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Abstract: Considering the emergence and adoption of various innovative technologies, the construc-
tion industry has undergone transformation into a more secure, highly efficient, and ecologically
sustainable landscape. An increasing number of studies uses the structural equation modeling (SEM)
method to explore the dynamics of technology adoption and use within the construction sector.
Previous studies have mainly focused on qualitative analysis using the SEM method to analyze
technology adoption and usage in the construction industry. This study, however, distinguishes itself
from previous research by focusing on the SEM method itself and conducting a systematic analysis
using scientometric methods. Based on a total of 140 relevant journal articles, this study adopts
a scientometric analysis approach to conduct a holistic review encompassing sources, researchers,
keywords, and highly cited documents. The research findings are as follows: (1) the primary focus
of the current research topics is on BIM technology; (2) most studies employ cross-sectional SEM
instead of longitudinal SEM; (3) there is a deficiency in the theoretical foundation for designing SEM
in current research; and (4) the selection of either reflective or formative measures lacks sufficient
rigor. Qualitative analysis is used to examine prevailing issues in research design and address the
intricate technicalities and potential challenges inherent in the SEM method. Three research gaps
and future directions are presented: diversifying regions of study and research topics, incorporating
theoretical support for research design, and carefully choosing reflective or formative measures. The
findings provide a comprehensive roadmap and valuable reference for future research in this field.

Keywords: construction industry; emerging technologies; technology adoption; structural equation
modeling (SEM); scientometric analysis; innovative technologies

1. Introduction

The construction industry, as a key pillar industry of a country or region, faces numer-
ous pressures and challenges in the modern era. Such frequent issues as severe resource
waste, low production efficiency, environmental contamination, and occupational safety in-
cidents have jeopardized the construction industry’s long-term development [1]. Emerging
technologies (tools, modifications, or equipment that can help construction practitioners
achieve certain goals, carry out specific tasks, or overcome new obstacles) have thus been
regularly incorporated into design and construction practices [2,3]. Both promote the
construction industry’s healthy and sustainable development [4,5] and help practition-
ers improve.

Significant research has been conducted to date on adopting and using various tech-
nologies in the construction sector to create a safer, more productive, and more sustainable
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working environment. Wearing sensing devices, for example, can significantly improve the
safety of front-line construction workers [6]. Promoting the use of social media [7] and build-
ing information modeling (BIM) [8] can boost construction productivity significantly. In the
road construction industry, intelligent compaction (IC) or ground penetrating radar (GPR)
applications can help quality managers improve job efficiency and quality [9]. Adopting
green building technology (GBTS) is an important step toward long-term environmental,
economic, and social sustainability in the construction industry [10]. Three-dimensional
printing [11] and cloud computing [12] technology can reduce costs, preserve resources,
develop industry production processes, and eliminate over-reliance on labor.

Structural equation modeling (SEM) has been used in an increasing number of studies
due to its greater ability to estimate effects. Compared to other methods, SEM is a useful
technique for assessing complex theoretical relationships among multiple variables [13],
widely applied in the field of construction for technology adoption. Ahmed et al. use
partial least squares (PLS)—SEM in analyzing questionnaires distributed to 1200 construc-
tion companies to study the impact of interoperability-related factors, determinants, and
barriers in adopting BIM technology in Malaysia’s construction industry [14]. PLS-SEM is
used by Al-Hashmy et al. to investigate the impact of a computerized accounting informa-
tion system (CAIS) on construction firm performance, finding that most of it is mediated
by innovation [15]. Etemadi et al. investigate the factors influencing architecture profes-
sionals’ use of social media for work-related knowledge sharing using covariance-based
(CB)—SEM [7].

SEM has the advantage of not requiring all variables to be observable and not assuming
that all variables are error-free measurements [16,17]. It can model and estimate the
complex relationship between multiple dependent variables and independent variables
at the same time, use multiple indicators to indirectly measure the unobservable concepts
under consideration, and account for the estimation relationship and measurement errors
of observed variables (OVs) [17,18]. When dealing with structures and investigating
mediating and regulating effects, SEM is frequently superior to multiple regression [19].
Furthermore, the study of technology adoption and use is essentially social research because
it involves the analysis of people’s behavioral intentions [20], and dealing with the difficulty
of quantifying such social science issues as human motivation, perception, and attitude is
often the major advantage of using SEM [21]. This makes it a commonly chosen technique
for analyzing technology adoption and use in both the private and public sectors [22].

Despite the increasing popularity of using SEM to analyze technology adoption and
use in the construction sector [7,14,15,23], existing publications can be expanded or im-
proved. Most studies use the SEM method to assess the impact of multiple variables on
technology adoption in the construction field, but little attention has been paid to SEM itself,
and there are many issues in the design of the model. Essential rules are sometimes violated
or ignored [24,25]. For example, the principle of using 10 times the maximum number of
paths for any structure in the external model [26] is not always followed. Furthermore,
despite the multivariate normality of data being a required assumption for CB-SEM, some
studies fail to test and report it, resulting in such problems as an inflated goodness of fit [27].
Furthermore, theories should be used to define individual constructs. All latent variables
(LVs) should be present in a hypothesized model [28–31]. Some studies, however, do not
provide adequate theoretical support for selecting measurement items and developing
appropriate hypotheses. As a result, a comprehensive and critical review is required to
summarize existing research, identify common errors, and direct future work using SEM to
examine technology adoption and use in the construction industry.

