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Abstract: The incidence of floods is rapidly increasing globally, causing significant property damage
and human losses. Moreover, Vietnam ranks as one of the top five countries most severely affected
by climate change, with 1/3 of residents facing flood risks. This study presents a model to identify
flood susceptibility using the analytic hierarchy process (AHP) in the GIS environment for Hanoi,
Vietnam. Nine flood-conditioning factors were selected and used as initial data. The AHP analysis
was utilized to determine the priority levels of these factors concerning flood susceptibility and to
assess the consistency of the obtained results to develop a flood-susceptibility map. The performance
of the model was found to be significant based on the AUC value for the obtained receiver operating
characteristic (ROC) curve. The flood-susceptibility map has five levels of flood susceptibility: the area
with a very high susceptibility to flooding accounts for less than 1% of the map, high- susceptibility
areas for nearly 11%, moderate-susceptibility areas for more than 65%, low- susceptibility areas for
about 22%, and very low-susceptibility areas for 2%. Most of Hanoi has a moderate level of flood
susceptibility, which is expected to increase with urban expansion due to the impacts of urbanization.
Our findings will be valuable for future research involving urban planners, and disaster management
authorities and will enable them to make informed decisions aimed at reducing the impact of urban
flooding and enhancing the resilience of urban communities.

Keywords: flood susceptibility; flood-conditioning factors; analytic hierarchy process; geographic
information systems; Hanoi

1. Introduction

Flooding is the most common form of natural disaster and has serious consequences
globally [1,2]. The frequency and duration of floods are increasing, with floods having
quadrupled in tropical regions from 1985 to 2015 [3]. Moreover, the estimated risk of floods
escalated by 20 to 24% during the period from 2000 to 2018 [4]. In addition, between
1970 and 2019, floods accounted for 44% of all documented natural disasters and were the
cause of 31% of the total economic losses [5] (pp. 16–21), with 1298 major flood incidents
recorded worldwide between the years 2010 and 2019 alone [6] (pp. 50–55). Many previous
studies have shown that heavy rainfall is not the only significant factor that influences
flooding; other factors such as unplanned urban growth [7], the ecological environment [8],
changes in land use/land cover [9], inadequate drainage infrastructure [10], and green
infrastructure management [11] also play crucial roles. Harsh weather conditions resulting
from the impact of local climate change and various uncontrolled anthropogenic activities
such as urbanization and population growth have become additional primary causes of
flood disasters [2,12].

Flood disasters are almost inevitable, and there are few ways to prevent or mitigate
the losses caused by flooding. However, by raising awareness of the risks, developing early
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warning plans [13], evaluating hazardous situations [14], and assessing prediction, control,
and monitoring capabilities [15], future risks and damages can be reduced. Traditional
research on water-related disasters is often limited in its approach and resolution, mainly
focusing on imminent threats and recovery after floods [6]. In recent years, the development
of flood susceptibility and risk forecasting models has become a crucial strategy for devising
appropriate adaptation pathways, minimizing human and property losses, and fostering
sustainable urban development. However, there are numerous challenges in the process of
effective flood model construction as there are many complex factors to consider [2,16,17].

To address complex urban issues related to the susceptibility and risk of urban ecosys-
tems to natural disasters and to develop effective models, researchers have used various
methods, such as numerical modeling, statistical analysis, geographic information systems,
machine learning and artificial intelligence, field measurements, and forecasting modeling.
For example, Siam Alam et al., utilized the storm water management model (SWMM) to
design urban drainage systems for urban flood mitigation [18]; Latt, Z.Z. et al. compared
stepwise multiple linear regression and artificial neural networks to improve flood fore-
casting in a developing country [19]; Xiao. T. and colleagues, Liu, L.L. et al. explained
and assessed the susceptibility to landslides using different machine learning classification
methods [20,21] while Trošelj, J. et al. researched methods to accurately predict flash floods
in real time to develop early warning systems [22]. Recently, Guan, F. modeled and re-
solved complex urban characteristics by analyzing images, urban structures, and semantic
dimensions [23]. These research methods have been applied in assessing susceptibility and
risk as well as informing effective mitigation strategies for urban development.

In addition, the utilized multi-criteria decision support system methods combined
with geographic information system (GIS) applications have also been used by many
researchers to manage and analyze the large amounts of data necessary [24]. The analytic
hierarchy process (AHP) [25] is a widely used method to optimize decision-making and
compare complex factors within a set [24]. It has been demonstrated to be successful
in numerous studies, including those related to disaster prediction, flood-susceptibility
assessment, and risk management. For instance, L. Chinh and colleagues employed the
GIS and AHP, among other techniques, to construct a flood risk assessment framework in
Quang Binh, Vietnam [26]. They utilized historical flood mark data and high-resolution
digital elevation models to delineate flood inundation. Similarly, Chen and colleagues
applied a comparable approach to delineate flood-prone areas for two cities in Taiwan in
2011 [27]. The AHP was also used to allocate weights to seven factors related to flood risk
in Greece in 2015 [28]. The AHP is predominantly utilized to ascertain the relative weights
of flood-sensitive factors, with the selection of influencing factors dependent on the area’s
location, survey methodologies, and the researcher’s evaluations.

