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Abstract: Remote sensing change detection (CD) identifies changes in each pixel of certain classes
of interest from a set of aligned image pairs. It is challenging to accurately identify natural changes
in feature categories due to unstructured and temporal changes. This research proposed an effec-
tive bi-temporal remote sensing CD comprising an encoder that could extract multiscale features,
a decoder that focused on semantic alignment between temporal features, and a classification head.
In the decoder, we constructed a new convolutional attention structure based on pre-generation of
depthwise-separable change-salient maps (PDACN) that could reduce the attention of the network
on unchanged regions and thus reduce the potential pseudo-variation in the data sources caused
by semantic differences in illumination and subtle alignment differences. To demonstrate the effec-
tiveness of the PDA attention structure, we designed a lightweight network structure for encoders
under both convolution-based and transformer architectures. The experiments were conducted on
a single-building CD dataset (LEVIR-CD) and a more complex multivariate change type dataset
(SYSU-CD). The results showed that our PDA attention structure generated more discriminative
change variance information while the entire network model obtained the best performance results
with the same level of network model parameters in the transformer architecture. For LEVIR-CD,
we achieved an intersection over union (IoU) of 0.8492 and an F1 score of 0.9185. For SYSU-CD, we
obtained an IoU of 0.7028 and an F1 score of 0.8255. The experimental results showed that the method
proposed in this paper was superior to some current state-of-the-art CD methods.

Keywords: change detection; attention mechanism; deep learning; feature enhancement

1. Introduction

Remote sensing change detection (CD) is the process of identifying changes by observ-
ing the state of an object or phenomenon at different times [1]. The definition of change
in this process varies depending on the “target of interest” and can usually be classified
into binary and multiple CDs [2] such as building CD [3], mudflow and landslide CD [4],
building damage assessment [5,6], land cover CD [7], and deforestation [8,9]. The develop-
ment of satellite imagery technology has facilitated the collection of massive amounts of
remote sensing data with high spectral, spatial, and temporal resolutions. However, the
increase in image resolution and the addition of various forms of change due to different
environmental conditions in remote sensing images makes CD a challenging task [10].
Therefore, the key to CD methods is to reduce interference from extraneous changes in
increasingly complex environments. Early traditional CD methods typically compared
pixel values by using machine learning design features [11]. Although some of them
performed better with the setting of thresholds and manual design of features during the
comparison process, their detection accuracy relied heavily on the quality of homogenous
remote sensing images and was vulnerable to noise variations.
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With the rapid development of deep learning technology in the field of image analy-
sis, scholars have continuously proposed using deep learning technology to address the
problem of CD in high-resolution remote sensing images [11,12]. Compared with CD
methods based on simple mathematical models, deep learning models have more complex
network structures and can automatically learn high-level semantic features from large
amounts of big data. For bi-temporal, high-resolution remote sensing geospatial object
CD, most of the current network change detectors are based on deep convolutional net-
works [13], especially fully convolutional Siamese networks (FC-Siam) [14]. FC-Siam uses
weight-sharing encoders to extract depth features and then uses feature difference decoders
to detect object changes from the perspective of the encoder–decoder architecture. Most
different approaches are then modified in terms of how the different features extracted from
the dual encoders are consumed (or compared) to produce a CD prediction layer. These
approaches focus on three main aspects [15]: the encoder (i.e., the use of a pretrained deep
network as an encoder) [16–18]; the decoder (i.e., a recurrent neural network (RNN) and
temporal attention-based decoder) [17,19]; and the training strategy (i.e., deep supervision
of multiple outputs) [20,21]. Here, we focus on the decoder part of the network, which is
important to the network in terms of the generation of discriminative and robust change
features. The decoder can be divided into two steps: (1) extracting features with unique
change information (i.e., reinforcing features by constructing an attention mechanism);
and (2) designing a decision function to generate a change map based on the extracted
features (i.e., further mining the temporal dependencies between images by using an RNN
to process the cascaded feature pairs using convolution). However, because it is affected
by the scale size related to the images, the related design of the decoder often introduces
additional performance overhead, causing difficulties in model building.

To address the above problems, we proposed a bi-temporal image CD network based
on the pre-generation of depthwise-separable change-salient maps (PDACN). First, we pro-
posed a dual encoder/single decoder scheme with a lightweight depth feature encoder to
extract features of different scales and widths. A lightweight multiscale feature generation
encoder structure was then constructed in which the model paid more attention to change
information discrimination in the region of interest, thus reducing the effect of noise from
more complex environmental information in high-resolution images. The network learned
what to emphasize and how to extract features that described change at a higher level.
Finally, we validated our proposed module by applying it to publicly available datasets
with two different levels of change complexity.

In summary, this paper makes two main contributions.

(1) A novel end-to-end CD method for remote sensing images is proposed.
(2) A new convolutional attention structure dedicated to CD that enables the CD network

to pay more attention to change information extraction from change regions while
taking into account channel and spatial adaptability is proposed.

