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Abstract: Evaluation methods based on data-driven techniques and artificial intelligence for the
sustainable enrollment plan configurations of Chinese universities have become a research hotspot in
the field of higher education teaching reform. Enrollment, education, and employment constitute
the three key pillars of talent cultivation in universities. However, due to an unclear understanding
of their interconnection, universities have yet to establish robust quantitative relationship models,
hindering the formation of an evaluation mechanism for sustainable enrollment plan configurations.
This study begins by constructing a relevant indicator system and utilizing real enrollment data from
a specific university. Through statistical methods such as correlation analysis, it systematically sorts
out key variables and identifies seven effective indicators, including average admission score and first-
time graduation rate. Subsequently, by using the increase or decrease in enrollment quotas for each
major as the experimental target, evaluation models for sustainable enrollment plan configurations
aimed at enhancing the advanced education rate are constructed using naïve Bayes networks and
tree-augmented Bayesian networks; these are compared with three other classic machine learning
methods. The accuracy of these models is evaluated through confusion matrices and receiver
operating characteristic curves. Additionally, the Birnbaum importance analysis method is utilized to
prioritize remaining variables, ultimately identifying the optimal combination strategy of indicators
conducive to the sustainable development of the advanced education rate. The results indicate that
the average admission score, transfer rate, and student/teacher ratio are the top 3 prognostic factors
affecting the advanced education rate, with the TAN model achieving an accuracy of 96.49%, thus
demonstrating good reliability.

Keywords: enrollment plan configurations; sustainable enrollment policies; advanced education rate
prediction; importance ranking; indicator combination strategy

1. Introduction

Enrollment, education, and employment are vital components of talent cultivation
in higher education institutions. To achieve sustainable and high-quality development in
higher education, establishing a linkagefeedback mechanism is crucial. Only through the
mutual promotion of these three components can a virtuous “closed loop” of development
be formed. The enrollment work of a university serves as the starting point of the entire
talent cultivation system. High-quality student intake serves as a solid foundation for the
quality of talent cultivation and is also a significant guarantee for improving employment
rates. The consensus among many educational professionals is to promote enrollment
through education and to promote employment through enrollment [1,2].
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An analysis of the literature using “enrollment, education, and employment” as the
primary keywords reveals the predominant themes of linked mechanisms. Publications
have notably surged since 2018, reflecting higher education’s shift towards high-quality
development. In recent years, many universities have been proactive, urgently seeking
feasible solutions, particularly in the field of enrollment planning, with mathematical
modeling methods emerging as a prominent focus of attention. Wang explored a linked
mechanism for employment-oriented program settings and enrollment plan allocation,
effectively enhancing the rationality of university self-construction efforts [3]. Jiang used a
combination of subjective and objective weighting methods to assign weights to indicators
for professional early warning mechanisms, scientifically and reasonably determining the
expansion, cultivation, maintenance, alert, and elimination of various majors, achieving a
process of natural selection among majors [4].

From a review of the literature, it can be observed that researchers usually start with
qualitative or quantitative analysis to comprehensively evaluate enrollment, education,
and employment, and establish linkage mechanisms based on indicator systems. Although
it has received widespread attention, the construction of linkage mechanisms in 90%
of Chinese universities remains in the exploratory stage. Less than 10% of universities
propose leveraging enrollment plans with application rates and employment rates as
primary evaluation indicators, constructing red, yellow, and blue alerts for the qualitative
analysis of enrollment programs. Fewer use databases to establish mathematical models,
quantifying and extracting indicators of enrollment, education, and employment situations
and combining them with the actual situation of the school to assign reasonable weights [5].
However, when constructing enrollment plan warning standards, model parameters are
often determined through methods, such as surveys, which are relatively subjective and
cannot reflect the level of attention appropriate to each indicator.

There are two major challenges: the first challenge includes data collection, integration,
and analysis mechanisms, and the second challenge comprises the evaluation of sustainable
enrollment plan configurations based on student and education quality. Currently, data
related to these challenges are housed in different departments of universities, sourced from
various databases, and exhibit significant heterogeneity, making integration challenging.
Furthermore, without establishing a comprehensive indicator system, researchers either
face the challenge of dealing with high-dimensional data with numerous noisy indicators
or struggle to extract key information due to the limited number of selected indicators.
Moreover, the task becomes more challenging as most machine learning or deep learning
algorithms, while capable of producing satisfactory predictive results, often fall short in
establishing dynamic adjustment mechanisms for enrollment plans. For example, despite
researchers attempting to utilize Bayesian classification algorithms and incorporating them
into decision tree learning models to construct predictions, they have not recognized
the unique node relationships of Bayesian networks for studying the states of indicator
combinations. Bayesian networks provide a powerful tool for analyzing and optimizing
complex relationships. Therefore, it is possible to explore this technology, establish a
network structure with the advanced education rate as the target variable, and discover
key influencing features under different indicator combinations, subsequently identifying
the optimal combination strategy.

In conclusion, with the goal of achieving sustainable improvement in the advanced ed-
ucation rate, it is imperative to construct linkage feedback mechanisms as well as evaluation
methods for sustainable enrollment plan configurations.