With global climate warming [29], urbanization [24], and greenhouse gas emissions [30,31],
both the intensity and frequency of floods are expected to increase. Climate change is
forecasted to elevate sea levels along with the frequency and severity of floods in Southeast
Asia and around the world [32,33]. Given the concentration of population and economic
assets in vulnerable areas, Vietnam ranks among the top five countries most severely
affected by climate change [34,35], with one-third of its population currently exposed to
flood risks [36]. Rapid urbanization in Vietnam is exacerbating environmental issues in
urban settings, which is compounded by the growing unpredictability of extreme weather
events [37]. Hanoi, one of the largest and most densely populated cities in Vietnam, has
witnessed increasingly intricate and challenging urban flooding in recent years [38,39].
There have been several studies utilizing various methods and approaches to urban flooding
in Hanoi. Among them, Luo and colleagues presented a calibrated flood model using
reference images to assess the impact of four extreme rainfall events on water depth and
flooded areas in downtown Hanoi [40]. An assessment of future tangible flood damage in
the urban basin of the To Lich River, Hanoi, was conducted by Kefi and colleagues using
spatial analysis methods and the integration of multiple datasets related to flooding [41].
Additionally, Nguyen Hieu and colleagues assessed the status of historical flooding events
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that occurred at the end of 2008 through satellite image analysis, the GIS, and terrain
characteristics [42]. Recently, Loi assessed vulnerability to flooding using the AHP based
on pre-event characteristics in the Hoan Kiem district, Hanoi [43]. Each study has its
strengths and limitations, but collectively, they enhance our awareness and understanding
of the damage caused by urban flooding in Hanoi.

Utilizing a multi-criteria approach, in this study, we crafted a flood-susceptibility
map tailored to Hanoi city to bolster flood-warning initiatives and enrich overall assess-
ment frameworks. In doing so, we hope to aid in the development of flood-mitigation
strategies for urban development planning in the region. In this study, we identified nine
criteria related to the local context. Moreover, based on consultation with six experts, we
incorporated the AHP and GIS methodologies to assess flood susceptibility. In addition
to natural elements such as elevation and precipitation, the research also scrutinizes an-
thropogenic factors such as land usage and proximity to roadways, which are recognized
as pivotal contributors to urban inundation [44]. Receiver operating characteristic (ROC)
curves and historical flood data were employed to evaluate the model efficacy and validate
its outcomes.

2. Study Area

Hanoi, located between latitude 20◦34′ to 21◦18′ N and longitude 105◦17′ to 106◦02′ E,
is Vietnam’s largest centrally administered city, spanning an area of 3359.82 square kilo-
meters and hosting a population of 8.4 million people (Figure 1a). It ranks as the nation’s
second most populous urban center and has the second highest population density, albeit
with an uneven demographic distribution. The majority of residents live in the 12 central
districts, while those in the 17 suburban districts are predominantly engaged in agricultural
pursuits. Geographically, Hanoi’s terrain gradually descends from north to south and from
west to east, mirroring the natural flow patterns of its principal rivers (Figure 1b). The
city can be divided into two regions: low and fairly flat plains, accounting for most of
the city area, and mountainous areas concentrated in the northern and western suburbs
of Hanoi. The city is located in a typical hot and humid monsoon climate zone, where
temperatures increase from April to June, while substantial rainfall occurs from June to
September (Figure 2), leading to frequent flooding [45]. The average annual precipitation is
1760 mm, with an average of around 114 rainy days per year [39].

Figure 1. (a) Location of study area in Vietnam. (b) Surface-water system of the study area. (c) Historic
flood locations (2012–2018).
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Figure 2. Average monthly rainfall and humidity in Hanoi in 2018.

Hanoi is characterized by an abundance of lakes and rivers. The prominent Red River
is particularly noteworthy, spanning 1183 km and originating from China through the
Gulf of Tonkin. Many areas within Hanoi’s historic core, including the Ba Dinh, Dong
Da, Hai Ba Trung, and Hoan Kiem districts, exhibit notably lower elevations than the
average level of the Red River [46]. Rapid urbanization since 1990 has led to a significant
deterioration in the quality of Hanoi’s lakes and rivers, with many now experiencing severe
pollution. Flooding frequently occurs in various parts of the city during the rainy season,
which is typically from May to October. For instance, in the extensive flooding in Hanoi
in 2008, there were at least 92 deaths [40] and over 55,000 houses were damaged, with
further significant property damage and 40,000 people being displaced [47]. In recent years,
urbanization and city expansion coupled with climate change have led to more frequent
flooding in Hanoi, increasing concern among residents during the rainy season.

3. Materials and Methods
3.1. Data Preparation

After systematically reviewing various sources, including field observations, group
discussions, literature reviews, and data from government agencies and expert opinions, we
selected and established nine relevant susceptibility factors for the Hanoi area: topographic
wetness index (TWI), elevation, slope, land use/land cover (LULC), normalized difference
vegetation index (NDVI), precipitation, distance from roads, distance from streams, and
drainage density. The initial flood-susceptibility data for the research area were selected
and the feasibility of data collection was carefully assessed based on recommendations from
previous studies (Table A1 in Appendix A) [48–51]. Subsequently, these data were cleaned
and preprocessed ready for analysis. This involved format conversion, error checking
and adjustment, and the creation of usable data layers for the analysis. These factors
were subsequently characterized based on field surveys and long-term flood records in
Hanoi and processed within a GIS framework. A digital elevation model (DEM) and 30-m
resolution Shuttle Radar Topography Mission (SRTM) data were employed for mapping
terrain factors. Indices for vegetation, water, and land use were derived from Landsat
8 imagery obtained from the United States Geological Survey (USGS). Annual average
precipitation data were obtained from the high-resolution gridded datasets provided by the
Climatic Research Unit (CRU). Further details regarding data sources are shown in Table 1.
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Table 1. Data sources for the study.

