
Citation: Zhao, J.; Zhang, F.; Gao, L.;

Han, C.; Chen, X. Revealing Daily

Mobility Pattern Disparities of

Monomodal and Multimodal

Travelers through a Multi-Layer

Cluster Analysis: Insights from a

Combined Big Dataset. Sustainability

2024, 16, 3811. https://doi.org/

10.3390/su16093811

Academic Editor: Socrates Basbas

Received: 20 March 2024

Revised: 27 April 2024

Accepted: 30 April 2024

Published: 1 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Revealing Daily Mobility Pattern Disparities of Monomodal and
Multimodal Travelers through a Multi-Layer Cluster Analysis:
Insights from a Combined Big Dataset
Jingyao Zhao 1,*, Fan Zhang 2, Lei Gao 2, Chunhai Han 2 and Xiongxiong Chen 2

1 School of Transportation, Southeast University, Nanjing 211186, China
2 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;

billbronte@nuaa.edu.cn (F.Z.); glzjy@nuaa.edu.cn (L.G.); hanchunhai@nuaa.edu.cn (C.H.);
xiongxiongchen@nuaa.edu.cn (X.C.)

* Correspondence: zjyyaoyao@126.com or 230219398@seu.edu.cn

Abstract: More detailed and precise mobility patterns are needed for policies to reduce monomodal
automotive dependency and promote multimodality in travel behaviors. Yet, empirical evidence
from an integrated view of a complete door-to-door trip mode chain with daily mobility for pattern
identification is still lacking. As an improvement and a solution on this issue, a multi-layer cluster
model was designed and proposed for distinguishing 20 mobility pattern clusters, including six
monomodal traveler groups, two non-transit multimodal traveler groups, and 12 transit multimodal
based on big data mining. Statistical analysis with seven indicator measurements and a spatial
distribution analysis with the Kernel density GIS maps of travelers’ residential location were carried
out to reveal significant disparities across pattern clusters concerning spatial, social, and trip charac-
teristics, based on which more precise and target policies for each group were discussed. This research
may help provide more detailed information in establishing traveler mobility pattern profiles and
solutions in filling the planning–implementation gap from the perspective of planners, policymakers,
and travelers.

Keywords: mobility patterns; monomodal; multimodal; cluster analysis; big data mining

1. Introduction

Human mobility is a complex sociotechnical phenomenon facilitated by transportation
networks [1]. With the rapid development of urban society, human mobility is facing
challenges related to heavy car use, such as traffic congestion, noise, and air pollution.
Encouraging the combined use of different travel modes to reduce the dependency of
monomodal car use is considered an essential and promising solution, which is also
described as increasing multimodality in human mobility [2–4].

Generally, multimodality, or multimodal mobility, is defined as using several modes
of transport in a given period of time at the individual level [5,6] or using several modes to
complete a trip at the trip level [7]. With massive investment on multimodal transportation
infrastructures, there is a general upward trend of multimodality observed in practice,
mainly related to the combination use of public transport, car, and active mode [8–10].
However, monomodal car travel still dominates in big cities or metropolises [3]. Thus, a
key challenge for transportation planners and policymakers is how to motivate traveler
transfer from monomodal car mobility to multimodal mobility, which has been considered
a primary objective in travel behavior studies in recent years [2,11].

From a planner or policymaker’s perspective, transportation planning needs to be
implemented based on the statistical knowledge of mobility demands. Groups or patterns
are used for capturing disparities of mobility behavior, so as to better support policymaking
for targeted people. Therefore, understanding the nature and differences of monomodal
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and multimodal mobility patterns is considered as a foundation to help better facilitate
the required mode shift towards a more sustainable future [12]. However, compared
to monomodal travelers who simply use a single mode irrespective of travel context,
multimodal mobility can be regarded as a reflection of the complex choice behavior towards
different modes under the context of multimodal transportation systems [13]. It is important
albeit more difficult to capture multimodal mobility patterns for understanding behavior
differences [14].

The existing literature had given clues to uncover the mobility patterns at an individual
level through travel diary surveys. The results varied across studies based on the overall
mobility culture of a particular city, such as its car dependency or cycle-friendliness [15].
For example, Diana and Mokhtarian discovered one monomodal car user group, one car-
dominant but multimodal user group, and two highly multimodal user groups in France,
while one monomodal car user group and three car-dominant but multimodal user groups
in the USA [16]. Ton et al. identified one monomodal car user group, one monomodal
bicycle user group, one car and walk and bicycle user group, as well as one public transport
+ user group in the Netherlands [17]. Their findings indicate that to better understand
behavior differences and to better implement transportation plannings and policies, it is
important to establish local-specific mobility pattern profiles as foundations.

However, there are also arguments about the lower resolution of distinguishing mobil-
ity patterns at an individual level. With few groups or patterns, travel behavior disparities
discussed in those studies provide general ideas about “fit all” policy implications. It is still
not precise enough to prioritize multimodal infrastructure investment properly or to target
transport policies efficiently for mode-shifting behavior based on those studies. Also, the
survey design considered only primary mode of travel and underrepresented the connect-
ing mode, which may lead to misunderstanding in multimodal transportation modeling,
integrated multimodal transport network design and infrastructure planning [14]. For
example, nearly every transit trip made involves a mode beyond the transit itself. Planning
policies like neighborhood design, parking supply, and interchange pricing programs need
more knowledge about the role of “first and last mile” in mobility pattern studies [18,19].

Therefore, there is a growing body of literature aiming to identify multimodality at
trip level to fill the knowledge gap. However, to emphasize the connections between
different modes during one trip requires more detailed information on trip segments [20].
To capture such features, most research studies have employed a stage-based travel diary
survey design at trip level. The results showed that multimodal behavior was highly
dependent on how many trip segments were considered or how the mode options were
provided in the survey. Generally, the more stage and mode were considered, the more
complex multimodal mobility was found to be [1]. For instance, considering three trip
stages (main stage, access stage, and egress stage) and one main mode, Yang et al. classified
metro commuters into seven detailed groups in Nanjing, China [21]. Considering four
main modes and four trip stages, including possible transfer stage, Krygsman and Dijst
distinguished more various mode combinations [22].

The above findings have provided an extended knowledge of more detailed mobility
patterns. However, two major limitations still need to be addressed. Firstly, even though
recent travel diary surveys captured trip stages, the self-reported method often led to un-
dercounts of active modes [18,23]. It may bring imprecise results of multimodal behaviors
and an incomplete understanding of mobility patterns [24]. Secondly, connections between
mobility patterns obtained at individual level and at trip level are neglected in the existing
literature. It is hard to tell how and to what extent the travel modes used in every trip stage
become components of individual mobility patterns. Especially in developing countries
where transit services are insufficient, the connection stage to transit may play important
roles as the main stage in influencing individual travel behaviors.

