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Abstract: This paper proposes a multi-objective optimization framework for safe, reliable, and eco-
nomic integration of electric vehicles (EVs) and renewable distributed generators (DGs) in distribution
micro-grids. EV and DG coordination optimization with the use of vehicle-to-grid (V2G) technology
along with system reconfiguration optimization is developed to provide collective revenues and
address integrational complications that may occur by additional system loading due to EV charging
and EV-DG energy exchanges. A Genetic Algorithm (GA) optimizes the EV charging/discharging
in synergies with renewable DGs to maximize benefits that can be captured by their collaborative
participation in electricity market and through renewable energy arbitrage. The developed EV charg-
ing/discharging optimization is implemented in a real 134-bus distribution network and is evaluated
for its potential operational implications, namely, increased system losses. A system reconfiguration
is then proposed to reduce the system losses by optimizing the flow of power through switching
on/off the connections within the micro-grid and/or with other distribution systems. Simulation
results demonstrate the efficiency of the proposed method in not only providing collective revenues,
but also in enhancing the system operation by reducing the losses of the distribution grid. The
collective benefits proposed by the developed optimization and validated by the simulation results
facilitate transitioning to clean and eco-friendly sources of energy for generation and transportation,
which in turn leads to more sustainable development of societies and communities.

Keywords: distribution network; electric vehicles; GA optimization; operation; planning; reconfigu-
ration; renewable distributed generators

1. Introduction

The widespread integration of renewable energy sources (RESs) and electric vehicles
(EVs) into exiting distribution grids offers potential economic, environmental, and societal
benefits for energy entities. The economic benefits are provided through participating in
electricity markets where EVs can purchase renewable generation more than the scheduled
generation for charging during off-peak periods and sell the stored energy at a higher
price during peak periods or when the renewable generation falls behind the schedule.
This market participation benefits RESs by reducing penalties associated with renewable
over- and under-production. The increased utilization of renewable provides an additional
revenue stream for RESs in the form of production tax credits and reduces green-house gas
emissions. Nevertheless, technical issues of EV and RES integration have been detrimental
in capturing these benefits. Variability of RESs, such as wind and solar, is one of the
technical challenges that make it difficult to balance fluctuations in energy production with
consumer demand. The challenge is exacerbated by existing EV charging practices that
are mainly unidirectional from the grid to the EV. Unlike bi-directional charging, which
enables energy exchange between EVs and RESs to offset their fluctuations, unidirectional
charging has limits in responding flexibly and efficiently to such fluctuations. Even with
the bidirectional charging, the interaction between EVs and renewable energy needs to
recognize their synergies with other energy entities to maximize the benefits offered by such
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interaction. Furthermore, strains that EVs charging/discharging place on the grid and its
operation need to be addressed. Together, the combination of the technical difficulties and
intricacy of the problem given the high number of involved entities and their individual
needs has made it challenging to efficiently integrate RESs and EVs and optimize their
operations to maximize the collective benefits for all participants while minimizing adverse
impacts of their integration.

Integration of renewable distributed generators (DGs) and EVs in distribution systems
has been extensively studied in the literature. Numerous methods were developed to ad-
dress key integration challenges, including voltage deviations, excessive loading, increased
losses, power quality issues, renewable generation, and EV driving volatilities, etc. These
methods can be classified into three major categories, namely: coordination, capacitor
optimization, and system reconfiguration.

The coordination method refers to optimal charging/discharging of EVs in recognition
of renewable fluctuations to alleviate uncertainties of EV driving patterns and renewable
generation. The coordination can be based on market objective [1–4] or to address opera-
tional issues [5–7]. The market objective is to take advantage of renewable arbitrage and
provide revenues for renewable DGs and EVs. The operational challenges stem from an
improper integration of EVs and DGs into distribution grids, which result in augmented
power losses and voltage deviations, among other issues.

The capacitor optimization method is to optimally size and place capacitors across the
distribution networks to address voltage-related issues such as voltage deviations, stability,
over- and under-voltages, etc. [8–10]. This method has proven effective in improving the
voltage profile of the grid. However, the capacitor investment cost and possible transient
instability of the system due to capacitor operation degrade the potential benefits that can
be captured by this method.