Previous reviews [2,32–38] have contributed significantly to the current body of knowl-
edge. Despite its growing popularity, they do not pay attention to SEM. Furthermore, most
review articles are manual and qualitative, with only a few employing a scientometric
analysis approach to conduct a systematic approach. According to recent research, humans
are better at acquiring and interpreting domain knowledge when presented in graphical
formats [39,40]. To bring the situation up to date, the present study employs the science
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mapping approach, which uses graphical representation to reveal the inherent relationships
involved. Science mapping is a powerful bibliometric technique used to understand and
monitor the structure and evolution of the SEM-related research field in order to identify
the relationships among authors, disciplines, and studies [41]. To supplement previous
qualitative work, this approach allows to conduct a quantitative analysis for discovering
technology applications in the construction sector using SEM. This study offers several
contributions: It aids scholars in achieving a comprehensive understanding of the literature
direction concerning the use of SEM methods in the field of construction technology adop-
tion and usage, identifies emerging and promising topics within the existing knowledge
framework, and uncovers issues in current research that utilizes SEM methods, thereby
facilitating improvements.

This review has the following specific research objectives, with a clear scope of focusing
on studies that use the SEM approach to discover technology adoption and use in the
construction industry: (1) analyzing sources, keywords, authors, and articles using a
science mapping approach; (2) analyzing research works from both the research design
and SEM technique perspectives; and (3) exposing existing research gaps and determining
potential future research areas.

2. Research Methods

This section outlines the three-step review approach, which consists of a literature
review, scientometric analysis, and a qualitative discussion. Quantitative analysis using
scientometric methods quantifies the application of SEM in the field of construction technol-
ogy adoption, while qualitative analysis provides current research references for relevant
scholars. A comprehensive literature review assists researchers in related fields to better
understand the development trends, existing issues, and future expectations of the topic.
Figure 1 depicts the entire research methods procedure.

2.1. Literature Search

The literature search was carried out in three widely used academic databases (Web of
Science, Scopus, and Engineering Village) using the query “(structural equation modeling)
AND (construction industry) AND (technology)” to limit the topic to the use of SEM to
reveal technology adoption in the construction industry. After narrowing the search criteria
to journal articles published in English, a total of 2323 initial documents were identified.
Duplicated documents were deleted, and the remaining article titles and abstracts were
manually evaluated for further screening. This resulted in the elimination of items referring
to industries other than construction (e.g., the chemical, manufacturing, shipbuilding,
electrical and electronic, and automotive sectors), methods other than the SEM technique
(e.g., Delphi, analytic hierarchy process, linear regression, and machine learning), and
topics other than technology adoption and use (e.g., safety behavior, contractor selection,
knowledge management, effective communication, and social interaction). Ultimately,
140 journal articles were chosen to form the literature sample for analysis.

2.2. Scientometric Analysis

The review’s second stage includes scientometric analysis, a popular method for
domain analysis and visualization [42]. This has been widely used to support system-
atic literature reviews in various aspects of building construction research (e.g., [43–47]).
VOSViewer is a text-mining tool that generates network-based visualizations using dis-
tance metrics. Each node in the network can represent various data points, such as the
source journal, author, organization, country, and keyword [48,49]. According to van Eck
and Waltman, the proximity between nodes represents their degree of closeness, which
can be quantified using various metrics such as co-authorship, shared references, and
co-occurrence [50]. The 140 articles are entered into VOSViewer (1.6.20) to conduct the
scientometric analysis, allowing the generation of results relating to the impact of journals,
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keywords, researchers, and articles in applying SEM to uncover technology adoption and
use in the construction industry.
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2.3. Qualitative Discussion

Finally, a thorough qualitative discussion is held from various perspectives. The first
section examines research design issues, such as the study’s geographical scope and central
focus, choice between cross-sectional and longitudinal study designs, and prevalent use of
theoretical frameworks. The section on SEM techniques that follows discusses the technical
complexities and potential pitfalls. This includes deciding between CB-SEM and PLS-SEM
methodologies, distinguishing between reflective and formative measures, emphasizing
the importance of theoretical foundations for both structural and measurement models, and
debating mediation and moderation effects in SEMs. The final section identifies research
gaps and potential directions for future research.
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3. Results

This section presents the findings of science mapping based on the 140 articles which
include journal analysis, researcher analysis, keyword analysis, and document analysis
using VOSViewer.

3.1. Journal Source Analysis and Researcher Analysis

Figure 2 depicts journal sources as nodes, with the size of each node corresponding
to the number of associated publications. The distance between nodes roughly reflects
the extent to which they are cross-referenced [50], and the color of each node represents
the clustering results, which is automatically determined by VOSViewer using the smart
local moving average algorithm [22,49,50]. In terms of the number of articles, the visual-
izations show that Engineering Construction and Architectural Management (18 documents)
as well as Sustainability (18 documents) make the most significant contributions, followed
by the Journal of Construction Engineering and Management (12 documents) and Buildings
(11 documents).
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Table 1 summarizes the quantitative metrics of most productive journals, highlighting
the highest total citation counts for Automation in Construction, Engineering Construction and
Architectural Management, Sustainability, Journal of Management in Engineering, and Journal
of Construction Engineering and Management. A normalized citation metric is introduced to
counter the potential bias of older documents receiving more citations. This is obtained
by dividing a document’s citation count by the average citation count of all documents
using VOSViewer [48]. The recipients of the most normalized citations are Engineering
Construction and Architectural Management and Sustainability.
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Table 1. Quantitative metrics of most productive journals.

