
����������
�������

Citation: Zhang, E.; Fu, Y.; Wang, J.;

Liu, L.; Yu, K.; Peng, J. MSAC-Net:

3D Multi-Scale Attention

Convolutional Network for Multi-

Spectral Imagery Pansharpening.

Remote Sens. 2022, 14, 2761. https://

doi.org/10.3390/rs14122761

Academic Editors: Qian Du, Kun Tan,

Jie Feng and Xue Wang

Received: 22 April 2022

Accepted: 6 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

MSAC-Net: 3D Multi-Scale Attention Convolutional Network
for Multi-Spectral Imagery Pansharpening
Erlei Zhang 1, Yihao Fu 2, Jun Wang 2,3, Lu Liu 2, Kai Yu 2 and Jinye Peng 2,3,*

1 School of Information Engineering, Northwest A&F University, Xi’an 712100, China;
erlei.zhang@nwafu.edu.cn

2 School of Information Science and Technology, Northwest University, Xi’an 710127, China;
201932142@stumail.nwu.edu.cn (Y.F.); jwang@nwu.edu.cn (J.W.); liulu@nwu.edu.cn (L.L.);
yukai@nwu.edu.cn (K.Y.)

3 Shaanxi Province Silk Road Digital Protection and Inheritance of Cultural Heritage Collaborative Innovation
Center, Xi’an 710127, China

* Correspondence: pjy@nwu.edu.cn

Abstract: Pansharpening fuses spectral information from the multi-spectral image and spatial in-
formation from the panchromatic image, generating super-resolution multi-spectral images with
high spatial resolution. In this paper, we proposed a novel 3D multi-scale attention convolutional
network (MSAC-Net) based on the typical U-Net framework for multi-spectral imagery pansharp-
ening. MSAC-Net is designed via 3D convolution, and the attention mechanism replaces the skip
connection between the contraction and expansion pathways. Multiple pansharpening layers at the
expansion pathway are designed to calculate the reconstruction results for preserving multi-scale
spatial information. The MSAC-Net performance is verified on the IKONOS and QuickBird satellites’
datasets, proving that MSAC-Net achieves comparable or superior performance to the state-of-the-art
methods. Additionally, 2D and 3D convolution are compared, and the influences of the number
of convolutions in the convolution block, the weight of multi-scale information, and the network’s
depth on the network performance are analyzed.

Keywords: deep learning; multi-spectral image; 3D convolutional; multi-scale cost

1. Introduction

Multi-spectral (MS) and panchromatic (PAN) images are two remote sensing image
types acquired by optical satellites. While they often represent similar scenes, their spectral
and spatial resolutions differ. PAN images have high spatial resolution (HR) but low
spectral resolution, whereas MS images have high spectral resolution and low spatial
resolution (LR). Pansharpening fuses LR-MS and HR-PAN, generating super-resolution
MS images with high spatial resolution (HR-MS). This can provide higher quality remote
sensing images for such as target detection [1–3], distribution estimation [4] and change
detection [5–7].

The existing pansharpening techniques can be divided into four categories: component
substitution [8,9], multi-resolution analysis [10,11], model-based optimization [12,13] and
deep learning [14]. Component substitution-based methods achieve pansharpening by re-
placing MS images’ partial spectral components with spatial information from PAN images.
However, this technique causes spectral distortion [15]. Multi-resolution analysis meth-
ods [16,17] decompose the source and then synthesize the HR-MS images through fusion
and inverse transform. Although this technique can maintain good spectral characteristics,
it causes spatial distortion due to decomposition. Model-based optimization methods are
limited by their dependence on appropriate prior knowledge and hyper-parameters.

In recent years, deep-learning-based research has achieved great success in image
processing [18–24]. Masi et al. [18] were the first to propose a CNN-based pansharpening
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method (PNN), whose structure is based on the super-resolution CNN [25]. Yuan et al. [19]
designed a multi-scale and multi-depth CNN (MSDCNN), which introduces multi-scale
information through two branches and a different number of learning blocks for deep
feature learning. Yang et al. [26] proposed a residual network for pansharpening. How-
ever, most of the existing approaches focus on spatial feature extraction while paying
less attention to the spectral information and spatial scale information of fusion images.
Consequently, the fusion process is often characterized by spectral information loss or
spatial feature redundancy.

The 3D convolution shows promise in volume data analysis [27–29]. For example,
Mei et al. [30] used 3D CNN to extract spectral features of remote sensing super-resolution
images. Compared to traditional 2D CNN methods, 3D CNN methods emphasize ex-
tracting spectral features while preserving spatial features [28]. Therefore, 3D convolution
characteristics promote generating images with high spatial and spectral resolution.

Inspired by the human visual system [31], the attention mechanism was proved to
have a positive effect on image understanding [32] and has been widely applied in image
processing due to its focus on local information [33]. For example, Wang et al. [34] presented
a model with several attention blocks and combined these with the residual structure to
enable focusing specific areas while reducing the number of calculations. Mei et al. [32]
utilized attention mechanisms to study spatial and spectral correlations between adjacent
pixels. U-Net (Figure 1) [35], named by its U-shaped structure, has a high capability to
extract and represent features and combine low- and high-scale semantic information for
semantic segmentation of input images. Guo et al. [36] replaced the basic convolution block
of the decoder in the U-Net architecture with the residual channel attention block [37],
consequently improving the model capability. Oktay et al. [38] proposed the attention
gate (AG) module based on the U-Net architecture to enable automated focus on target
structures of different shapes and sizes while suppressing irrelevant areas.

At present, most MS pansharpening methods focus on the injection of spatial details,
but ignore the multi-scale features and spectral features of multi-spectral images. This
work proposes a novel 3D multi-scale attention deep convolutional network (MSAC-Net)
for MS imagery pansharpening. Following the U-Net framework, MSAC-Net consists of
a contraction path that extracts high-scale features from LR-MS and HR-PAN (Figure 2,
left) and an expansion path that fuses spatial and spectral information (Figure 2, right).The
attention mechanism is introduced in the contraction and expansion paths instead of skip
connections, supporting focusing spatial details of the feature maps. Furthermore, the deep
supervision mechanism enables MSAC-Net to utilize multi-scale spatial information by
adding a pansharpening layer at each scale of the expansion path. The results demonstrate
that MSAC-Net achieves high performance in both spatial and spectral dimensions. In
summary, this work:

1. Designs a 3D CNN to probe the spectral correlation of adjacent band images, thus
reducing the spectral distortion in MS pansharpening;

2. Uses a deep supervision mechanism that utilizes multi-scale spatial information to
solve the spatial detail missing problem;

3. Applies the AG mechanism instead of the skip connection in U-Net structure and
presents experiments demonstrating its advantages in MS pansharpening.