The system reconfiguration adjusts the physical layout of the distribution network
by closing and/or opening the normally open tie and/or normally close sectionalizing
switches, respectively, as well as reconfiguring paths to optimize the flow of power. The
objective is to enhance the system operation by reducing system losses, improving volt-
age/frequency profile, etc. Distribution network reconfiguration in the presence of EVs and
RESs has been investigated in several studies [11–14]. The existing reconfiguration methods
are mainly applicable to stand-alone micro-grids and internal interactions only. This ne-
glects the connections among different distribution systems and the fact that coordinating
EVs and RESs within one system could affect the operation of other connected systems.

Despite the large body of literature for the individual categories, the combination of
these methods for optimizing EV and renewable DG integration has not been adequately
investigated. This is mainly due to the high number of energy entities within the distri-
bution network that makes it difficult to efficiently capture their synergies and to provide
collective benefits for all participants rather than benefiting individual entities.

This paper proposes an optimization framework that combines the coordination and
system reconfiguration methods for EV and renewable DG integration. Even though
there are several existing tools for individual integration of EVs and renewable DGs, there
are a lack of tools for their combined and synergistic integration [15,16]. The proposed
optimization addresses the pressing needs of the energy industry for an EV and RES
integration tool with the capability to:

• Capture synergies among all energy entities and participants.
• Recognize the interconnection of distribution micro-grids to provide a global optimiza-

tion for the interconnected grids rather than a local optimum for a single micro-grid.
• Integrate technical, economic, and market objectives into system operation for EV

charging/discharging to provide collective benefits and incentives for all participants
rather than individual benefits for the system operator or utility company only.

• Employ for real-time or low-time demanding applications such as power flow analysis.
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The developed tool can be used by several different players, including planners,
distribution operators, utilities, independent system operators (ISOs), policymakers, etc., to
quantify and evaluate the effects of EVs and RES integration, and to address the negative
impacts accordingly. This facilitates the transition to more sustainable and environmentally
friendly energy generation and transportation.

The paper is organized as follows. Section 2 presents the methods. Section 3 provides
the case studies and simulation results. Conclusions are given in Section 4.

2. Methods

This project proposes to develop a hierarchical optimization framework for coordi-
nating EVs charging/discharging with the operation of micro-grid energy entities. The
proposed hierarchy decomposes the complex optimization with multiple objectives and a
high number of participants and decision variables into different layers of optimization with
decoupled economic and operation objectives. The economic objective is to maximize the
benefits that micro-grid energy entities can capture by their collaborative participation in
the electricity market and through energy arbitrage. To this end, an autoregressive-moving-
average (ARMA) model is proposed to characterize random uncertainties of renewable
generation and EV driving patterns. The Monte Carlo simulation (MCS) simulates system
states based on the developed ARMA models. A Genetic Algorithm (GA) then optimizes
the EV charging/discharging in coordination with other energy entities. The combination
of ARMA model, MCS, and GA provides a stochastic optimization to satisfy the proposed
economic objective.

The operation objective is to minimize technical complications such as increased
system losses that a distribution micro-grid may incur due to additional loading and
energy exchanges caused by EV charging/discharging. To this end, a binary optimization
is proposed to reconfigure the distribution micro-grid and its interconnection with other
distribution systems by optimally switching on/off the connections within the micro-grid
and/or with other distribution systems.

The following flowchart demonstrates the proposed hierarchical optimization (Figure 1).
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The following sections present the methods employed for developing the proposed
optimization framework.

2.1. Stochastic Variables

Stochastic variables are random quantities that introduce uncertainty in their fre-
quency of changes. The wind and solar power generation and EV driving patterns are the
stochastic variables in this study. Despite forecasting advancements, inherent uncertainty
and forecast errors persist, leading to potential instances of inadequate and excessive re-
newable generation. Such inaccuracies can translate into costly under- and over-production
penalties for renewable DGs, which ultimately degrade their economic benefits. Therefore,
accurate modelling of the stochastic variables is essential to identify their uncertainties and
reduce the operation cost of the system. The models used in this study for renewable DGs
and EVs are as follows.

2.1.1. ARMA Model for Renewable DGs

Wind speed and solar radiation are known for their unpredictable fluctuations over
time. To mimic these stochastic variations, an ARMA model is used in this paper due to its
high accuracy, ease of implementation, and parameter selection [17]. The ARMA model
relies on historical hourly wind speed and clearness index data. These data are used to
calculate the autoregressive (AR) and moving average (MA) coefficients [18].

xt = ∑N
n=1 ∅nxt−n + ∑M

m=1 θmαt−m (1)

Equations (2) and (3) are then used to alter the wind speed and clearness index time
series to the mean (µt) and standard deviation (σt) of the recorded hourly data to generate
an authentic representation of the wind speed and clearness index numerically.