2. Related Work

Here, change-detection methods are broadly divided into two categories: traditional
and artificial intelligence (AI)-based [11]. Traditional methods focus on the artificial de-
sign of the relevant features to obtain the change intensity information, while numerous
remote sensing studies have shown that AI-based change-detection methods outperform
traditional methods in terms of feature extraction [22,23]. Therefore, we focus here on the
present development of AI techniques in the field of change detection, especially deep
learning-based bi-temporal change detection. However, the generic change detection pro-
cess is still of importance in deep learning-driven change detection. The key lies in the
two main aspects of designing a decision function to generate a change map and extracting
features with robust semantic information. In the following, we provide an overview of the
related work in recent years around these two aspects.
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2.1. Bi-temporal Change Detection Using Deep Learning

Existing CD benchmark datasets [24–28] have been constructed based on bi-temporal
supervised learning, which requires change labels for remote sensing images of the same
region over different periods. Network change detectors can be classified according to
spatial units: networks based on the block structure and network structures for pixel-by-
pixel classification [29].

Block-structure-based networks usually incorporate image classification tasks.
Zhang et al. [23] proposed a CD method based on image blocks that divided images
into 28 × 28 or other sizes of image blocks and then inputted the blocks into a convolu-
tional neural network (CNN) composed of two identical structures sharing weights. The
two feature vectors outputted from these two CNNs were fused to generate a feature vector
covering the change information, and finally, two hidden layers were used to classify the
change category of the central pixel. Ye et al. [30] also proposed a supervised CNN struc-
ture, AggregationNet, which took two remote sensing image blocks with different phases
as inputs and outputted a two-dimensional vector by constructing a Siamese network at
the feature fusion level. Finally, the class information of each of the two image blocks
was outputted to obtain the classes of each to determine whether a change had occurred.
Wiratama et al. [31] proposed a dense Siamese CNN architecture for a network consist-
ing of two change detectors as independent convolutional subnetworks. The input was
a 40 × 40 pixel image block and the output was the Euclidean distance metric of the
two network outputs. The center pixel of the image block was classified as exhibiting no
change when the value of the Euclidean distance metric approached 1, corresponding to
a label of 0. Although the image-block-based approach transformed CD into a classification
problem and differed from post-classification CD, it not only determined whether there
was a change, but also directly obtained the type of change. However, block-structure-
based methods are sliding-window approaches; they have very slow inference times and
are inefficient because the same region is visited multiple times (there is a large overlap
between image blocks adjacent to intermediate pixels).

To reduce the difficulty of detection, network structures for pixel-by-pixel classification
usually consist of some end-to-end methods that directly classify each pixel on the feature
map. Most of them utilize the classical fully convolutional network (FCN) [32] and U-
Net [33]. CDNet [34] and fully convolutional–early fusion (FC-EF) use the hourglass
codec structure of the FCN to predict regions of change. This type of approach uses
two images detected directly as inputs to the network and is very susceptible to noise
variations. FC-Siam-Conc [35] and FC-Siam-Diff [35] employ a Siamese network structure
with a double decoder–single decoder. The Siamese network maps images to a specific
feature space, which can restrict the noise in images input to the decoder that processes
high-level semantic information, but fails to consider the temporal dependence between
images. BiDateNet [36] uses long short-term memory (LSTM) to address the problem of
inaccurate image registration. In addition, to further enhance the representation of the
network model and make the network pay more attention to the change information of
the region of interest, the spatiotemporal attention-based network (STANet) [17] obtains
change maps via metric learning by using the spatiotemporal attention mechanism to
obtain more discriminative features.

2.2. Designing a Decision Function to Generate a Change Graph

The overall process of generating change maps based on extracted features can be
divided into two forms: metric-based learning and classification-based learning. The
metric-based approach obtains a change map by measuring the distance between features.
Since the distance between unchanging features is relatively short and the distance between
changing features is relatively long, the metric-based approach can further distinguish
between “changing” and “unchanging” features in the decision phase, thus mitigating the
effect of pseudo-change and improving CD accuracy. STANet [17] obtains a change map
by finding the Euclidean distance between different features and uses a spatiotemporal
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attention mechanism to obtain more discriminative spatiotemporal features. DSAMNet [20]
includes a metric module to learn change maps from the distances between pairs of bipartite
temporal feature maps in a low-dimensional embedding space. CEECNet [37] introduces
a new ensemble similarity metric that is a variant of the Dice coefficient, which can be
steeper than the standard Tanimoto metric, thus providing a more fine-grained similarity
metric between layers. However, the improvements that these methods can achieve are
limited due to the limitations of time dependence in distinguishing pseudo-variations that
are very confusing in appearance.

Classification-based methods tend to fuse twin features and then use a multilayer
convolutional structure to reduce the number of channels for both variable and invariant
types of channels; this tends to be the most commonly used feature-fusion method. The
bi-temporal image transformer (BIT) [38] uses Transformer to construct a spatiotemporal
attention mechanism and to fuse features by taking absolute values of the enhanced features.
The feature constraint change detection network (FCCDN) [21] contains a deep dense fusion
module (DFM) that consists of two branches: a sum branch and a difference branch. The
sum branch is used to enhance edge information and the difference branch is used to
identify change regions.