The rest of the manuscript is organized as follows. Section 2 presents the related work,
while Section 3 introduces the proposed MSAC-Net. Section 4 describes and analyzes
the experimental results. Finally, Section 5 concludes the paper with a short overview of
the contributions.
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4Ŷ

5Ŷ
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Figure 2. The proposed MSAC-Net architecture.
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2. Related Work

Ronneberger et al. [35] first proposed the U-Net network for medical image segmen-
tation. Because its structure is to combine low-level and high-level semantic information
for semantic segmentation of the input image, U-Net has high feature representation
and extraction ability. Therefore, in this section, the various components of U-Net and
improvements based on U-Net are introduced.

According to the difference of feature information extracted by U-Net, its composition
can be divided into three parts.

1. The contraction pathway (i.e., the encoder). It is mainly used for shallow feature
extraction and coding. For the improvement of this component, Milletari et al. [39] referred
to residual learning for the design of each convolution block on the basis of U-Net, which
makes V-Net learn image features more fully. Wang et al. [40] used ResNet-50 pre-trained
on the ImageNet dataset as its encoder to accelerate the convergence and achieve better
performance via transfer learning.

2. The expansion pathway (i.e., the decoder). The purpose of this design is to restore
or enlarge the size of feature map. Therefore, the design directly affects the final result
of feature recovery. Guo et al. [36] learned an additional dual regression mapping after
expansion pathway to estimate the down-sampling kernel and reconstruct LR images,
which forms a closed-loop to provide additional supervision. Banerjee et al. [41] designed
decoder-side dense skip pathways, making the features under the final scale contain the
feature results of all scales. In addition, Khalel et al. [42] realized multi-task learning with
the design of dual encoder. Ni et al. [43] extracted and fused the pre-output features and
deep features of the network again, thus realizing the multi-task learning of the network.

3. The skip connection. The skip connections transfer the shallow feature maps
of the network to the deep layer, which is helpful for the training of the deep network.
Zhou et al. [44] proposed U-Net++, in which each scale feature is designed to carry out fea-
ture transfer to a larger scale, thus forming a dense connection structure at skip connections.
Ni et al. [43] also added sparable gate unit at the skip connection to improve the accuracy
of image spatial feature extraction. Rundo et al. [45] introduced squeeze-and-excitation
blocks instead of the skip connection to expect an increased representational power from
modeling the channel-wise dependencies of convolutional features [46]. Wang et al. [47]
designed a module to generate attentional feature maps by paying attention to the H, W
and C of feature maps to replace the skip connection.

In the U-Net, feature maps are learned by “compression-expansion”. In addition, there
are studies targeting U-Net as a whole for improvement. Yang et al. [48] transformed U-Net
as a spatial attention module and inserted it into the network as a branch to extract spatial
features of images. Wei et al. [49] replaced each convolution block in the U-Net structure
with a small U-Net structure to achieve multi-scale feature extraction. Xiao et al. [50]
adopted a dual U-Net structure to inject features extracted from the external U-Net into the
internal U-Net, achieving the effect of multi-stage detail injection.

3. Method

This section will introduce the overall design of MSAC-Net, including its structure,
AG module and in-depth monitoring mechanism.

First, we will introduce the pansharpening model based on CNN. Let the LR-MS
image with the size h× w× c be denoted MLR ∈ Rh×w×c, Similarly, denote the HR-PAN
with H ×W size as PHR ∈ RH×W and HR-MS as MHR ∈ RH×W×c. Taking LR-MS and
HR-PAN as inputs, the pansharpening task of generating the HR-MS can be expressed as:

`(θ) = ‖M(MLR, PHR; θ)−MHR‖ (1)

whereM(·) represents the mapping from the CNN’s input to the out, θ denotes parameters
to be optimized and ‖ · ‖ is a loss function. The CNN can learn the involved knowledge
from input data, offering the possibility for MS pansharpening. Table 1 shows the de-
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sign of all modules in MSAC-Net.The following subsections introduce the details on the
representation of these elements within MSAC-Net.

Table 1. The design of the MSAC-Net.

Module Input Size Layer (Filter Size) or Method Filters Output Size

Down1
2× c× H1 ×W1 (Conv3D(3, 3, 3), ReLU)× 2 64 64× c× H1 ×W1

64× c× H1 ×W1 Maxpool(1, 2, 2) − 64× c× H2 ×W2

Down2
64× c× H2 ×W2 (Conv3D(3, 3, 3), ReLU)× 2 128 128× c× H2 ×W2

128× c× H2 ×W2 Maxpool(1, 2, 2) − 128× c× H3 ×W3

Down3
128× c× H3 ×W3 (Conv3D(3, 3, 3), ReLU)× 2 256 256× c× H3 ×W3
256× c× H3 ×W3 Maxpool(1, 2, 2) − 256× c× H4 ×W4

Down4
256× c× H4 ×W4 (Conv3D(3, 3, 3), ReLU)× 2 512 512× c× H4 ×W4
512× c× H4 ×W4 Maxpool(1, 2, 2) − 512× c× H5 ×W5

Down5
512× c× H5 ×W5 (Conv3D(3, 3, 3), ReLU)× 2 1024 1024× c× H5 ×W5
1024× c× H5 ×W5 Tran([1, 4, 4], stride = [1, 2, 2]) 512 512× c× H4 ×W4

Up5
512× c× H4 ×W4 ⊕ AG5 (Conv3D(3, 3, 3), ReLU)× 2 512 512× c× H4 ×W4

512× c× H4 ×W4 Tran([1, 4, 4], stride = [1, 2, 2]) 256 256× c× H3 ×W3

Up4
256× c× H3 ×W3 ⊕ AG4 (Conv3D(3, 3, 3), ReLU)× 2 256 256× c× H3 ×W3

256× c× H3 ×W3 Tran([1, 4, 4], stride = [1, 2, 2]) 128 128× c× H2 ×W2

Up3
128× c× H2 ×W2 ⊕ AG3 (Conv3D(3, 3, 3), ReLU)× 2 128 128× c× H2 ×W2

128× c× H2 ×W2 Tran([1, 4, 4], stride = [1, 2, 2]) 64 64× c× H1 ×W1

Up2 64× c× H1 ×W1 ⊕ AG2 (Conv3D(3, 3, 3), ReLU)× 2 64 64× c× H1 ×W1

Output 64× c× H4 ×W4 Conv3D(1, 1, 1) 1 1× c× H1 ×W1

Reconstruction Fi × c× Hi ×Wi Conv3D(1, 1, 1) 1 1× c× Hi ×Wi

AGi+1

(Downi)Fi × c× Hi ×Wi Conv3D(1, 1, 1) Fi/2 (x)Fi/2× c× Hi ×Wi
(Upi+1)Fi × c× Hi ×Wi (g)Fi/2× c× Hi ×Wi

(x)Fi/2× c× Hi ×Wi ReLU(x + g)) − Fi × c× Hi ×Wi(g)Fi/2× c× Hi ×Wi

Fi × c× Hi ×Wi Conv3D(1, 1, 1) + sigmoid 1 1× c× Hi ×Wi

1× c× Hi ×Wi ⊗ − Fi × c× Hi ×Wi(Downi)Fi × c× Hi ×Wi

3.1. The MSAC-Net’s Structure

As shown in Figure 2, MSAC-Net consists of three parts: data preprocessing, the
contraction pathway (left sub-network) and the expansion pathway (right sub-network).
The contraction pathway and the expansion pathway have the same effect as U-Net. Placed
between the two paths, the AG mechanism replaces the skip connection, thus improv-
ing the local detail feature representation ability. Moreover, MSAC-Net uses multi-scale
information pansharpening layers to resolve the MS pansharpening problems.