Wt = µWt + xWt .σWt (2)

Kt = µKt + xKt .σKt (3)

The wind and solar DG power outputs are calculated using the following Equa-
tions: [19].

PW−DG =


0 v ≤ vcut−in, v ≥ vcut−out

v−vcut−in
vrated−vcut−in

PW−DGrated vcut−in ≤ v ≤ vrated

PW−DGrated vrated ≤ v ≤ vcut−out

(4)

PPV−DG = APV × ηPV ×
(

T × Kt − T′ × K2
t

)
(5)

The proposed modelling of wind and solar DG effectively captures the inherent
randomness of these variables, making the system analysis and optimization more accurate.

2.1.2. Driving Model for EV

To effectively model the effect of EV loads on distribution systems, driving and
charging patterns must be taken into consideration. Historical data about driving patterns
is used to model the charging/discharging power of the EV battery which is subject to the
following inequality constraints [19]:

|Pc(tc)| ≤ Pmax
c ∀c ∈ L (6a)

|Pd(td)| ≤ Pmax
d ∀d ∈ L (6b)

This paper utilizes Fuzzy C-Means (FCM) clustering to group EVs into separate
fleets, highlighting significant similarities in driving behaviors [19]. FCM does not use
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mathematical distribution to characterize data; rather, it is a technique used for data pattern
recognition and similarities.

2.2. Monte Carlo Simulation

MCS is used in this paper to replicate the real-world scenarios by generating samples of
wind and solar generation and EV driving/charging patterns. These samples are generated
based on the stochastic models developed in Section 2.1. The samples are then utilized as
the inputs into the objective function (f ) to calculate the outputs (Y) of MCS, i.e., simulated
states. The relation between the inputs and outputs of MCS is as follows:

Y = f (PW−DG, PPV−DG, Pc, Pd) (7)

The simulation is repeated, and the average values of the simulated states are cal-
culated at the end of each scenario. This process halts upon achieving convergence, at
which point the average values do not further change by repeating the simulation for an
additional scenario.

2.3. Synergistic EV Charging/Discharging Control Model

A coordination method is developed in this section to optimize the EV charging/ dis-
charging in collaboration with renewable DGs. The proposed coordination maximizes the
synergies between EVs and renewable DGs to provide collective benefits for the involved
energy entities. The benefits are captured by EVs’ and DGs’ participation in a bilateral
contract and through renewable arbitrage. The participation involves EVs to use the renew-
able power more than the scheduled generation for charging. The excess energy can be
purchased at low market prices, as it would otherwise result in over-production penalties
for renewable DGs. While not in use, the EVs can discharge the stored energy through V2G
to compensate for renewable shortages when DGs generate less than what they are sched-
uled for. The discharged energy can be sold at higher market clearing prices, as the power
shortage usually occurs during peak load events. The proposed participation not only ben-
efits EVs through renewable arbitrage but provides revenues for renewable DGs. The DG
revenues are two fold: a reduction in penalties for renewable over- and under-production,
and incentives in the form of production tax credits (PTC) due to increased utilization of
renewable generation. The collective benefits are given by the following Equations:

REV = Pd(td)× ∆td × MCP(td)− Pc(tc)× ∆tc × MCP(tc) ∀c, d ∈ L (8)

RDG = PTCDG − PENDG (9)

PENDG(tk) =

{
(PSch.−DG(tk)− PAct.−DG(tk))× (1.1·MCP(tk)) f or DG under − production(

PAct.−DG(tk)− PSch.−DG(tk)
)
× (0.1·MCP(tk)) f or DG over − production

(10)

The 1.1 and 0.1 coefficients in Equation (10) are associated with the Federal Energy
Regulatory Commission (FERC), and its mandate to settle the intermittent resources’ im-
balances at 90% and 110% of decremental and incremental costs, respectively [20,21].

