed-loop” insulin delivery system that mimics the
function of pancreatic cells has the potential to significantly improve the quality of life
and health status of diabetic patients. Yu et al. [212] reported a novel glucose-responsive
insulin delivery device using a painless microneedle-array patch (“smart insulin patch”).
The smart insulin patch effectively regulated blood glucose in a chemically induced mouse
model of type 1 diabetes.

At present, microneedle transdermal drug delivery systems have been applied to
small-molecule drugs, such as nicotine, painkillers, and therapeutic drugs for rheumatoid
arthritis, neurological diseases, and tumors [213,214].

In recent years, microneedle transdermal drug delivery technology has been con-
tinuously iterated and developed, with the latest products featuring wearable and pro-
grammable capabilities. Currently, microneedle technology is highly integrated with elec-
tronic systems, flexible printed circuit board technology, microfluidic technology, glucose
extraction, safe and sensitive continuous blood glucose monitoring, and other technologies.
It has continuously made progress in intelligent, controllable, accurate and low reagent
loss for drug release, and is being developed in conjunction with body fluid detection
technology, wearable technology, macromolecule and targeted cellular drug delivery tech-
nology [215].

5.2. Needle Free Injection

Needle-free injection, also known as jet injection, was initially utilized for vaccine
administration. This method employs a high-pressure jet generated by a pressure source
to propel the drug through a thin nozzle, rapidly delivering the medication into the skin
and facilitating its dispersion to the treatment site. Presently, this technique is utilized
for the delivery of various drugs, such as insulin, lidocaine, DNA vaccines, and inter-
fering RNA. A standard needle-free injection device operates by pressurizing liquids to
approximately 20 MPa, with typical pressures ranging from 30 to 300 N. Additionally, it
showcases the potential application of linear Lorentz-force motors in highly controllable,
high-volume portable jet injectors, which can be beneficial for drug delivery in both animals
and humans [216].

Needle-free injections are currently employed for administering medications such as
liquid interferon, antibiotics, influenza vaccines, low molecular weight heparin, hepatitis B
vaccines, insulin, morphine, lidocaine, erythropoietin, growth hormone, powder protein,
peptide drugs, nucleic acid drugs, chemicals, and gene vaccines. This method is particularly
favored by patients with phobias and pediatric patients, as it eliminates the risk of cross-
infection associated with traditional syringe needles. However, it is important to note that
the volume of medication that can be administered per needle-free injection is limited, and
the injection must be administered perpendicular to the skin at the injection site to prevent
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increased pain and ensure complete penetration of the drug into the subcutaneous area.
Due to the inability to accurately assess the depth of penetration, secondary supplemental
drug administration is not feasible. As technology continues to advance, it is anticipated
that these limitations will be addressed and resolved.

At present, needle-free drug delivery technology is advancing towards high-capacity
delivery, self-care, and gene therapy. Needle-free thermoresponsive jet injectors have been
shown to effectively deliver plasmid DNA to the skin, resulting in higher protein expression
compared to needle injectors [217]. Large-capacity subcutaneous needle-free syringes have
an injection tolerance of up to 2.0 mL, and the injection effect is generally better than two
separate 1.0 mL injections using a needle-free injection system [218].

5.3. Micro Infusion Implantation Device

Intracranial local administration has been shown to reduce the risk of drug tolerance
by connecting the implanted catheter to the subcutaneous drug reservoir or an external
microinfusion pump with discontinuous/intermittent drug release through programmable
microinfusion pumps. This method is primarily used to treat conditions such as epilepsy
and refractory pain. A recent clinical study successfully utilized a subcutaneous implantable
micro-infusion pump connected to a catheter system to deliver broad-spectrum valproic
acid into the ventricles of patients with drug-resistant epilepsy [219]. The results showed
effective improvement in the quality of life of the patient and no localized periventricular
toxicity, although some mild adverse reactions were observed. Similarly, the intrathecal
drug infusion system delivers drugs directly into the subarachnoid space, allowing the
drugs to act directly on the spinal cord center for long-term pain control. This method is
characterized by its good analgesic effect, with the dosage being only 1/1000 of intravenous
medication and 1/300 of oral medication, significantly reducing the side effects of long-
term medication. Once implanted, the operation is relatively simple and easy, significantly
improving the quality of life of patients.

An innovative injectable capsule, known as L-SOMA, has been engineered
With an advanced driving and delivery mechanism. This system facilitates the en-

capsulation of both small-molecule drugs and large-molecule drugs, such as monoclonal
antibodies, while doubling the drug loading capacity [220]. Remarkably, L-SOMA can
achieve a peak plasma concentration akin to subcutaneous injection standards within a
mere 30 min post-administration, and it can reach an impressive bioavailability of 80%
within a few hours.