The traditional 2D CNN approaches commonly cascade PHR with the band dimension
of MLR to obtain the input data X ∈ RH×W×(c+1). In contrast, the proposed MSAC-Net
uses 3D cube data as input. As shown in Figure 2, data preprocessing converts the PAN
image PHR to P′HR ∈ RH×W×c, where P′HRi

= PHR, P′HRi
∈ {i|i ∈ c, RH×W×c}. Similarly,

the interpolation algorithm converts MLR to M′HR ∈ RH×W×c. Finally, the input image
X ∈ R2×H×W×c is obtained by R(P′HR ⊕ M′HR), where ⊕ is the cascade operation, R(·)
represents the resizing operation and the number “2” stems from the two features, MS
and PAN.

In the contraction pathway, the i-th low-scale feature FLi is obtained as:

FLi = Block(Max(FLi−1)) (2)
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where Block(·) is is composed of two groups of kernels with a rectified linear unit (ReLU)
as an activation function, (i.e., 3× 3× 3 kernel + ReLU), where Max(·) denotes the max-
pooling layer with a 1× 2× 2 kernel. The 1× 2× 2 kernel is chosen to down-sampled H
and W with a factor of two while keeping the number of bands (c) unchanged.

In the expansion pathway, the i-th high-scale feature FHi is obtained as follows:

FHi = Tran(Block(FHi+1 ⊕ AG(FLi+1 , FHi+1))) (3)

where Tran(·) represents the transposed convolution with a factor of two, and AG(·)
represents stands for the AG module. The pansharpening layer is set after each scale of the
convolution block. The next sections introduce further details on the AG module and the
pansharpening layer will be introduced in a later section.

3.2. The Attention Gate (AG) Module

Figure 3 depicts the details of the AG module’s structure. The inputs on the i-th AG
module are FHi ∈ RFi×c×Hi×Wi and FLi ∈ RFi×c×Hi×Wi . First, the FHi and FLi change the
numbers of channels from Fi to Fi/2 using a 3× 3× 3 kernel and are then cascade. Next,
the gate feature (qi

att) is obtained via the ReLU function and 1× 1× 1 kernel. Finally, qi
att

is activated using a sigmoid function and multiplied by FLi to obtain the feature x̂upi . In
contrast to [37], this work uses gate features instead of global pooling because the extracted
gate features are more consistent with the PAN features. The AG module’s operations can
be formalized as:

qi
att = Conv(σ1(FLi ⊕ FHi ); θ) (4)

x̂upi = σ2(qi
att)⊗ FLi (5)

where σ1 is the ReLU activate function, σ2 denotes the sigmoid activation, θ is a parameter
and ⊗ stands for pixel-by-pixel multiplication on each feature map. Finally, FHi−1 is
obtained by the convolution block using the transposed convolution.

FHi−1 = Tran(Block(x̂upi )) (6)

Utilizing the AG module instead of the skip connection enables MSAC-Net to pay
more attention to each scale’s local spatial details, consequently improving the spatial
performance of pansharpening.
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3.3. Pansharpening Layer and Multi-Scale Cost Function

MSAC-Net has S scales in the expansion pathway, i.e., S scale spaces. The pansharp-
ening layer at each scale reconstructs the high-scale feature using a 1× 1× 1 convolution
kernel, obtaining Ŷsi . The formula is:

Ŷsi = R(Block(x̂upi )) (7)

where R(·) is the i-th scale pansharpening layer. Accordingly, Ysi is generated using the
bicubic interpolation, given as:

Ysi = D(Ysi−1) (8)

where Ys1 represents the ground truth and D(·) is the bicubic interpolation with a factor
of 2.

The `1-norm loss is used to constrain Ysi and Ŷsi at the ith scale. The formula is
expressed as:

`si = ‖Ŷsi −Ysi‖1 (9)

where `si denotes the loss at the i-th scale.
Finally, the proposed MSAC-Net’s multi-scale cost function is calculated as (see

Figure 2):

L = `1 + λ
S

∑
i=2

`si

= ‖Ŷs1 −Ys1‖1 + λ
S

∑
i=2
‖Ŷsi −Ysi‖1

(10)

where λ is the weight of multi-scale information.

4. Results
4.1. Experimental Setup
4.1.1. Datasets & Parameter Settings

To test the effectiveness of MSAC-Net, we used datasets collected by IKONOS (http:
//carterraonline.spaceimaging.com/cgi-bin/Carterra/phtml/login.phtml, accessed on 20
December 2018) and QuickBird (http://www.digitalglobe.com/product-samples, accessed
on 20 December 2018) satellites (Figure 4). Both datasets contain four standard colors (R: red,
G: green, B:blue, N:near infrared). In order to ensure the availability of the ground truth,
Wald’s protocol [51] was used to obtain baseline images in training and simulation tests.

The steps of obtaining simulation data are as follows:

(1) The original HR-PAN and LR-MS images were down-sampled with a factor of 4;
(2) The down-sampled HR-PAN was used as the input PAN, and the down-sampled

LR-MS was used as the input LR-MS;
(3) The original LR-MS was used as ground truth in the simulation experiment.

In the real datasets, we only normalized the original image. Therefore, the fusion
image obtained from real datasets does not have ground truth.

The dataset information is shown in Table 2. The selected dataset contains rich texture
information, such as rivers, roads, mountains, etc. We cropped images randomly from
each dataset to 3000 PAN/MS data pairs for a total of 6000 data pairs. The PAN size of
256× 256× 1 and MS size of 64× 64× 4. Empirically, all data pairs were divided into a
training set, validation set and test set in a ratio of 6:3:1. In the experiment of the real dataset,
50 data pairs with PAN image size of 1024× 1024× 1 and MS image size of 256× 256× 4
were randomly acquired for each dataset.

http://carterraonline.spaceimaging.com/cgi-bin/Carterra/phtml/login.phtml
http://carterraonline.spaceimaging.com/cgi-bin/Carterra/phtml/login.phtml
http://www.digitalglobe.com/product-samples
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(a)(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Display images in datasets. (a–d) are the IKONOS dataset’s images. (e–h) are the QuickBird
dataset’s images.

Table 2. Dataset information.

Satellite Pan Blue Green Red NIR Resolution (PAN/MS)

IKONOS 450–900 450–530 520–610 640–720 760–860 1 m/4 m
QuickBird 450–900 450–520 520–600 630–690 760–900 0.7 m/2.8 m

The proposed method was implemented in Python 3.6 using the Pytorch-1.7 frame-
work and trained and tested on an NVIDIA 1080 GPU. The stochastic gradient descent
algorithm was used to converge during training; its parameter settings are shown in Table 3.
Among them, the learning rate decay was halved every 2000 iterations. During the training
stage, we saved the best model, which achieved the best performance on the validation
dataset, and used it for the test.