A GA optimization is used to maximize the collective revenues by the market partici-
pants, as follows:

Obj.Function = Max{REV + RDG} (11)

2.4. Distribution Grid Operation Control Model

The efficient and reliable planning and operation of distribution grids in the presence
of EVs and DGs require a control model that addresses the increased feeder loading and
the consequent increased losses due to the EV charging. The developed synergistic EV
charging/discharging control model and the subsequent continuous exchange of energy
between EVs and DGs can result in even more significant losses in distribution grids.
To evaluate the operational implications of the EV charging/discharging control model
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and quantify the distribution grid losses, a load flow analysis is used in this paper. A
distribution system reconfiguration optimization is then proposed to adjust connections
within the distribution network using two types of switches: tie, and sectionalizing. Tie
switches are typically open and are used to provide connections among different feeders
if needed. Sectionalizers are normally closed switches that will open to avoid creation of
any loops and maintain the radial structure of the distribution grid after the tie switches
close to serve a feeder from other feeder(s). The objective of the operation control model is
to minimize the distribution system losses by optimally closing and opening the tie and
sectionalizing switches, respectively.

Obj.Function = Min(PLoss) = Min
(
∑(Nbr+Nts)

l=1 xl I2
l Rl

)
(12)

The objective function is subject to the following equality and inequality constraints.

2.4.1. Node Voltage Constraints

The operating voltage at each bus (i) of the distribution network must adhere to the
standard limits, as follows:

vmin
i ≤ vi ≤ vmax

i (13)

This paper assumes the 0.95–1.05 standard range for the bus voltages [22].

2.4.2. Feeder Capacity Constraints

The power flowing through each branch of the network must not exceed the branch’s
current capacity.

Il ≤ Imax
l lε{1, 2, 3, . . . , . . . , Nbr + Nts} (14)

2.4.3. Bus Isolation Constraints

All network buses must be served upon reconfiguration. Therefore, none of the buses
can undergo isolation without being supplied by a feeder. This requires only one switch to
open in a loop.

2.4.4. Network Configuration Constraints

The reconfigured distribution network must maintain a radial configuration. To this
end, the reconfiguration must prohibit the creation of any loops in the network. The
following equality constraint ensures that the system is radially operated upon reconfigura-
tion [23].

∑(Nbr+Nts)

1 xl = Nb − 1 (15)

2.4.5. Power Balance Constraints

The active and reactive power must be balanced in the reconfigured network. This re-
quires adequate generation of active/reactive power to supply the active/reactive load and
compensate for the active/reactive losses of the reconfigured network. These constraints
are satisfied by the following power balance Equations.

∑ PGen
i = PLoss + ∑ PLoad

i (16a)

∑ QGen
i = QLoss + ∑ QLoad

i (16b)

GA is used in this section to optimize the system configuration and minimize the
losses of the reconfigured network.

3. Case Studies and Simulation Results
3.1. Test System

A 13.8 kV, 134-bus real distribution network is used to evaluate the performance
of the proposed hierarchical optimization. The single-line diagram of the network is
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shown in Figure 2 [24]. The network includes five feeders with normally open tie switches
between buses 38–46, 63–76, 78–89, and 90–119. The impedance matrices of different
conductor/tower types and Thevenin equivalent of the external network are as follows:
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Table 1 provides the lines and load data for the 134-bus distribution network, where k
and m represent the initial and final bus of each branch.
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Table 1. Lines and load data for the 134-bus distribution test system.

k m Dist.
(m)

Sload
(kVA) k m Dist.

(m)
Sload

(kVA)
1 2 900 0 67 69 20 7
2 3 50 45 69 70 20 112.5
2 4 100 0 67 71 50 75
4 5 40 75 71 72 40 8.5
5 6 200 75 72 73 40 1.9
6 7 200 112.5 73 74 20 112.5
7 8 200 75 74 75 110 112.5
8 9 10 75 63 76 20 112.5
9 10 50 0 76 77 30 5.9