6. Challenges and Prospects

In the context of an aging global population and a surge in chronic diseases in both
developed and developing nations, the demand for sophisticated drug delivery systems
is escalating. These technologies have been pivotal in the development of numerous
pharmaceutical products, particularly by enhancing the targeted delivery of therapeutic
agents. A plethora of novel drug delivery technologies have emerged, focusing on main-
taining drug stability, enhancing biocompatibility, and optimizing delivery pathways. For
instance, a straightforward dehydration-rehydration method was employed to load the
radiation protection drug amphotericin onto Spirulina, a natural and active microalgae.
This approach resulted in an oral delivery system that offers comprehensive protection
for the entire small intestine, prevents radiation-induced intestinal damage, preserves
the stability of intestinal microbiota, and mitigates the long-term toxicity associated with
amphotericin [221]. Similarly, the team of Zhou Min leveraged spiraled microalgae loaded
with curcumin to facilitate the gradual release of the compound, thereby extending its
retention time in the intestine and boosting the absorption efficiency and therapeutical
efficacy of curcumin [222].

In the domain of device-based drug delivery, numerous innovative products such as
microneedle and needle-free transdermal systems have been introduced internationally.
Roughly 30 pharmaceuticals employing polymer and liposome delivery technologies
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and approximately 15 drugs utilizing antibody–drug conjugates (ADCs) have gained
global authorization. In addition, around 40 medications based on extracellular vesicle
delivery are currently in clinical trials, while biomimetic and live cell delivery systems
are still in the research and development phase [223]. The international delivery systems
sector encompasses a broader array of pioneering enterprises and demonstrates a more
robust impetus for the advancement of drug delivery systems. Major corporate entities
have escalated their investments in the drug delivery system market. Nonetheless, it
is imperative to intensify foundational research into the technologies associated with
novel delivery systems and to enhance our intrinsic innovative capabilities. In the realm
of pharmaceutical advancement, drug delivery systems have evolved to encompass a
spectrum of modalities, including macromolecular structures, cellular entities, sophisticated
intelligent devices, and nanorobotic constructs, all of which serve as potential vectors for
drug administration. The technologies and instruments integrated within the domain of
delivery systems are both rich and varied, characterized by formidable technical challenges
and a rapid pace of innovation. A myriad of drug delivery systems exists, each with
its own set of merits and limitations, succinctly summarized in Table 3. Present clinical
applications suggest that the integration of multiple technologies is the trajectory of future
development. The synergistic employment of various drug delivery systems can mitigate
their individual drawbacks and amplify their respective strengths. The quest for optimal
delivery technologies in the pharmaceutical sector is unending, with ceaseless endeavors
to refine and enhance drug delivery systems for greater efficacy. From the standpoint of
veterinary practitioners, the application of drug delivery systems in the veterinary sphere
remains relatively constrained.

Table 3. Advantages and disadvantages of main novel drug molecular delivery systems.

DDS Drug Advantages Disadvantages

Liposomal DDS

protac
Peptides and proteins

nucleic acid
cell

low toxicity
biocompatibility

non-immunogenicity

low drug loading
poor stability

high production costs
potential toxic side effects

Nanoparticles-based DDS
protac

Peptides and proteins
cell

biodegradability
biocompatibility

low toxicity
safety and efficacy

potential toxicity
unclear mechanism and

polymer stability

Polymer
Micelle DDS

insoluble protac
Chinese herbal monomer

stability
Solubilization
low toxicity

long-term safety
limitations in clinical

application

Hydrogel DDS protac
Peptides and proteins

biocompatibility
Biodegradability

low toxic side effects

heavily depends on the
internal microenvironment

Inorganic Nanoparticles DDS
protac

Peptides and proteins nucleic
acid

bioavailability
low toxic side effects

tolerance

unclear toxicity
biological distribution, and

clearance methods

cell DDS

anti-body
protac

Peptides and proteins nucleic
acid

Bacteria and viruses

biocompatibility
low toxicity

biological functions
targeting

low immunogenicity

poor release control
limited loading capacity

Extracellular Vesicle DDS
Proteins, lipids, nucleic acids,

sugars, and other
macromolecules

cycling stability
biocompatibility

biological barrier permeability

immature technology
unclear side effects
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Table 3. Cont.