2. Literature Review
2.1. Current Research Status of Feedback Mechanisms

Universities are the main actors in formulating enrollment plans, and the linkage
between enrollment, education, and employment is indispensable [6]. Anafnova pointed
out that the formulation of enrollment plans is a systematic engineering process that
requires comprehensive analysis rather than simple quantity adjustments [7]. Wang further
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revealed that factors such as socio-economic development environment, school positioning,
employment quality, and student quality all influence the formulation of enrollment plans,
and these internal and external factors are interrelated [8]. Therefore, to achieve the healthy
development of the entire system, it is necessary to integrate and coordinate the three core
aspects in universities.

The construction of a linked reform system for enrollment, education, and employment
was proposed early on, advocating for high-quality university construction, high-quality
graduates, a strong teaching faculty, and teaching quality to promote enrollment. There
exists a structural contradiction and a mismatch between the talent cultivation in univer-
sities and social demand. University graduates are not necessarily in surplus in terms of
quantity but suffer from structural imbalances. Several scholars have analyzed that the root
cause lies in the failure to establish a sound linkage mechanism for enrollment, education,
and employment. These three aspects are interconnected, and any failure in one aspect will
affect the entire education process [9,10].

Additionally, predicting the advanced education rate is an important approach to
grasp the effectiveness of enrollment plans and the quality of talent cultivation. Addressing
this issue, scholars have conducted in-depth analysis and research from initial expert
prediction methods to linear prediction based on time series models and grey system
models, and the current mainstream non-linear prediction methods based on machine
learning such as neural networks and ensemble learning. However, some issues persist.
Despite widespread attention to the interconnection between enrollment, education, and
employment, research in this area remains limited in depth. The majority of universities in
China are still in the exploration stage, with very few attempting to quantify and extract
indicators, combine them with actual school weightings, establish models, and construct
early warning systems for enrollment in majors [11–13]. The existing literature shows
that the laws governing interconnection remain unclear, with most research focusing on
theory rather than empirical studies. The majority of research mainly discusses ideas
and frameworks, qualitatively elucidating the relationship between the three components,
without establishing quantitative relationship models.

The fundamental task of universities is talent cultivation and achieving a dynamic
balance between talent supply and demand. However, there is currently a common issue
in universities where the enrollment, education, and employment departments work
separately. The importance placed on enrollment as the entry point and employment as the
exit point is imbalanced, thus failing to form a virtuous cycle. Through an extensive analysis
of the literature, it can be observed that the basic steps of this approach, in sequence, can be
summarized as follows [14–16]: establishing an enrollment plan decision support system
based on the linkage between enrollment, education, and employment; quantifying and
extracting indicators; assigning reasonable weights based on the actual situation of the
school; establishing a rational model; calculating the comprehensive quantitative scores
of enrollment majors; making qualitative evaluations based on quantification; issuing
warnings for majors; and, ultimately, assisting in the construction of a linked mechanism
for enrollment, education, and employment in universities.

2.2. Current Research Status of Bayesian Networks

Bayesian networks are a type of probabilistic graphical model tool that utilizes graph
structures to represent conditional dependencies between variables. Nodes represent
random variables, and directed edges represent causal relationships between variables.
Probability inference is conducted through the use of joint probability distributions and
conditional probability distributions; probability distributions are updated based on known
information. Bayesian network technology effectively handles uncertainty and improves
model generalization performance by learning dependencies from data. In recent years,
significant research progress has been made in fields such as artificial intelligence, data
analysis, and bioinformatics, and Bayesian networks have been widely applied in machine
learning tasks such as classification and regression.



Sustainability 2024, 16, 2998 4 of 18

The application domains of Bayesian networks extend across various industries, en-
compassing finance, healthcare, and engineering [17–19]. Within the healthcare sector,
Bayesian networks find utility in disease prediction, patient risk assessment, and other
critical tasks. By amalgamating diverse medical data sources, they can model intricate
disease interrelationships, thereby furnishing personalized predictions and diagnostic
recommendations for patients. In finance, they are instrumental in risk management and
investment decision-making. Through the modeling of market and economic indicators,
they facilitate prognostications of future market trends and investment portfolios, aiding
investors in devising more efficacious strategies. Within the industrial sphere, they are
harnessed for predictive maintenance and production process optimization. By modeling
equipment sensor data and production parameters, they enable the early identification of
equipment failure risks, consequently enhancing production efficiency.

However, this method is rarely applied in the field of education, especially in the evalu-
ation of sustainable enrollment plan configurations. Bayesian networks provide a powerful
tool for analyzing complex relationship networks. For example, by first identifying key
variables, a Bayesian network structure for enrollment plans can be established; then, each
node can be analyzed in detail to explore the relationship between nodes. Subsequently,
statistical studies can be conducted on different combinations to understand the impact of
various indicator combinations on the advanced education rate and uncover key features
of influential indicators. The advantages of this approach are evident: by probabilistic
inference, the uncertainty of enrollment plan configurations can be quantified; Bayesian
networks can effectively model the complex relationships involved in enrollment plans,
helping to understand the causality between various variables; by uncovering key features
of influential indicators, targeted recommendations can be provided to help decision-
makers adjust enrollment plans to improve the advanced education rate; models based on
Bayesian networks can provide scientific support for educational decision-making, making
decisions more data-driven and reliable.