№ Dataset Source Classification Methods

1 SRTM DEM https://earthexplorer.usgs.gov/, accessed on 1 May 2023.

2 Elevation https://earthexplorer.usgs.gov/, accessed on 20 May 2023. Natural break

3 Distance from streams SRTM DEM Supervised classification

4 Slope SRTM DEM Supervised classification

5 NDVI
Landsat 8
The United States Geological Survey (http://www.usgs.gov/,
accessed on 1 June 2023)

Natural break

6 LULC https://earthexplorer.usgs.gov/, accessed on 31 May 2023. Supervised classification

7 Distance from roads Open street map/Field survey Manual

8 Precipitation High-resolution gridded datasetsClimatic Research Unit (CRU) Natural break

9 Drainage density SRTM DEM Natural break

10 TWI SRTM DEM Natural break

3.1.1. Flood Inventory Mapping

Detailed flood inventory mapping, involving a database of historical flood events in an
area, is crucial for mapping flood susceptibility [52]. The quality of historical flood data de-
termines the accuracy of the predictions regarding flood occurrence in the research area [51].
Over the past decades, the scarcity of flood data has been addressed through remote sensing
and explored in the field of citizen science. The importance of citizen contributions in data
augmentation of integrated modeling technologies has been demonstrated [53]. Based
on the available data from annual flood reports and studies on flooding in Hanoi, our
inventory map was constructed with 148 flood points (Figure 1c) from the period from 2012
to 2018 [39]. The locations representing flood-affected areas were adjusted, confirmed, and
mapped using GPS points collected during field surveys. Flood-related data in this study,
such as flood depth, duration, and frequency, were verified in the respective areas through
on-site interviews with local residents during the survey.

3.1.2. Flood-Conditioning Factors

In the present study, a pixel-based analysis was conducted to assess the attributes of
the used models. The sensitivity factors were resampled into a 30 m × 30 m grid, which
was consistent with the size of the available DEM pixels. All vector-format factors were
converted into raster format with uniform grid dimensions. All maps of the 9 elements
were prepared and converted to the WGS_1984_UTM_Zone 48N coordinate system with
a resolution of 30 m × 30 m, ensuring consistency in spatial resolution. The map of the
component elements with units was classified into five layers using native Jenks classifica-
tion in ArcGIS (www.arcgis.com) and manual classification. Through surveys, analyses,
literature reviews, and consultation with experts, these five layers were re-ranked into five
levels of influence on flood susceptibility (Table 2): 1—very low; 2—low; 3—moderate;
4—high; and 5—very high.

Table 2. Classes and rating of the flood-conditioning factors.

Class
Rating

Factor

TWI Elevation Slope Precipitation LULC NDVI Distance
from Streams

Distance
from Roads

Drainage
Density

1 <−16 >59 >28 <16 Vegetation >0.3 >10,000 >5000 <0.25

2 −16–(−13) 31–59 5–28 16–16.2 Base soil 0.2–0.3 1000–10,000 1500–5000 0.25–0.5

3 −13–(−6) 8–31 2–5 16.2–16.4 Agriculture 0.1–0.2 500–1000 500–1500 0.5–0.75

4 −6–2 −6–8 1–2 16.4–16.6 Settlements 0.01–0.1 250–500 100–500 0.75–1

5 >2 <−6 <1 >16.6 Water body <0.01 <250 <100 >1

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.usgs.gov/
https://earthexplorer.usgs.gov/
www.arcgis.com
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1. Topographic Wetness Index (TWI)

The TWI, representing spatial moisture variations within an area, is a crucial factor
in constructing flood-susceptibility models. It helps to calculate the potential of water
permeability in each region [54]. Areas with a high TWI are capable of retaining water and
have a higher susceptibility to flooding [55]. The TWI is typically constructed based on
information about the slope and flow accumulation of a region, as shown in Equation (1).

TWI = ln
(

α

tanβ

)
(1)

where α represents the flow accumulation, indicating the ability to channel water from a
point on the map to the main drainage point; β is the slope of each grid cell in the model,
calculated using elevation data. In this study, the TWI was computed based on the SRTM
DEM map of Hanoi, and five layers of TWI values were considered and ranked. Among
them, areas with TWI values greater than 2 had a very high flood susceptibility and values
from (−6) to 2 had a high flood susceptibility; TWI values from (−6) to (−13), (−13) to
(−16), and less than (−16) ranked as moderate, low, and very low flood susceptibility,
respectively. This is depicted in Figure 3a.

Figure 3. Flood-conditioning factors: (a) TWI. (b) elevation. (c) slope. (d) precipitation. (e) LULC.
(f) NDVI. (g) distance from streams. (h) distance from roads. (i) drainage density.
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2. Elevation and Slope

Elevation and slope represent two primary factors that influence flood occurrence
within any given region [56]. Typically, areas prone to flooding exhibit low surface slopes
and are situated at lower elevations, as evidenced by the elevation classifications commonly
used in flood-mapping studies [48,57,58]. Regions at lower elevations are more susceptible
to flooding due to the ease with which rainfall can flow from higher to lower areas under
natural conditions [48]. Hanoi is a city in a flat plain area, with most of its territory lacking
significant elevation differences. However, due to the gradual decrease in the terrain height
and the influence of dense river and lake networks, surface water tends to flow from north
to south. According to the research results, five elevation layers were considered for the
flood-susceptibility assessment and were ranked from very low to very high. The areas
with elevations of 8 m or lower relative to sea level were considered to have a high and
very high flooding susceptibility. The northern area with elevations ranging from 8 to 31 m
was assessed as moderate, while areas with elevations above 31 m were considered to have
a low and very low flood susceptibility.

A specific slope is defined as the percentage ratio of elevation model variance across
different regions; similar gradings have been assigned to the percentage slope in var-
ious studies, with higher rankings typically attributed to areas with lower slopes and
vice versa [58,59]. Based on the survey results and expert opinions, areas with slopes
of 2 degrees or less were classified as having high and very high flood susceptibility. In
addition, areas with slopes ranging from 2 to 5 degrees had moderate flood susceptibility,
and slopes above 5 degrees had low and very low flood susceptibility. Figure 3b,c illustrate
the level of flood susceptibility based on the assessment of elevation and slope distribution.

3. Precipitation

Figure 3d presents the corresponding flood-susceptibility levels based on the average
annual precipitation in the study area. The accumulation of rainfall in an area over a long
period can increase the susceptibility to flooding, particularly when groundwater levels
cannot drain away quickly enough. The probability of flooding rises with higher levels
of rainfall [24]. Being located in a tropical monsoon region, Hanoi receives a significant
amount of annual precipitation. This is characterized by heavy downpours and intense
rain mainly from June to September during the monsoon season. The total rainfall during
the rainy season can account for 80–85% of the total annual rainfall, and the maximum
daily rainfall can reach 350 to 400 mm (Vietnam Magazine National Hydrometeorology
2016; vnmha.gov.vn), leading to recurrent flooding. In this study, a precipitation map was
generated based on Hanoi’s 2020 weather data. It was classified from low to high values
corresponding to very low to very high flooding susceptibility.