Table 3. Parameter list.

Learning Rate Weight Decay Momentum Batch Size Iteration

0.01 10−3 0.9 16 2× 104

4.1.2. Compared Methods

The proposed method is validated through a comparison with several pansharpening
methods, including GS [52], Indusion [10], SR [13], PNN [18], PanNet [26], MSDCNN [19],
MIPSM [20] and GTP-PNet [24]. GS is based on component substitution. Indusion is a multi-
resolution analysis method. Furthermore, SR is based on sparse representation learning
technology, whereas PNN is based on a three-layered CNN. PanNet is a residual network
based on high-pass filtering. MSDCNN introduces residual learning and constructs a
multi-scale and multi-depth feature extraction based on CNN. MIPSM is a CNN fusion
model that uses dual branches to extract features. Lastly, GTP-PNet is a residual learning
network based on gradient transformation prior. PNN, PanNet, MSDCNN, MIPSM and
GTP-PNet are the most advanced deep learning methods presented in recent literature.

4.1.3. Performance Metrics

The performance of the proposed pansharpening method is analyzed through quan-
titative and visual assessments. We selected six reference evaluation indicators and one
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non-reference evaluation indicator. All symbols in the reference evaluation indicators are
explained in Table 4, and the reference evaluation indicators are as follows:

(1) The correlation coefficient (CC) [53]: CC reflects the similarity of spectral features
between the fused image and the ground truth. CC∈ [0, 1], with 1 being the best
attainable value. CC can be expressed as follows:

CC(X̂, X) =
1
M

M

∑
m=1

∑N
n=1(X̂m

n − ¯̂X)(Xm
n − X̄)√

∑N
n=1(X̂m

n − ¯̂X)2(Xm
n − X̄)2

(11)

(2) Peak signal-to-noise ratio (PSNR) [54]: PSNR is an objective measure of the informa-
tion contained in an image. A larger value demonstrates that there is less distortion
between the two images. PSNR can be expressed as follows:

PSNR(X̂, X) = 10 lg
(

L2

MSE(X̂, X)

)
(12)

(3) Spectral angle mapper (SAM) [55]: SAM calculates the overall spectral distortion
between the fused image and the ground truth. SAM ∈ [0, 1], with 0 being the best
attainable value, is defined as follows:

SAM(X̂, X) =
1
N

N

∑
n=1

arccos
(
〈x̂n, xn〉
‖x̂n‖‖xn‖

)
(13)

(4) Root mean square error (RMSE) [56]: RMSE measures the deviation between the fused
image and the ground truth. RMSE ∈ [0, 1], with 0 being the best attainable value, is
defined as follows:

RMSE(X̂, X) =
√

MSE(X̂, X) (14)

(5) Erreur relative globale adimensionnelle de synthèse (ERGAS) [57]: ERGAS represents the
difference between the fused image and the ground truth. ERGAS ∈ [0, 1], with 0
being the best attainable value, can be expressed as follows:

ERGAS(X̂, X) = 100d

√√√√ 1
M

M

∑
m=1

(
RMSE(X̂m, Xm)

X̄m

)2

(15)

(6) Structural similarity index measurement (SSIM) [54]: SSIM measures the similarity
between the fusion image and the ground truth image. SSIM ∈ [0, 1], with 1 being
the best attainable value, is defined as follows:

SSIM(X̂, X) =

(
2 ¯̂XX̄ + C1

¯̂X2 + X̄2 + C1

)α(
2σX̂σX + C2

σ2
X̂
+ σ2

X + C2

)β(
σX̂X + C3

σX̂σX + C3

)γ

(16)

(7) Quality without reference (QNR) [58]: As a non-reference evaluation indicator, QNR
compares the brightness, contrast and local correlation of the fused image with the
original image. QNR ∈ [0, 1], with 1 being the best attainable value, is defined
as follows:

QNR = (1− Dλ)
a(1− DS)

b (17)
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where usually a = b = 1 and the spatial distortion index Ds and the spectral dis-
tortion index Dλ are based on universal image quality index (Q) [59]. Furthermore,
Ds, Dλ ∈ [0, 1], with 0 being the best attainable value. Q is defined as:

Q(X̂, X) =
σX̂X

σX̂σX
×

2σX̂σX

σ2
X̂
+ σ2

X
× 2 ¯̂XX̄

¯̂X2 + X̄2
(18)

thus, Ds and Dλ are defined as:

Ds =
p

√√√√ 1
M

M

∑
m=1

∣∣Q(X̂m, PAN)−Q(Xm, PANL)
∣∣p (19)

Dλ = q

√√√√√ 1
M(M− 1)

M

∑
m=1

M

∑
r=1
r 6=m

∣∣Q(X̂m, X̂r)−Q(MSm
L , MSr

L)
∣∣q (20)

Table 4. Formula symbol table.

Symbol Means Symbol Means

X̂ Input image X Ground Truth
¯̂X Sample means of X̂ X̄ Sample means of X
x̂ A pixel in X̂ x A pixel in X
N Number of pixels M Number of band

MSE() Mean square error L Gray level
α Brightness parameter β Contrast parameter
γ Structural parameter Ci Infinitely small constant

σX̂ Variances of X̂ σX Variances of X
σX̂X Covariance of X̂ and X p, q Positive integer

d PAN image spatial resolution/MS image spatial resolution

4.2. The Influences of Multi-Scale Fusion and Attention Gate Mechanism

This section discusses MSAC-Net’s and other methods’ results and analyzes the
benefits of each MSAC-Net module. Considering that the image has the characteristics of
scale invariance and U-Net will scale the image at multiple scales in the learning process,
MSAC-Net designed a deep supervision mechanism to restrain the multi-scale fusion
process. The design of the deep supervision mechanism is to ensure that in the fusion
process of each scale, its features are constrained to ensure that the main features of the
image are learned by the network. The AG mechanism can gradually suppress the feature
regions of unrelated regions, thus highlighting the feature regions [38]. For image fusion,
because MS images contain a lot of noise [60], MSAC-Net suppressed the noise area
through the AG mechanism, to highlight the feature area. In addition, MSAC-Net uses 3D
convolution to preserve the spectral information of MS data and injects the PAN images’
spatial information into MS images. These settings allow extracting better performance
indicators while retaining the spectral correlation between bands.

4.2.1. The Influence of the Pansharpening Layer

Figure 5 visualizes the reconstructed images Figure 5f–j and reference images Figure 5a–e
at each scale. It can be observed that as the scale increases, the details of the reconstructed
images Figure 5f–j become more similar to the intermediate reference images Figure 5a–e,
indicating that the details of Ŷsi match closer the details of Ysi at each scale. These findings
demonstrate that adding the multi-scale cost function enables MSAC-Net to learn the features
of each scale easily.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. The reference image and pansharpening image are compared at different scales. The first
line is the reference image for each scale, and the second line is pansharpening image for each scale.
(a–e) are the reference images of the first to fifth layers respectively, and corresponding, (f–j) are the
reconstructed images of the first to fifth layers respectively.