Although Bayesian networks have achieved important results in probabilistic mod-
eling, uncertainty modeling, multi-source information integration, and other aspects in
various fields, they still face some challenges such as the computational complexity of
complex models, efficiency of parameter learning and inference, scalability of structure
learning, integration of domain knowledge, etc. [20]. To improve model performance
and efficiency, researchers have been exploring new algorithms and methods, optimizing
algorithms for parameter learning and structure learning, and developing approximate
inference methods suitable for large-scale datasets.

3. Indicator Identification and Corresponding Datasets

In current practices, enrollment plans are often developed independently, to a certain
extent, by the admissions department. Hence, the lack of interoperability among multiple
information systems within university organizations makes it challenging to coordinate
effectively. The ultimate goal of this study is to explore the extent to which factors in
the enrollment, education, and employment stages influence the enrollment rate, thereby
improving the efficiency of sustainable enrollment plan configurations. To address the
information silos within universities, it is imperative to establish a comprehensive set of
indicators. Statistical analysis methods will be employed to identify correlations among
these indicators, thus establishing a set of effective and reasonable metrics. Subsequently,
integrating and storing data from various departments becomes necessary. Constructing a
sample dataset for enrollment is also imperative for incorporation into subsequent modeling
processes, thereby enhancing the reliability of the models and achieving coordinated
development in terms of scale and efficiency.

3.1. Construction of an Indicator System

Autonomously formulating enrollment plans is beneficial for the operation of each
university, but it also poses a challenge. A practically significant indicator consists of an
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indicator name and a numerical value. Regarding the principles for constructing these
indicators, Yang proposed five aspects: correlation, scientificity, directionality, guidance,
and information flow [21]. Alghamdi, on the other hand, divided the principles of indicators
into systematicness, representativeness, comparability, and operability [22].

Enrollment is the initial stage of talent cultivation in universities, with enrollment
quality being a fundamental factor influencing plan formulation. Due to the unique nature
of the Chinese college entrance examination system, the average admission score and
transfer rate are of primary concern. Cultivation constitutes a critical aspect of talent
development within universities. The provision of adequate teaching conditions is essential
for fostering talent and conducting scientific research. Additionally, the state of discipline
construction and the fulfillment of training plans profoundly impact talent development.
Employment represents the final phase of talent cultivation at universities and serves
as a crucial testing ground. Notably, the employment rate and advanced education are
equally significant components. Through comprehensive consideration and analysis, this
study examines the quality of enrollment, education, and employment, resulting in the
establishment of a system comprising 3 comprehensive indicators and 14 sub-indicators, as
presented in Table 1.

Table 1. Enrollment, education, and employment indicator system.

Indicators Sub-Indicators Code Description

Enrollment Quality

Average Admission Score Z1 Average admission scores for major.
Application Popularity Z2 Application popularity reflects the level of interest and demand.
First Application Rate Z3 Individuals apply for a specific major as a primary choice
Transfer Rate Z4 The ratio transferring to other majors.

Education Quality

Student/Teacher Ratio Z5 The student/faculty ratio.
National First-Class Majors Z6 Whether it is a national first-class major.
First-Time Graduation Rate Z7 The ratio of graduating on the first attempt to the total enrollments.
Course Pass Rate Z8 The pass rate in academic performance.
CET-4 Pass Rate Z9 The pass rate in the College English Test Band 4 exam. (CET-6 the same)
Academic Warning Rate Z10 The percentage of undergraduates who receive academic warnings.
CET-6 Pass Rate Z11 The pass rate in the CET 6 exam.
Competition Winning Rate Z12 The percentage of individuals receiving awards in competitions.

Employment Quality Advanced Education Rate Z13 The rate of students pursuing further education domestically and abroad.
Employment Rate Z14 The ratio of employed and further enrolled students to total graduates.

The 14 indicators summarized in this paper are comprehensive and detailed, providing
valuable insights for subsequent modeling. However, there may be information overlap
and irrelevant associations among the indicators, which could pose challenges to the
accuracy and reliability of the model. Therefore, it is necessary to conduct data cleaning
and preprocessing, followed by statistical analysis and testing of the sample data, to
eliminate irrelevant and disruptive indicators and establish a dataset.

3.2. Construction of the Dataset

After synthesizing the raw data of the 14 indicators provided by the enrollment,
education, and employment departments, we obtained sample values for 44 majors at our
university over the past decade. Before establishing the model, it is necessary to analyze
and clean the dataset to ensure the quality of the modeling dataset.

Cubic spline interpolation fits cubic polynomials between adjacent data points, ensur-
ing smoothness as the function passes through all points with continuous first and second
derivatives [23]. That is why we chose this method to fill in missing values in our dataset.
Next, considering that Z-scores are calculated based on the population mean and standard
deviation, they are more applicable for general outlier handling situations, especially when
dealing with non-large sample sizes. We used this method to detect outliers, transforming
any outliers using a logarithmic transformation to minimize their impact. Finally, we
normalized the data using MinMaxScaler after the transformation.
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A comparison of the sample data box plots before and after data preprocessing, as
depicted in Figure 1, illustrates that after data cleaning, the data distribution becomes
more compact and reasonable. This enhancement demonstrates the effectiveness and
comparability of our data preprocessing approach, which is essential for constructing the
Bayesian network model.
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Figure 1. Comparison box plot before and after data preprocessing.