4. Land Use/Land Cover (LULC)

The land use/land cover model is closely linked to the frequent incidence of urban
flooding, as it pertains to the infiltration rate in which forested areas allow for greater
infiltration than paved surfaces in urbanized regions [60,61]. Urbanized and developed
surfaces produce increased runoff and thus experience a reduced capacity for absorption
over time. Consequently, they tend to have a higher susceptibility to flooding compared
to abandoned land and land with vegetative cover [62]. Using a supervised classification
method with various features on the images collected from Google Earth and field surveys,
Landsat images from 2023 with a spatial resolution of 30 m were analyzed to generate
the LULC map. The resulting map depicted the distribution of five primary land types:
agricultural land, vegetation, settlement land, vacant land, and water bodies. Considering
that the urbanization process potentially generates more surface runoff compared to vacant
land and land with vegetative cover, settlement areas were assigned relatively high weights
in this study. Considering expert guidance and the results of field surveys, water bodies
and settlement land were identified as having a very high and high level of susceptibility
to flooding, respectively. In Hanoi, agricultural land in suburban zones covers a significant
area. Despite their susceptibility to flooding, these agricultural production areas drain

vnmha.gov.vn
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more effectively than settlement areas. Vacant land and vegetation were assessed as being
areas with a low and very low susceptibility to flooding, respectively (Figure 3e).

5. Normalized difference vegetation index (NDVI)

The NDVI, which is widely used to identify flood events [63,64], is a coefficient for
assessing vegetation health and density. Vegetative cover plays a crucial role in mitigating
flood susceptibility by interrupting water flow, increasing delay times, and reducing flood
hazards, whereas deforested areas can intensify water force and soil erosion, consequently
elevating flood susceptibility [65]. Therefore, areas with lower vegetation indices are
prone to higher flood susceptibility compared to those with higher vegetation indices. In
the current study, the NDVI was computed using the Landsat 8 dataset represented by
Equation (2).

NDVI =
Bn5 − Bn4

Bn5 + Bn4 (2)

where Bn5 and Bn4 are near-infrared bands and red bands, respectively. According to the
research results, areas in Hanoi with an NDVI lower than 0.1 are more prone to flooding.
Most urban settlement areas in Hanoi have a low NDVI, with very few areas exhibiting an
NDVI below 0.01 which represents a very high flood susceptibility. Moreover, areas with
an NDVI ranging from 0.1 to 0.2 were considered to have moderate levels of susceptibility.
Areas with low and very low flood susceptibility have NDVI values ranging from 0.2 to 0.3
and greater than 0.3, respectively. Figure 3f shows the calculated NDVI of the study area.

6. Distance from streams

Areas situated near stream networks tend to have a higher susceptibility to flooding
compared to those located farther away, largely due to their proximity to the flow path of
surface runoff [24]. The relationship between flood susceptibility and distance from the
stream network can be somewhat subjective and varies based on the specific conditions of
the study area. For instance, Mahmoud and Gan categorized areas within a 200-m radius
of streams as highly susceptible to flooding in arid regions in the Middle East, while areas
beyond 2000 m were considered less susceptible [24]. Conversely, in Markham, Sa-manta
and colleagues suggested that areas at distances of less than 1000 m and 1000–2000 m from a
stream network exhibited very high and high flood susceptibility, with those beyond 6000 m
showing a low susceptibility [66]. Additionally, in Kathmandu, Chaulagain and colleagues
identified areas within a 126-m range from river networks as having a very high flood
susceptibility [67]. Numerous studies have shown an inverse relationship between flood
susceptibility and distance from stream networks [28,68]. Drawing from historical flood
data in Hanoi, areas within a 250-m radius of streams were classified as highly susceptible
to flooding, while those at distances of 500, 1000, 10,000, and more than 10,000 m from
streams were assessed to have a high, moderate, low, and very low flood susceptibility,
respectively (Figure 3g).

7. Distance from roads

Road construction results in an increase in impermeable surfaces, alters topogra-
phy, and induces changes in the hydrological patterns in areas near the roads [54]. For
flood-susceptibility modeling, proximity to roads serves as a significant regulatory fac-
tor, impacting surface-water flow dynamics or accumulation patterns [69,70]. Drawing
from historical flood events in Hanoi, areas prone to frequent and severe annual flooding
tend to cluster around major intersections or densely populated regions. In this study,
areas within 100 m of roads were classified as very highly susceptible to flooding, those
within 100–500 m were deemed highly susceptible, while areas located between 1500 m to
5000 m and beyond 5000 m from roads were considered to have low and very low flood
susceptibility (Figure 3h).
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8. Drainage density

A drainage density map is created by dividing the total length of all streams in a
watershed by the total area it covers [71]. In our study, the drainage density map was
generated using GIS density analysis tools. A higher drainage density leads to larger
surface-water flows, increasing flood susceptibility, while a lower density indicates lower
flood susceptibility [72]. Thus, the expansion of the drainage network is crucial in creating
surface-water flows [73], which, in turn, increases the susceptibility to flooding [24]. In this
study, the drainage density of Hanoi was divided into five classes. Areas with drainage
densities ranging from 0.75 to 1 and greater than 1 were identified as having a high and
very high flood susceptibility, respectively. In addition, drainage densities lower than 0.25,
ranging from 0.25 to 0.5, and ranging from 0.5 to 0.75 were considered to have a very low,
low, and moderate impact on flood susceptibility, respectively. Figure 3i illustrates the
drainage density map of the study area.