Journals Number of
Publications

Total
Citations

Average
Publication Year

Average
Citations

Normalized
Citations

Average
Normalized Citations

Engineering Construction and
Architectural Management 18 312 2021 17.33 16.90 0.94

Sustainability 18 194 2021 10.78 15.87 0.88
Journal of Construction Engineering

and Management 12 112 2021 9.33 8.14 0.68

Buildings 11 24 2022 2.18 4.55 0.41
Applied Science 6 42 2021 7.00 6.62 1.10

Automation in Construction 6 511 2011 85.17 7.63 1.27
Journal of Management in Engineering 6 187 2021 31.17 8.48 1.41

Construction Innovation 5 41 2020 8.20 2.38 0.48
Journal of Civil Engineering

and Management 5 50 2019 10.00 2.13 0.43

Architectural Engineering and
Design Management 3 26 2021 8.67 2.17 0.72

Journal of Facilities Management 3 25 2022 8.33 5.91 1.97

Researchers are producers of knowledge, and a thorough analysis of researchers’ col-
laborative network relationships as well as countries can help explore their related research
efforts to capture the application domains of SEM in the construction field, especially in
recent dominant areas.

Figure 3 depicts the number of articles (≥2) published by individual researchers.
Each researcher is represented as a node in this diagram, with the node’s size correspond-
ing to the number of citations the researcher has received. The distance between nodes
represents the number of times two researchers have cited each other. This visual represen-
tation identifies the researchers who have received the most citations, including Seulki Lee
(4 documents, 240 citations), Jungho Yu (4 documents, 240 citations), Changwan Kim (2 doc-
uments, 231 citations), Hyojoo Son (2 documents, 231 citations), and Nicholas Chileshe
(3 documents, 194 citations). Table 2 summarizes the quantitative metrics of the highly cited
researchers, with Nicholas Chileshe and Ahmed Kineber emerging as the top normalized
citation recipients.
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Table 2. Quantitative metrics of the highly cited researchers.

Researcher Name Number of
Publications

Total
Citations

Average
Publication Year

Average
Citations

Normalized
Citations

Average
Normalized Citations

Lee, Seulki 4 240 2017 60.00 3.54 0.89
Yu, Jungho 4 240 2017 60.00 3.54 0.89

Kim, Changwan 2 231 2013 115.50 2.92 1.46
Son, Hyojoo 2 231 2013 115.50 2.92 1.46

Chileshe, Nicholas 3 194 2019 64.67 16.59 5.53
Kineber, Ahmed 15 164 2022 10.93 30.10 2.01

Jeong, David 1 154 2015 154.00 2.03 2.03
Aibinu, Ajibade A. 1 145 2010 145.00 2.00 2.00

Al-Lawati,
Ahmed Murtadha 1 145 2010 145.00 2.00 2.00

Lee, Sungwook 1 124 2016 124.00 1.63 1.63

Figure 4 illustrates the collaboration network among researchers from different geo-
graphical regions, where each region is represented by a node, and the connections between
nodes reflect the collaboration relationships between regions. The thickness of the con-
nections between nodes reflects the strength of collaboration between the corresponding
publications. In terms of productivity and impact, Australia (26 documents, 869 citations),
China (51 documents, 640 citations), and South Korea (11 documents, 591 citations) are
the top-producing regions. This indicates their significant contributions to enriching and
advancing the application of SEM in the adoption of technology in the construction field. In
terms of collaboration strength, researchers from Malaysia, Nigeria, and Saudi Arabia have
the strongest collaboration relationships with researchers from other geographical regions.
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3.2. Researchers, Keywords, and Document Analysis

Keywords are short phrases that represent the core content of the article. Keyword
analysis is crucial because scientific publications contain valuable textual information that
can represent the primary interests and hotspots of specific fields [51]. This analysis takes
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into account both Author Keywords (keywords that are manually entered by authors)
and Keywords Plus (keywords that are automatically suggested by programs). To ensure
consistency, manual text data preprocessing is used to standardize the writing formats of
various semantically similar expressions. For example, terms such as ‘building information
modeling (BIM)’, ‘BIM’, and ‘building information modeling’ are all treated as synonymous
with ‘BIM’.