To determine the relationships between different indicators, we can conduct correlation
analysis. Using a Pearson or Spearman correlation coefficient, we can evaluate the linear or
non-linear correlations between various indicators, which helps identify potential patterns
or trends. The correlation heatmap is shown in Figure 2.
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By filtering through a significance level (p-value) less than 0.05, we found significant
correlations among Z1 and Z5, Z8, Z13, with a negative correlation with Z8; we also found
significant correlations among the following: Z4 and Z5, Z10; Z5 and Z8, Z10; Z6 and Z8, Z12,
Z7, Z13; Z13 and Z14; etc. Taking into account the correlations among the indicators, as well
as their correlations with Z13, we ultimately selected indicators with potential experimental
value to include in the modeling system. These selected indicators are as follows: Z1, Z4,
Z5, Z7, Z8, and Z14. This refined set of indicators will help establish a more effective and
targeted model. In summary, the six indicators selected through statistical analysis are
used as attribute variables, with the advanced education rate as the object variable and the
enrollment quota as the decision variable. The variables for further research are shown
in Table 2.

The decision variables typically represent factors that can be adjusted and controlled
within the model, influencing its output and playing a significant role in decision-making
and prediction. Here, decision variable D, representing enrollment quotas, determines if
adjustments are needed for specific majors. By controlling enrollment numbers it impacts
the study’s object variable, the advanced education rate, aiding in evaluating the effects of
various enrollment plans.
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Table 2. Variables included in the future model.

Variable Indicators Code

Attribute Variable

Average Admission Score X1
Transfer Rate X2
Student/Teacher Ratio X3
First Time Graduation Rate X4
Course Pass Rate X5
Employment Rate X6

Object Variable Advanced Education Rate O

Decision Variable Enrollment Quota D

We can categorize the decision variables of enrollment plan quotas into multiple
classes. The increase or decrease in enrollment quotas constitutes discrete variables, with
each major varying from a reduction of 17 in its quota to an increase of 30. To ensure
appropriate categorization—neither excessive nor insufficient—enabling each category
to contain a sufficient amount of sample data and avoiding the problem of imbalanced
data while ensuring that the decision variables better support sustainable enrollment plan
configurations, we divided them into six categories, using a quota of 10 as the boundary.
For example, majors with a reduction of up to 10 in their quotas compared to the previous
year were categorized as −1. The classification criteria and categories are presented in
Table 3, which effectively reflect different enrollment scenarios.

Table 3. Enrollment quota variation classification table.

Classification
Status Degree Interval Changes in Enrollment Quota

Compared to the Previous Year Frequency Percentage

−2 (−10, −20] Decrease by 11 to 20 12 0.02%
−1 (0, −10] Decrease by 1 to 10 147 0.27%
0 0 No Increase, No Decrease 122 0.23%
1 (0, 10] Increase by 1 to 10 184 0.34%
2 (10, 20] Increase by 11 to 20 49 0.09%
3 (20, 30] Increase by 21 to 30 24 0.05%

Currently, there is a problem of isolated information islands in domestic universities,
where internal information systems and application systems are not interconnected. This
situation leads to difficulties in accessing unified enrollment, education, and employment
data, as these datasets are non-public and specific to each university. Consequently, there is
no unified enrollment data platform accessible to the public. Therefore, this study collected
data from the enrollment, education, and employment departments of a specific university,
established a unified structured database, and built a data service system that integrates
hierarchical cooperation, horizontal integration, and logical unity. The detailed dataset
statistics from the database are presented in Table 4.

Table 4. Detailed dataset statistics.

Statistic Index X1 X2 X3 X4 X5 X6 O

count 538 538 538 538 538 538 538
mean 619.2476 0.12285 7.428285 0.969034 0.920058 0.919034 0.653845

std 0.12224 0.095298 0.17136 0.03571 0.02057 0.04562 0.089363
min 568.8829 0 1.269231 0.919995 0.829694 0.817204 0.426087
25% 596.8511 0 4.156353 0.959338 0.888967 0.897759 0.58722
50% 615.5006 0.014651 6.643368 0.969649 0.921862 0.91852 0.671508
75% 624.4629 0.224199 8.50762 0.980844 0.957335 0.945785 0.730256
max 636.69 0.609375 26.2439 0.99384 1 1 0.888889

For all variables in the dataset, their values are continuous. However, the later used
Bayesian network can only handle discrete variables. Therefore, we applied the K-means
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algorithm to partition the values of the variables into two or three ranges. For example,
the binary threshold for the object variable was set at 0.638 based on the calculation results.
The dataset after discretization is shown in Table 5.

Table 5. Discretization of variables in the dataset.