To solve this, high-resolution and high-quality behavioral data are needed to provide
an in-depth view of mobility patterns considering both trip level and individual level mul-
timodalities. Technological innovations in mobile devices and transportation infrastructure
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have revolutionized travel surveys by utilizing big data like GPS-based data, smartcard-
based data, and mobile data positioning records [25]. Such data have enabled researchers
to track massive travel trajectories within any period, therefore meeting the need to provide
a depth of insight into mobility patterns [26]. Based on this, our research mainly focuses on
three aspects. First, to propose an integrated framework for monomodal and multimodal
daily mobility pattern identification through big data mining, considering all modes pre-
sented in the traveler’s complete travel trajectory within a day. Second, to examine and
evaluate the possible characteristics, travel behavior disparities, and spatial distributional
differences from a comparable perspective across all monomodal and multimodal pattern
groups. Third, to provide a more precise view of targeted policies for multimodal transport
infrastructure planning and reducing automotive dependency towards more sustainable
travel behaviors.

The rest of this paper is organized as follows. Section 2 provides the theoretical
framework of this study based on a literature review. Section 3 presents the data source,
data mining method, and a multi-cluster analysis model designed for this research. Section 4
displays the clustering results of identifying monomodal and multimodal mobility patterns.
Based on previous sections, Section 5 explores spatial and behavioral disparities among
all identified mobility pattern clusters through statistical and spatial distribution analyses.
Sections 6 and 7 discuss possible policy implications and summarize the main conclusions
and limitations.

2. Theoretical Framework
2.1. Understanding Mobility Patterns: Characteristics and Disparities

Characterizing a mobility pattern is critical for understanding the dynamics of travel
behaviors and have been a hot topic in recent decades. Normally, different local patterns
are driven from travel diary surveys [27]. Most surveys and empirical studies are con-
ducted in developed countries. According to the main focus points of their results, related
works can be divided into three categories: (1) mobility pattern only related to mode use,
(2) mobility pattern related to sociodemographic features, and (3) mobility pattern related
to trip features.

Using statistical analysis, mobility pattern can be divided simply according to travel
mode use during the survey time period. Mobility pattern research works at individual
and trip levels can be found using this method. For example, using data from the German
mobility panel and the mobility status in Germany, Nobis discovered that travelers can
be divided into seven groups: Car monomodal (43.0%), Bike monomodal (3.4%), Public
transport monomodal (4.9%), Car+Bike multimodal (27.7%), Car+Public transport multi-
modal (10.5%), Bike+Public transport multimodal (2.6%), and Car+Bike+Public transport
multimodal (7.9%) [5]. Based on the Nanjing dataset, Yang et al. divided metro commuters
into seven groups: Walk–Metro–Walk (44.0%), Walk–Metro–Bus (10.4%), Bike–Metro–Walk
(7.7%), Bike– Metro–Bus (3.4%), Bus–Metro–Walk (18.1%), Bus–Metro–Bus (12.1%), and
Car–Metro–Walk (4.3%) [21]. The above research studies provide the basic impressions of
monomodal mobility concerning car and active mode use, as well as multimodal mobility
concerning different combination uses of car, public transport, and active mode both at
individual level and at one trip level.

There are more research works considering classifying mobility patterns beyond mode
use. Sociodemographic features, which include objective attributes like age, gender, income,
etc., along with subjective attributes like attitudes and perceptions, are most commonly
considered in related works. For example, considering the frequency of car, bicycle, train,
and BTM (bus, tram, or metro) use, as well as sociodemographic and mode perception
variables, Molin et al. discovered five multimodal groups with significant sociodemo-
graphic differences in the Netherlands: Car multimodal, Bike multimodal, Bike + Car, Car
mostly, and PT multimodal. Young and low-income travelers were more commonly seen in
the public transport multimodal group; high-income travelers dominated in Car mostly
and Car multimodal groups, while more elderly travelers were found to dominate in the
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Bike+Car group [12]. The gender and income influencing effects in mobility pattern choices
had also been confirmed by Pani et al. [28] and Buehler and Hamre [6]. More results can be
found in mobility pattern distinctions for specific populations, like adolescents or young
people [29], and people with large households [30], or when considering certain trip stages
like the access stage [31–33].

The above works provide extended information about who and why they belong
to monomodal or multimodal groups. However, as sociodemographic differences are
discussed rather than travel behavior disparities, the aforementioned research studies failed
to answer questions of how the planning or policies can be targeted to more sustainable
travel behaviors. Research studies emphasizing the role of trip features in classifying
mobility patterns have recently become the most popular. Diana and Mokhtarian, Ton
et al., and Schneider et al. introduced trip numbers of each mode (or trip chain complexity)
into mobility pattern classifications to evaluate mobility differences in travel frequency
and mode [16,17,34]. Kroesen considered trip purpose and frequency, and have discovered
that travel frequency differed more significantly than travel purpose between five mobility
patterns [35,36]. An et al. examined multimodality disparities across trip purposes, trip
distance, and numbers of trip stages, and discovered that trip distance was a more correlated
variable contributing to average higher levels of individual multimodality if a trip had at
least three stages or was a leisure trip [37]. Yin and Leurent provide a view at integrating
trip level mobility with the individual level. Trip distance, daily travel time, trip departure
time, and trip mode were used to classify 15 types at the trip level, based on which, six
mobility pattern groups were then classified at day level [1].

The above survey-driven research works indicate that mobility pattern is better and
more precise to be studied in multi-dimensional ways than simply predefined by mode
used. However, even though the number of trip segment is confirmed to have significant
disparities across mobility patterns, the role of the mode used for every trip segment has not
been evaluated in mobility pattern studies. The door-to-door mode features may provide
new evidence for more detailed profiles. Such diverse trip details are also considered as
big advantages in travel trajectory study utilizing big data-driven methods, which will be
emphasized in this study.

2.2. Identifying Mobility Patterns: Indicators and Methods

When considering beyond the travel mode itself, we can see that the existing literature
highlighted regression analysis and cluster analysis in mobility pattern studies. both
methods are considered to have great ability to deal with multiple indicators.

Generally, regression analysis is considered as a supervised method that is mainly used
to identified determents of mobility patterns when the classifications are predefined. We
can refer to the research of Kuhnimhof et al. [9], Klinger [15], Buehler and Hamre [38], and
Mao et al. [39] as examples. Their research works provided valuable clues about indicators
that can affect mobility or mode choices, mainly including sociodemographic indicators
(from both objective and subjective aspects), built environment or spatial indicators and
trip or journey characteristic indicators [40,41].

De Wittle et al. have comprehensively reviewed the indicators of determent. Sociode-
mographic indicators have shown to shape travelers’ situations and social interactions,
including age, gender, education, occupation, income, household, and car ownership in
the objective aspect, as well as experiences, familiarity, habits, perceptions, and attitude in
the subjective aspect. The built environment or spatial indicators characterize the unique
environment of travelers’ daily trips, including density, diversity, public transport availabil-
ity, and parking. The trip or journey characteristic indicators include trip distance, travel
time, cost, and trip number or complexity [42]. Their findings regarding indicators provide
understandings about different dimensions of mobility patterns, which can be considered
as foundations for mobility pattern classification.

Cluster analysis, however, is considered as an unsupervised method that can be
used for finding homogeneous groups within multivariate data [43], which is the most
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commonly used method for identifying mobility patterns. According to specific means
used in cluster analysis, existing research works can be divided into latent class cluster
analysis and K-means cluster analysis. The former is normally seen in survey-driven
mobility pattern studies, such as those conducted by Kroesen [35], Molin et al. [12], and
Ton et al. [17]. It is considered as a model-based clustering technique with the benefit
of using statistical criteria to determine the optimal number of classes. Each individual
has a probability to belong to each class, based on its characteristics considered [44]. The
structure part of latent class analysis allows covariates to predict the class membership
of individuals, while the measurement part allows the latent class analysis to explain
associations between indicators [45]. However, there are also limitations. For example, the
computational complexity of this method often makes it unsuitable for large datasets. In
addition, if the initial choice is not an accurate reflection of the internal structure of the
data, it may lead to suboptimal results [46].

