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Abstract: With the advancement of artificial intelligence (AI) technology, the real-time measurement
and control technology of power systems has also progressed. This paper proposes a correction
control model for L-indexes based on voltage stability constrained optimal power flow (VSC-OPF)
and a broad learning system (BLS) (BLS-VSC-OPF). This model aims to quickly assess the system’s
voltage stability and accurately correct the operation mode when the voltage stability indexes are out
of the security range. Firstly, the BLS is used to predict the L-index and to analyze the voltage stability
of the power system. Secondly, the approximate first-order sensitivity of the L-index is calculated
by the combination of the BLS and the perturbation method. This method solves the problem of the
complex sensitivity derivation process in the modeling process of the VSC-OPF model. Meanwhile,
when the L-index exceeds the threshold, the BLS and VSC-OPF models are combined to correct this
operation mode. The feasibility of the proposed method is verified by the simulation of IEEE-30,
IEEE-118, and 1047 bus systems. Finally, the BLS-VSC-OPF model is compared with the linear
programming correction model based on BLS (BLS-LPC). The results show that the BLS-VSC-OPF
model provides a better correction and control performance.

Keywords: BLS; correction; L-index; optimal power flow; sensitivity; static voltage stability

1. Introduction

With the advancement of science and technology, the demand for new energy in
the world is constantly expanding, which makes sustainable development an important
issue [1]. Voltage stability control is inextricably linked to sustainability. Accurate volt-
age stability control can improve energy efficiency, thereby reducing the environmental
pollution caused by energy exploitation and power generation, and promoting sustain-
able development of the environment. In recent years, the frequent occurrence of voltage
collapse has led to many large-scale power outages, which has brought about a serious
impact on the sustainable development of society and the economy [2]. Voltage stability
control can not only reduce power loss and protect critical power equipment, but also
ensure the stable operation of power systems, thus significantly improving their economic
efficiency. In addition, voltage stability control can also effectively enhance the security
and reliability of power systems, which provides an important guarantee for the long-term
sustainable development of the power industry. In order to solve the problem of sustainable
development, the combination of renewable energy and power grids has become a trend.
However, the intermittency and uncertainty of renewable energy sources increase the
complexity of voltage stability control [3]. It can be seen that voltage stability control is an
important part of the sustainable development of power systems, which is closely related
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to sustainability. The problem of voltage stability has been widely studied and related
research has been derived in many fields, including voltage stability assessment techniques
in smart grids, voltage stability control techniques in renewable energy systems, voltage
correction techniques in power system dynamics and control topics, etc. To achieve the
sustainable development of power systems, finding a way to quickly evaluate and rectify
the static voltage stability of a system has immense significance.

The existing problems mainly include how to quickly obtain the system’s voltage
stability and correct the unstable operating state. The L-index is one of the effective means
to measure a system’s voltage level. However, with the continuous expansion of the system,
the calculation of the L-index becomes more complex, and the correction of an unstable
operating state becomes more difficult. VSC-OPF can improve the voltage stability of a
system effectively, but it is difficult to obtain the sensitivity of the L-index in the VSC-OPF
model with the L-index as a constraint, because the calculation formula of the L-index
involves the operation of absolute value. This paper introduces a BLS-VSC-OPF model,
which is intended to enhance the voltage stability of power systems. The proposed model is
designed to rapidly adapt to changes in the system’s operational conditions and predict the
L-index of the system. Whenever the L-index exceeds the defined range, it can be promptly
corrected. This method can obtain the L-index sensitivity of different operating modes
through a simple perturbation process, which greatly simplifies the sensitivity computation
and realizes the real-time measurement and correction control of system voltage stability.
The main contributions of this paper can be summarized as follows:

The L-index prediction and analysis of the system are done by combining the broad
learning system with the L-index calculation. To obtain the training and testing sets, the
continuous power flow (CPF) method is utilized, followed by the training and testing of
the BLS. Upon achieving the desired level of accuracy, the BLS is employed to predict the
system’s L-index in real time.

A BLS is introduced into VSC-OPF for the first time. This technique is used to calculate
the sensitivity of the L-index to the control variables in the system. With this, the complex
derivation of the sensitivity equation in the traditional VSC-OPF method is avoided, and
the amount of computation is reduced. In addition, this method does not require any load
shedding measure. It can enhance the system voltage stability by adjusting the generator
output, thus improving the economy of correction.

The proposed model is simulated and verified in IEEE-30, IEEE-118, and 1047 bus
systems. The results of the simulation indicate that the model is capable of correcting
the L-index and improving the voltage stability of the system in cases where the L-index
exceeds the threshold value. In addition, to better demonstrate the superior performance
of the proposed model, we conduct a comparative analysis between the BLS-LPC method
and the proposed BLS-VSC-OPF method.

The rest of this paper is structured as follows: Section 2 describes the static voltage
stability L-index in detail. Section 3 describes the traditional VSC-OPF method. Section 4
introduces the structure of the BLS and the modeling process of the BLS-VSC-OPF model.
Section 5 shows the simulation analysis of the proposed model and compares it with other
correction models. Finally, the conclusion is given in Section 6.

2. Literature Review

Several static voltage stability indices have been proposed to accurately determine the
voltage stability of a system. For instance, Musirin proposed a fast voltage stability index
(FVSI), Moghavemmi suggested several stability indexes (Lmn, Lp, VCPI), and Milosevic
proposed the voltage stability load bus index (VSLBI) [4–8]. Kessel introduced an L-index
of local voltage stability, which can quickly evaluate the voltage stability of a system by
solving power flow (PF) [9]. P-A Lof et al. [10] proposed an evaluation method based on
the minimum singular value of the Jacobian matrix. If the minimum singular value is zero,
the voltage is close to collapse. Althowibi and Mustafa proposed a method and index
based on network sensitivity to determine the voltage stability and stability margin [11].
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Houhe Chen and Tao Jiang proposed an evaluation method based on voltage sensitivity,
which is based on the existing L-index [12]. Currently, the L-index is widely used in the
voltage stability evaluation of power systems because of its simple structure and accurate
evaluation ability.