10 11 100 0 77 78 50 0
11 12 60 8.6 78 79 70 75
12 13 30 75 79 80 70 112.5
13 14 1 60 75 80 81 30 112.5
11 15 30 112.5 81 82 30 0
15 16 10 45 82 83 50 75
16 17 20 112.5 82 84 50 75
17 18 40 0 84 85 30 112.5
18 19 40 75 85 128 20 0
19 20 50 112.5 128 86 30 15.5
18 21 150 112.5 86 87 20 75
10 22 30 112.5 78 88 130 75
22 23 70 0 78 89 50 75
23 24 50 3 89 90 50 0
24 25 20 45 90 91 180 45
25 26 30 0 91 92 20 0
26 27 60 112.5 92 93 30 112.5
27 28 40 0 92 94 70 23.5
28 29 20 75 92 95 100 0
29 30 120 112.5 95 96 40 75
28 31 20 112.5 95 97 50 6
26 32 20 112.5 97 98 60 0
32 33 5 112.5 98 99 110 23.5
33 34 25 112.5 98 100 40 75
23 35 10 0 00 101 110 112.5
35 36 70 12.4 95 102 60 112.5
36 37 10 112.5 102 103 40 0
37 38 10 0 103 104 30 75
38 39 70 3 103 105 150 75
38 40 100 0 105 106 210 108.5
40 41 60 75 106 107 30 0
40 42 50 75 107 108 100 0
42 43 10 75 108 109 100 108.5
40 44 30 112.5 109 110 30 112.5
44 45 40 45 110 I11 20 112.5
38 46 60 107 112 170 75
46 47 20 112.5 112 113 110 0
47 48 120 0 113 114 110 0
48 49 50 112.5 113 115 200 30
49 50 20 75 115 116 200 30
50 51 170 112.5 116 117 200 30
48 52 100 0 117 118 200 30
52 53 60 1.2 90 119 110 0
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Table 1. Cont.

k m Dist.
(m)

Sload
(kVA) k m Dist.

(m)
Sload

(kVA)
53 54 30 112.5 119 120 70 0
54 55 130 75 120 121 70 30
52 56 20 75 119 122 70 55
56 57 80 0 122 123 130 0
57 58 50 10 123 124 20 15.5
57 59 60 112.5 123 125 20 15.5
59 60 20 3.8 125 126 40 45
48 61 40 3 126 127 40 112.5
61 62 10 5.5 128 129 60 45
62 63 50 0 104 130 70 0
63 64 30 75 130 131 20 112.5
64 65 20 75 130 132 100 0
65 66 30 3.5 132 133 40 112.5
66 67 20 0 133 134 40 112.5
67 68 30 112.5

3.2. Synergistic EV Charging/Discharging

In total, 10 MW renewable generation capacity is installed on six buses within the test
distribution network. Three wind power units with 0.85 power factor are installed at buses
67, 84, and 103, and three solar PV units with 0.95 power factor are installed at buses 11, 39,
and 52. The 10 MW capacity is evenly distributed among the wind power and solar PV
units. The MCS is used to generate 1000 scenarios whose average determine the renewable
DG generation for a 24 h simulation period. In total, 484 EVs are grouped into six fleets of
similar driving patterns and distributed within the test network. EV charging stations are co-
located with the renewable DGs to facilitate the EV-DG coordination. The EVs are equipped
with V2G capabilities, enabling them to function as loads or generators, depending on
charging or discharging status. GA is utilized to optimally charge and discharge EVs in
coordination with DGs to maximize their collective revenues. An hourly interval set is used
for the simulation to make it consistent with the energy cost time resolution that is usually
provided and applied in the energy industry. This assumption enables the calculations
of economic revenues that EVs and renewable DGs capture by their participation in the
energy arbitrage market. Figure 3 provides the EV charging/discharging optimization
results for the simulation period. Status of charges (SOCs) are calculated for each EV fleet
for 1000 MCS scenarios and are averaged to calculate the hourly power. The SOCs of the
consecutive hours are then subtracted to determine the charging/discharging power for
the EV fleets. Positive values indicate EV charging from the grid to EVs, while negative
values signify EV discharging into the grid. Some values are very close to zero, correlating
to a negligible power exchange and minimal power flow. The EV used in this study has a
battery with a power rating of 6 kW. The average power varies for different fleets based on
the number of EVs within each fleet determined by the FCM clustering, and their optimal
charging/discharging power determined by the synergistic EV charging/discharging
control model.

Figure 4 shows the hourly energy cost that is used to calculate the collective revenues
from EVs and renewable DGs. Table 2 provides the revenues that are captured by the
developed synergistic EV charging/discharging control model. The simulation results in
this Table demonstrate the potential for substantial financial gains as incentives for EVs
and renewable DGs to participate in the energy arbitrage market. However, the additional
loading of the system due to EV charging and recurring flow of power between EVs and
DGs can potentially increase the system losses. The issue can be addressed by optimizing
the distribution grid operation to mitigate the losses. To this end, the control model
developed in Sections 2–4 will be used to structurally reconfigure the 134-bus network.
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Table 2. Collective revenues of EVs and renewable DGs for the 24 h simulation period.