The K-means cluster is a more powerful method when dealing with massive data,
which is becoming popularly used in big data-driven transportation pattern classification
studies. We can see the typical applications in air passenger grouping [47], tourist pattern
grouping [48], or travel purpose classification [49] based on traffic big data. Despite the
obvious advantages, one of the inherent challenges is the need to specify the number
of K clusters in advance. The algorithm is also sensitive to the placement of the initial
center point, which may lead to convergence to the local optimal solution. To alleviate
this problem, it is recommended to use different center point initialization for multiple
iterations [47].

Compared to regression analysis, cluster analysis tends to deal with only core indi-
cators that can affect pattern choice significantly. Seven indicators have been considered
as highly emphasized ones in the literature. Age, income, access to public transport, trip
purpose, trip distance per mode, travel time, and number of trips per mode are also taken
into consideration as indicators in this study.

3. Data and Methodology
3.1. Extracting Daily Trip Features: Big Data Processing and Mining

Trajectory data like GPS-base data and smartphone location data are known for their
large sample size and continuous behavior observations, which allows researchers to
identify travelers’ temporal and spatial regularities hidden in datasets [50,51]. However,
because of complex data structures and privacy protection, such data also require careful
processing procedures before being usable for trip analysis [52]. The most commonly used
data are mobile phone GPS or signaling data for travel behavior analysis (see [53,54] as
examples) and smartcard data for capturing transit modal behavior separately. There is
also an increasing trend for the combined use of enormous datasets, especially in Chinese
cities where the massive population requires a more considerable amount of data and has
shown excellent efficiency in improving data precision (see [55,56] as examples).

In this research, we have achieved access to both mobile phone signaling data and
public transportation smartcard origins and destination station data for rail and bus trans-
port modes in Nanjing, China, and can set up a combined dataset including seven statistical
data sources and three dynamic big data sources; the dataset structures are presented in Ta-
ble 1. To capture monomodal and multimodal travelers’ daily mobility patterns and travel
behaviors, we extracted one traveler’s trip origin and destination (OD) paths, door-to-door
travel modes, and trip purposes within a day from the combined big dataset. The data
processing progress can be divided into five steps, as follows:

(a) The data washing step. Five kinds of abnormal data were washed before our
dataset could be used for further analysis. Excluding conventional dirty data, ping-pong
switching data, and drift data, we have followed Ding et al.’s data processing framework
for the mobile phone signaling dataset [57]. Also, incomplete or systematically misrecorded
data were excluded from the public transportation smartcard dataset. After this step, these
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two big datasets can provide mutual authentication evidence about individual transit use
with the same time-stamp and stop location for getting on and off.

(b) The map matching step. The mobile signaling data use the location coordinates of
the base station to approximately replace the actual coordinates of the user’s travel; it is
necessary to match the user’s movement trajectory recorded by the base station with the
road network and convert it into the user’s travel trajectory. Considering the amount of data
and processing efficiency, we use a combination of geometry-based and topology-based
methods for processing. Firstly, a regional road topology network was established. Then,
the recorded base station points were matched to the nearest road network nodes by the
point-to-point neighbor matching method. Finally, the shortest path between continuous
multiple nodes on the topology road network was formed to present the traveler’s real-
world travel trajectory.

(c) Trip segment step. After map matching, all travel trajectories were split into specific
trip segments with characteristics like trip originals and destinations, travel purposes, and
door-to-door travel modes. According to local Points of Interest (POI) features of Nanjing
city, we have considered four purposes: maintaining trip, commuting trip, leisure trip, and
return trip. According to existing research, we have identified trajectory stopping points
as origins and destinations of each trip based on the density cluster method and stopping
time and have assigned four specific trip purposes according to the weight of each POI
type within the trip origin and destination buffer areas [58–60].

(d) Door-to-door modal split and trajectory correction step. According to the existing
literature, metro, bus, car, and active modes are the most used travel modes throughout the
day and were selected in our research. We established specific classification rules based on
short-term velocity and acceleration to split the active mode and the others first. Then, we
used public transportation smartcard data to check for metro or bus trips and modified the
trip trajectory according to metro and bus lines if needed.

(e) Daily trip chain extraction step. After all the travel trajectories in the combined
big dataset were processed, the daily trip chain of all individuals can be extracted from
the track records marked with travel purposes and door-to-door travel modes. The typical
extraction results with three trips are presented in Figure 1.
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Table 1. The combined big dataset used in this study and data formats.

Type Name Source Content Original
Data Volume

Statistical dataset

Distribution data of
communication

base stations
Mobile operator Includes base station ID number, base

station longitude, and base station latitude 163,721 records

Urban POI
distribution data

Amap (name of a
Chinese map operate)

Includes 14 categories of Points of Interests
(POIs), including transportation facilities,
leisure and entertainment, companies and

enterprises, healthcare, commercial
residential areas, tourist attractions,

automotive related, life services, science
and education culture, shopping and
consumption, sports and fitness, hotel
accommodation, financial institutions,

and catering and food

322,542 records

Urban road
network data OpenStreetMap

Includes OpenStreetMap ID (OSMID),
one-way traffic, number of lanes, road

number (such as S205), road name, road
grade, road length, and road geometry

30,377.53 km

Urban bus
network data

Amap (name of a
Chinese map operate)

Includes route name, route geometry,
station name, station longitude, station

latitude, and station ID

713 lines
(10,743.64 km) with

6964 stations

Urban metro
network data

Amap (name of a
Chinese map operate)

Includes route name, route geometry,
station name, station longitude, station

latitude, and station ID

11 lines (427 km) with
198 stations

Resident population
distribution data of

the community

Human Resources
and Social Security

Department

Includes community name, geometry,
zoning, population, street area, population

density, the population aged 0–14, the
population aged 15–59, the population

aged 60 and above, the population
aged 65 and above

Records of
906 communities

Residential housing
price distribution data

Human Resources
and Social

Security Department

Includes residential housing estate
name, average price, zoning,

latitude and longitude
4369 records

Dynamic
big dataset

Mobile phone
signaling data Mobile operator

Includes user ID, work and residence
information, and travel information (travel

attribute information, travel trajectory).
The travel attribute information includes

start and end base stations, start times, end
times, and subway travel information

(departure and arrival stations, entry and
exit times, and route station information)

41,292 individuals,
4,913,488 trajectory

points

Origin and destination
station data of urban

bus card swiping

Bus Operation
Department

Includes record ID number, route name,
vehicle number, cost, time, boarding point
latitude and longitude, and alighting point

latitude and longitude

1,171,137 records

Origin and destination
station data of urban

rail card swiping

Rail Operation
Department

Includes record ID, entry and exit time,
name of starting and ending stations, start
and end stations’ longitude and latitude,

travel time, and distance

1,216,136 records

Note: All the above data strictly follow the data privacy limitation and no personal information is included.