4.2.2. The Influence of the AG Module

In Figure 6, the feature maps of the first scale with and without the AG module are
visualized. More precisely, Figure 6b,e are represent the feature maps without the AG
module, and Figure 6c,f show the feature maps with the AG module. One can notice that
the details in Figure 6c are significantly enhanced compared to those in Figure 6b. The
detailed features regarding “rivers” and “land” in Figure 6c are extracted. Figure 6e has
lower contrast and blurry edges, whereas Figure 6f has sharper contrast and sharper edges.
Compared with FLi , FHi contains more local spatial information, and the texture information
is enhanced, yielding more accurate results. Therefore, these results demonstrates the AG
module’s utility in advancing the MSAC-Net’s learning of detailed spatial features.

4.2.3. The Influence of Different Structures

Figure 7 compares the pansharpening results of four methods with different structures.
From the perspective of image visual perception, Figure 7b–e do not differ significantly.

As can be observed from Figure 6 and Table 5, the spatial details can be extracted more
fully by adding the AG mechanism, albeit with a slight loss of the spectral information.
In Table 5, SAM of the “U-Net + scale” method is significantly reduced, and SSIM and
PSNR are slightly improved when multi-scale information is introduced. Compared
with Figure 7f, the spatial detail error of Figure 7h is reduced. These results show that
the reconstruction of multi-scale information can make use of the U-Net’s hierarchical
relationships to improve the network’s expression ability. As compared with Figure 7f–h,
Figure 7i shows the smallest difference between the reference image and the method’s
output. Table 5 demonstrates the MSAC-Net’s superiority stemming from its use of the AG
module and multi-scale information.
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(a) (b) (c)

(d) (e) (f)

Figure 6. The comparison of feature maps with and without the AG module. (a) The ground truth.
(b) The 53rd feature map in FL1 . (c) The 53rd feature map in FH1 . (d) the ground truth. (e) The 23rd
feature map in FL1 . (f) The 23rd feature map in FH1 .

(f) (g) (h) (i)

(a) (b) (c) (d) (e)

Figure 7. The comparison of the results for different structures. (a) The ground truth. (b) U-net.
(c) U-net + AG: U-net with AG on the skip connections. (d) U-net + scale: U-Net with multi-scale cost
function. (e) MSAC-Net. (f–i) are the spectral distortion maps corresponding to (b–e).
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Table 5. The comparison of the results for different structures on IKONOS.

Structures CC PSNR SAM ERGAS RMSE SSIM

U-Net 0.8959 21.5200 5.1670 7.8263 0.0839 0.6525
U-Net + AG 0.8949 21.5247 5.2721 7.8407 0.0839 0.6543

U-Net + scale 0.8955 21.5754 4.8187 7.6403 0.0837 0.6624
Our 0.8968 21.6184 4.4281 7.4303 0.0830 0.6755

Bold means the best results.

4.3. Comparison of 2D and 3D Convolutional Networks

Within this subsection, 2D and 3D convolution are used in MSAC-Net, and their
indicators are compared to assess the advantages of employing 3D convolution in MS
imagery pansharpening. The experimental results are shown in Figure 8 and Table 6.

The visual assessment indicates that Figure 8c has significant spatial distortion,
whereas Figure 8d is more similar to the ground truth. For example, the road in Figure 8d
is clearer than in Figure 8c. The reason may lay in the fact that 3D convolution considers
the spectral characteristics of the MS image, thus enabling the feature maps to obtain more
spectral information during the feature extraction process.

In Table 6, the MSAC-Net using 3D convolution shows a 2∼7% improvement regarding
most indicators.

(a) (b) (c) (d)

Figure 8. The comparison of 2D and 3D convolution results on the QuickBird dataset. (a) PAN.
(b) The ground truth. (c) The 2D convolutional method. (d) The 3D convolutional method.

Table 6. The comparison of 2D and 3D convolution results on QuickBird.

Kernel CC PSNR SAM ERGAS RMSE SSIM

2D 0.8660 19.5025 5.4445 6.1638 0.1059 0.6628
3D 0.8870 20.2168 5.1269 5.7446 0.0975 0.7107

Bold means the best results.

4.4. Comparison with the State-of-the-Art Methods

This section compares the proposed method to the eight state-of-the-art methods on
the simulated and real dataset. Due to the lack of LR- and HR-MS image pairs, the spatial
resolution of both PAN and MS images was reduced four times for training and testing,
in accordance with Wald’s protocol [51]. During the verification phase, the original MS
image and PAN image were used as input and were compared with the whole image and
the partial image visually.

4.4.1. Experiments on the Simulated Dataset

The IKONOS and QuickBird simulation data and results are presented in Figures 9
and 10. In Figures 9d–l and 10d–l, the fusion results obtained with GS, Indusion, SR, PNN,
PanNet, MSDCNN, MIPSM GTP-PNet and the proposed MSAC-Net method are presented,
respectively. Figures 9a–c and 10a–c are LR-MS, PAN and ground truth, respectively. As
seen in Figure 9d–h suffer from significant spectral distortions. In contrast, the proposed
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method yields a result quite similar to the reference image in terms of visual perception,
especially regarding the spatial details. In Figure 10, the resultant images of (d), (e), (j), and
(k) are too sharp compared with the reference image, while (h) has a color deviation and (i)
is blurred.

(a) (c)(b)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9. The fused results on the simulated IKONOS dataset. (a) LR-MS. (b) PAN. (c) The ground
truth. (d) GS. (e) Indusion. (f) SR. (g) PNN. (h) PanNet. (i) MSDCNN. (j) MIPSM. (k) GTP-PNet.
(l) MSAC-Net.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10. The fused results on the simulated QuickBird dataset. (a) LR-MS. (b) PAN. (c) The ground
truth. (d) GS. (e) Indusion. (f) SR. (g) PNN. (h) PanNet. (i) MSDCNN. (j) MIPSM. (k) GTP-PNet.
(l) MSAC-Net.
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In Tables 7 and 8, the methods’ results on IKONOS and the QuickBird dataset are
listed. The proposed method achieves competitive results on both datasets. With respect to
the best values obtained by other methods (as reported in Table 7), although MSAC-Net
does not perform well in IKONOS, it is superior only in ERGAS and SSIM. However,
other indicators of MSAC-Net in Table 7 are still competitive. With the exception of SAM,
Table 8 shows that the proposed method’s indicators are superior to those of the current
state-of-the-art methods. The results establish the proposed method as satisfactory.

Table 7. Quality metrics of the different methods on the simulated IKONOS image.