When the voltage stability index of a system exceeds the safe range, it becomes
imperative to take corrective measures promptly to prevent voltage collapse accidents. Ref-
erence [13] proposed a nonlinear programming methodology to correct voltage instability
by centralized load shedding (LS) based on the dynamic security assessment (DSA) compu-
tations when disturbances threatening the system are detected. Reference [14] utilized the
direct equilibrium tracing method to determine the saddle node bifurcation point such that
the minimum control actions were derived, and finally, voltage correction was performed
by shedding loads. Furthermore, a load shedding algorithm is proposed in [15], which
applies a higher percentage of load shedding to buses with relatively weak voltage stability,
thus obtaining satisfactory voltage stability while improving the frequency response of
the grid. However, it is imperative to exercise caution when implementing load shedding,
as it carries the risk of partial power outages. Recently, some research has taken reactive
power compensation devices as an entry point to finding the optimal location and size
of reactive power compensation devices, with the aim of enhancing voltage stability and
reliability [16,17].

Although the aforementioned approaches can address voltage instability, they fail
to achieve an optimal solution. To make power systems more economical and stable,
scholars have proposed the VSC-OPF model by combining voltage stability with the OPF,
which has made some progress. In [18], the L-index was added to the traditional OPF
model as a constraint. The primal-dual interior point method was used to solve the model,
which improves the voltage stability of the system. In [19], the voltage collapse proximity
index (VCPI) was used as a constraint for the voltage stability. This method can not only
improve voltage stability but also reduce power loss. Reference [20] proposed an improved
multi-objective OPF model considering the voltage security margin. This model optimizes
the comprehensive operating costs of the system while ensuring that the system operates
at the desired load margin. Despite the above progress, the inclusion of voltage stability
constraints still makes the problem of OPF more complicated. Therefore, the relaxed
convex VSC-OPF models are proposed. In [21], the voltage stability condition of VSC-OPF
was reformulated as a set of second-order conic constraints in the transformed variable
space. This method can effectively suppress the stability stress of the system, and its sparse
approximation has a noticeable acceleration effect in large systems. In addition, considering
the problem of solution cost and precision in voltage stability assessment, reference [22]
establishes the formulation and convexification of VSC-OPF. This model considers PV-PQ
bus type switching, which co-optimizes the generation dispatch and bus type profile.

Following a thorough review of previous studies, it has become apparent that conven-
tional voltage stability correction methods and VSC-OPF studies are challenged by complex
derivation and modeling processes, which consume a great deal of time and memory in
their calculations. Furthermore, such methods do not facilitate quick determination of the
voltage stability of the system through operating parameters. Fortunately, various neural
networks and intelligent algorithms have emerged with rapid advances in AI technology.
Many scholars have introduced AI into power systems, providing a new way to solve the
problems mentioned above. Reference [23] proposed a DNN-based distributed voltage
stability online monitoring method for large-scale power grids, using DNN to predict
the load impedance modulus margin (LIMM) of weak nodes so the system operator can
judge the current operation state of the system and make the corresponding measures in
time. Meanwhile, reference [24] suggests a deep reinforcement learning (DRL) framework
based on a graph convolutional network (GCN) to address voltage stabilization control
problems caused by topology changes in power systems. Since DRL methods are usually
assumed to learn through trial-and-error, which requires significant interactions, a novel
deep feedback learning machine (DFLM) is designed in [25] to precisely predict future
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voltage violations after UVLS execution. There is also research showing that the BP neural
network can evaluate the voltage stability state of a system with high precision and rapidly
assist in a non-dominated sorting genetic algorithm improving the static voltage stability
margin [26]. AI has also made progress in conjunction with OPF, such as speeding up
the solution process [27] and reducing operating costs [28]. Reference [29] used a multi-
objective particle swarm optimization to solve the single- and multi-objective OPF issues.
Reference [30] combined the cuckoo search (CSA) method with sunflower optimization
(SFO) to improve the performance of OPF solutions. Reference [31] proposed an energy
management system (EMS) for the optimal operation of smart grids and microgrids by
combining a fully connected neuronal network (FCN) with OPF. Furthermore, a parametric
graph neural network (GNN) model was used in reference [32] to mimic the interior point
solver to obtain the optimal solution, which can be applied to irregular large power sys-
tems. In [33], a sensitivity-informed DNN method is proposed to match the OPF optimizers
and the partial derivatives with respect to the OPF parameter, which provides new ideas
for solving the OPF problem. The emergence of BLS provides more possibilities for the
combination of AI and power systems. To quickly assess the voltage stability and correct
the voltage instability state of power systems, reference [34] established the prediction
and linear correction model of the L-index based on BLS. Similarly, reference [35] used
the BLS to conduct the CCT prediction analysis and correction control of power systems.
Reference [36] proposed a state evaluation method of power systems based on BLS which
improved the ability of power systems to quickly respond to emergencies. A mass of cases
exists that demonstrates the effective use of AI technology to improve power systems. As
such, the development of power systems that incorporate AI technology is a viable option.