3.2. Methods

The methodology applied in this study included calculating the flood-susceptibility
index (FSI), weighting the conditioning factors for the entire study area, and evaluating
them spatially using AHP techniques in the GIS environment. The main objective of this
GIS-based multi-criteria decision analysis was to quantify the flood-prone area of Hanoi
across five flood-susceptibility zones (very high, high, moderate, low, and very low).

The workflow implemented in the current study comprised four main stages as shown
in Figure 4. These stages included the following:

1. A literature review, data collection, and preprocessing of the geographic spatial data,
including field surveys and a compilation of historical flood points for the historical
flood-inventory map;

2. The identification and selection of sensitive factors, followed by their evaluation and
classification; then, weights were assigned to the factors using the AHP model;

3. Overlay analysis and the creation of the flood-susceptibility map using the GIS map
overlay method;

4. Evaluation and validation of the effectiveness of the flood-susceptibility map using
the ROC curve.

Figure 4. Research flow.
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3.2.1. Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) is a decision-making system that involves
multiple criteria and determines the weights of each trait grounded on the knowledge and
experience of experts [74]. The AHP allows the evaluation of quantitative, qualitative, and
complex criteria and factors on the same scale [75]. Assaying the experts’ order of priority
helps organize a complex problem into a hierarchical structure of lower problems, making it
easier to approach [76,77]. Within this, the pairwise comparison method is a powerful tool
that helps decision-makers subjectively determine the significance weights of each criterion
in a study, thus creating a common system for decision-making processes grounded on
multiple attributes [78]. AHP has been used in flood disaster management [79] and ranking
projects for disaster recovery [78].

The AHP was used to compare each pair of factors on a 9-point scale (Table A2).
In this, when two factors were of equal importance, a value of 1 was assigned; a value
of 9 determined the greatest importance for a factor [74,80]. The compared values were
organized as a diagonal matrix. Then, the 9 × 9 square comparison matrix and the relative
score of each factor were determined by the diagonal matrix and its inverse matrix, in
which the diagonal elements had a value of 1 to ensure that each factor was compared with
itself. The comparison matrix is represented by Equation (3).

A =
[
aij
]

n∗n =

a11 a12 . . . a1n
a21 a22 . . . a2n
an1 an2 . . . ann

 aij =
1
aij

(a ij ̸= 0) (3)

Consistency is an important factor in the AHP as it ensures that choices and rankings
are made consistently and logically. Therefore, checking the consistency of the comparison
matrix is an important part of the AHP process. Saaty’s method is one of the most common
ways in which to do this [25]; it produces a consistency index and consistency ratio (CR,
Equation (4)).

CR =
CI
RI

(4)

where CI is the consistency index, which can be calculated based on Equation (5), and RI is
the random inconsistency index value, which is dependent on the number of factors used
in the pairwise matrix (Table 3).

CI =
γmax − n

n − 1
(5)

where γmax is the maximum eigenvalue of the judgment matrix and n is the total number
of factors (Equation (6)).

γmax = ∑n
i=1

[(
∑n

j=1 aij

)
× wi

]
(6)

Table 3. Random consistency indices for randomly generated matrices [19].

n 3 4 5 6 7 8 9 10 11

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51

The CR value < 0.1 implies an acceptable accuracy for the computed matrix in the
AHP analysis [74]. In this study, calculating the weights of factors using the AHP was
conducted based on preliminary surveys of local residents and the opinions of six experts
in Hanoi city.

3.2.2. Survey of Experts and AHP Calculation

Our expert survey was conducted through online discussions with six experts in
Hanoi in the second quarter of 2022. The experts included a researcher in the field of
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geography (R1) and a researcher in natural geography (R2) at Hanoi University of Natural
Sciences; two environmental engineering researchers at the Vietnam Academy of Science
and Technology (R3) and Hanoi University of Science and Technology (R4); a lecturer in
urban management at Hanoi Architectural University (R5); and an urban planning architect
at the Hanoi City Planning Institute (R6).

In this study, the relative importance of flood-conditioning factors was determined
based on priority levels collected from residents during field surveys. Subsequently, the
nine selected calculation component factors were accepted by the six experts. A pairwise
comparison matrix was established from each expert (Figure A1), which resulted from the
AHP pairwise comparisons after weighting and CR testing. For CR > 0.1, respondents were
asked to reconsider and adjust their answers.

After obtaining acceptable CR values in the pairwise comparison matrices from each
expert, the average input values of the six experts were calculated to produce a single
pairwise comparison matrix (Table 4). Table 5 presents the normalized values from Table 4,
which were used to calculate the weights of each conditioning factor and check the CR.
The final pairwise comparison matrix was adjusted under the direction of the experts to
achieve an acceptable CR and refine the weights of the conditioning factors.

Table 4. Classes and ratings of the flood-conditioning factors.

TWI Elevation Slope Precipitation LULC NDVI Distance
from Streams

Distance
from Roads

Drainage
Density

TWI 1 1 3 1 1 1 1 1 3

Elevation 1 1 2 1/2 1/3 1/2 1/2 1/3 2

Slope 1/3 1/2 1 1/2 1/3 1/3 1 1/2 1

Precipitation 1 2 2 1 1/3 1/2 1/2 1/3 1

LULC 1 3 3 3 1 2 2 1 3

NDVI 1 2 3 2 1/2 1 1/2 1/3 1

Distance from streams 1 2 1 2 1/2 2 1 1 3

Distance from roads 1 3 2 3 1 3 1 1 4

Drainage density 1/3 1/2 1 1 1/3 1 1/3 1/4 1

Table 5. Normalized pairwise comparison matrix.