Methods CC PSNR SAM ERGAS RMSE SSIM

GS 0.5320 14.3940 5.7520 20.5527 0.1948 0.2964
Indusion 0.8330 19.9235 6.2750 11.3609 0.1004 0.4136

SR 0.8206 18.8363 12.2147 15.6579 0.1398 0.4513
PNN 0.8952 17.7485 24.1477 12.2516 0.0965 0.5553

PanNet 0.8514 18.7474 6.8293 12.6693 0.1128 0.3931
MSDCNN 0.9063 21.0595 5.6025 9.8053 0.0758 0.5728

MIPSM 0.9070 21.0746 4.4221 9.7840 0.0896 0.5855
GTP-PNet 0.9096 23.4467 6.0760 8.1888 0.0763 0.6020
MSAC-Net 0.8968 21.6184 4.4281 7.4303 0.0830 0.6755

Bold means the best results.

Table 8. Quality metrics of the different methods on the simulated QuickBird image.

Motheds CC PSNR SAM ERGAS RMSE SSIM

GS 0.8866 19.6392 2.9178 9.5928 0.1031 0.6973
Indusion 0.9178 21.6106 2.6969 7.5648 0.0822 0.7116

SR 0.9115 18.3991 3.5598 10.7052 0.1179 0.5897
PNN 0.9297 21.5744 5.7713 7.2483 0.0778 0.7398

PanNet 0.9141 21.0793 3.8142 8.0859 0.0883 0.7010
MSDCNN 0.9269 21.9366 3.8053 7.2514 0.0794 0.7330

MIPSM 0.9403 22.7724 4.3359 6.6432 0.0724 0.7300
GTP-PNet 0.9311 21.9180 7.9021 7.8661 0.0962 0.7109
MSAC-Net 0.9515 23.0800 5.3120 6.2297 0.0701 0.7966

Bold means the best results.

4.4.2. Experiments on the Real Dataset

The results obtained using the real datasets IKONOS and QuickBird are presented in
Figures 11 and 12. In Figures 11a–i and 12a–i, the fusion results obtained with GS, Indusion,
SR, PNN, PanNet, MSDCNN, MIPSM, GTP-PNet and the proposed MSAC-Net method
are presented, respectively. Figures 11j and 12j are the reference PAN images. As seen
in Figure 11, the images generated using (a), (b), (e), and (g) are too sharp at the “river”
edge. Thus, Figure 11h has an error in the “river” edge. Moreover, the synthetic chroma of
Figure 11d deviates, and (f) is blurred. On the other hand, MSAC-Net enhances the spectral
information and refines the spatial details.

In Tables 9 and 10, the QNR, Ds and Dλ of the eight compared methods are listed
for the real IKONOS and QuickBird dataset. The proposed method outperforms other
methods regarding all indicators. The indicators in both datasets shown demonstrate that
the proposed method can enhances detail extraction and reduces spectral distortion.

Overall, the experiments show the proposed method’s capability to retain spectral and
spatial information from the original images in the real dataset.



Remote Sens. 2022, 14, 2761 17 of 23

(a) (b)

(c) (d)

(e)

(i)

(h)(g)

(f)

(j)

Figure 11. The real results on the IKONOS dataset. (a) GS. (b) Indusion. (c) SR. (d) PNN. (e) PanNet.
(f) MSDCNN. (g) MIPSM. (h) GTP-PNet. (i) MSAC-Net. (j) PAN.
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(a) (b)

(c)

(e)

(d)

(f)

(g)

(i)

(h)

(j)

Figure 12. The real results on the QuickBird dataset. (a) GS. (b) Indusion. (c) SR. (d) PNN. (e) PanNet.
(f) MSDCNN. (g) MIPSM. (h) GTP-PNet. (i) MSAC-Net. (j) PAN.
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Table 9. Quality metrics of the different methods on the real IKONOS dataset.

Methods QNR Ds Dλ

GS 0.2479 0.7366 0.0588
Indusion 0.6785 0.3150 0.0096

SR 0.5923 0.3934 0.0236
PNN 0.7443 0.1579 0.1162

PanNet 0.9251 0.0679 0.0075
MSDCNN 0.8016 0.1493 0.0577

MIPSM 0.9502 0.0267 0.0237
GTP-PNet 0.9494 0.0203 0.0309
MSAC-Net 0.9529 0.0194 0.0282

Bold means the best results.

Table 10. Quality metrics of the different methods on the real QuickBird dataset.

Methods QNR Ds Dλ

GS 0.3689 0.4446 0.3358
Indusion 0.6622 0.1870 0.1854

SR 0.7468 0.2250 0.0364
PNN 0.7139 0.1329 0.1767

PanNet 0.7925 0.0469 0.1685
MSDCNN 0.7184 0.2098 0.0908

MIPSM 0.8816 0.0420 0.0797
GTP-PNet 0.8065 0.0141 0.1820
MSAC-Net 0.9546 0.0267 0.0192

Bold means the best results.

5. Discussion
5.1. The Effect of Convolution Times

The number of convolution in the convolution block will be discussed here. According
to experience, the higher the number of convolution times, the richer the feature expression
of the network should be. However, as shown in Figure 13a, when the number of convolu-
tion starts from 2 and keeps increasing, PSNR gradually decreases. This may be due to the
excessive times of convolution, which makes the network pay too much attention to the
form of the samples, ignoring the characteristics of the data, resulting in over-fitting of the
network. Therefore, two 3× 3× 3 kernels are used for in training.

5.2. The Effect of Multi-Scale Information Weight λ

This subsection discusses the effect of weight λ in Equation (10). Figure 13b shows
that the increase in weight λ from 0.01 to 1 gradually strengthens the constraints on scale
information in MSAC-Net and the resultant feature maps comprise sufficient details at each
scale to enhance the results. When λ increases to 10, the network pays more attention to the
scale information than the fusion result, affecting the MSAC-Net’s final result. Therefore,
to balance the scale information and fusion result, λ is set as to 1.
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(a) (b)

(c)

Figure 13. Discuss the effects of parameters (a) The effect of convolution times. (b) The effect of
multi-scale information weight λ. (c) The effect of network depth.

5.3. The Effect of Network Depth

A final parameter effect that needs to be investigated is the influence of the MSAC-
Net’s depth.

As is known to all, increasing the network depth can improve the effect of feature
extraction, but a too deep network will lead to degradation. Therefore, based on experience,
we discuss the depth of MSAC-Net between three and five layers. Figure 13c shows that as
the network depth increases, the average PSNR of the MSAC-Net on the test set gradually
improves. Therefore, according to the results in Figure 13c, the depth of MSAC-Net is set
to five layers.

Following these experiments, the weight λ was set to 1, the convolution times was 2
and the depth was 5 in MASC-Net.