3.2. Classifying Daily Mobility Pattern: A Multi-Layer Cluster Analysis

After multiple door-to-door trip features have been extracted from individuals’ com-
plete trajectory, cluster analysis can be used to classify each individual into different mobility
patterns. Before this step, however, a statistical analysis of all the mode combinations is
needed to obtain the first impression about daily mobility pattern. When considering
modes used in every segment of a door-to-door trip, there are 8042 different types of
mode combinations recognized from their daily trajectories. Therefore, the K-means cluster
method is utilized to identify typical mobility pattern classifications.
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Considering the massive combinations, a multi-layer structure is beneficial for study-
ing different features according to the existing literature [1]. Based on this information,
we have proposed a multi-layer cluster analysis model with one classification layer and
three cluster layers. In the first layer, travelers in the dataset are classified into three classes
according to the modal types used in individual daily trips: monomodal travelers, non-
transit multimodal travelers, and transit multimodal travelers. In the second, third, and
fourth layers, a K-means clustering method is used within every traveler class, considering
different indicators according to the features of the class. The overall multi-layer cluster
model framework is presented in Figure 2.
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Indicators are also important for cluster analysis and the following behavior analysis.
We have considered seven indicators that are highly emphasized in the literature. it
includes two sociodemographic indicators (age and income), one spatial indicator (access
to public transport), and four trip characteristic indicators (trip purpose, trip distance
per mode, travel time per mode, and number of trips per mode). However, because
of data privacy, we are not authorized to access travelers’ profiles like age or income.
To fix the lock-in situation, we are inspired by Sulikova and Brand’s research in which
they introduce neighborhood sociodemographic distribution characteristics into spatial
indicators and found the propensity of like-minded people to self-select into neighborhoods
with similar incomes and cultural backgrounds [61]. Following this method, we have
considered residential house pricing and community elderly status as indicators that can
reflect both spatial and sociodemographic profiles to some extent. However, those non-
intuitive indicators are more typically used in behavior analysis than in cluster analysis.

Therefore, we have considered three trip characteristic indicators used for defining
daily mobility patterns according to the existing literature: trip purpose, distance per
mode, and number of trips per mode [45]. Cross-indicator design is often used in cluster
analysis to reduce data dimensions, such as number of trips per mode for different travel
purposes [36]. Considering access and egress trip stages, short-distance trips are also
emphasized in cross-indicator design. With massive data, the wide-range continuous
indicators of distance per mode and number of trips per mode are not suitable to be directly
input into a cluster analysis. We have replaced them with proportion indicators ranging
between 0 and 100. After cross-indicator design, 11 specific indicators are considered in the
following cluster analysis process.

For the daily monomodal travelers, with their uniform use of a single travel mode like
active mode or automobile, we have considered their number of daily trips, commuting
trip proportion in total numbers of trips, and short-distance trip proportion in total number
of trips as three cluster indicators.

For daily multimodal travelers with non-transit modes, we have considered the
proportion of active mode in short-distance trips, the proportion of car use in commuting
trips, and the means of car trip proportion as three cluster indicators.

For daily multimodal travelers with transit modes, we consider a two-stage method of
the main mode clustering and then the access/egress mode clustering in sequence. In the
main mode clustering stage, we consider three indicators: transit (bus or rail) trip propor-
tion in total number of trips, transit (bus or rail) trip proportion in total number of com-
muting trips, and transit (bus or rail) trip distance proportion in full trip distances. In the
access/egress mode clustering stage, we consider two indicators: motorized connection trip
proportion in total number of access/egress trips and total distance of access/egress trip.

4. Cluster Results of Daily Mobility Patterns

Tables 2–4 present the clustering results from the multi-layer cluster analysis model
and their indicator frequencies using the Nanjing dataset. There are twenty identified
clusters of daily mobility patterns, including six clusters in the monomodal traveler class,
two clusters in non-transit multimodal traveler class and twelve clusters in transit multi-
modal traveler class. When considering and capturing the main mode’s access and egress
connection stage through big data mining, we discovered a much higher proportion of
multimodal travelers in the Nanjing dataset (85.6% of total travelers obtained).
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Table 2. Cluster results and indicator frequency of monomodal traveler group.

Mobility Pattern Clusters Traveler
Labels

Proportion in
Monomodal

Traveler Class

Average
Number of Trips

per Day

Means of
Commuting Trip

Proportion

Means of
Short-Distance
Trip Proportion

exclusive active mode user
with low flexibility LAM 15.94% 2.7 65.34% 93.93%

exclusive active mode user
with high flexibility HAM 21.38% 2.7 15.11% 92.87%

exclusive car user with low
flexibility and low intensity LLC 19.61% 2.6 58.21% 95.57%

exclusive car user with low
flexibility and high intensity LHC 11.85% 2.5 57.19% 26.87%

exclusive car user with high
flexibility and low intensity HLC 19.7% 2.7 19.62% 96.35%

exclusive car user with high
flexibility and high intensity HHC 11.51% 2.6 23.84% 27.65%

Table 3. Cluster results and indicator frequency of non-transit multimodal traveler group.

Mobility Pattern Clusters Traveler
Labels

Proportion in
Non-Transit
Multimodal

Traveler Class

Proportion of
Active Mode in
Short-Distance

Trip

Proportion of
Car Use in

Commuting Trip

Means of Car
Trip Proportion

highly car-dominant users HC+AM 56.85% 52.91% 86.24% 87.18%

moderately car-dominant users MC+AM 43.15% 78.86% 38.21% 58.03%

To verify the results’ effectiveness for further analysis, we checked the total modal
share with the 2022 Nanjing household travel survey results. When considering trip main
mode only, our results have shown high consistency with automobile use, while a 3%
higher proportion with transit use and 3% lower of active mode than the self-reported
survey, which validates the accuracy of trip stage segments and modal split for individuals’
daily travel trajectory in our dataset. Specifically, our results showed 14.4% of monomodal
travelers, 53.4% of non-transit multimodal travelers, and 31.85% of transit multimodal
travelers. These results indicate that, with combinations of active mode and automobile
use on a daily scale becoming the most common in Nanjing, it is crucial to understand
mobility patterns in this multimodal class for potential mode shift, which is often neglected
in the existing literature. Meanwhile, with twelve mobility pattern clusters identified and a
second large proportion, the results also show that transit multimodal travelers have much
more complicated characteristics that may attach to more precise policy implications. The
specific monomodal and multimodal mobility pattern clusters are described in detail in
the following.
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Table 4. Cluster results and indicator frequency of transit multimodal traveler group.