Variable Interval State Frequency Percentage

X1

≤609.246 1 49 9.11%
609.246 < X ≤ 621.251 2 232 43.12%

>621.251 3 257 47.77%

X2

≤0.087 1 342 63.57%
0.087 < X ≤ 0.296 2 74 13.75%

>0.296 3 122 22.68%

X3

≤6.026 1 232 43.12%
6.026 < X ≤ 14.27 2 257 47.77%

>14.27 3 49 9.11%

X4

≤0.961 1 159 29.55%
0.961 < X ≤ 0.977 2 208 38.66%

>0.977 3 171 31.78%

X5

≤0.898 1 183 34.01%
0.898 < X ≤ 0.947 2 208 38.66%

>0.947 3 147 27.32%

X6

≤0.902 1 147 27.32%
0.902 < X ≤ 0.943 2 171 31.78%

>0.943 3 220 40.89%

O
≤0.638 1 220 40.89%
>0.638 2 318 59.11%

4. Methods
4.1. The Technical Roadmap of This Study

The specific research approach of this paper is illustrated in Figure 3.
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4.2. Statistical Analysis

Statistical analysis is a process of interpreting, summarizing, and inferring data using
mathematical and statistical methods, which includes collecting, organizing, and describing
data and then using statistical models and inference methods to gain insights into the
underlying patterns of the data. Among these methods, Pearson correlation analysis
is a statistical method used to measure the linear relationship between two continuous
variables, and its formula is as follows [24]:

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2(Yi − Y
)2

(1)

where Xi and Yi are the ith observed values of variables X and Y, respectively, X and Y are
their means, and n is the number of observations. The correlation coefficient r gauges the
strength of the linear relationship between two variables. Values closer to 1 or −1 indicate
a stronger linear relationship, while those nearer to 0 suggest a weaker one.

4.3. Bayesian Network

The network topology of a Bayesian network is a directed acyclic graph, where nodes
represent random variables and arrows indicate relationships. If two nodes are connected,
it signifies a causal relationship between them. If one node influences the outcome of
another, then a conditional probability value is established. For instance, if node A directly
influences the outcome of node B, the directed arc (A, B) is established with an arrow from
A to B. The strength of the connection between two nodes is represented by the conditional
probability P(A|B). Thus, Bayesian networks classify data samples from a probabilistic
perspective, making them an important machine learning method in the field of artificial
intelligence. The construction of a network model mainly involves four steps: selecting
nodes and variables, determining the network topology, specifying node state probabilities,
and determining conditional probability tables between nodes.

The naïve Bayes (NB) classifier is a popular algorithm in Bayesian networks, often used
in document classification and spam filtering. It assumes independence among modeling
random variables, with each variable related only to one parent node, typically the target
prediction variable. The tree-augmented naïve Bayes (TAN) classifier enhances this method
by introducing a tree structure to capture dependencies among features, thus relaxing
the assumption of attribute independence. Therefore, when dealing with classification
problems, especially in cases where correlations exist among features, the TAN classifier
method can provide more accurate probability estimates [25,26]. One should suppose that
A1, A2 . . . An represent n attribute variables, and C represents the target variable. Examples
of NB and TAN are illustrated separately in Figure 4.
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The TAN algorithm effectively balances the complexity and learnability of the model,
demonstrating, to some extent, the relationships between nodes. This partially compen-
sates for the limitations of the NB network and aids in the analysis of the relationships
among enrollment, education, and employment indicators [27]. The algorithm’s description
process is outlined in Algorithm 1.
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Algorithm 1. The Modeling Process of TAN (TAN Algorithm)

1. Input dataset: obtain the training instance set D.
2. Compute conditional mutual information: IPD

(
Ai ; Aj

∣∣C)
where i ̸= j.

3. Build complete undirected graph : where A1, A2, . . . , An are attributes associated with respective
nodes. Annotate the edge connecting Ai and Aj with the weight of the conditional mutual information:
IPD

(
Ai , Aj

∣∣D)
.

4. Build a complete undirected maximum-weight spanning tree.
5. Select root attribute and directionalize the tree: set the direction outward.
6. Add class node: add a node labeled as C and introduce an arc from C to Ai .
7. Build TAN model: the resulting directed tree is the TAN model.

4.4. Evaluation Methods

The confusion matrix, also known as the classification matrix, is a fundamental method
used to evaluate the credibility of prediction models. The possible results generated by
the classifier include true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN). TP and TN describe the number of correctly classified instances,
FP describes the number of negative samples incorrectly classified as positive, and FN
describes the number of positive samples incorrectly classified as negative. The diagonal
elements of the confusion matrix represent the samples correctly classified by the machine
learning classifier. The accuracy of the model (Acc) represents the proportion of such
samples in the total samples, calculated as follows [28]:

Acc =
TP + TN

TP + TN + FP + FN
(2)

Recall (R), also known as sensitivity, represents the proportion of correctly predicted
positive samples among all actual positive samples, as follows [28]:

R =
TP

TP + FN
(3)

Precision (P) represents the proportion of actually positive samples among all samples
predicted as positive. Its calculation formula is as follows [28]:

P =
TP

TP + FP
(4)

Two models with low precision and high recall are difficult to compare, and vice
versa. To make them comparable, we use the F1 score (F1), which ranges between 0 and 1.
This metric helps measure both recall and precision simultaneously and represents their
harmonic mean, as follows [28]:

F1 =
2 ∗ R ∗ P

R + P
(5)

For a machine learning model, it is typically desired to maximize its true positive rate
and minimize its false positive rate. However, in real prediction scenarios, both of them
usually increase synchronously with the number of positive samples predicted. Therefore,
the area under curve (AUC) value, which calculates the area under the receiver operating
characteristic curve (ROC), is used to evaluate the performance of the model.