3. Static Voltage Stability Index

The assessment of voltage stability is a critical aspect of power systems. In this regard,
we propose the utilization of the L-index as a voltage stability index. This index is preferred
over others due to its remarkable accuracy and low computational complexity. The L-index
provides well-defined upper and lower limits. When 0 < L < 1, the system voltage is in
a stable state; when L = 1, it is in a critical state; when L > 1, the voltage collapses [9]. To
compute the L-index, the system nodes are first categorized into three sets: set G, which
contains the generator and PV nodes of the system; set L, which includes all load nodes;
and set K, which contains all contact nodes. The procedure for calculating the L-index is
described below.  IG

IL
0

 =

YGG
′ YGL

′ YGK
′

YLG
′ YLL

′ YLK
′

YKG
′ YKL

′ YKK
′

VG
VL
VK

 (1)

where, IG and IL represent the currents at the generator and load nodes, VG and VL represent
the voltages at the generator and load nodes, VK represents the voltage at the contact nodes,
and YGG, YGL, YGK, YLG, YLL, YLK, YKG, YKL, and YKK are derived matrices of the node
admittance matrix.

After eliminating the contact nodes, the above equation can be transformed into:[
IG
IL

]
=

[
YGG YGL
YLG YLL

][
VG
VL

]
(2)

where YGG = YGG
′ − YGK

′YKK
′−1YKG

′, YGL = YGL
′ − YGK

′YKK
′−1YKL

′, and YLG = YLG
′ −

YLK
′YKK

′−1YKG
′, YLL = YLL

′ − YLK
′YKK

′−1YKL
′. The above equation is rewritten as:[

IG
VL

]
=

[
YGG − YGLZLLYLG YGLZLL

−ZLLYLG ZLL

][
VG
IL

]
(3)
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where ZLL = YLL
−1. Defining the load participation factor matrix FLG = −ZLLYLG, the final

expression of the L-index can be obtained as:

Lj =

∣∣∣∣∣1 − ∑
k∈G

Fjk
Vk
Vj

∠(θjk + δk − δj)

∣∣∣∣∣ (4)

where Lj is the L-index of load node j, Fjk and θjk are the amplitude and phase of the
corresponding element in FLG, Vk and θk are the voltage amplitude and phase of generator
node k, and Vj and θj are the voltage amplitude and phase of load node j.

In the context of power systems, each load node is typically assigned an L-index that
indicates the voltage status. Of particular importance is the highest L-index value, which is
referred to as the L-index of the system and is a critical factor in evaluating system stability.
It is important to control the L-index in order to ensure that the power system operates in a
stable state and maintains a sufficient voltage stability margin.

4. Classic VSC-OPF Model
4.1. Objective Function

In the basic OPF model, the lowest operating cost of the system, as the objective
function, can be written as the following expression:

min f (x) = ∑
i∈SG

PGi (5)

where SG is the set of system generator nodes and PGi is the active power of the generator.

4.2. Equality Constraints

Using the power equation as an equation constraint:
PGi − PDi − Vi ∑

j∈SN

VjYij cos θij = 0

QGi − QDi − Vi ∑
j∈SN

VjYij sin θij = 0
, i ∈ SN (6)

where SN is the set of all nodes of the system, QGi is the reactive power of the generator, PDi
and QDi are the active power and reactive power of the load, Vi and Vj are the voltage am-
plitudes of nodes i and j, Yij and αij are the amplitude and phase of the transfer impedance
between nodes i and j, and θij = δi − δj − αij, δi, and δj are the voltage phases of nodes i
and j.

4.3. Inequality Constraints

To achieve an optimal solution for a system, it is necessary to restrict the active power
of the generators, the reactive power of the reactive power supplies, and the voltage
amplitude of the system nodes within a specific range. Inequality constraints are utilized
to express these limitations in the traditional OPF model:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i ∈ SG
Qmin

Ri ≤ QRi ≤ Qmax
Ri , i ∈ SR

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ SN

(7)

where SR is the set of system reactive power supplies, and QRi is the reactive power of
the reactive power supply. To improve the voltage stability of a system, add the L-index
constraint to the inequality constraint of the VSC-OPF model:

Lmin ≤ L ≤ Lmax (8)

where L is the L-index of the system, and Lmin and Lmax are the lower and upper limits of
the index, respectively.
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5. Construction Scheme of BLS-VSC-OPF Model
5.1. Broad Learning System

Due to its multi-layer structure, deep learning requires continuous adjustment of
the weights of the hidden layers during training, resulting in a time-consuming process.
The essence of the BLS is an improved random vector function linked neural network
(RVFLNN), a flat network [37]. The parameters of BLS hidden layer nodes can be randomly
generated according to any continuous probability distribution, which gives BLS a faster
training speed. When the system needs to be extended, the BLS can increase the number of
feature and enhancement nodes in the network by incremental learning, which allows the
system to be quickly reshaped without retraining [38]. At the same time, BLS has powerful
approximation and generalization capabilities. In cases where the model’s accuracy is not
up to expectations, it can be further improved by adding feature windows and enhancement
nodes. In summary, the BLS is a highly precise and efficient network [34].

The BLS structure is shown in Figure 1.

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 20 
 

min max

min max

min max

Gi Gi Gi G

Ri Ri Ri R

i i i N

P P P i S

Q Q Q i S

V V V i S

   


  
   

,

,

,

  (7) 

where 
RS  is the set of system reactive power supplies, and 

RiQ  is the reactive power of 

the reactive power supply. To improve the voltage stability of a system, add the L-index 

constraint to the inequality constraint of the VSC-OPF model: 

min maxL L L    (8) 

where L  is the L-index of the system, and minL  and maxL  are the lower and upper 

limits of the index, respectively. 

5. Construction Scheme of BLS-VSC-OPF Model 

5.1. Broad Learning System 

Due to its multi-layer structure, deep learning requires continuous adjustment of the 

weights of the hidden layers during training, resulting in a time-consuming process. The 

essence of the BLS is an improved random vector function linked neural network 

(RVFLNN), a flat network [37]. The parameters of BLS hidden layer nodes can be ran-

domly generated according to any continuous probability distribution, which gives BLS a 

faster training speed. When the system needs to be extended, the BLS can increase the 

number of feature and enhancement nodes in the network by incremental learning, which 

allows the system to be quickly reshaped without retraining [38]. At the same time, BLS 

has powerful approximation and generalization capabilities. In cases where the model’s 

accuracy is not up to expectations, it can be further improved by adding feature windows 

and enhancement nodes. In summary, the BLS is a highly precise and efficient network 

[34]. 