Following the establishment of a minimum keyword occurrence threshold of three in
VOSViewer, 120 out of 711 keywords are chosen and visualized in Figure 5. Nodes with
bigger sizes signify keywords that appear more frequently. As indicated in the timeline
legend, the average year of occurrence is represented by the node color, and the distance
between nodes generally reflects how frequently two terms appear together. Notably,
the top 10 most frequently occurring keywords are ‘bim’ (44), ‘adoption’ (38), ‘structural
equation modeling’ (38), ‘technology’ (36), ‘management’ (36), ‘construction industry’ (29),
‘pls-sem’ (27), ‘implementation’ (26), ‘construction’ (22), ‘user acceptance’ (21), ‘barriers’ (21),
and ‘information technology’ (18). The number of times each keyword appears is indicated
in parentheses.
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Finally, the articles are used to analyze the literature sample. Figure 6 depicts the
71 documents obtained via VOSViewer, with at least five citations per article. Each node in
this representation stands for a specific article, and the size of the node reflects the overall
number of citations that article has received. The closer the nodes are, the more related



Sustainability 2024, 16, 3824 9 of 21

they are, with the distance between them roughly reflecting the frequency at which they
cite each other.
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Table 3 shows the titles and citation counts for the 20 most-referenced documents,
arranged in descending order by citation number. The frequency of citations underscores
the enduring popularity of BIM in using SEM [52–63].

Table 3. Twenty most-referenced articles in the literature sample.

Article Title Total
Citations

Normalized
Citations

Lee et al. [52] BIM Acceptance Model in Construction Organizations 154 2.03

Aibinu et al. [64] Using the PLS-SEM technique to model construction
organizations’ willingness to participate in e-bidding 145 2.00

Son et al. [53]
What drives the adoption of building information modeling in

design organizations? An empirical investigation of the
antecedents affecting architects’ behavioral intentions

124 1.63

Darko et al. [65]
Influence of barriers, drivers, and promotion strategies on green

building technologies adoption in developing countries: The
Ghanaian case

111 3.56

Park et al. [66]
Investigating the determinants of construction professionals’

acceptance of web-based training: An extension of the technology
acceptance model

107 1.28

Ding et al. [54] Key factors for the BIM adoption by architects: a China study 102 1.34

Hosseini et al. [55] BIM adoption within Australian Small and Medium-sized
Enterprises (SMEs): an innovation diffusion model 96 2.77

Hong et al. [60] BIM adoption model for small and medium construction
organizations in Australia 80 3.02

Yang et al. [67] Assessing impacts of information technology on project success
through knowledge management practice 72 0.86

Lee et al. [68] Success model of project management information system
in construction 71 0.85

Olanrewaju et al. [63]
Modelling the relationship between Building Information

Modeling (BIM) implementation barriers, usage, and awareness
on building project lifecycle

55 10.76
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Table 3. Cont.

Article Title Total
Citations

Normalized
Citations

Alizadehsalehi and Yitmen [69] Digital twin-based progress monitoring management model
through reality capture to extended reality technologies (DRX) 53 15.09

Zhao et al. [59] Risk paths in BIM adoption: empirical study of China 48 1.54

Olanrewaju et al. [62] Modelling the Impact of Building Information Modelling (BIM)
Implementation Drivers and Awareness on Project Lifecycle 43 3.06

AlizadeSalehi et al. [58]
Modelling and analysis of the impact of BIM-based field data

capturing technologies on automated construction
progress monitoring

39 1.25

Yuan et al. [61] Promoting Owners’ BIM Adoption Behaviors to Achieve
Sustainable Project Management 35 1.32

Zhao et al. [57] Modelling paths of risks associated with BIM implementation in
architectural, engineering and construction projects 35 1.75

Wong et al. [70]
Exploring the acceptance of PPE by construction workers: An

extension of the technology acceptance model with safety
management practices and safety consciousness

30 2.13

Hosseini et al. [56] Sustainability by Information and Communication Technology: A
paradigm shift for construction projects in Iran 26 2.77

Pan and Pan. [71] Understanding the Determinants of Construction Robot
Adoption: Perspective of Building Contractors 25 1.67

4. Qualitative Discussion

This section offers a thorough qualitative assessment of research design perspectives,
SEM techniques, research gaps and future directions, which comes after the scientometric
analysis and outcomes in Section 3.

4.1. Research Design
4.1.1. Regions of Study

When surveys and questionnaires are the primary means of data collection for SEM,
the region frequently plays a pivotal role in influencing social research outcomes. Among
the 140 articles in the sample, 138 explicitly stated the regions from which their data were
gathered, with the vast majority (134 articles) focusing on a single region. Within this subset
of 134 articles focused on specific regions, China (42 articles) received the most attention,
followed by Nigeria (20), Malaysia (14), Australia (9), South Korea (7), Ghana (5), Hong
Kong (4), India (3), Iran (3), and South Africa (3). Only 4 of the 140 articles [57,68,71,72]
contained research conducted across multiple regions.

Several highly cited studies explicitly stated that their research findings should
be interpreted within the specific regions where the data were collected, emphasiz-
ing the difficulty in generalizing their findings due to the research’s region-specific
nature [52,55–57,59,61–63,65,70,71].

4.1.2. Research Topics

BIM has become a focal point of study due to its increasing popularity and widespread
use throughout the project life cycle. Of the 140 articles reviewed, 64 are primarily con-
cerned with BIM from two perspectives: investigating the major factors, barriers, and
drivers influencing BIM adoption among various stakeholders (e.g., owners, architects,
engineers, contractors) at various organizational levels (e.g., large, medium, or small) and
across diverse regions; and evaluating the impact of BIM usage on such emerging areas as
sustainable building construction [73–77], project performance [78,79], and the construction
supply chain [80,81]. The remaining frequently studied topics are digitalization (9 articles),
information communication technologies (ICT) (8), social media (6), robotic automation (5),
blockchain (4), cloud technology (4), 3D printing (3), cyber technology (3), green building
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technology (3), internet of things (IoT) (3), virtual reality or augmented reality (VR/AR) (3),
and web-based training or management systems (WBTMS) (3).