4.5. Importance Measures

The importance theory is a branch of reliability mathematics that integrates various
cutting-edge and hot research areas such as hazard, sensitivity, risk, and importance. It
quantitatively expresses the criticality of each component in a system, clearly indicating
the differences in criticality and importance among the components within the system.

There are three commonly used methods, including probability importance, structural
importance, and key importance. Probability importance, also known as Birnbaum impor-
tance, is based on traditional sensitivity analysis methods. It is obtained from the partial
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derivative of system reliability with respect to the reliability of individual components,
Pi(t), and its formula is typically represented as the following [29]:

IB(i|t) = ∂h(t)
∂pi(t)

, i = 1, 2, . . . , n (6)

For commonly studied binary systems, importance can be described as the change in
the probability of system functioning caused by the change in the state of components. The
specific calculation formula is as follows [29]:

I(BM)S
Ci

= P(S = 1|Ci = 1)− P(S = 1|Ci = 0) (7)

where S = 1 represents the system being in a functional state, C i = 1 denotes the
component being in a working state, and C i = 0 indicates the component being in
a failed state. When machine learning algorithms make predictions, they consider the
comprehensive states of various indicators, necessitating prioritization among them [30].
This helps identify key predictive indicators, enhancing the credibility and performance of
predictive models based on the conclusions and data results.

5. Experimental Results

The undergraduate enrollment rate, which refers to the data of students pursuing
further education either domestically or abroad after completing their undergraduate
studies, is not only consistent with the top-tier innovative talent training positioning of
various universities but also serves as an important indicator for evaluating the outcomes
of higher education. Therefore, in the modeling process using the aforementioned 538 cases
of discretized data, we selected X1, X2, X3, X4, X5, and X6 as 6 node variables, the
advanced education rate (denoted as variable O) as the object variable, and the enrollment
quota (denoted as variable D) as the decision variable.

5.1. Naïve Bayes Network Model

Based on the theory of NB networks, we set O as the sole parent node in the model,
from which seven unidirectional edges were equally drawn, each pointing towards six
attribute variables and one decision variable. We partitioned the sample data into training
and test sets randomly to facilitate model training and evaluation. The training set com-
prised 430 records, while the test set consisted of 108 records, adhering to an 8:2 ratio for
the separation of the training and testing sets.

The probabilistic graphical model is depicted in Figure 5. Since it is assumed that
the attribute variables are independent of each other, the probability of the predicted
outcome depends only on the states of each child node. As the probability distributions
of the predictive indicators in the child nodes change, the probability of an increase in the
advanced education rate in the target parent node also changes accordingly.
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Specifically, we employed BayesiaLab software (Version 5.0.1) to apply the NB al-
gorithm for modeling purposes. The relationships between each attribute variable and
the target variable were derived from prior knowledge and data analysis. Consequently,
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we learned the conditional distributions of the edges from the dataset using the software
automatically, as illustrated in Figure 6. These distributions pertain to attribute variables,
object variables, and decision variables.

Sustainability 2024, 16, x FOR PEER REVIEW  13  of  22 
 

learned the conditional distributions of the edges from the dataset using the software au-

tomatically, as  illustrated  in Figure 6. These distributions pertain  to attribute variables, 

object variables, and decision variables.   

 

Figure 6. NB classifier conditional distributions. 

After establishing the NB enrollment plan evaluation model, it is crucial to conduct 

an initial evaluation of the model’s performance based on a test dataset to verify its effec-

tiveness. First, we present the confusion matrix of the model. When the decision threshold 

of the model was set to 0.638, the overall Acc was calculated to be 86.54%, as detailed in 

Table 6. 

Table 6. Naïve Bayes model confusion matrix. 

Value  1 (167)  2 (371) 

1 (220)  157  63 

2 (318)  10  308 

Next, we plotted the ROC curve of the model, as shown in Figure 7, and calculated 

the AUC value, as well as the overall Acc. Finally, we obtained an area under the ROC 

curve of 94.63%. 

   

Figure 6. NB classifier conditional distributions.

After establishing the NB enrollment plan evaluation model, it is crucial to conduct an
initial evaluation of the model’s performance based on a test dataset to verify its effectiveness.
First, we present the confusion matrix of the model. When the decision threshold of the model
was set to 0.638, the overall Acc was calculated to be 86.54%, as detailed in Table 6.

Table 6. Naïve Bayes model confusion matrix.

Value 1 (167) 2 (371)

1 (220) 157 63
2 (318) 10 308

Next, we plotted the ROC curve of the model, as shown in Figure 7, and calculated the
AUC value, as well as the overall Acc. Finally, we obtained an area under the ROC curve
of 94.63%.
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Figure 7. Naïve Bayes classifier ROC curve.