The BLS structure is shown in Figure 1. 

Y

W
m

H1 HmZ2Z1 Zn

Mapped Feature 1 Mapped Feature 2 Mapped Feature n Enhancement Nodes

X

( ), 1, ,i i ei eiZ XW i n = + = ( ), 1,...,j j hj hjH Z W j m = + =

 

Figure 1. Structure of BLS. 

The BLS mainly includes four parts, an input, feature nodes, enhancement nodes, 

and an output. Unlike deep learning, the BLS no longer puts the input data into the net-

work directly during training but maps the input into a set of mapped features. Suppose 

a data set contains N  samples, the input set is { , 1, , }M

i iX x x R i N=  = and the 

output set is { , 1, , }C

i iY y y R i N=  =  , where M   and C   are the dimensions of the 

Figure 1. Structure of BLS.

The BLS mainly includes four parts, an input, feature nodes, enhancement nodes, and
an output. Unlike deep learning, the BLS no longer puts the input data into the network
directly during training but maps the input into a set of mapped features. Suppose a data
set contains N samples, the input set is X =

{
xi
∣∣xi ∈ RM, i = 1, · · · , N

}
and the output

set is Y =
{

yi
∣∣yi ∈ RC, i = 1, · · · , N

}
, where M and C are the dimensions of the input and

output samples. For n feature mappings, each mapping has k nodes, and the formula for
the i-th set of mapping features Zi is [37]:

Zi = ϕi(XWei + βei), i = 1, · · · , n (9)

where Wei and βei represent the weights and deviations, both of which are random matrices
with appropriate dimensions. Denote all feature nodes as Zn ≡ [Z1, · · · , Zn], and denote
the m-th group of enhancement nodes as:

Hm ≡ ξ(ZnWhm + βhm) (10)

Denote all enhancement nodes as Hm ≡ [H1, · · · , Hm], and the output of the model
can be expressed as:

Y = [Z1, · · · , Zn|ξ(ZnWh1 + βh1) , · · · , ξ(ZnWhm + βhm)]Wm = [Zn|Hm ]Wm (11)



Sustainability 2024, 16, 3621 7 of 19

where Wm = [Zn|Hm ]+Y is the connection weight, which can be approximated by ridge re-
gression.

5.2. L-Index Prediction Based on BLS

To better characterize the system, the inputs and outputs of the BLS are identified as:{
X =

[
V θ P Q

]
Y = [L]

(12)

where X is the given input, V, θ, P, and Q are the vector forms of the node voltage amplitude,
voltage phase, active power, and reactive power, respectively, Y is the given output, and L
is the L-index of the system.

5.3. BLS-VSC-OPF Model

The VSC-OPF framework is not only useful for finding the optimal solution but can
also be used to correct the operation mode. When the L-index predicted by the BLS exceeds
the threshold, in order to improve the system voltage stability margin with the minimum
adjustment of the generator, the objective function can be set as:

min f (x) = ∑
i∈SG

(PGi1 − PGi0)
2 (13)

where PGi1 is the corrected active power of each generator and PGi0 is the original active
power of each generator.

In the BLS-VSC-OPF model, it is necessary to solve the first-order sensitivity of the
L-index to PGi and QRi using the BLS. When the BLS obtains the current state L-index, a
small increment is given to the decision variable, and the sensitivity is obtained by the
perturbation method. The equation can be expressed as:{

∂L
∂PGi

= LGi∗−L0
PGi∗−PGi

, i ∈ SG
∂L

∂QRi
= LRi∗−L0

QRi∗−QRi
, i ∈ SR

(14)

where L0 is the initial L-index and, at this time, the active power of the generator and the
reactive power of the reactive power supply are PGi and QRi. PGi∗ and QRi∗ are obtained
after giving small increments, and the corresponding LGi∗ and LRi∗ are predicted by the
BLS. The implementation of the BLS for calculating sensitivity is a time-efficient and
memory-saving process as it eliminates a significant number of computational processes.

In this research, the BLS-VSC-OPF model is solved by the interior point method. When
using the interior point method to solve the optimal power flow model, the algorithm
accuracy is usually set to 10−6 [39]. When the duality gap of this algorithm is less than
10−6, both the inequality and equality constraints of this algorithm will be satisfied, and
it is usually able to meet the requirements of most practical power systems. Thus, we
have set the accuracy to 10−6 [39], consistent with the classical interior point method. The
proposed method involves three stages. Firstly, a simulation is conducted to gather data.
The CPF and L-index calculations are performed in the given system, followed by selecting
several operation modes with different L-index levels for random fluctuations to obtain
a large amount of sample data. Secondly, the BLS parameters are adjusted to train the
L-index prediction model based on the BLS. The sample data are divided into a training
set and a testing set, and the training set is used to train the BLS, while the testing set is
used to check the accuracy of the BLS. Once the accuracy requirements are met, the BLS
model is saved. Finally, the online correction of a system with an unqualified L-index is
performed using the BLS-VSC-OPF model. This method accurately predicts the current
L-index of the system using the BLS and initiates corrective measures if it is found to be
unqualified. During the correction process, a combination of BLS and perturbation methods
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are employed to compute the sensitivity of the L-index until the value of the L-index meets
the requirements. The process of the method is shown in Figure 2.
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6. Case Study

In this section, the feasibility of the proposed model is tested and validated in the
IEEE-30, IEEE-118, and 1047 bus systems [40]. Meanwhile, the model is compared with the
BLS-LPC model to validate its superiority.