EV Fleet & Renewable DG @ Bus# 11 39 52 67 84 103

(REV + RDG)($) 202 99 204 197 167 173

3.3. Distribution Grid Operation

Five feeders are included in the 134-bus distribution network to represent the con-
nections with neighboring distribution systems and to reflect the interconnected nature
of energy systems. Two types of switches are modeled in the distribution network: tie
switches, and sectionalizing switches. The tie switches are the four switches between buses
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38–46, 63–76, 78–89, and 90–119 of the 134-distribution network which are normally open.
Unlike the tie switches, the sectionalizing switches are normally closed. Interconnecting
the distribution networks by closing any combination of the tie switches is accompanied by
opening a combination of sectionalizing switches to ensure that the radial structure of the
reconfigured network is upheld without creating any loops.

The proposed distribution grid operation control model is used to determine the
optimal combinations of tie and sectionalizing switches that need to be closed and opened,
respectively, to minimize the system losses. Due to heterogeneity of overhead lines and un-
balanced loads of the system, an unbalanced three-phase power flow analysis is performed
for the original 134-bus network and the reconfigured system to calculate their power losses.
These calculations quantify the loss reduction that is achieved by the proposed reconfigura-
tion optimization. Table 3 provides the optimization results for hourly switching actions
over the 24 h simulation period. The bus numbers between which the switches are located
along with the associated line number are indicated in the Table. The results demonstrate
that the proposed optimization not only includes the existing switches, but also places new
sectionalizing switches between buses 62–63, 89–90, 95–102, and 102–103, and optimizes
their actions. This results in the most efficient operation of the system by reducing the
system losses to its minimum. The total number of switches that are proposed to operate
for loss reduction is 11. Comparing the switching actions for consecutive hours display the
proposed operation of the system. For example, the normally open switch between buses
90 and 119 (located on line 121) is proposed to close at hour 1. Then, it needs to open at
hour 2 and remain open for hour 3. The proposed switching action for hour 4 is closing.
The switch must stay close for hours 5 and 6, followed by an opening switching action
at hour 7. An idle operation is proposed for hours 8 through 15, i.e., the switch remains
open for these hours. The next switching action is to close the switch at hour 16 which is
kept closed for the next 4 h. The switch is proposed to open at hour 21 without any further
actions for the remainder of the simulation period.

Table 3. Distribution network reconfiguration optimization for the 24 h simulation period.

Hr
Switch
10–22

Line 23

Switch
38–46

Line 47

Switch
61–48

Line 62

Switch
62–63

Line 64

Switch
63–76

Line 77

Switch
78–89

Line 91

Switch
89–90

Line 92

Switch
95–102

Line 104

Switch
102–103
Line 105

Switch
105–106
Line 108

Switch
90–119

Line 121
1 OPEN CLOSE OPEN CLOSE CLOSE OPEN OPEN CLOSE
2 OPEN CLOSE CLOSE CLOSE OPEN OPEN
3
4 OPEN OPEN CLOSE CLOSE
5
6
7 CLOSE CLOSE OPEN OPEN
8
9

10
11
12 CLOSE OPEN
13
14
15 OPEN CLOSE
16 OPEN CLOSE
17 CLOSE OPEN
18
19
20 OPEN CLOSE
21 CLOSE OPEN
22
23
24 CLOSE OPEN
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Table 4 provides an analysis of the system losses before reconfiguration and after the
switching actions. The difference between the losses before and after the optimization is
calculated and provided in terms of MW and percentage loss reduction. Shaded regions in
these tables are idle operations for the switches, i.e., no switching actions. There is no loss
reduction for the hours with idle switching operation, as the system configuration and the
consequent system losses do not change. The simulation results for loss reductions support
the proposed system reconfiguration method for addressing the minimization of losses
upon executing the synergistic EV charging/discharging method.

Table 4. Pre- and post-optimization losses.

Hr Loss-Original Network
(MW)

Loss-Reconfigured Network
(MW)

Loss Reduction
(MW)

Loss Reduction
(%)

1 0.108167 0.057842 −0.050325 −46.525060
2 0.056311 0.055286 −0.001026 −1.821358
3
4 0.077036 0.076748 −0.000288 −0.374996
5
6
7 0.057888 0.057099 −0.000789 −1.362655
8
9
10
11
12 0.056467 0.056285 −0.000181 −0.321111
13
14
15 0.049949 0.049886 −0.000063 −0.125808
16 0.065659 0.065922 0.000263 0.401094
17 0.082846 0.082818 −0.000027 −0.032776
18
19
20 0.076921 0.076774 −0.000147 −0.191446
21 0.053192 0.052306 −0.000886 −1.665252
22
23
24 0.030322 0.030253 −0.000069 −0.227400

Based on the simulation results, the reconfiguration optimization can be classified into
the following categories.