5.2. Tree-Augmented Bayes Network Model

During the modeling process based on the NB classifier, the correlation between
various indicators was not considered. However, in actual enrollment planning, many
indicators are often not independent, so the correlation between indicators cannot be
ignored. The remaining six indicators were used as node variables for modeling, taking
into account the mutual information between each node. Subsequently, a prediction model
based on the TAN classifier was generated, as shown in Figure 8.

The TAN network still had only one parent node. However, in addition to the single-
directional edges extending to six attribute variables and one decision variable, there were
certain correlations between some variables. From the graph, it can be observed that
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there is a significant correlation between X1 and X2. This indicates a strong correlation
between the two, suggesting that majors with higher average admission scores tend to
have lower transfer rates. This is because the arcs generated between nodes using the TAN
method cannot only be supported by existing common-sense theories but also uncover
some potential dependency relationships between various indicators.
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The conditional distributions of the edges in the TAN algorithm provided are shown
in Figure 9, following the same modeling process as that described in Section 5.1.
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After establishing the TAN enrollment plan evaluation model, we conducted the
evaluation. Firstly, we presented the confusion matrix, still setting the decision threshold to
0.638. At this point, the overall Acc was calculated to be 89.42%, as shown in Table 7.

Table 7. TAN model confusion matrix.

Value 1 (205) 2 (333)

1 (220) 184 36
2 (318) 21 297

The plotting of the ROC curve, as shown in Figure 10, ultimately yielded an area under
the ROC curve of 96.49%, demonstrating better reliability than the NB method.
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5.3. Comparison of Classification Model Performance

To validate the effectiveness of Bayesian networks for evaluating sustainable enroll-
ment plans, we conducted modeling experiments using three machine learning methods:
linear discriminant analysis (LDA), logistic regression (LR), and support vector machine
(SVM). We then performed comparative experiments and evaluated the models using the
P, Acc, R, F1, and AUC. The data types, training sets, and test sets used for modeling were
consistent with the Bayesian network modeling process described earlier. The evalua-
tion results of different classifiers, after experiments based on the test set and five-fold
cross-validation, are shown in Table 8.

Table 8. Evaluation results of predictions made by different machine learning algorithms.

Model P Acc R F1 AUC

NB 0.8750 0.8654 0.8585 0.8632 0.9463
TAN 0.8750 0.8942 0.9100 0.9001 0.9649
LDA 0.8713 0.8606 0.8462 0.8514 0.9503
LR 0.8738 0.8702 0.8654 0.8672 0.9476

SVM 0.8667 0.8702 0.8750 0.8732 0.9485

For ease of comparison and analysis, we visualized the information from the table, as
shown in Figure 11.
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Combining the model evaluation table and the performance comparison chart, we can
observe that there was no significant difference between the precision of several models.
However, the recall rate of the TAN algorithm is much higher than that of the other three
algorithms, reaching 0.91. Since the F1 is closely related to P and R, the F1 is also highest
for the TAN algorithm, followed by that of the SVM, LR, and NB algorithms. In terms
of Acc and AUC value, the TAN algorithm still performs the best. Taking into account
all indicators, the TAN algorithm performs the best in P, Acc, R, F1, and AUC value. The
NB, LR, and SVM algorithms have relatively mediocre performance, while LDA performs
poorly and is not suitable for this type of data research. Therefore, compared with three
machine learning algorithms, namely, LDA, LR, and SVM, the TAN classifier demonstrates
certain advantages in prediction, as confirmed by the comprehensive consideration of
various performance indicators from different perspectives.

5.4. Calculation of Influence Factor’s Importance

Based on the evaluation model, it is possible to lock the initial state by considering
different combinations of states of included indicators and then changing another state
to observe the probability distribution of the advanced education rate. To quantitatively
analyze the importance of each influencing factor, the Bayesian predictive model can be
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combined with importance theory. By altering the type of state for a specific predictive
indicator, the difference in prediction rate can be obtained. Additionally, in many cases,
a feature’s state is not binary but may be divided into low, medium, and high categories.
Based on the composite importance measures method for polymorphic systems, the Birn-
baum importance of each predictive indicator can be defined as follows [31]:

I(BM)S
Ci

=
1

wi − 1

wi

∑
j=1

|P(S = 1|Ci = j)− P(S = 1)| (8)

where S represents the prediction result of X1, and the remaining indicators are denoted
by C. Each variable has a state w, where P(S = 1) represents the prior probability, and
P(S = 1|Ci = j) represents the posterior probability. Based on this method, the importance
of each influencing factor is shown in Table 9.

Table 9. Birnbaum importance ranking of classification model.