6.1. Data Generation and Sample Training

In this paper, the active power of the generator, active power of the load, and reactive
power of the load are allowed to gradually increase from the base state until the system
collapses through CPF, the equation of which can be expressed as follows:

Pj
G = λPj

G0, j ∈ G
Qi

L = λQi
L0, i ∈ L

Pi
L = λPi

L0, i ∈ L
(15)

where λ is the step size, Pj
G0 is the base active power of the generator, and Pi

L0 and Qi
L0 are

the base active and reactive power of the load, respectively. Pj
G, Pi

L, and Qi
L are the values

after the increase. A series of operation modes are recorded after the simulation of CPF,
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among which nine operation modes with different L-index levels are selected to prepare
for the next step. Based on the selected operation modes, the active power and voltage
amplitude of generator nodes, and the active power and reactive power of load nodes, are
made to fluctuate randomly according to Table 1.

Table 1. Fluctuation of operating parameters.

Parameters Range of Fluctuation

Active power of the generators 70–130%
Voltage amplitude of the generators 97–103%

Active power of the load 70–130%
Reactive power of the load 70–130%

The 9000 sets of sample data are obtained by the above method. After excluding
the data with an L-index greater than 1, the sample is assigned to the training set and
the testing set in a ratio of 9:1. Finally, the performance of the BLS was evaluated by the
mean absolute percentage error (MAPE) and root mean square error (RMSE), which were
calculated as follows:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (16)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (17)

where n is the number of samples, yi is the actual value of the L-index, and ŷi is the
predicted value of the L-index.

The key parameters of the BLS are shown in Table 2, where N2 is the number of
windows of feature nodes, N1 is the number of feature nodes per window, N3 is the
number of enhancement nodes, S is the shrinkage scale of enhancement nodes, and E is
the number of epochs. The test results of the IEEE-30, IEEE-118, and 1047 bus systems are
shown in Table 3. The test results show that the accuracy of the BLS is 99% and 96% in the
IEEE-30 bus system and IEEE-118 bus system, respectively. Additionally, the BLS is also
able to keep the prediction error within an acceptable range in the 1047 bus system. The
information provided indicates that the BLS can meet the requirements of high accuracy
and real-time monitoring, and its diagonal error diagrams are shown in Figure 3. In
Figure 3, the closer the red dots are to the blue line, the higher the accuracy of the BLS.

Table 2. The parameters of BLS.

Parameters IEEE-30 IEEE-118 1047 Bus System

N1 1 1 3
N2 50 500 639
N3 250 250 75
S 10 0.1 0.7
E 1 1 1

Table 3. Test results of BLS.

System MAPE RMSE Training Time

IEEE-30 0.0073 0.0053 0.0549 s
IEEE-118 0.0360 0.0168 0.3887 s

1047 bus system 0.0505 0.0466 42.454 s
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6.2. BLS-VSC-OPF Model for IEEE-30 Bus System

This section shows the simulation of the BLS-VSC-OPF model in IEEE-30 bus system.
The IEEE-30 bus system comprises 6 generators, 4 transformers, 18 loads, and 41 branch
circuits. In the proposed model, in order to prevent the occurrence of an over-correction
phenomenon, the lower and upper limits of the voltage constraints are set to 0.8 and 1.1,
respectively. The value of the L-index ranges from 0 to 1; the closer the L-index is to 1,
the lower the voltage stability margin and the higher the probability of voltage collapse.
When the system’s L-index exceeds 0.5, it generally means that the system voltage stability
is low, and corrective measures need to be taken in time [34]. Therefore, the threshold
of the L-index is set to 0.5 so as to reflect the correction ability of the proposed model to
the L-index. In order to demonstrate the effectiveness of the BLS-VSC-OPF model, six
different cases with an L-index greater than the threshold are selected from the sample to
be corrected by the BLS-VSC-OPF mode. The correction results of the L-index are shown in
Table 4.

Table 4. Comparison of L-index of two models in IEEE-30 bus system.

PF BLS-VSC-OPF

Predicted Value Actual Value Predicted Value Actual Value

Case1 0.9910 0.9848 0.4999 0.4929
Case2 0.9114 0.9191 0.4999 0.5069
Case3 0.8600 0.8531 0.5000 0.5054
Case4 0.8473 0.8368 0.4999 0.5009
Case5 0.7761 0.7738 0.4998 0.5053
Case6 0.7378 0.7340 0.5000 0.5064