TWI Elevation Slope Precipitation LULC NDVI Distance
from Streams

Distance
from Roads

Drainage
Density

TWI 0.130 0.067 0.167 0.071 0.188 0.088 0.128 0.174 0.158

Elevation 0.130 0.067 0.111 0.036 0.063 0.044 0.064 0.058 0.105

Slope 0.043 0.033 0.056 0.036 0.063 0.029 0.128 0.087 0.053

Precipitation 0.130 0.133 0.111 0.071 0.063 0.044 0.064 0.058 0.053

LULC 0.130 0.200 0.167 0.214 0.188 0.176 0.255 0.174 0.158

NDVI 0.130 0.133 0.167 0.143 0.094 0.088 0.064 0.058 0.053

Distance from streams 0.130 0.133 0.056 0.143 0.094 0.176 0.128 0.174 0.158

Distance from roads 0.130 0.200 0.111 0.214 0.188 0.265 0.128 0.174 0.211

Drainage density 0.043 0.033 0.056 0.071 0.063 0.088 0.043 0.043 0.053

After calculating the weights, a flood-susceptibility map was prepared using the
weighted sum and overlay approach in a GIS environment, where each factor was multi-
plied by its factor weight using Equation (7).

FSI = ∑n
i=1 wixi (7)

where wi is the weight of factor I, and xi is the classes of flood-conditioning factor i.
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Calibration within the expert acceptance range was again performed to achieve a
high-performance model (AUC > 0.8).

3.2.3. Validation of Model

The accuracy assessment of the models employed is paramount to presenting study
outcomes. Various statistical measures have been utilized by different scholars [81]. Among
these, the area under the curve (AUC) stands out as the most reliable method for evaluating
the proficiency of the multi-criteria decision analysis (MCDA) model due to its straight-
forward design, comprehensive nature, and equitable predictive characteristics. In the
current study, we utilized the AUC as a crucial indicator of the ROC curve. The ROC values
demonstrate the model’s ability to accurately differentiate between positive and negative
observations in the validation sample [82] (Equations (8) and (9)).

x = 1 − specificity = 1 −
[

TN
(TN + FP)

]
(8)

y = sensitivity =

[
TN

(TP + FN)

]
(9)

where TN and FN are true negatives and false negatives, respectively; TP and FP are
true positives and false positives, respectively. The quantitative–qualitative relationship
between the AUC and model performance accuracy, which ranges from 0 to 1 [83], is shown
in Figure 5.

Figure 5. Evaluation of the model based on the AUC value.

4. Results

In this study, a flood-susceptibility map was developed using the widely accepted
and extensively utilized AHP model in a GIS environment through the assessment and
combination of flood-regulating factors, as discussed previously (Section 3.2). The consis-
tency ratio value for the pairwise comparison matrix was 0.049, indicating that the derived
weights of the conditioning factors were consistent.

4.1. Flood-Susceptibility Assessment

The relative weights of flood-conditioning factors derived from the pairwise compar-
ison matrix are presented in Table 6, the susceptibility map is shown in Figure 6. These
reflect the estimated contributions of each factor to flooding susceptibility in Hanoi and
include the TWI (13%), elevation (7.5%), slope (5.9%), precipitations (8%), LULC (18.5%),
NDVI (10.3%), distance from streams (13.2%), distance from roads (18%), and drainage
density (5.5%). Spatial factors with higher weights contribute more significantly to urban
flooding susceptibility compared to those with lower weights.

As depicted in Figure 6, the susceptibility map illustrates flooding susceptibility
classified into five levels: very high, high, moderate, low, and very low. The area estimated
to have a very high susceptibility to flooding constitutes a minute proportion (0.653 km2),
representing less than 1% of Hanoi’s total area. However, more than 65% (2412.57 km2)
of the city’s territory faces a moderate susceptibility to flooding, while areas with a high
susceptibility cover 10.5% (388.314 km2) of the city. Areas with a low susceptibility and very
low susceptibility account for about 22% (814.986 km2) and 2% (74.717 km2

)
of the city,

respectively. As a result of rapid urbanization, the central districts are highly susceptible to
flooding during prolonged heavy rainfall.
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Table 6. Weight and rank of flood-conditioning factors.

Factors Weight Rank

TWI 0.130 4

Elevation 0.075 7

Slope 0.059 8

Precipitation 0.08 6

LULC 0.185 1

NDVI 0.103 5

Distance from streams 0.132 3

Distance from roads 0.18 2

Drainage density 0.055 9

Figure 6. Flood-susceptibility map of Hanoi.
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4.2. Model Validation

A critical step in ensuring the reliability of any model is accuracy evaluation [61].
In this study, the AUC was computed based on flood occurrence points (148 locations)
collected through field surveys in flood-prone areas, city reports, and a literature review.
The ROC curve evaluates the success rate and the prediction accuracy of a model by plotting
training and validation dataset pairs. The AUC value of the success rate curve (Figure 7)
indicates that the success rate of our model is 87.3% (AUC = 0.873), i.e., our model has a
very good accuracy.

Figure 7. AUC value of the model.

5. Discussion
5.1. Flood-Susceptibility Area

The results in Table 6 show that the average LULC, with a weighted score of 0.185,
and distance from roads, with a weighted score of 0.18, have the highest priority among
all the factors in this study, i.e., these two factors were identified as the primary factors
contributing to flooding. Based on historical flooding experience, flood-prone areas are
predominantly concentrated in the 12 central districts of Hanoi, where there is a high
population density and high impervious surface coefficients. Slope and drainage density
play lesser roles in flooding susceptibility in the study area. Figure 3c illustrates that, apart
from the highlands in the West, the majority of Hanoi’s terrain contains slopes ranging from
1–5 degrees. This suggests that the influence of slopes or topographic factors is widespread
across the city, resulting in a uniform susceptibility to flooding in most areas. Areas with a
drainage density greater than one are mainly concentrated on agricultural land, which is
primarily used for rice and flower cultivation.