Mobility Pattern Clusters Traveler
Labels

Proportion
in Transit

Multimodal
Traveler Class

Means of Rail Trip
Proportion in
Total Number

of Trips

Means of Rail Trip
Proportion in

Commuting Trips

Means of Rail
Trip Distance
Proportion in

Total Trip
Distances

Means of Bus Trip
Proportion in
Total Number

of Trips

Means of Bus Trip
Proportion in

Commuting Trips

Means of Bus
Trip Distance
Proportion in

Total Trip
Distances

Means of
Motorized Trip

Proportion in the
Total Number

of Access/
Egress Trips

Means of
Motorized

Trip Distance
Proportion in

Total Distance of
Access/Egress Trip

less frequent bus users with
low motorized connections LBLM 33.28% 0.46% 0.04% 0.23% 24.46% 5.96% 10.14% 0.75% 2.41%

moderately bus-dominant
users with low

motorized connections
MBLM 22.82% 1.17% 0.36% 0.96% 51.12% 30.93% 40.89% 1.38% 2.46%

highly bus-dominant
users with low

motorized connections
HBLM 9.43% 0.54% 0.10% 0.33% 77.95% 41.37% 89.52% 0.51% 3.11%

less frequent rail users with
low motorized connections LRLM 2.48% 24.57% 7.66% 19.69% 4.22% 1.23% 1.62% 15.98% 60.14%

less frequent rail users
with moderately

motorized connections
LRMM 8.00% 32.40% 6.77% 20.53% 2.59% 0.79% 1.00% 46.93% 89.29%

rail users with highly
motorized connections LRHM 1.22% 34.89% 13.38% 17.60% 0% 0% 0% 94.78% 99.57%

moderately rail-dominant
users with low

motorized connections
MRLM 5.35% 50.05% 25.52% 56.34% 6.95% 4.36% 3.01% 37.98% 80.70%

moderately rail-dominant
users with moderately
motorized connections

MRMM 4.06% 55.11% 28.68% 58.86% 4.19% 3.24% 2.11% 63.85% 93.70%

moderately rail-dominant
users with highly

motorized connections
MRHM 1.43% 51.57% 29.44% 45.26% 1.02% 0.63% 0.82% 90.27% 98.59%

highly rail-dominant
users with low

motorized connections
HRLM 2.52% 71.71% 34.15% 91.54% 0.98% 0.12% 0.28% 34.81% 69.32%

highly rail-dominant users
with moderately

motorized connections
HRMM 6.35% 82.28% 39.69% 95.13% 1.08% 0.12% 0.34% 64.57% 93.84%

highly rail-dominant users
with highly

motorized connections
HRHM 3.04% 82.12% 62.28% 95.67% 0.27% 0% 0.05% 90.35% 98.69%
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4.1. The Monomodal Class with Six Mobility Patterns

Six mobility patterns are identified in the monomodal class: exclusive active mode
user with low flexibility (LAM), exclusive active mode user with high flexibility (HAM),
exclusive car user with low flexibility and low intensity (LLC), exclusive car user with
low flexibility and high intensity (LHC), exclusive car user with high flexibility and low
intensity (HLC), and exclusive car user with high flexibility and high intensity (HHC).

With similar numbers of daily trips and trip distances, significant differences can
be observed from two exclusive active mode clusters by indicating the commuting trip
proportion. The LAM group has a much higher commuting trip proportion than the HAM
group, which reflects more fixed routinary and less flexible travel tendencies in the LAM
group. Among the four exclusive car users, the LLC group mainly engages in short-distance
commuting trips; the LHC group mainly engages in long-distance commuting trips; the
HLC group mainly engages in short-distance -maintaining or leisure trips, while the HHC
group mainly engages in long-distance maintaining or leisure trips.

These four groups reflect different car travel habits; the LHC group has the lowest
travel frequency but the highest dependency on car use, while the HLC group reflects
the most unreasonable use of cars with the highest travel frequency and short-distance
trip proportion.

4.2. The Non-Transit Multimodal Class with Two Mobility Patterns

Two mobility patterns are identified in the non-transit multimodal class: highly car-
dominant users (HC+AM) and moderately car-dominant users (MC+AM). Both groups
use the car for more than half of their daily trips and active mode for the rest of the day.
Specifically, the HC+AM group uses automobiles for 87.18% and especially 86.24% of
commuting trips, much higher than the same indicators in the MC+AM group. Higher
car usage is also discovered in the HC+AM group for short-distance trips. Only 52.91% of
short-distance trips are conducted by active mode, indicating more irrational car use in the
HC+AM group than in the MC+AM group. In other words, the MC+AM group uses active
mode more frequently on short-distance and commuting trips.

4.3. Transit Multimodal Class with Twelve Mobility Patterns

Considering both rail and bus travel modes and their access as well as egress trip
modes, there are twelve mobility pattern clusters in the transit multimodal class, including
three bus multimodal user groups and nine rail multimodal user groups: less frequent
bus users with low motorized connections (LBLM), moderately bus-dominant users with
low motorized connections(MBLM), highly bus-dominant users with low motorized con-
nections (HBLM), less frequent rail users with low motorized connections (LRLM), less
frequent rail users with moderately motorized connections (LRMM), less frequent rail
users with highly motorized connections (LRHM), moderately rail-dominant users with
low motorized connections (MRLM), moderately rail-dominant users with moderately
motorized connections (MRMM), moderately rail-dominant users with highly motorized
connections (MRHM), highly rail-dominant users with low motorized connections (HRLM),
highly rail-dominant users with moderately motorized connections (HRMM), and highly
rail-dominant users with highly motorized connections connections (HRHM). From the
total proportion distribution, three bus multimodal user groups account for 65% of transit
multimodal travelers, and nine rail multimodal user groups account for the remaining 35%.

All twelve groups show combinations of at least three travel modes. Still, only low
motorized connections are identified in three bus user groups, indicating the absolute
tendency to use active mode for bus trips’ access and egress stage. The LBLM, MBLM,
and HBLM groups mainly differ in their dependency on bus travel. An upward trend
can be seen in all three indicators of bus trip proportion in total number of trips, bus trip
proportion in total number of commuting trips, and bus trip distance proportion in the
three groups. Decreased trends can be seen in the bus trip proportion of commuting trips
compared to daily trips within all three multimodal bus groups. However, a much more
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significant decrease occurred in the HBLM group than the other two groups, indicating
that the increasing usage of buses was mainly conducted for leisure or maintaining trips
rather than commuting. Meanwhile, a higher dominant status of bus trip distance than bus
trip numbers on the daily level in the HBLM group also reveals longer travel distances by
bus with active mode connections in this group.

Rail travelers choose more diverse access and egress modes than bus travelers. The
LRLM, MRLM, and HRLM groups mainly use active mode for access and egress with a
deepened dependency on daily rail travel, while bus or automobile access and egress trips
are more common in the LRMM, MRMM, and HRMM groups. More than 90% of travelers
in the LRHM, MRHM, and HRHM groups use buses or automobiles for their connection
stages to rail trips. We can see increasing trends of all three indicators in rail multimodal
user groups with similar motorized connection levels like the LRLM, MRLM, and HRLM;
while such indicators are nearly at the same level in groups with equal rail use frequency,
it indicates that the all three indicators play essential roles in classifying rail multimodal
mobility patterns. The same phenomenon of a decline in proportion between rail usage
in daily trips and commuting trips is also discovered in all nine rail multimodal traveler
groups. However, more significant decreases are obtained in the HRLM group than in
the LRLM and MRLM groups. This indicates that higher rail usages in groups with low
motorized connections are mainly conducted in leisure or maintaining trips. The same
trend is also discovered in groups with moderately motorized connections. However, we
can see a similar drop of around 20% between rail usage on daily trips and commuting
trips in the LRHM, MRHM, and HRHM groups. This indicates that a higher use of rail with
highly motorized connections concerns all travel purposes, including commuting trips.