The predicted values of the L-index in both the PF model and the BLS-VSC-OPF
model are close to the actual values with an error of about 1%, thus once again verifying
the results shown in Table 3. Before the correction, the L-index of the system exceeds the
threshold, as shown in the PF model in Table 4. In this case, the system voltage stability
margin is inadequate, and as the system approaches its operating limit, the risk of voltage
collapse increases. However, after the correction, the L-index is stably controlled within
the threshold range, which significantly improves the voltage stability of the system, as
shown in the BLS-VSC-OPF model in Table 4. Consequently, it can be concluded that the
BLS model can be utilized to predict the L-index of the power system in real-time using
the system’s operating parameters and achieve the purpose of quickly judging the voltage
stability of the current operating state. If the BLS detects an operation mode with voltage
instability, the BLS-VSC-OPF model can be used to correct it, ensuring the safe and stable
operation of the system.
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The mentioned cases can be categorized into three L-index levels: 0.7 < L < 0.8, 0.8 < L
< 0.9, and 0.9 < L < 1.0. We select one case at each L-index level, taking Case2, Case4, and
Case6 as examples to show the details in the model. Figures 4–6 show the change process
of the sensitivity during its iteration and the comparison results of the voltage levels before
and after the correction.
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Figure 4. (a) Sensitivity of the L-index to the active power of the generator in Case2; (b) sensitivity
of the L-index to the reactive power of the generator in Case2; (c) comparison of voltage levels of
two models in Case2.
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Figure 5. (a) Sensitivity of the L-index to the active power of the generator in Case4; (b) sensitivity
of the L-index to the reactive power of the generator in Case4; (c) comparison of voltage levels of
two models in Case4.
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Figure 6. (a) Sensitivity of the L-index to the active power of the generator in Case6; (b) sensitivity of
the L-index to the reactive power of the generator in Case6; (c) comparison of voltage levels of two
models in Case6.
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The sensitivity of the L-index refers to the response degree of the L-index to the change
in the generator output. If only a small adjustment to the output of a generator leads to
a huge change in the system’s L-index, it means that the generator has a high sensitivity
to the L-index; similarly, if the output of a generator changes greatly and the L-index of
the system only changes slightly, it indicates that the generator has a low sensitivity to the
L-index. Therefore, in the correction process, it is necessary to determine the adjustment
amount of the generator according to the level of sensitivity to ensure the rationality of
the correction. Since the sensitivity obtained by the BLS is an approximate value and the
inputs of the BLS change continuously with the number of iterations during the calculation,
each set of inputs corresponds to a different mode of operation so that the sensitivity will
change and fluctuate accordingly. The L-index represents the system voltage level, so it is
more sensitive to changes in the reactive power. As seen in the above figure, the sensitivity
of the L-index to the generator’s reactive power is significantly greater than that to the
active power. The comparison of bus voltages before and after correction is given in (c) of
Figures 4–6. It can be seen that buses 26 and 30 have the weakest voltages in the IEEE-30
bus system. In Case2, the voltage of bus 26 was 0.6519 and that of bus 30 was 0.6467
before correction. However, after correction, the voltages increased to 0.8344 and 0.8400,
respectively. In Case4, the voltage of bus 26 was 0.6990 and that of bus 30 was 0.6876 prior
to correction. After correction, the voltages increased to 0.8560 and 0.8543, respectively.
Similarly, in Case6, the voltage of bus 26 was 0.7291 and that of bus 30 was 0.7245 before
correction. After correction, the voltages increased to 0.8429 and 0.8453, respectively. The
results show that, after applying the BLS-VSC-OPF model, the voltage level of the system
increased, and each node’s voltage remained within a safe range, which improved security
and stability margins.

The cases used herein are obtained by random fluctuations on the basis of CPF, for
which the value of λ is in a range from 2 to 3. At this point, according to Equation (15),
it can be seen that the loads of the system increased significantly so that the active and
reactive power of the generators also reached a high level. Tables 5–8 show the power
output before and after correction, respectively.

Table 5. Active power of PF mode in IEEE-30 bus system.

Case1 Case2 Case3 Case4 Case5 Case6

PG1/MW 198.55 211.00 154.87 173.98 165.78 188.72
PG2/MW 150.82 156.99 170.73 198.33 205.60 119.78
PG3/MW 88.885 56.265 58.813 63.353 69.489 74.405
PG4/MW 88.972 89.622 103.35 90.008 71.505 91.781
PG5/MW 40.203 41.567 62.707 47.161 46.194 43.240
PG6/MW 51.457 45.336 40.663 53.932 45.578 60.926

∑PGi/MW 618.89 600.78 591.13 626.76 604.15 578.85

Table 6. Active power of BLS-VSC-OPF model in IEEE-30 bus system.

Case1 Case2 Case3 Case4 Case5 Case6

PG1/MW 155.19 163.14 108.65 127.73 130.56 188.72
PG2/MW 150.82 156.99 170.73 198.33 205.60 105.47
PG3/MW 88.885 56.265 58.813 63.353 69.489 74.405
PG4/MW 88.972 89.622 103.35 90.008 71.505 77.559
PG5/MW 40.203 41.567 62.707 47.161 46.194 43.240
PG6/MW 51.457 45.336 40.663 53.932 45.578 60.926

∑PGi/MW 575.53 552.92 544.91 580.51 568.93 550.32
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Table 7. Reactive power of PF model in IEEE-30 bus system.

Case1 Case2 Case3 Case4 Case5 Case6

QG1/Mvar 55.801 63.958 51.919 38.131 17.773 3.3942
QG2/Mvar 25.682 28.014 20.053 11.490 57.444 81.777
QG3/Mvar 36.204 21.191 19.786 67.418 19.145 17.100
QG4/Mvar 110.06 150.74 157.40 126.12 142.13 98.196
QG5/Mvar 86.469 83.587 73.254 80.808 82.838 82.404
QG6/Mvar 122.41 100.07 88.796 92.336 94.481 97.495

∑QGi/Mvar 436.63 447.56 411.21 416.30 413.81 380.37

Table 8. Reactive power of BLS-VSC-OPF model in IEEE-30 bus system.

Case1 Case2 Case3 Case4 Case5 Case6

QG1/Mvar −3.952 24.430 44.150 31.240 8.5284 −3.394
QG2/Mvar 25.682 28.014 20.053 11.490 57.444 81.777
QG3/Mvar 36.204 21.191 19.786 67.418 19.145 17.100
QG4/Mvar 110.06 87.306 67.317 43.176 86.166 58.350
QG5/Mvar 52.194 61.124 61.770 61.186 60.394 62.158
QG6/Mvar 75.907 86.094 87.072 85.663 85.173 83.681

∑QGi/Mvar 296.09 308.16 300.15 300.17 316.85 299.67

Reducing power loss while improving the stability of the voltage is one of the sig-
nificant advantages of the VSC-OPF model [19,41]. The proposed model also retains
this advantage.

When the L-index of the system drops, the overall voltage level of the system increases,
which in turn reduces power loss in the line. The energy efficiency increases with the
reduction in power loss, thereby reducing energy waste. Therefore, the total active power
output of the generator decreases after correction.