According to on-site surveys in the 12 central districts, flood-prone areas often coincide
with major intersections or are densely populated zones. They are characterized by high
impervious surface coverage and the flooding is exacerbated by antiquated drainage
systems [84]. This impedes water infiltration into the soil, resulting in surface runoff during
heavy rainfall events. The ongoing urbanization process in Hanoi is expected to rapidly
expand impervious surface areas. Moreover, there is a positive correlation between road
density and flooding frequency, with high-susceptibility flood areas typically located within
500 m of roads. Conversely, flood-safe areas encompass only 24% (889,703 km2) of the
total area and are primarily concentrated in highland regions in the northwest. In recent
years, in addition to recurrent flooding hotspots, Hanoi has witnessed the emergence of
new flood-prone locations in expanding urban areas.
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5.2. Analysis of General Flood-Susceptibility Planning

Hanoi is bifurcated into two parts (Figure 1c), the high-density central districts
(Figure A2) and the expansive suburban districts, which encompass nearly 60% of the
city’s land area dedicated to agriculture (Figure A3). These suburban districts are pivotal to
the city’s food security, contributing significantly to the sustenance of the urban populace.
Notably, a natural event that does not affect human communities is considered a natural
event rather than a threat [85]. Therefore, the suburban districts of Hanoi, characterized by
their sparse population, receive limited attention and resources. Flood-response strategies
seem to be focused and catered predominantly to the central districts, despite the higher
susceptibility of the suburban areas to flooding.

In urban areas of Southeast Asia that rely heavily on agriculture, the sparsely pop-
ulated areas often dedicated to agriculture and forestry are particularly vulnerable to
flooding. This vulnerability can lead to substantial harm to agricultural productivity,
disrupt harvests, and adversely affect the livelihoods of the local populace. The 2018
flood in Hanoi serves as a stark reminder of the devastation that can be wrought upon
agricultural-dependent regions in Southeast Asia. According to preliminary statistics from
Lao Dong newspaper, in Chuong My district alone, the deluge resulted in extensive damage
to agricultural assets, including 1348.2 hectares of rice paddies, 277.9 hectares of vegetable
crops, 605.6 hectares of aquaculture, and 187.6 hectares of fruit orchards. The calamity also
claimed the lives of 339 livestock, led to the loss of 55,629 poultry, and caused the collapse of
4855 square meters of livestock shelters, alongside significant property damage. Therefore,
underscoring the imperative of identifying and fortifying flood-prone zones, even those
sparsely populated, enables effective urban planning and long-term agricultural resilience.

According to the Hanoi City Committee, the city’s goal is to achieve an urbanization
rate of approximately 60–62% by 2025 and around 65–75% by 2030. Based on the analysis
of Hanoi’s urban planning map for 2030, the city’s development is directed in three basic
areas: urban residential areas, agricultural landscape areas, and landscape areas that need
protection (Figure 8a). Among these, the agricultural landscape area has the highest suscep-
tibility to flooding. According to the Department of Agriculture and Rural Development,
Hanoi will focus on developing urban agriculture in parallel with urbanization. Developing
agriculture in these areas is considered a suitable direction to ensure food security. These
green areas also serve as the lungs of the city. However, as these areas are those with the
highest flood susceptibility, they require appropriate irrigation systems, canal networks,
and rivers to retain water for agriculture during the dry season and drain surface water
during the rainy season.

The central districts of Hanoi are divided into two parts: the Old Quarter and the
urban residential center. Among these, the area with moderate flood susceptibility accounts
for 71.7%, while areas with high and very high flood susceptibility make up nearly 20%.
In contrast, areas with a low flood susceptibility comprise just over 8% (Table 7). The Old
Quarter, which is the heart of Hanoi, is characterized by outdated and deteriorating urban
infrastructure and is difficult to redevelop. According to the Hanoi Statistical Yearbook
2022, the highest concentration of historical flooding points is in this area, spanning the four
central districts of Hoan Kiem, Dong Da, Ba Dinh, and Hai Ba Trung, with population densi-
ties ranging from 24,000 to 40,000 people/km2. With a high proportion of concrete surfaces
and only 5% green space [43], Hoan Kiem District is prone to frequent flooding, especially
during prolonged heavy rainfall. These areas mainly exhibit a moderate susceptibility to
flooding (Figure 8b). Based on the investigation results, this is due to prolonged heavy
rainfall overwhelming the outdated drainage system and causing flooding in low-lying
residential areas and/or water concentrated at traffic intersections. In addition, field obser-
vations revealed numerous lakes and ponds in this area, most of which are concrete-lined,
isolated, and not connected to the river network. These water bodies do not effectively
retain rainwater and can contribute to flooding as water can only drain through the urban
surface-water drainage system.
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Table 7. Flood-susceptibility classification of Hanoi’s 12 central districts.

Level Low Moderate High Very High Total

Area (km2) 47.158 401.407 110.897 0.334 559.796

Figure 8. (a) Analysis of Hanoi’s urban planning map for 2030. (b) Flood-susceptibility map in
Hanoi’s 12 central districts.

According to Hanoi’s urban planning map for 2030, there are plans to develop green
corridors and intersperse green spaces within urban residential areas. Using the flood-
susceptibility map, areas prone to flooding can be identified for the appropriate design of
these. This approach will help regulate rainfall and make efficient use of surface water,
thereby minimizing flooding in residential areas. As a result, the next phase of flood
research in Hanoi will focus on specific areas and on calculating the flood risk for various
aspects at each specific location.

5.3. Regional Relevance

Southeast Asian countries are located in the humid tropics, with formations and cul-
tures deeply attached to water. Large cities are mostly concentrated in low-altitude coastal
areas, influenced by the sea or large rivers [86]. In the process of rapid transformation
from agriculture to industry, many cities in this area are facing many environmental, public
health, and political problems, and are especially vulnerable to the impact of climate change
as natural disasters increase.