Prognostic Factors State Priori Probability Posterior Probability MBM Rank

X1

0 0.1136 0 1.26785
11 0.4091 0.6111

2 0.4773 0.7143

X2

0 0.6364 0.5357 0.6627
21 0.1364 1

2 0.2273 1

X3

0 0.4318 0.5789 0.84895
31 0.4773 0.619

2 0.0909 0.5

X4

0 0.3182 0.7857 0.879
61 0.4091 0.5556

2 0.2727 0.4167

X5

0 0.2727 0.75 0.9028
51 0.4091 0.5556

2 0.3182 0.5

X6

0 0.3409 0.4 0.91075
41 0.3864 0.5882

2 0.2727 0.8333

Through experimentation, we found that the importance of the six scale features—
average admission score, transfer rate, student/teacher ratio, employment rate, course
pass rate, and first-time graduation rate—decreases sequentially and that all scales are at
relatively high levels. It can be inferred that the first three indicators play important roles
in the sustainable improvement of the advanced education rate. The reasons behind this
are that higher average admission scores, lower transfer rates, and lower student/teacher
ratios in various majors represent a higher quality of student intake and education, lead-
ing to more apparent educational outcomes and higher chances of successful advanced
education. This experimental result is reasonable; there is a strong positive correlation
between average admission scores and advanced education rates, while transfer rates and
student/teacher ratios are negatively correlated. Therefore, the strategy we propose is to
increase the weights of strongly correlated indicators and increase enrollment quotas for
majors with high average admission scores, low transfer rates, and low student/teacher
ratios. This experimental result underscores the significance of strategic interventions
aimed at enhancing the quality of enrollment and education, thereby fostering improved
outcomes in advanced education rates.

6. Discussion

Establishing a sustainable enrollment plan evaluation model can comprehensively
account for the importance of each stage in enrollment, education, and employment;
streamline the linkage effects between each stage; help schools improve current plans; and
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complete subsequent plan formulations. Although research on the feedback mechanism has
received widespread attention, some issues persist. Previous researchers have attempted
Bayesian classification algorithms and integrated them into decision tree models [32],
but they did not realize that the unique node relationships of Bayesian networks could
demonstrate the states of indicator combinations.

Therefore, we established a Bayesian network structure with the advanced education
rate as the object variable and enrollment quotas as the decision variable. By statistically
analyzing the states under different indicator combinations, this structure explores the
impact of changes in enrollment plans, identifies key influencing features, and identifies
the optimal combination strategy conducive to improving the advanced education rate.
The Bayesian network model validation confirms that the significance of the six scale
features—average admission score, transfer rate, student/teacher ratio, employment rate,
course pass rate, and first-time graduation rate—decreases sequentially. The modeling
process reflects, to some extent, the real educational environment.

This study primarily focuses on Chinese universities, where the enrollment system,
educational structure, and employment market differ from those in other countries. Due to
the confidential nature of enrollment data in major Chinese universities, comprehensive
data collection for research purposes is challenging. Therefore, we selected the author’s
affiliated university as the sample. Although the Bayesian network model performed well
on this dataset, future efforts should aim to expand data sources. Furthermore, the model
itself has limitations such as assuming conditional independence between specific variables,
which may not hold true in practice.

However, this does not imply that our model has a regional limitation. Establishing a
Bayesian network predictive analysis model allows for a quantitative analysis of factors,
facilitating the optimization of current enrollment plans and the formulation of guidance for
future plans. Each university can clarify the indicators affecting enrollment plan formula-
tion by considering its national, social, and regional context, as well as its own development
status. Then, based on our scheme, key indicators can be selected to establish Bayesian
network models, optimize parameters, and propose the optimal combination strategy of
indicators aimed at improving the advanced education rate. The broad applicability of
the model developed in this study enables its use as a reference for enrollment planning
in other universities. Additionally, adjusting parameters based on practical feedback and
iteratively optimizing the model further enhances its utility.

7. Conclusions

To analyze the linkage mechanisms and explore how to evaluate sustainable en-
rollment plan configurations, this study utilized real enrollment data from majors at a
university over recent years. Firstly, the challenge of collecting, integrating, and analyzing
data from multiple departments, coupled with the absence of a comprehensive indicator
system, presents difficulties when handling high-dimensional data or extracting key in-
formation. This study addressed this challenge by identifying key variables across three
stages and conducting correlation analysis. Seven effective indicators—the student/teacher
ratio, transfer rate, average admission score, employment rate, first-time graduation rate,
course pass rate, and advanced education rate—were selected.

Secondly, faced with the challenge of evaluating the configuration of enrollment plans
based on student and education quality, this study selected the Bayesian network model.
The advanced education rate was used as the object variable, and the enrollment quotas
were used as the decision variable. This study then explored the mapping relationship
from enrollment, education, and employment big data to enrollment plan configuration,
evaluating model accuracy through confusion matrix and ROC curve analysis. Comparative
experiments were conducted with NB, LDA, LR, and SVM machine learning models, with
the TAN model achieving the highest accuracy at 96.49%.

Finally, using the Birnbaum importance analysis method to prioritize the remaining
variables, this study explored the impact of changes in enrollment plans, under different
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indicator combinations, on advanced education rates. The results showed that the average
admission score, transfer rate, and student/teacher ratio have extremely significant effects
on improving the advanced education rate. In the future, the model can be extended to
universities outside of China. Efforts will be made to enhance data collection and analysis
mechanisms, refine key indicators for a more accurate evaluation of enrollment plans, fur-
ther optimize the Bayesian network model, explore more effective parameter optimization
methods, and conduct additional empirical research to accumulate practical experience.
Strengthening collaborations with international institutions will also be pursued to provide
targeted policy recommendations for optimizing enrollment policies, thereby promoting
the sustainable development of the higher education system.
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