In the construction industry, the adoption of various technologies—including BIM, 3D
printing, and IoT—is driven by the need to enhance productivity and efficiency, improve
quality, and meet market demands. Scholars frequently utilize SEM methods to investigate
the factors influencing the adoption of these technologies and to assess the beneficial
impacts of SEM methods on the adoption practices across construction projects of varying
scales. This growing application of SEM methods in the construction sector underscores
their relevance and utility. Nevertheless, numerous studies still face significant challenges
in designing SEM methods effectively.

4.1.3. Cross-Sectional vs. Longitudinal Studies

Cross-sectional SEM is used to examine data collected at a single point in time, focusing
on the relationships between variables at that time [82], while longitudinal SEM analyses
data collected over multiple time points—most commonly to investigate how variables
evolve or to evaluate causal relationships that may emerge over time [83]. While cross-
sectional studies can establish associations between variables, it is difficult to determine
whether these associations reflect true causal relationships. In such cases, incorporating
time lags into the research design becomes critical, indicating the need for a longitudinal
component [24]. Only 2 of the 140 articles were longitudinal studies. In comparison, 23 of
the remaining 138 articles acknowledged their cross-sectional nature’s limitations. These
recognize the importance of future research incorporating longitudinal studies to further
expose the causal relationships between variables in their models.

4.1.4. Theoretical Frameworks and Key Constructs

Many theories and models have been developed to help understand the rationale
for accepting or rejecting new technology in various industries, including construction.
Within the literature sample, five theoretical models stand out: the Technology Acceptance
Model (TAM) [84], Technology–Organization–Environment (TOE) [85] theory, Theory of
Planned Behavior (TPB) [86], Innovation Diffusion Theory (IDT) [87], and Unified Theory
of Acceptance and Use of Technology (UTAUT) [88], utilized in thirty-one, eight, seven,
five, and five articles, respectively. These theoretical frameworks have aided researchers in
identifying key constructs and developing causality hypotheses, thereby advancing the
evolution of information system theories and behavioral sciences, particularly through the
construction industry lens. Table 4 summarizes the main concepts and descriptions of each
commonly used theory.

Table 4. Frequently used theories and their key constructs with descriptions.

Theory Key Constructs Description

TAM 1. Perceived usefulness
2. Perceived ease of use

1. “The degree to which a person believes that using a particular system would
enhance their job performance” [89]
2. “The degree to which a person believes that using a particular system would be
free of effort” [89]

TOE
1. Technological context
2. Organizational context
3. Environmental context

1. “All of the technologies (both already in use and available in the marketplace)
that are relevant to the firm” [90]
2. “Characteristics and resources of the firm, including linking structures between
employees, intra-firm communication processes, firm size, and the amount of slack
resources” [90]
3. “The structure of the industry, the presence or absence of technology service
providers, and the regulatory environment” [90]

TPB
1. Attitude toward behavior
2. Subjective norm
3. Perceived behavioral control

1. “The degree to which a person has a favorable or unfavorable evaluation or
appraisal of the behavior in question” [91]
2. “The perceived social pressure to perform or not to perform the behavior” [91]
3. “The perceived ease or difficulty of performing the behavior” [91]
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Table 4. Cont.

Theory Key Constructs Description

IDT

1. Relative advantage
2. Compatibility
3. Complexity
4. Trialability
5. Observability

1. “The degree to which an innovation is perceived as being better than the idea it
supersedes” [92]
2. “The degree to which an innovation is perceived as consistent with the existing
values, past experiences, and needs of potential” [92]
3. “The degree to which an innovation is perceived as relatively difficult to
understand and use” [92]
4. “The degree to which an innovation may be experimented with on a limited basis” [92]
5. “The degree to which the results of an innovation are visible to others” [92]

UTAUT

1. Effort expectancy
2. Performance expectancy
3. Social influence
4. Facilitating conditions

1. “The degree of ease associated with the use of the system” [88]
2. “The degree to which an individual believes that using the system will help them
to attain gains in job performance” [88]
3. “The degree to which an individual perceives that important-others believe they
should use the new system.” [88]
4. “The degree to which an individual believes that an organizational and technical
infrastructure exists to support use of the system.” [88]

4.2. SEM Techniques

SEM uses diverse model types to delineate relationships between observed variables,
aiming to quantitatively test theoretical hypotheses. Fundamentally, SEM combines features
of path models with confirmatory factor models, enabling the simultaneous inclusion of
both latent and observed variables. SEMs are categorized into two types: the structural
model, which focuses on relationships between latent variables, and the measurement
models, which relate latent variables to their observed indicators [93].