In recent decades, the Association of Southeast Asian Nations (ASEAN) has wit-
nessed rapid urbanization and is projected to continue urbanizing for many years to come
(Figure A4). Although half of the ASEAN region’s population was already urbanized by
2020, this figure is expected to escalate to 55.6% by 2030 [87]. While many second- and
third-tier urban areas in Southeast Asia are experiencing robust growth, urban planning
and management have not been systematically implemented, posing significant challenges
in preserving water resources sustainability and mitigating the impacts of climate change
and natural disasters [88]. Persistent urban inequality and a host of other issues across the
ASEAN region, including environmental degradation and the proliferation of informal
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settlements, impede the synchronous development of urban infrastructure [88]. In addition,
the government’s natural disaster prevention initiatives often fall short of efficacy in the
absence of comprehensive multi-sectoral and community engagement.

Through regional policy cooperation [89] and shared contextual similarities, Southeast
Asian cities are collaboratively addressing the challenges of climate change and natural
disaster risk mitigation. By applying an established theoretical framework and empirical
findings, we evaluated the flood susceptibility in Hanoi, a typical example of urban areas
in Southeast Asia. Our methodology, which is straightforward and cost-effective, can
be flexibly applied to other similar urban areas in the region. Moreover, the strategy of
gathering expert opinions from diverse fields can facilitate a comprehensive consideration
of flood-related problems from multiple perspectives, gradually marking a departure from
the traditionally single-disciplinary approach.

6. Conclusions

Flood-susceptibility maps are widely utilized in flood-related fields and urban devel-
opment projects [90]. This study integrated the analytic hierarchy process (AHP) within
a geographic information system (GIS) environment to map flood susceptibility at vari-
ous spatial analysis scales. Nine spatial factors that affect flood susceptibility, including
the topographic wetness index (TWI), elevation, slope, precipitation, land use and land
cover (LULC), normalized difference vegetation index (NDVI), distance from streams,
distance from roads, and drainage density, were selected as input data based on overview
documents. The study area is Hanoi, Vietnam.

The AHP process involved input from experts in relevant fields, such as manage-
ment, urban planning, physical geography, and environmental engineering, to create a
comprehensive and stable estimation method. The research findings indicate that LULC
and distance from roads are the most influential factors in regulating flood susceptibility,
while slope and drainage density have a lower priority in relation to flood susceptibility in
this area.

In the flood-susceptibility map, a majority of the study area is classified as having a
moderate susceptibility to flooding, accounting for 65%, and a very small portion is classi-
fied as having a very high susceptibility to flooding. The performance of the method was
evaluated using the ROC curve and the AUC value. The AUC result of 87.3% demonstrates
that the model can reasonably predict the level of flood susceptibility in the study area.

Despite producing an effective analysis and significant validation results in mapping
flood-susceptibility areas with limited flood data, the study has several limitations regard-
ing data preparation and the specificity of urban locations. Therefore, future steps will
address these challenges and limitations via further detailed studies in areas with different
characteristics. The development of geographic information systems and global climate
models is also valuable for analyzing and predicting flood scenarios in areas where data
collection is lacking or difficult.

This research not only enhances our understanding of the complex dynamics of
urban flooding, but it also provides valuable insights for the development of effective
flood-susceptibility mitigation strategies and innovative initiatives in urban planning,
particularly in vulnerable urban areas like Hanoi.
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Appendix A

Table A1. Relevant references illustrate the impact of nine factors on the susceptibility to flooding.

Elevation Slope Drainage
Density TWI Precipitation LULC NDVI Distance

from Streams
Distance

from Roads

Mahmoud, S.H. et al. [24] x x x x x x

Tehrany, M.S. et al. [51] x x x x x

Bera, S. et al. [52] x x x x x x

Nguyen, D.L. et al. [54] x x x x x x x x

Costache, R. et al. [55] x x x x x x

Ali, S.A. et al. [63] x x x x x x x x

Samanta, S. et al. [66] x x x

Chaulagain, D. et al. [67] x x x x x x

Band, S.S. et al. [69] x x x x x

Nachappa, T.G. et al. [70] x x x x x x x x

Zhao, G. et al. [91] x x x

Arabameri, A. et al. [92] x x x x x x x

Hong, H. et al. [93] x x x x

Abinet Addis [94] x x x x x x x x

Razavi-Termeh, S.V. et al. [95] x x x x x x

Table A2. Saaty’s scale for pairwise comparison [80].

Intensity of Importance Explanation

1 Equal importance

3 Slightly importance of one factor over another

5 Essential importance

7 Demonstrated importance

9 Absolute importance

2,4,6,8 Intermediate values between two adjacent judgments when compromise is required.
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Appendix B. Paired Comparison Results of Six Experts Using the AHP

Figure A1. Paired comparison results of six experts (R1–R6). TWI—topographic wetness index;
EL—elevation; SL—slope; PR—precipitation; LULC—land use/land cover; NDVI—normalized
difference vegetation index; DS—distance from streams; DR—distance from roads; and
DD—drainage density.

Appendix C

Figure A2. Population density (person/km2) by the districts of Hanoi in 2022. Source: Hanoi
Statistical Yearbook 2023. Central districts: 1—Ba Dinh; 2—Hoan Kiem; 3—Dong Da; 4—Cau Giay;
5—Thanh Xuan; 6—Hai Ba Trung; 7—Tay Ho; 8—Long Bien; 9—Hoang Mai; 10—Bac Tu Liem;
11—Nam Tu Liem; 12—Ha Dong. Suburban districts: 13—Soc Son; 14—Dong Anh; 15—Gia Lâm;
16—Thanh Trì; 17—Mê Linh; 18—Son Tay; 19—Ba Vi; 20—Phu Tho; 21—Dan Phuong; 22—Hoai Duc;
23—Quoc Oai; 24—Thach That; 25—Thanh Oai; 26—Chuong My; 27—Thuong Tin; 28—Phu Xuyen;
29—Ung Hoa; 30—My Duc.
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Figure A3. Land use status by the districts of Hanoi in 2022 (Ha). Source: Hanoi Statistical
Yearbook 2023.

Figure A4. Annual percentage (%) of urban population at mid-year, by ASEAN member state,
2015–2030 [87].
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