5. Spatial and Behavioral Disparities among Mobility Pattern Clusters

The calculation results of indicators for all twenty identified mobility pattern clusters
are presented in Table 5. Also, with the advantages of big data mining, we hope to discover
and exhibit the possible spatial differences among different travel classes and mobility
pattern clusters more visually. A spatial distribution analysis of travelers’ residential
location was then carried out and is presented in Figures 3–7 to provide supplemental
evidence with statistical analysis.
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Table 5. Indicator estimation results of twenty typical mobility pattern clusters.

Typical Mobility Pattern Cluster

Spatial and Social Indicators Trip Characteristics’ Indicators

Accessibility to the
Transit Network on

the Home End
within a 5 min Walk

Accessibility to the
Transit Network on

the Work End
within a 5 min Walk

Level of Residential
House Price

Level of Community
Elderly Status

Average
Number of

Trips per Day

Average
Trip Distance

Average Travel
Time per

Trip (min)

exclusive active mode user with
low flexibility LAM 70.3% 66.3% above average low 2.7 2.46 10

exclusive active mode user with
high flexibility HAM 75.5% 74.8% above average high 2.7 2.14 13

exclusive car user with low flexibility
and low intensity LLC 72.5% 66.7% below average medium 2.6 15.99 21

exclusive car user with low flexibility
and high intensity LHC 69.7% 57.7% below average medium 2.5 54.08 39

exclusive car user with high flexibility
and low intensity HLC 76.5% 72.7% below average medium 2.7 15.68 21

exclusive car user with high flexibility
and high intensity HHC 70.9% 69.7% below average high 2.6 57.13 44

highly car-dominant users HC+AM 76.0% 73.7% average medium 3.9 25.96 33

moderately car-dominant users MC+AM 74.0% 72.4% average medium 3.7 11.58 25

less frequent bus users with low
motorized connections LBLM 84.6% 83.9% average high 5.2 16.42 26

moderately bus-dominant users with
low motorized connections MBLM 85.1% 85.7% above average high 3.9 10.59 22

highly bus-dominant users with low
motorized connection HBLM 87.6% 88.1% above average high 3.2 5.96 17

less frequent rail users with low
motorized connections LRLM 79.9% 82.1% above average medium 5.1 15.41 32

less frequent rail users with moderate
motorized connections LRMM 79.7% 80.0% above average medium 4.5 25.83 40

rail users with highly
motorized connections LRHM 77.0% 74.8% below average medium 4.3 32.95 40
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Table 5. Cont.

Typical Mobility Pattern Cluster

Spatial and Social Indicators Trip Characteristics’ Indicators

Accessibility to the
Transit Network on

the Home End
within a 5 min Walk

Accessibility to the
Transit Network on

the Work End
within a 5 min Walk

Level of Residential
House Price

Level of Community
Elderly Status

Average
Number of

Trips per Day

Average
Trip Distance

Average Travel
Time per

Trip (min)

moderately rail-dominant users with
low motorized connections MRLM 81.2% 82.7% above average medium 3.9 16.69 37

moderately rail-dominant users with
moderately motorized connections MRMM 82.6% 81.0% average medium 3.6 23.81 41

moderately rail-dominant users with
highly motorized connections MRHM 71.1% 76.1% average low 3.5 26.25 37

highly rail-dominant users with low
motorized connections HRLM 83.5% 84.6% above average medium 3.0 14.32 37

highly rail-dominant users with
moderately motorized connections HRMM 82.1% 86.1% average medium 2.8 24.59 47

highly rail-dominant users with
highly motorized connections HRHM 81.1% 80.8% average medium 2.5 26.02 45
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5.1. Statistical Analysis of Disparities among Mobility Pattern Clusters

Significant differences across the identified mobility pattern clusters are found accord-
ing to the results in Table 5. Among spatial and social environment indicators, accessibility
to transit networks at home is more regularly distributed among mobility patterns than
at the work end. Higher levels of accessibility to transit networks are discovered in all
twelve transit multimodal mobility patterns except the MRHM group. We can see the
highest level of transit accessibility from both home and work ends in the LBLM, MBLM,
and HBLM groups, with an incremental tendency in accessibility and bus dependency
level. The same tendency can also be seen in rail multimodal traveler groups. Taking the
LRLM, MRLM, and HRLM groups as examples, we can see an increasing trend in home
end transit accessibility (79.9%, 81.2%, 84.5%) along with the growing proportions of rail
trips. It indicates that transit infrastructure improvement will benefit daily bus and rail use,
especially in residential areas.

Meanwhile, a decreasing trend of home end transit accessibility is obtained among rail
multimodal users with the same level of rail use frequency, which may explain the upward
level of motorized connections. There is no apparent tendency about accessibility indicators
that can be seen from mobility patterns in monomodal and non-transit multimodal classes.
However, among all identified clusters, the LHC group has the lowest level of transit
accessibility (69.7% on the home end, 57.5% on the work end) and relatively longer trip
distance, which may explain their high dependency on cars.
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The level of residential house prices also points to an essential hint that exclusive car
users are more dispersed in suburban areas of Nanjing, with lower-than-average levels of
house prices discovered in all four exclusive car user groups of LLC, LHC, HLC, and HHC.
Consistent results can be discovered in rail multimodal user groups with highly motorized
connections; only below-average and average levels of residential house pricing are found
in the LRHM, MRHM, and HRHM groups. With lower accessibility to transit networks in
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their residential areas, this result may indicate unwilling dependencies on car use for both
daily travel and access trips in Nanjing city.

According to the average proportion of residents above 65 years old in Nanjing city
(nearly 15%), we give value labels of high (20% and above), medium (15–20%), and low
(below 15%) to the identified groups according to their residential community average
proportion of residents above 65 years old. The HAM and HHC groups are found to have
higher levels of elderly status, which, to some extent, reflects the high flexibility described
in such groups. The three groups of bus multimodal travelers also tend to live in elderly
communities, while the LAM user group and one group of rail multimodal users (MRHM)
are found to have lower elderly status, with similar levels of poor accessibility to transit
networks but average or above average house pricing. It gives a clue that those two groups
may live in new residential areas with distances to transit networks in the main city or city
center, which indicates an urgent need for special transit services in those areas.

Disparities can also be observed from three indicators of trip characteristics. All six
mobility pattern clusters in the monomodal traveler class tend to have simpler daily trip
chains than non-transit multimodal and transit multimodal travelers according to the
indicator of an average number of trips per day. This is consistent with Schneider et al.’s
(2020) and Yin and Leurent’s (2022) research that a higher level of multimodality may
relate to a more complex trip chain [1,34]. Also, we can see decreased trends of trip chain
complexity with the uprising proportion of transit use within three bus multimodal user
groups as well as within nine rail multimodal user groups. There are also decreased trends
of trip chain complexity within groups having similar proportions of transit use but with
an upward frequency of motorized connections. This indicates that a higher dependency
on transit use with motorized connections may reduce daily travel demand. A possible
reason for this may be that more transfers have to be made using the combination of transit
and motorized access or egress mode during one trip.