3.3.1. Planning Optimization

The switching actions for hour 1 provide the most drastic results with 46.52% reduction
in losses upon system reconfiguration. This is mainly due to the proposed eight switching
actions and the consequent significant changes in system configuration. As such, the
placement of the new sectionalizing switches and the actions associated with this hour can
be considered as a planning strategy.

3.3.2. Real-time Operation Optimization

The loss reductions for hours 2–24 are insignificant, as they pertain to real-time EVs
and renewable DGs output changes in a one-hour timeframe. Therefore, the switching
actions for hours 2–24 can be used for real-time operation optimization. This real-time
operation demonstrates a reduction in the total number of switching occurrences where
system optimization is still achieved but at a lower percentage.

The collective revenue results of Table 2, along with the loss reduction results of
Table 4, prove the accuracy of the proposed method as an economical- and technical-
oriented approach to facilitate the integration of clean and zero-emission energy resources
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including renewable DGs and EVs. This, in combination with the potential environmental
and societal benefits, offers an integrated approach for clean and sustainable development
in energy and transportation sectors as the two main contributing sectors to GHG emissions.

4. Conclusions

A multi-objective hierarchical optimization is developed in this paper to integrate and
operate renewable DGs and EVs in distribution grids efficiently and reliably. The developed
method simulates real-world system states by stochastically modeling uncertainties such
as renewable generation and EV driving patterns. An EV charging/discharging control
model is proposed to optimize synergies between EVs and DGs and maximize their collab-
orative revenues. A distribution network reconfiguration optimization is then developed
to address technical challenges associated with the implementation of the proposed EV
charging/discharging control along with the operation of EVs and DGs. The developed hi-
erarchical optimization is tested on a real 134-bus distribution system, and its performance
is assessed by comparing the pre- and post-optimization results. Simulation results demon-
strate economic revenues by synergistic EV charging/discharging optimization, as well as
loss reduction by optimal system reconfiguration. Successful implementation of the pro-
posed method in real-world distribution systems requires addressing practical challenges
such as data availability, communication infrastructure, and regulatory constraints.
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Data Availability Statement: The datasets presented in this article are not readily available because
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Nomenclature

∅n AR coefficient of the ARMA model
θm MA coefficient of the ARMA model
N Order of the AR model
M Order of the MA model
xt Wind speed/clearness index time series
µt Mean of the wind speed/clearness index historical data
σt Standard deviation of the wind speed/clearness index historical data
αt A zero mean, zero autocorrelation white noise with a variance of σ2

W Simulated wind speed
K Simulated clearness index of solar radiation
PW−DG Output power of the wind DG
PW−DGrated Rated power of the wind DG
vcut−in Cut-in speed of the wind turbine
vcut−out Cut-out speed of the wind turbine
vrated Rated speed of the wind turbine
PPV−DG Output power of the PV DG
APV Area of the PV array
ηPV Efficiency of the PV array
Pc Charging power of the EV battery
Pd Discharging power of the EV battery
Pmax

c Charging power rating of the EV battery
Pmax

d Discharging power rating of the EV battery
L Number of time steps over the simulation period
MCP Market clearing price
REV Revenue for EV
RDG Revenue for renewable DG
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PTCDG Production tax credit for renewable DG
PENDG Penalties for renewable DG over-/-under production
PSch.−DG Scheduled DG power
PAct.−DG Actual DG power
PLoss Total active power loss of the distribution grid
QLoss Total reactive power loss of the distribution grid
Nbr Number of branches within the distribution grid
Nts Number of tie switches within the distribution grid
Rl Resistance of the lth branch
Il Current of the lth branch
xl Status of the lth branch/tie switch (0 for open and 1 for close)
vmin

i Minimum threshold of the voltage at bus i
vmax

i Maximum threshold of the voltage at bus i
Imax
l Maximum current capacity of the lth branch

Nb Number of buses
PGen

i Active power generation at bus i
PLoad

i Active power consumption at bus i
QGen

i Reactive power generation at bus i
QLoad

i Reactive power consumption at bus i
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