4.2.1. CB-SEM vs. PLS-SEM

Two types of SEMs are commonly used in construction-related research: CB-SEM and
PLS-SEM. These are complementary but differ in estimation methodology, data distribution
assumptions, and research objectives. CB-SEM, for example, uses methods such as maxi-
mum likelihood to estimate model parameters based on OV covariance matrices [94]. As a
result, CB-SEM necessarily assumes that data follow a multivariate normal distribution.
On the other hand, PLS-SEM employs the partial least squares technique to estimate model
parameters by maximizing the OVs’ explained variance [17], which is less sensitive to data
distribution assumptions and provides greater robustness [95]. Furthermore, CB-SEM is
better suited for confirmatory analysis aimed at testing theories, while PLS-SEM is more
suited to exploratory analysis, especially when dealing with smaller sample sizes [95].

Figure 7 depicts the timeline-based choice between CB-SEM and PLS-SEM in the
reviewed literature. Only 1 of the 140 articles in the sample failed to specify the method.
The graph shows a growing trend of using SEM, while PLS-SEM is shown to be more
popular than CB-SEM, especially in 2022 and 2023.

In total, 23 of the 140 articles did not specify the software programs used to build
SEM. The following software tools were frequently used in the remaining 117 articles: for
CB-SEM, AMOS [96] in 46 articles and LISREL [97] in 5; and for PLS-SEM, SmartPLS [98]
in 62 articles, with PLS Graph and Warp PLS each used in 2 articles. PLS-SEM was
preferred over CB-SEM for a variety of reasons, the most common of which is its ability
to handle non-normally distributed data (mentioned 28 times), suitability for exploratory
studies (26 times), better handling of small sample sizes (19 times), ability to accommodate
formative constructs (5 times), and superior predictive capabilities (3 times). It is worth
noting that even though CB-SEM requires data to conform to multivariate normality, only
10 of the 59 CB-SEM studies disclosed that they conducted a normality test on their collected
data. Most of these studies either omitted or provided insufficient disclosure about these
tests, although failing to satisfy this assumption can lead to overestimating the model’s
goodness of fit [27].
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Figure 7. Timeline-based choice between CB-SEM and PLS-SEM.

4.2.2. Reflective vs. Formative Measures

Within the measurement model, two potential relationships exist between the OVs
and the LV: reflective and formative. Variations in the LV cause covariance among OVs in
reflective measures, establishing a causal direction from the LV to the Ovs [99]. As a result,
because they all manifest the same latent construct, OVs are expected to have correlations.
Evaluating the construct validity of reflective measures, including reliability assessments,
convergent validity, and discriminant validity [100], is often critical. On the other hand,
formative measures contend that OVs collectively influence changes in the LV, thereby
establishing a causal pathway from the OVs to the latent construct [99]. In contrast to
reflective measures, the expectation for correlations among OVs in formative models is less
stringent because they may or may not be correlated. In addition, multicollinearity among
OVs can pose a significant challenge and should therefore be tested with such measures
as the variance inflation factor [25]. Figure 8 depicts a graphical representation of both
reflective and formative measures.
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A total of 3 of the 140 articles reviewed built first-order formative measurement models.
Furthermore, six articles used first-order reflective models but second-order formative
measurement models. The remaining 131 articles only built reflective measures. However,
in all the remaining cases, the assumption that the relationships between LVs and OVs are
inherently reflective raises concerns. Some articles, for example, developed a reflective
measure that linked job satisfaction (the LV) to various OVs, such as job security, ability
development, income level, and worker safety. However, whether a formative measure
is more appropriate is debatable because each OV captures different aspects or attributes
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of job satisfaction. As a result, they are not always related. The true causal relationship
between OVs and LVs needs to be carefully considered because the choice of reflective
versus formative measures has significant implications for overall goodness of fit in the
context of measurement model misspecification [98]. Although traditional CB-SEM is well
known for its compatibility with reflective measures [24], it is also important to note that
formative measures can be integrated into CB-SEM [101]. In addition, given the emergence
and growing popularity of PLS-SEM, researchers should feel more encouraged to include
formative measures in their future work. Table 5 summarizes the differences between
reflective and formative measures.

Table 5. Differences between reflective and formative measures.

KEY Constructs Description

LV-OV relationship OVs are manifested by the LV OVs jointly define the LV
Causality direction From LV to OVs From OVs to LV
Interchangeability OVs are interchangeable OVs need not be interchangeable

Intercorrelation OVs are expected to be intercorrelated OVs can have any pattern of intercorrelation
Multicollinearity Multicollinearity is a virtue Multicollinearity should be ruled out

4.2.3. Theories for Structural and Measurement Models

Theories at the structural and measurement model levels should be used as the
primary foundation in SEMs to hypothesize causal relationships and define individual
constructs [28–31]. A causal relationship in hypotheses that lack proper justification or
theoretical foundations can be undermined [102]. As a result, hypothesized causal rela-
tionships in structural models need to be articulated transparently, based on theoretical
support, previous research, scientific knowledge, logical reasoning, or other empirical
evidence [103]. Furthermore, using factor analysis, whether exploratory or confirmatory,
within LV measurement models requires a solid theoretical foundation that reveals prior
knowledge about the OVs associated with LVs [104]. Without this theoretical underpinning,
factor analysis risks becoming nothing more than a dimensionality reduction tool. To ensure
accurate interpretation of LVs, SEM requires measurement models to be grounded in prior
knowledge. Based on established theories, studies should also examine the relationships
between OVs and LVs [105,106].