The distribution of average trip distances and travel time among different mobility
pattern clusters have revealed less regularity but also important evidence. There is no doubt
that the shortest trip distance and travel time are discovered in two exclusive active mode
user groups, LAM and HAM. With similar trip numbers per day, the HAM group, however,
has a shorter trip distance but a slightly longer trip duration than the LAM group. With
a much higher level of community elderly status, it may indicate that the improvement
of active mode infrastructures like bike lanes may be needed around the HAM group
residential community. In exclusive car user groups, the LHC and HHC groups have nearly
four times longer trip distances but only two times longer travel time than the LLC and
HLC groups, indicating less-congested travel situations for trips of the LHC and HHC
groups, whereby the mode shift for such groups may be more difficult than the LLC and
HLC groups.

Significant differences in trip distance and travel time can also be seen in two non-
transit multimodal groups with combinations of active mode and car. With a higher
proportion of car use, the HC+AM group has a longer trip distance on average than the
MC+AM group, which is reasonable. However, with nearly half of daily trips conducted by
active mode, the MC+AM group has slightly shorter travel distances than the exclusive car
user groups of LLC and HLC, but significantly longer trip durations than those two groups;
such time-consuming active mode trips should be examined for rationality.

A decreased trip distance and travel time are discovered with the increasing use
frequency of buses in the LBLM, MBLM, and HBLM groups. There is no regular tendency
that can be seen from rail multimodal users with similar levels of motorized connections.
However, increasing trends along with higher usage of motorized connection modes are
discovered in rail multimodal user groups with similar rail use frequencies. The LRHM,
MRHM, and HRHM groups are found to have the longest average distance, indicating
that under similar rail usage frequency, the highly motorized access and egress stages
of rail trips may be more responsible for longer door-to-door trip distances than on-rail
stages. The average trip time tells another story: the group with moderately motorized
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connections tends to have the longest travel time (see the HRLM, HRMM, and HRLM
group as examples). Evidence from the spatial distribution of such groups is needed for
further detail.

5.2. Spatial Distribution Analysis of Mobility Pattern Clusters

On the basis of the statistical analysis of the identified mobility pattern clusters, we
have also evaluated the spatial distribution differences among cluster patterns. Figures 3–7
present the Kernel density GIS maps of travelers’ residential location distributions from all
20 mobility pattern clusters identified in monomodal, non-transit multimodal, and transit
multimodal classes, respectively. Significant disparities can be seen by comparing such
maps. Generally speaking, four groups of exclusive car users have the most dispersed
distributing pattern than others, with travelers’ residential locations covering the majority
of areas of Nanjing. Dispersed distributions can also be observed in two non-transit
multimodal user groups of HC+AM and MC+AM, with the second largest coverage area.
Two exclusive active mode user groups and three bus multimodal user groups present
a beaded distribution with multiple spatial clusters located in both Nanjing’s main city
center and suburban centers. However, nine rail multimodal user groups have shown
more concentrated distributions, with most users located alongside the rail networks in
Nanjing’s main city center.

More detailed spatial differences can be distinguished from the perspective of each
group. From Figure 3, the LAM group is mainly located in the main city center, the Xianlin
subcenter in the Qixia district, as well as the Jiulonghu and Daxuecheng subcenters in the
Jiangning district. The HAM group is mainly located in the main city center, the Xianlin
subcenter, and the Qiaobei subcenter in the Jiangbei district. Compared to LAM, the HAM
group has an obviously larger concentration area in the main city, with a shorter average
trip distance but longer travel time obtained in this group; the southern areas and the
northwestern areas of the main city require extra attention for active mode infrastructures.
With a higher proportion of commuting trips, the Jiulonghu and Daxuecheng subcenters
in the Jiangning district should focus more on commuting continuity using active mode
of transport.

With exclusive car users located everywhere, those dispersed distributions may be
responsible for the below-average level of residential house prices discovered in the LLC,
LHC, HLC, and HHC groups. Spatial clusters are obtained both in the main city center and
three sub-city centers of Liuhe, Lishui, and Gaochun for the HLC group, as presented in
Figure 4, which may explain the short distance but time-consuming travel experience. In
contrast, unique spatial concentrations are discovered in Banqiao for the LLC and LHC
groups, indicating that commuting car trips are highly emphasized in such areas. The
eastern main city (Chengdong) is discovered as a more concentrated center in the HLC
and HHC group than the other two groups, which reveals leisure and maintaining travel
demand in such areas. Meanwhile, the LHC and HHC groups require special attention
in planning policies concerning possible mode shift behaviors with relatively smaller
concentration areas in the main city but significantly longer-distance car trips.

The HC+AM and MC+AM groups have similar spatial distribution (Figure 5), with
only slight differences in the Xianlin subcenters emphasized in the MC+AM group, and the
Banqiao area is emphasized in the HC+AM group; both areas have poor accessibility to
transit networks.

Along with the increasing usage frequency of buses, a smaller trend of concentration
areas is discovered (Figure 6) for the LBLM, MBLM, and HBLM groups, which are consistent
with a higher trend of transit accessibility shown in Table 5. Significant differences can
also be distinguished from nine rail multimodal traveler groups (Figure 7). Along with the
increasing rail usage proportion under similar low motorized connection levels, we can see
a dispersed trend of travelers’ residential spatial center distributions.

With more distant residential centers like Qiaobei, Cheng-dong, and Daxuecheng
discovered in MRLM and HRLM groups, evidence of the longer trip distance obtained
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in such groups has been confirmed. However, using highly motorized modes like auto-
mobiles and buses for rail trip connection, the LRHM, MRHM, and HRHM groups have
outlined centrally concentrated spatial distribution trends for both residential centers and
outside clusters. The statistical results driven from Table 5 support the finding that the
HRHM group has relatively shorter door-to-door trip distance than the MRHM and LRHM
group, indicating that appropriate distances rather than remote distances from home to rail
network can formulate higher usage of rail with motorized connections.

All three groups of LRMM, MRMM, and HRMM have shown concentration effects
alongside rail routes, with relatively larger residential areas rather than multiple spatial
clusters. With a higher possibility of combining more travel modes and relatively long
connections, such complex distribution patterns may explain the most time-consuming trips
obtained in these groups. Comparisons between groups with low-frequency or moderately
dominant rail usage proportion but different levels of motorized connections have shown a
more dispersed distribution in both residential centers and outside clusters.

The LRHM and MRHM groups have captured more remote residential areas in Li-
uhe sub-cities and southern Yuhuatai and Jiangning districts, where rail networks are
the most sparse. On the other hand, the HRLM, HRMM, and HRHM groups see more
concentrated distributions in the main city center but more spread-out distributions in
suburban areas along with the increasing usage of rail. This reveals that improving inte-
grated rail and bus network services may promote the usage frequency of both rail trips
and bus–rail connections.

6. Discussion

Generally, when considering the mode used in every segment of a door-to-door trip,
85.6% of travelers in the Nanjing dataset are multimodal. Compared to the multimodal
travelers identified at individual level through the daily travel diary survey (i.e., 53.6% in
Germany [5], 60% in the Netherlands [34], 8.7% in Chongqin, China [62]), our results show
a higher resolution in capturing multimodal behavior. Especially with huge distinctions
between multimodal proportions obtained in the Chinese context, it may cause serious bias
in implementing planning or policy when trip-level multimodal mobility is neglected.