It is crucial to note that the correction not only improves the system’s voltage stability
but also reduces the generator’s reactive power output, which brings great economic advan-
tages. This improvement is related to the presence of capacitance to the ground, for which
the following analysis is performed. In the power system transmission and distribution
line, because of the existence of an electric field, the line, air medium, and ground constitute
a large capacitance. The stored energy of this capacitance can be expressed as:

W = Q =
1
2

CU2 (18)

where W is the stored energy, C is the capacitance, U is the voltage.
The capacitance value C remains constant, and the overall voltage level U of the system

is increased after correction, so the energy W stored by the capacitance to the ground is
also increased. To meet the requirements of power, the stored energy compensates for
the system in the form of reactive power, thus reducing the reactive power output of the
generator and causing the BLS-VSC-OPF model to exhibit better economic performance.

6.3. BLS-VSC-OPF Model for IEEE-118 Bus System

The IEEE-118 bus system contains 54 generators, 11 transformers, 54 loads, and
179 branch circuits. Similarly, the lower and upper limits of the voltage constraints are set
to 0.8 and 1.1, respectively, and the threshold of the L-index is set to 0.5. The feasibility of
the proposed model is verified in the IEEE-118 bus system below. The results before and
after the correction are shown in Table 9.
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Table 9. Comparison of L-index of two models in IEEE-118 bus system.

PF BLS-VSC-OPF

Predicted Value Actual Value Relative Error Predicted Value Actual Value Relative Error

Case1 0.9838 0.9936 0.99% 0.4984 0.4819 3.42%
Case2 0.9390 0.9423 0.35% 0.4991 0.4997 0.12%
Case3 0.8701 0.8721 0.23% 0.4912 0.5066 3.04%
Case4 0.8420 0.8512 1.08% 0.4976 0.5030 1.07%
Case5 0.7946 0.7828 1.51% 0.4967 0.4837 2.69%
Case6 0.7460 0.7516 0.75% 0.4961 0.4881 1.64%

Similarly, taking Case2 and Case5 as examples, Figure 7 presents a comparison of the
voltages before and after correction. It is worth noting that, in the IEEE-118 bus system,
bus 44 experiences the weakest voltage. In Case2, the voltage of bus 44 is 0.5752 before
correction. After correction by the BLS-VSC-OPF model, the voltage of this bus is increased
to 0.8072. In Case5, the voltage of bus 44 is 0.6425 before correction, which is improved to
0.8269 after correction. Due to the large number of generators, their sensitivity and power
output graphs have been omitted. Based on the analysis of simulation results from the
two systems, it can be confidently concluded that the BLS-VSC-OPF model is applicable
not only to the IEEE-30 bus system but also to complex systems like the IEEE-118 bus
system. The model can effectively correct the L-index and improve the voltage stability of
the system.
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Figure 7. (a) Comparison of voltage levels of two models in Case2; (b) comparison of voltage levels
of two models in Case5.

6.4. BLS-VSC-OPF Model for the 1047 Bus System

In order to demonstrate the compatibility of the BLS-VSC-OPF model with large
systems, the model is applied to correct a set of operating modes in the 1047 bus system,
comprising 152 generators, 164 transformers, 363 loads, and 1182 branches. The L-index
threshold is established at 0.5 for this system. Prior to the correction, the actual L-index
for the system stood at 0.7320, with the lowest voltage at 0.7784. Following correction, the
L-index fell to 0.4775, and the minimum voltage increased to 0.9132. The results shown
in Table 10 show that the BLS-VSC-OPF model still maintains a good correction ability in
large systems.
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Table 10. Comparison of results before and after correction in the 1047 bus system.

PF BLS-VSC-OPF

Predicted value of L-index 0.7146 0.4971
Actual value of Lindex 0.7320 0.4775

Relative Error 2.38% 4.12%
Minimum Voltage 0.7784 0.9132

6.5. Comparison of BLS-LPC Model and BLS-VSC-OPF Model

In order to demonstrate the superiority of the BLS-VSC-OPF model, the model is
compared with the LPC model, which is commonly used in economic scheduling [34].
The BLS-LPC model is a linear model. The model mainly includes two parts: prediction
and correction. Firstly, the BLS is used to predict the L-index of the system. When the
L-index of the system is unqualified, the sensitivity of the L-index is calculated by the BLS
and the perturbation method, and then the adjustment amount of the generator output is
obtained by solving linear equations. Finally, the system is corrected to make the voltage
return to a reasonable level. To enhance the correction capabilities of the BLS-LPC model,
the correction effect of the PV nodes’ voltage with respect to the L-index is additionally
considered. The model can be expressed as follows:

min f (x) = a · ∑
i∈SG

∆P2
Gi + b · ∑

i∈SG

∆V2
Gi (19)

s.t.


Pmin

Gi ≤ PGi0 + ∆PGi ≤ Pmax
Gi

Vmin
Gi ≤ VGi0 + ∆VGi ≤ Vmax

Gi
L0 + ∆L ≤ Llim it

∑
i∈SG

(CPi∆PGi + CVi∆VGi) = ∆L
(20)

where a and b are the weighted factors and are set to 0.9 and 0.1, respectively. ∆PGi, ∆VGi,
and ∆L are the amounts of the adjustment, Llimit is the threshold of the L-index, which is
set to 0.5, and CPi and CVi are the sensitivities, which can be calculated in a similar way to
Equation (14).

In the IEEE-30 bus system, the BLS-LPC model is used to correct the cases mentioned
in Table 4, and the results are shown in Table 11. It can be seen that, if the L-index of the
system is greater than the threshold, only one correction by the BLS-VSC-OPF model is
necessary to bring the L-index back within the threshold, as shown in Table 4. However, in
instances of poor voltage stability, due to nonlinear errors [34], the BLS-LPC model needs
to be corrected several times to adjust the L-index to within the threshold, as demonstrated
in Table 11.

Table 11. Calibration results of BLS-LPC model in IEEE-30 bus system.