Following the literature review, it was clear that 30 of the 59 CB-SEM articles lack
adequate theoretical support for their measurement models, and 28 lack the necessary
theoretical foundations for their structural models. Similarly, 24 of the 80 PLS-SEM articles
lack theoretical support for their measurement models, and 43 face a similar shortfall
in theoretical support for their structural models. In summary, 38% of the reviewed
articles need more theoretical support for their measurement models, while 51% need more
theoretical support for their structural models.

Furthermore, 54 of the 140 articles in the sample contain models with an OV:LV ratio
of less than three. This is significant because Kline’s three-variable principle recommends
a minimum of three OVs to adequately identify a measurement model. Models with
single-indicator constructs representing a single LV with only one OV are included in five
articles [82]. However, single-indicator constructs are only considered appropriate when
the OV perfectly represents the LV [24]. Using such constructs is typically risky because
they perform less effectively than multi-item constructs in most scenarios [107].

Finally, because CB-SEM is frequently associated with theory testing and confirmation
tasks, it is critical to summarize, delineate, and effectively integrate pre-existing theories
concisely. Although PLS-SEM is particularly useful for promoting theory development, it
is still useful to encapsulate theories that can provide partial support for the hypotheses
within the structural model and aid in selecting measurement items, thereby contributing
to the provision of theoretical support.
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4.2.4. Mediation and Moderation Effects

Path analysis was created to quantify the relationships between multiple variables and
effectively test and develop structural hypotheses of mediation and moderation effects [31].
In SEM, the mediation effect assumes that an LV can influence another LV directly and
indirectly through a third LV (the mediator) [103]. In contrast, the moderation effect
investigates how a third LV (the moderator) influences the relationship between two LVs,
typically through interaction [108]. Mediators and moderators are frequently used in
research design, especially when dealing with complex and unresolved issues in theory
development [24]. Identifying and quantifying mediation and moderation effects can
significantly contribute to the existing body of knowledge, making these variables focal
points in research design across a wide range of scenarios [109]. Furthermore, as situations
become more complex, the need to understand mediated moderation and moderated
mediation effects becomes more apparent [108].

Only four articles in the sample examined and discussed the moderation effect. For
example, Yang et al. find that team relationships moderate the relationship between knowl-
edge management and project success [67]. According to Jia et al., formal knowledge
governance moderates the relationship between learning inertia and BIM integration in-
tention [110]. Furthermore, Yang and Huang find that the platform type (traditional vs.
cloud-based) moderates the relationship between information platform usage and construc-
tion capability [111]. Furthermore, Jiang et al. find that team member support moderates
the relationship between the connective use of mobile information and communication
technology (MICT) and the technology–work conflict [112].

In terms of mediation effects, a larger subset of 19 out of 61 articles in the sample that
included mediation effects in their structural models conducts tests and discusses these
mediation effects.

4.3. Research Gaps and Future Directions

While using SEM methods to investigate technology adoption and usage in the con-
struction industry is becoming more popular, it is critical to recognize and address several
limitations. This recognition of limitations can aid in identifying research gaps and defining
future research directions.

4.3.1. Diversifying Region of Study and Research Topic

A sizable portion of existing research focuses on developing regions, with China
alone accounting for 30% of all reviewed articles. Surprisingly, fewer studies relate to
developed regions than those of China. As a result, there is a clear need for future research
to delve into the adoption and utilization of technology in other prominent construction
markets, such as the United States, India, Japan, Indonesia, and Australia, especially
given the difficulty in generalizing findings from region-specific studies to other contexts.
Furthermore, researchers are encouraged to conduct more comprehensive multi-region
studies, allowing for a more robust comparison of technology adoption and usage patterns
across different regions.

In terms of research topics, BIM has taken the lead, accounting for 45% of all articles
reviewed. This is largely due to its growing popularity and proven benefits, which have
attracted the interest of researchers and industry professionals. Given the construction
industry’s increasing digitization, researchers are encouraged to investigate other emerging
and underutilized technology categories such as drones, digital twins, IoT, blockchain,
3D printing, and AR/VR. This encouragement is especially important because many of
these technologies can be integrated with BIM to improve the design and construction
processes further.

4.3.2. Incorporating Theoretical Support for Research Design

Even though numerous theories have been developed to analyze the adoption and
utilization of technology across various industries, construction industry research contin-
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ues to face significant challenges. This stems from the lack of well-founded theories at
both the structural and measurement model levels. To ensure the trustworthiness and
interpretability of research findings, it is critical that hypothesized causal relationships be
firmly rooted in theoretical underpinnings and measurement models anchored in existing
knowledge when using SEM in research. However, 51% of the reviewed articles lacked
adequate theoretical support to establish structural models, and 38% lacked the necessary
theoretical foundation for their measurement models. As a result, researchers are strongly
encouraged to review and incorporate existing theories to aid in formulating hypothetical
causal relationships and selecting appropriate measurement indicators, particularly when
employing the CB-SEM method, which well-established theoretical frameworks should
ideally support. A thorough examination and appropriate incorporation of existing theories
may also aid in avoiding the use of single-indicator constructs.