Also, compared to other studies where active mode is only considered in one or
two clusters [16,17], the role of active mode in an individual’s daily mobility pattern is
highly emphasized in our research. With nearly every mobility pattern describing different
usage levels of active mode, an individual’s daily mobility pattern may serve the specific
need of a psychological analysis of the active mode [63]. Considering door-to-door trip
characteristics at the daily level, three bus multimodal groups and nine metro multimodal
groups are identified. Compared to the multimodal mobility pattern identified only at trip
level (i.e., Yang et al. [21]), our results help to provide a more comprehensive view of transit
multimodal behavior. The disparity details between each group is of great importance for
providing needed information in multimodal transportation network planning [64,65] and
carbon footprint analysis [66,67] in the era of big data analysis.

Based on such information, more precise and targeted planning policies can be inferred
from the statistical and spatial analyses of the 20 identified monomodal and multimodal
mobility pattern clusters.

6.1. Policy Implications for Exclusive Active Mode Travelers

Exclusive active mode users are the most sustainable compared to other groups;
however, their travel experiences are often less emphasized from planning or policymaking
perspectives. According to our results, spatial gathering locations of the HAM group
need to pay more attention to complete networks for active mode trips, especially in the
Laochengnan area, the southern subcenter of Nanjing Jiangnan’s main city. Those areas
are the most concentrated places of elderly populations; however, with narrow or missing
non-motorized lanes and sidewalks, improvement for the active mode travel experience is
in urgent need. With a higher proportion of commuting trips, the concentration centers
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of the LAM users should examine the active mode networks for connectivity and fast
accessibility during peak hours. Fast bike lanes may be needed in some high-flow areas in
Xianlin and Jiangning city subcenters. Those implications may help to provide detailed
evidence about facility planning in related areas.

6.2. Policy Implications for Exclusive Car Traveler and Non-Transit Multimodal Travelers

With different levels and features of car use, exclusive car users and non-transit
multimodal travelers can be considered as targeted groups for promoting mode shift
behaviors. In particular, with the irrational use of cars for short-distance trips identified,
the concentration areas for travelers in the HLC and HC+AM groups may require a special
push-and-pull policy design for reducing car use. For example, the core of the Yuhua
District and the southern Hexi District are concentration areas for HLC and HC+AM
groups. Especially in concentration areas with already relatively good rail services, such as
the core area of the Yuhua District and the southern Hexi District, higher parking prices
or a lower supply of parking spaces than other areas is needed. The areas in the Nanjing
Parking Planning, however, are treated as regular areas with sufficient parking supply and
normal parking prices. With the highest dependency currently on long-distance car travel
but which has the worst transit accessibility, new rail route planning or higher rail network
density is needed in concentration centers of the LHC group for possible mode shifts.

6.3. Policy Implications for Transit Multimodal Travelers

A transit multimodal traveler is considered to more easily change their patterns over
time [35]. With a detailed pattern distinguished, our results may help to better avoid the
possible unsustainable transferring behaviors. With a higher elderly population status
and higher daily trip frequency, travelers in the three bus multimodal groups of LBLM,
MBLM, and HBLM will benefit more from the renovation of bus interiors for aging people
in addition to continuing to improve the accessibility of bus networks.

There are also unreasonable behaviors seen in the nine rail multimodal user groups,
which may lead to a converse mode shift to car use if precise solutions are not provided.
With the highest number of daily trips and longest average door-to-door trip distance, the
LRLM users may be more likely to lose interest in rail use and change to other modes.
Planning policies for providing mixed land use around rail stations is needed, especially
for suburban spatial clusters of LRLM users. With most time-consuming door-to-door trips,
the band distribution features alongside rail networks of the LRMM, MRMM, and HRMM
groups have indicated that improvements of bus–rail transfers as well as shuttle buses in
residential areas may be beneficial for such users. The most significant drop between rail
trip proportions in daily trips and commuting trips is discovered in the HRLM group; with
a higher use of rails in daily leisure and maintaining trips, travelers in this group may be
more concerned about a comfortable on-rail environment than other groups. The lowest
transit network accessibility is identified in the MRHM group, indicating that a targeted
improvement of transit network density according to the MRHM user spatial distributions
would be of great use.

Despite the high-resolution results, we also recognize the limitations of the big data
mining method and multi-layer cluster analysis used in this study. First, the short-term
velocity and acceleration we used for door-to-door modal split are difficult when distin-
guishing e-bike users. This means that the e-bike used by an individual is either to be
split into automobile mode or into active mode according to specific speed features in
our study. However, e-bike users have specific needs for travel, such as more parking
space. A specific distinguishment of e-bikes may be beneficial in future works. Second, we
used a K-means cluster method with several iterations in each layer to determine center
point initialization; however, the time-consuming process may be less-efficient when more
indicators are introduced. An improvement of the K-means cluster method may be needed
to deal with massive data and indicators. Third, the selection of indicators was based on
the knowledge of the existing literature; since the mobility patterns are considered more
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locally used than comparatively used, a model algorithm between local travel behavior
and indicator variables may be beneficial for selecting more distinctive indicators.

7. Conclusions

This work contributes to a more comprehensive understanding of monomodal and
multimodal mobility patterns, as well as to more detailed evidence of spatial and behavioral
disparities across patterns from an integrated view of the complete door-to-door trip mode
chain with the daily mode chain. Our knowledge of monomodal and multimodal mobility
has been enhanced in several ways.

First, using combined big datasets, including mobile phone signaling data and public
transportation IC card OD data, we have revealed the effectiveness and advantage of big
data mining in capturing complete daily travel trajectories, including door-to-door trip mode,
as a study basis, which may break the survey design barriers for collecting comprehensive,
high-resolution and high-quality behavioral data needed in multimodality research.

Second, the multi-layer cluster analysis model framework we designed for this re-
search may provide new evidence about identifying typical monomodal and multimodal
mobility patterns from dealing with large-scale data. The model structure of one classifi-
cation layer and three cluster analysis layers under specific indicators have enabled us to
consider trip characteristics like trip purpose, trip distance, and door-to-door trip mode
into daily modal mobility pattern identifications. The model results have shown great
superiority in catching multimodal travel behaviors, with 85.6% of total travelers obtained
as multimodal in the Nanjing dataset.

Third, the 20 mobility pattern clusters identified under this framework, including
six types of monomodal traveler groups, two types of non-transit multimodal traveler
groups, and 12 types of transit multimodal traveler groups, have provided more detailed
information in establishing traveler profiles as well as distinguishing travel behavior, and
may be beneficial in filling the planning–implementation gap from the perspective of
planners, policymakers, and travelers.

Last, we have examined possible disparities among all 20 identified clusters through
both statistical analysis and spatial distribution analysis with the Kernel density GIS maps
of traveler residential location. Significant differences between detailed clusters have been
obtained from both analyses. The two exclusive active mode users of LAM and HAM
mainly differed in spatial concentration location and community elderly status, leading to
different travel experiences. While dispersed spatial distributions of four exclusive car user
groups and two non-transit multimodal user groups give common features like relatively
poor accessibility to transit networks and lower house price status, a significant difference
is still obtained for trip distances and car use dependency. With beaded spatial distribution,
the three bus multimodal user groups have shown a decreased tendency of trip distance
along with the increase in bus use frequency in mainly leisure or maintaining trips. More
evidence can be found from the nine rail multimodal user groups concerning all indicators
of spatial, social, and trip characteristics, which help to provide mutually corroborating
views for possible policy deductions.
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