Initial Value First Correction Second Correction

L-Index Minimum Voltage L-Index Minimum Voltage L-Index Minimum Voltage

Case1 0.9848 0.6261 0.5418 0.8643 0.4397 0.9641
Case2 0.9191 0.6467 0.5183 0.8728 0.4706 0.9174
Case3 0.8531 0.6761 0.5065 0.8841 0.4900 0.8993
Case4 0.8368 0.6876 0.5075 0.8961 0.4899 0.9122
Case5 0.7738 0.6999 0.4816 0.8956 / /
Case6 0.7340 0.7245 0.4688 0.9153 / /

After the second correction, the BLS-PCL model can meet the L-index requirements. It
is worth noting that the threshold of the L-index is set to 0.5, and there is a certain distance
between the L-index corrected by the BLS-LPC model and the threshold. Taking Case1 as an
example, the system L-index is 0.9848 and the minimum voltage is 0.6261 before correction.
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After the second correction, the system L-index is 0.4397 and the minimum voltage is 0.9641.
It is evident that the voltage is over-corrected by the BLS-LPC model, which causes the
L-index to drop excessively. Although the overcorrection problem will not affect the stable
operation of the system, it will lead to energy waste and economic loss. Table 12 compares
the generator outputs of the BLS-VSC-OPF model and the BLS-LPC model after correction.
The active power output and reactive power output of the BLS-VSC-OPF model are lower
than those of the BLS-LPC model, meaning that the former has higher economic benefits.
Table 13 shows the errors between the threshold and the actual L-index after the corrections
of the BLS-VSC-OPF model and BLS-LPC model. When the BLS-VSC-OPF model is applied
to correct, the error between the L-index and threshold is about 1%, with a maximum error
of 1.42% and a minimum error of only 0.18%. In contrast, when the BLS-LPC model is
employed, the error between the corrected L-index and the threshold is significantly larger,
with the maximum error being as high as 12.06% and the minimum error being 2%. A
detailed error comparison diagram is shown in Figure 8.

Table 12. Comparison of ∑PG and ∑QG in IEEE-30 bus system.

∑PGi/MW ∑QGi/Mvar

BLS-VSC-OPF BLS-LPC BLS-VSC-OPF BLS-LPC

Case1 575.53 599.56 296.09 309.70
Case2 552.92 583.81 308.16 333.57
Case3 544.91 579.24 300.15 327.73
Case4 580.51 612.73 300.17 325.74
Case5 568.93 592.03 316.85 334.65
Case6 550.32 568.51 299.67 311.47

Table 13. Comparison of correction results in IEEE-30 bus system.

BLS-VSC-OPF BLS-LPC

Threshold Actual L-Index Relative Error Threshold Actual L-Index Relative Error

Case1 0.5 0.4929 1.42% 0.5 0.4397 12.06%
Case2 0.5 0.5069 1.38% 0.5 0.4706 5.88%
Case3 0.5 0.5054 1.08% 0.5 0.4900 2.00%
Case4 0.5 0.5009 0.18% 0.5 0.4899 2.02%
Case5 0.5 0.5053 1.06% 0.5 0.4816 3.68%
Case6 0.5 0.5064 1.28% 0.5 0.4688 6.24%

As described in the previous sections, the proposed BLS-VSC-OPF model is based on
the classical OPF model, which includes the network topology information of the power
system. The network topology describes the physical connections among the generators,
transformers, lines, and loads in the system and plays a critical role in the state assessment
of the power system [42]. With the support of network topology, the BLS-VSC-OPF method
successfully establishes a complete system model, endowing it with excellent correction
capabilities. As a result, the model can better capture the global information of the system,
accurately determine the adjustment direction and amount of the generator, improve the
efficiency of correction, and make the correction results closer to the expected value. By
contrast, the BLS-LPC model is a linear correction control model which is framed by a
system of linear equations. Therefore, when it comes to grasping the distance between the
current system state and the target system state, the BLS-LPC model performs significantly
worse than the BLS-VSC-OPF model.
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In the BLS-VSC-OPF model, the controlled variables are the active power and reactive
power of the generator. Among them, the reasonable allocation of reactive power is crucial
for maintaining system voltage stability and addressing voltage issues [43]. Therefore, this
model can effectively manage power allocation by adjusting the active power and reactive
power of the generator, thereby improving the voltage stability. Even in complex IEEE-118
and 1047 bus systems, it can meet L-index requirements through a single correction, as
shown in Tables 9 and 10. However, the BLS-LPC method is based on the classical PF model,
in which the reactive power of the generator is an uncontrollable variable. Therefore, the
correction ability of this model has certain limitations. In the IEEE-118-bus system and the
1047 bus system, the model is unable to correct for the operation mode where the L-index
exceeds the threshold. In conclusion, the BLS-VSC-OPF model offers superior economic
benefits and correction ability compared to the BLS-LPC model.

7. Conclusions

In this paper, a BLS-VSC-OPF model is proposed to improve the voltage stability
of systems. The assessment was performed on the IEEE-30, IEEE-118, and 1047 bus
systems. The training and testing results show that the BLS has more than 95% accuracy
in experimental systems, which satisfies the requirements of practical power systems.
Secondly, the BLS is combined with the VSC-OPF model for the first time, which solves
the problem of the complicated derivation process and difficult calculation of L-index
sensitivity in the VSC-OPF model. Finally, we correct the operation mode of the L-index
beyond the safe range by the BLS-VSC-OPF model. The corrected results show that, if the
L-index of an operation mode exceeds the threshold, the model can correct the L-index
to within the threshold. In addition, we compare the BLS-LPC model with the proposed
model. In the IEEE-30 bus system, the proposed model requires fewer corrections, has a
higher correction accuracy, and exhibits no over-correction phenomenon. In the IEEE-118
bus system and the 1047 bus system, the proposed model maintains a good correction
ability while the BLS-LPC model cannot be corrected.
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