6. Conclusions

This work introduces a novel 3D multi-scale attention deep convolutional network
(MSAC-Net) method for MS imagery pansharpening. The proposed MSAC-Net method
utilizes a 3D deep convolutional network appropriate for the MS images’ characteristics.
Moreover, the method integrates the attention mechanism and deep supervision mech-
anism for spectral and spatial information preservation and extraction. The conducted
experiments show that MSAC-Net using 3D convolution achieves better quantitative
and visual pansharpening performance than the network with 2D convolution. Exhaus-
tive experiments investigated and analyzed the effects of the designed attention module,
multi-scale cost function and three critical MSAC-Net factors. The experimental results
demonstrate that every designed module positively affects spatial and spectral informa-
tion extraction, enabling MSAC-Net to achieve the best performance in the appropriate
parameters’ range. Compared to the state-of-the-art pansharpening methods, the proposed
MSAC-Net achieved comparable or even superior performance on the real IKONOS and
QuickBird satellites’ datasets. Building on the results reported in this study, one can con-
clude that MSAC-Net is a promising multi-spectral imagery pansharpening method. In
future work, we will explore how to make more efficient use of the attention mechanism to
obtain smaller CNN while ensuring the quality of the fusion image.
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Abbreviations

MS Multi-spectral
PAN Panchromatic
HR High resolution
LR Low resolution
CNN Convolutional neural network
PNN Pansharpening neural network
MSDCNN Multi-scale and multi-depth CNN
AG Attention gate
GS Gram–Schmidt
CC Correlation coefficient
PSNR Peak signal-to-noise ratio
SAM Spectral angle mapper
RMSE Root mean square error
ERGAS Erreur relative globale adimensionnelle de synthèse
SSIM Structural similarity index measurement
QNR Quality without reference
Q Image quality index

References
1. Liu, Y.; Li, Q.; Yuan, Y.; Du, Q.; Wang, Q. ABNet: Adaptive Balanced Network for Multi-scale Object Detection in Remote Sensing

Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5614914. [CrossRef]
2. Zhang, W.; Liljedahl, A.K.; Kanevskiy, M.; Epstein, H.E.; Jones, B.M.; Jorgenson, M.T.; Kent, K. Transferability of the deep learning

mask R-CNN model for automated mapping of ice-wedge polygons in high-resolution satellite and UAV images. Remote Sens.
2020, 12, 1085. [CrossRef]

3. Witharana, C.; Bhuiyan, M.A.E.; Liljedahl, A.K.; Kanevskiy, M.; Epstein, H.E.; Jones, B.M.; Daanen, R.; Griffin, C.G.; Kent, K.;
Jones, M.K.W. Understanding the synergies of deep learning and data fusion of multi-spectral and panchromatic high resolution
commercial satellite imagery for automated ice-wedge polygon detection. ISPRS J. Photogramm. Remote Sens. 2020, 170, 174–191.
[CrossRef]

4. Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals
in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288.
[CrossRef]

5. Tan, K.; Jin, X.; Plaza, A.; Wang, X.; Xiao, L.; Du, P. Automatic change detection in high-resolution remote sensing images by
using a multiple classifier system and spectral–spatial features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3439–3451.
[CrossRef]

6. Tan, K.; Zhang, Y.; Du, Q.; Du, P.; Jin, X.; Li, J. Change Detection based on Stacked Generalization System with Segmentation
Constraint. Photogramm. Eng. Remote Sens. 2018, 84, 733–741. [CrossRef]

7. Lei, J.; Gu, Y.; Xie, W.; Li, Y.; Du, Q. Boundary Extraction Constrained Siamese Network for Remote Sensing Image Change
Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5621613. [CrossRef]

8. Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS + Pan
data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [CrossRef]

9. Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans.
Geosci. Remote Sens. 2007, 46, 228–236. [CrossRef]

http://doi.org/10.1109/TGRS.2021.3133956
http://dx.doi.org/10.3390/rs12071085
http://dx.doi.org/10.1016/j.isprsjprs.2020.10.010
http://dx.doi.org/10.1016/j.jhazmat.2020.123288
http://dx.doi.org/10.1109/JSTARS.2016.2541678
http://dx.doi.org/10.14358/PERS.84.11.733
http://dx.doi.org/10.1109/TGRS.2022.3165851
http://dx.doi.org/10.1109/TGRS.2007.901007
http://dx.doi.org/10.1109/TGRS.2007.907604


Remote Sens. 2022, 14, 2761 22 of 23

10. Khan, M.M.; Chanussot, J.; Condat, L.; Montanvert, A. Indusion: Fusion of multispectral and panchromatic images using the
induction scaling technique. IEEE Geosci. Remote Sens. Lett. 2008, 5, 98–102. [CrossRef]

11. Ranchin, T.; Aiazzi, B.; Alparone, L.; Baronti, S.; Wald, L. Image fusion—The ARSIS concept and some successful implementation
schemes. ISPRS J. Photogramm. Remote Sens. 2003, 58, 4–18. [CrossRef]

12. Palsson, F.; Ulfarsson, M.O.; Sveinsson, J.R. Model-based reduced-rank pansharpening. IEEE Geosci. Remote Sens. Lett. 2019,
17, 656–660. [CrossRef]

13. Wang, J.; Liu, L.; Ai, N.; Peng, J.; Li, X. Pansharpening based on details injection model and online sparse dictionary learning. In
Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June
2018; pp. 1939–1944.

14. Peng, J.; Liu, L.; Wang, J.; Zhang, E.; Zhu, X.; Zhang, Y.; Feng, J.; Jiao, L. PSMD-Net: A Novel Pan-Sharpening Method Based on a
Multiscale Dense Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4957–4971. [CrossRef]

15. Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of
fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [CrossRef]

16. Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. In Fundamental Papers in Wavelet
Theory; Princeton University Press: Princeton, NJ, USA, 2009; pp. 494–513.

17. Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison
among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2565–2586. [CrossRef]

18. Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by convolutional neural networks. Remote Sens. 2016, 8, 594.
[CrossRef]

19. Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A multiscale and multidepth convolutional neural network for remote sensing
imagery pan-sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989. [CrossRef]

20. Liu, L.; Wang, J.; Zhang, E.; Li, B.; Zhu, X.; Zhang, Y.; Peng, J. Shallow–deep convolutional network and spectral-discrimination-
based detail injection for multispectral imagery pan-sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1772–1783.
[CrossRef]

21. Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from
High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [CrossRef]

22. Jin, Z.R.; Zhuo, Y.W.; Zhang, T.J.; Jin, X.X.; Jing, S.; Deng, L.J. Remote Sensing Pansharpening by Full-Depth Feature Fusion.
Remote Sens. 2022, 14, 466. [CrossRef]

23. Zhou, M.; Fu, X.; Huang, J.; Zhao, F.; Liu, A.; Wang, R. Effective Pan-Sharpening with Transformer and Invertible Neural Network.
IEEE Trans. Geosci. Remote Sens. 2021, 60, 5406815. [CrossRef]

24. Zhang, H.; Ma, J. GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening. ISPRS J.
Photogramm. Remote Sens. 2021, 172, 223–239. [CrossRef]

25. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2015, 38, 295–307. [CrossRef]

26. Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A deep network architecture for pan-sharpening. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5449–5457.

27. Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised spatial–spectral feature learning by 3D convolutional autoencoder
for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6808–6820. [CrossRef]

28. Wang, L.; Bi, T.; Shi, Y. A Frequency-Separated 3D-CNN for Hyperspectral Image Super-Resolution. IEEE Access 2020,
8, 86367–86379. [CrossRef]

29. Shi, C.; Liao, D.; Zhang, T.; Wang, L. Hyperspectral Image Classification Based on 3D Coordination Attention Mechanism
Network. Remote Sens. 2022, 14, 608. [CrossRef]

30. Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral image spatial super-resolution via 3D full convolutional neural
network. Remote Sens. 2017, 9, 1139. [CrossRef]

31. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. arXiv 2014, arXiv:1406.6247.
32. Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-spatial attention networks for hyperspectral

image classification. Remote Sens. 2019, 11, 963. [CrossRef]
33. Fu, J.; Zheng, H.; Mei, T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image

recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 4438–4446.

34. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3156–3164.

35. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin, Germany, 2015; pp. 234–241.

36. Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-loop matters: Dual regression networks for single
image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 5407–5416.

http://dx.doi.org/10.1109/LGRS.2007.909934
http://dx.doi.org/10.1016/S0924-2716(03)00013-3
http://dx.doi.org/10.1109/LGRS.2019.2926681
http://dx.doi.org/10.1109/TGRS.2020.3020162
http://dx.doi.org/10.1109/TGRS.2007.912448
http://dx.doi.org/10.1109/TGRS.2014.2361734
http://dx.doi.org/10.3390/rs8070594
http://dx.doi.org/10.1109/JSTARS.2018.2794888
http://dx.doi.org/10.1109/JSTARS.2020.2981695
http://dx.doi.org/10.3390/rs14071552
http://dx.doi.org/10.3390/rs14030466
http://dx.doi.org/10.1109/TGRS.2021.3137967
http://dx.doi.org/10.1016/j.isprsjprs.2020.12.014
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TGRS.2019.2908756
http://dx.doi.org/10.1109/ACCESS.2020.2992862
http://dx.doi.org/10.3390/rs14030608
http://dx.doi.org/10.3390/rs9111139
http://dx.doi.org/10.3390/rs11080963


Remote Sens. 2022, 14, 2761 23 of 23

37. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301.

38. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.

39. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In
Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571.

40. Wang, Y.; Peng, Y.; Liu, X.; Li, W.; Alexandropoulos, G.C.; Yu, J.; Ge, D.; Xiang, W. DDU-Net: Dual-Decoder-U-Net for Road
Extraction Using High-Resolution Remote Sensing Images. arXiv 2022, arXiv:2201.06750.

41. Banerjee, S.; Lyu, J.; Huang, Z.; Leung, F.H.; Lee, T.; Yang, D.; Su, S.; Zheng, Y.; Ling, S.H. Ultrasound spine image segmentation
using multi-scale feature fusion skip-inception U-Net (SIU-Net). Biocybern. Biomed. Eng. 2022, 42, 341–361. [CrossRef]

42. Khalel, A.; Tasar, O.; Charpiat, G.; Tarabalka, Y. Multi-task deep learning for satellite image pansharpening and segmentation. In
Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28
July–2 August 2019; pp. 4869–4872.

43. Ni, Y.; Xie, Z.; Zheng, D.; Yang, Y.; Wang, W. Two-stage multitask U-Net construction for pulmonary nodule segmentation and
malignancy risk prediction. Quant. Imaging Med. Surg. 2022, 12, 292. [CrossRef] [PubMed]

44. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin, Germany, 2018;
pp. 3–11.

45. Rundo, L.; Han, C.; Nagano, Y.; Zhang, J.; Hataya, R.; Militello, C.; Tangherloni, A.; Nobile, M.S.; Ferretti, C.; Besozzi, D.; et al.
USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI
datasets. Neurocomputing 2019, 365, 31–43. [CrossRef]

46. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

47. Wang, Y.; Kong, J.; Zhang, H. U-Net: A Smart Application with Multidimensional Attention Network for Remote Sensing Images.
Sci. Program. 2022, 2022, 1603273. [CrossRef]

48. Yang, Q.; Xu, Y.; Wu, Z.; Wei, Z. Hyperspectral and multispectral image fusion based on deep attention network. In Proceedings of
the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam,
The Netherlands, 24–26 September 2019; pp. 1–5.

49. Wei zhou, W.; Guo wu, Y.; Hao, W. A multi-focus image fusion method based on nested U-Net. In Proceedings of the 2021 the
5th International Conference on Video and Image Processing, Hayward, CA, USA, 22–25 December 2021; pp. 69–75.

50. Xiao, J.; Li, J.; Yuan, Q.; Zhang, L. A Dual-UNet with Multistage Details Injection for Hyperspectral Image Fusion. IEEE Trans.
Geosci. Remote Sens. 2021, 60, 5515313. [CrossRef]

51. Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting
images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699.

52. Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S.
Patent 6,011,875, 4 January 2000.

53. Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of pansharpening algorithms: Outcome of
the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [CrossRef]

54. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

55. Yuhas, R.H.; Goetz, A.F.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle
mapper (SAM) algorithm. In Proceedings of the Summaries 3rd Annual JPL Airborne Geoscience Workshop, Pasadena, CA,
USA, 1–5 June 1992; Volume 1, pp. 147–149.

56. Yang, Y.; Wan, W.; Huang, S.; Lin, P.; Que, Y. A novel pan-sharpening framework based on matting model and multiscale
transform. Remote Sens. 2017, 9, 391. [CrossRef]

57. Wald, L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions; Presses des MINES: Paris,
France, 2002.

58. Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment
without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [CrossRef]

59. Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [CrossRef]
60. Sun, W.; Ren, K.; Meng, X.; Yang, G.; Xiao, C.; Peng, J.; Huang, J. MLR-DBPFN: A Multi-scale Low Rank Deep Back Projection

Fusion Network for Anti-noise Hyperspectral and Multispectral Image Fusion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522914.
[CrossRef]

http://dx.doi.org/10.1016/j.bbe.2022.02.011
http://dx.doi.org/10.21037/qims-21-19
http://www.ncbi.nlm.nih.gov/pubmed/34993079
http://dx.doi.org/10.1016/j.neucom.2019.07.006
http://dx.doi.org/10.1155/2022/1603273
http://dx.doi.org/10.1109/TGRS.2021.3101848
http://dx.doi.org/10.1109/TGRS.2007.904923
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.3390/rs9040391
http://dx.doi.org/10.14358/PERS.74.2.193
http://dx.doi.org/10.1109/97.995823
http://dx.doi.org/10.1109/TGRS.2022.3146296

	Introduction
	Related Work
	MethodProposed Method
	The MSAC-Net’s Structure
	The Attention Gate (AG) Module
	Pansharpening Layer and Multi-Scale Cost Function

	ResultsExperimental Results
	Experimental Setup
	Datasets & Parameter Settings
	Compared Methods
	Performance Metrics

	The Influences of Multi-Scale Fusion and Attention Gate Mechanism
	The Influence of the Pansharpening Layer
	The Influence of the AG Module
	The Influence of Different Structures

	Comparison of 2D and 3D Convolutional Networks
	Comparison with the State-of-the-Art Methods
	Experiments on the Simulated Dataset
	Experiments on the Real Dataset


	DiscussionDiscuss the Effects of Parameters
	The Effect of Convolution Times
	The Effect of Multi-Scale Information Weight 
	The Effect of Network Depth

	Conclusions
	References