DDS Drug Advantages Disadvantages

Viral DDS nucleic acid high infection rate, targeting,
and mature technology

one time delivery
high immunogenicity

safety issues
limited loading capacity

Bacterial DDS protac
Peptides and proteins

targeting
good transport ability

weak survivability
imprecise colonization

safety issues

Bioparticle DDS nucleic acid targeting
carry mRNA

unknown half-life
and pharmacokinetics

potential immunogenicity

Coupling
Targeted DDS

protac
anti-body

nucleic acid
Peptides and proteins

targeting
extrahepatic delivery

biodegradable
low immunogenicity

solubilization
organizational permeability

enzymatic degradation
chemical instability
poor cycle stability

immunogenicity
high production cost

Intelligent DDS

protac
Peptides and proteins

nucleic acid
cell

precise control
targeting

penetrate tissues
structural designability

programmability
biocompatibility

unclear harmacokinetics,
intracellular metabolic

pathways, in vivo
distribution, and clearance

mechanisms

Extracorporeal Device

protac
Peptides and proteins

anti-body
nucleic acid

cell

Targeting
improve drug delivery
efficiency and patient

compliance

developing towards
high-capacity drug delivery

From the standpoint of veterinary practitioners, the application of DDS in the vet-
erinary sphere remains relatively constrained. Currently, sustained-release veterinary
pharmaceuticals are predominantly antiparasitic and antibiotic agents, with oral and in-
jectable forms being the primary dosage mechanisms. Targeted nanocarriers, particularly
liposomes, are frequently utilized as drug delivery systems in veterinary medicine, while
other nanomaterials are more commonly employed as feed supplements and have not been
extensively investigated. Biological adhesive agents are predominantly utilized abroad for
sedation and antibiotic delivery, and domestically for anti-inflammatory purposes [224].
Transdermal formulations are predominantly used abroad for analgesia and insecticide ap-
plications, and domestically as anti-inflammatory and antipyretic analgesics. Implantable
controlled-release veterinary drug formulations are primarily used abroad for reproduc-
tive regulation and insulin-like sustained release, and domestically as anti-fertility and
antiparasitic implants.

From the perspective of scientific researchers, drawing on the rapid development of
drug delivery systems, the core of industrializing delivery system technology includes
basic research, interdisciplinary research, and medical industry integration. Therefore,
in future research, it is crucial to maintain a keen sense of industry hotspots, an open
mindset towards technological collisions, and the principles of keeping up with the times
and adhering to innovation.

7. Conclusions

Over the past two decades, drug delivery systems (DDSs) have undergone a re-
markable transformation, transitioning from macroscale to nanoscale technologies and
advancing towards intelligent, targeted delivery mechanisms. This paper presents a com-
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prehensive review of the latest advancements in DDS technologies. Notably, nanoscale
drug delivery systems have demonstrated remarkable flexibility by utilizing a diverse
array of materials, including organic, inorganic, and hybrid organic-inorganic substances.
These systems leverage the unique properties of nanoparticles, such as the small size effect,
volume effect, surface effect, and quantum effect, to significantly enhance drug solubil-
ity, stability, and targeting capabilities. Consequently, they hold immense potential for
applications within the biomedical field. However, several challenges persist that require
resolution. The intricate interactions between nanocarriers and biological membranes, as
well as the extracellular matrix, demand further detailed investigation. Additionally, the
cytotoxicity and immunogenicity of these systems necessitate comprehensive nanotoxi-
cological studies to evaluate their pharmacokinetic and pharmacodynamic properties in
animal models. Biological carriers, which are derived from endogenous substances and
retain the structural and functional attributes of their biological sources, have the poten-
tial to minimize undesirable immune responses. By emulating the structures of highly
infectious agents or pathogens and replicating their internal mechanisms or modes of
action, these carriers can deliver drugs with pinpoint accuracy to their intended targets,
making them a highly promising approach for targeted DDS. Furthermore, some experts
suggest that integrating DDS with cutting-edge technologies such as microfluidics, 3D
printing, CRISPR-Cas9, and quantum sensing may represent the future of drug delivery
systems. However, these innovative and creative approaches remain theoretical, and there
are limitations to DDS approved by the FDA (Table 4). Therefore, extensive research and
clinical trials are necessary to enhance the efficacy of these modern drug delivery systems
for improved clinical applications. The synergistic use of multiple DDS is also a promising
strategy, considering factors such as drug toxicity, adverse effects, mode of administration,
and dosage. For instance, intelligent drug delivery systems based on nanocarriers can
dynamically regulate drug release in response to changes in the tumor microenvironment,
thereby enhancing therapeutic efficacy and reducing toxic side effects. The synergy of mul-
tiple DDS may lead to the development of new strategies with broader clinical applications
and prospects compared to using a single drug delivery system.

Table 4. FDA-approved DDSs and the signature drugs.

DDS Trade Name Significance Year

the spansule
technology

Spansule® the first 12-h release technology 1952

Contac® delivering phenylpropanolamine hydrochloride and
chlorpheniramine maleate 1974

Dexedrine® delivering dextroamphetamine sulfate 1982
polymer Lupron Depot® the first long-acting injectable PLGA polymer formulation 1989

Abraxane® drug-polymer composite nanoparticles 2005

liposomes
Doxil® the first PEGylated liposome 1995

Onpattro® lipid-based nanoparticles used for the delivery of siRNA 2018
Comiranty® the first lipid-based nanoparticles used in COVID-19 vaccine 2021

nanomedicine
Rapamune® the first nanocrystal formulation 2000
Onpattro® lipid-based nanoparticles used for the delivery of siRNA 2018

ADC Mylotarg® the first antibody–drug conjugate approved for clinical use 2009
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