4.3.3. Carefully Choosing Reflective or Formative Measures

Because each type of measure is subject to different rationalities and statistical tests,
the choice between reflective and formative measures should be based primarily on the
causal relationships between LVs and OVs. Incorrectly configuring the measurement model
can significantly impact the overall model’s goodness of fit. Currently, the vast majority of
studies use reflective measures. Nevertheless, upon a comprehensive examination of these
reflective studies, situations emerge where formative measures might be more suitable
when each OV captures distinct LV attributes. As a result, these OVs are not necessarily
intercorrelated. Given the PLS-SEM method’s growing popularity, researchers should feel
less hesitant about incorporating formative measures. In essence, they should carefully
deliberate on the relationships between the LV and its OVs, recognizing that formative
measures may be more appropriate in some contexts.

5. Conclusions

This study adopts a three-stage approach, systematically reviewing 140 journal articles
that utilize SEM to investigate technology adoption and usage in the construction industry,
employing scientometric and qualitative analysis methods. The scientometric analysis
includes co-authorship analysis, citation analysis, keyword analysis, and literature theme
analysis. The results reveal that (1) there is a noticeable growth trend in research over the
past two years, with a preference for using PLS-SEM over CB-SEM; (2) in terms of the
number of published articles, leading contributors include Engineering Construction and
Architectural Management, Sustainability, Journal of Construction Engineering and Management,
and Buildings; (3) Ahmed Kineber is the most prolific researcher, having published the
highest number of articles in this field, while Seulki Lee, Jungho Yu, Changwan Kim, Hyojoo
Son, and Nicholas Chileshe have received the highest number of citations; (4) a visualization
of keyword chronological analysis identifies and discusses the most frequently cited articles,
providing insights into their significance and impact; (5) current research topics primarily
focus on BIM, with most studies utilizing cross-sectional SEM and overlooking longitudinal
SEM. The analysis results can assist scholars in familiarizing themselves with SEM-related
literature and guide researchers in addressing existing issues for improvement.

A detailed qualitative discussion covers research design scopes, SEM technical intrica-
cies, research gaps, and future research directions. In terms of research design, the current
body of research focuses primarily on the application of BIM in developing regions. As
a result, there is a noticeable lack of studies investigating other emerging technologies,
more developed regions, and multiple regions. Furthermore, most studies in this field are
cross-sectional. Longitudinal studies, on the other hand, cover a longer time span and
may provide valuable insights into causal relationships. It is critical to recognize that the
feasibility of both longitudinal and multi-regional studies is frequently dependent on the
availability of relevant data. TAM, TOE, TPB, IDT, and UTAUT are examples of theoretical
frameworks that originated in other domains and have been primarily used to discover
technology adoption and usage in the construction industry.
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In terms of the SEM technique, there is a growing trend favoring the use of PLS-SEM
over CB-SEM, particularly in the last two years. Reflective measures continue to domi-
nate SEM constructs, emphasizing the importance of researchers taking into account the
relationships between LVs and their OVs in future research, especially since the increas-
ingly popular PLS-SEM technique is better suited for formative measures. Notably, many
articles lack the theoretical underpinning required for developing causal hypotheses at
the structural model level and selecting appropriate indicators at the measurement model
level. Furthermore, only a few articles delve into discussions concerning mediation and
moderation effects, which are critical aspects of SEM that should be considered to make
valuable contributions to the existing body of knowledge. Several research gaps and future
directions are identified based on the review findings, including diversifying study areas
and research topics, incorporating theoretical support for research design, and carefully
selecting reflective or formative measures.

This review-based study combines an innovative scientometric analysis method with
traditional qualitative discussion to provide a comprehensive overview of research investi-
gating technology adoption and utilization in the construction industry via SEM. It adds
to the existing body of knowledge by (1) using a science mapping approach to visualize
and investigate the intricate relationships among journal sources, keywords, authors, and
documents in the literature sample; (2) examining and discussing existing research by
outlining research design issues and addressing the technical complexities and potential
challenges associated with SEM techniques; and (3) identifying current research gaps and
highlighting prospective avenues for future research, thereby providing valuable insights
for both researchers and practitioners.

It should be noted that the current study has some limitations. First, the literature
sample only includes English-language journal articles obtained from the Web of Science,
Scopus, and Engineering Village databases. Second, the analysis of relevant literature on
the adoption of SEM in the construction field is conducted solely based on the titles, author
keywords, and abstracts without examining the core content. Finally, for VOSviewer, the
outputs of the analysis may fluctuate slightly when using different processing thresholds.
Future research would benefit from broadening the inclusion criteria to encompass other
publication sources such as conference articles and books, as well as articles published in
languages other than English, and exploring additional databases to provide additional
valuable insights.
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BIM Building information modeling
CAIS Computerized accounting information system
CB Covariance-based
GBTS Green building technology
GPR Ground penetrating radar
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IC Intelligent compaction
ICT Information communication technologies
IDT Innovation diffusion theory
IoT Internet of things
LVs Latent variables
MICT Mobile information and communication technology
OVs Observed variables
PLS Partial least squares
SEM Structural equation modeling
TAM Technology acceptance model
TOE Technology–organization–environment
TPB Theory of planned behavior
UTAUT Unified theory of acceptance and use of technology
VR/AR Virtual reality or augmented reality
WBTMS Web-based training or management systems
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