2.3. Extraction of Features with Robust Semantic Information

Extracting features with unique variation information and more discriminative fea-
tures is important in mitigating pseudo-variation such as false alarms caused by differences
in external factors; e.g., light and scale differences between dual-time inputs. Therefore,
many attempts have been made to generate more discriminative features to overcome
this problem. Peng et al. [39] developed UNet++ with dense skip connections, aiming
to learn more effective features from multiscale semantic information. Since they have
an excellent ability to capture temporal dependencies between diachronic images, RNNs
have been used to acquire features with spatiotemporal information. Song et al. [40] pro-
posed a recurrent 3D FCN for hyperspectral images that combined the advantages of a 3D
FCN and an LSTM network. Papadomanolaki et al. [36] proposed BiDateNet to enhance
the temporal information between diachronic images by integrating LSTM into the U-Net
structure. The improvements that can be achieved with these methods are limited due to
the limitations of temporal dependence in distinguishing pseudo-variations that are very
confusing in appearance. Therefore, some attention-based mechanisms have been applied
in this process. PGA-SiamNet [41] integrates a global collective attention mechanism into
a pyramid FCN to capture architectural change. Chen et al. [42] used a dual attentional
CNN with a VGG16 pre-trained network for the feature encoder. The attention module
they used for vision incorporated both spatial and channel attention and was introduced by
Vaswani et al. [43]. A dual-task constrained deep Siamese convolutional network (DTCD-
SCN) [44] was designed as a dual-task constrained CD network that was responsible for
building extraction and changing building extraction. To further improve the representa-
tion capabilities between features, a dual attention module (DAM) that takes full advantage
of the interdependence between channel and spatial location has been proposed.

3. Methods

In this section, we first give a general introduction to the proposed model followed by
a detailed description of each modular part of the model. Finally, a brief description of the
optimization strategy of the model is given.

3.1. Overall Structure

The proposed network structure is shown in Figure 1. It had the form of a Siamese
network structure and consisted of three parts: an encoder, a decoder, and a classification
head. To learn representative features of images from different time periods, the weight-
sharing feature extractor automatically extracted representative multiscale features from
each of the two images. The decoder then processed these multiscale features from different
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time periods to recover the image features while reconstructing the detailed parts of the
image features. Notably, to eliminate possible semantic errors on the feature maps from
different periods, we use pre-generated depthwise-separable change extraction (PDC) to
generate a change-saliency map for the initial change location and then multiplied the
saliency map by the original feature map to implement a common attention mechanism
to extract more robust change features. Therefore, we named this structure the PDA
decoder. The role of the classification head part was to reduce the number of feature map
channels to two types (variable and invariant) using a multilayer convolutional structure
and finally generate a change binary map via the argmax operation. In the case of multiple
classifications, the output could be chosen as the number of channels with the same number
of categories. Here, we called the entire network PDACN.
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Figure 1. The overall structure for our change detection network.

Let I1 and I2 denote pairs of images of the same region at different points in time and
let L denote labels with change annotations. The flowchart of PDACN can be summarized
as follows.

(a) First, I1 and I2 were inputted to the same encoder to obtain semantic features with
different depths and resolutions T1 (Feature1, Feature2, Feature3, and Feature4) and
T2 (Feature1, Feature2, Feature3, and Feature4).

(b) Next, the features with the same timestamp were combined into one by 1 × 1 con-
volution to obtain T1 features and T2 features with the same dimension C5 and the
same width and height ( H

4 , W
4 ). To obtain more discriminative features, we first used

the PDC module to initially locate the change regions to obtain pre-change-salient
maps and then multiplied them by the bi-temporal features and passed them through
a 3 × 3 convolution and a rectified linear unit (ReLU) function. After the above
operation, we could eliminate the influence of unchanged regions on the final network
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results and thus reduce the pseudo-variation. Note that we did not use batchnorm or
layernorm operations in the further processing of the T1 features and T2 features.

(c) Finally, we used two-layer convolution, batch normalization, a convolution module
built with the ReLU and a residual connection structure to complete the correction
operation on the change feature map, which could further enhance the fitting ability
of the model. After upsampling the corrected change features to the original remote
sensing image size, the final change probability map could be obtained by using
a 1 × 1 convolution. The change probability map could be directly compared with the
label L to calculate the loss.

3.2. Encoder

Many research results have shown that using pre-trained deep networks as encoders
facilitates model convergence [16,17]. Pre-trained network structures often benefit from
some neural network structures in the non-remote sensing domain and can be generally
classified into two architectural forms based on convolution and transformation. As
depicted in the encoder section in Figure 1, both network structures had similar hierarchical
feature-extraction structures and were capable of extracting representative features; the
difference lay only in the mechanism of feature extraction.

As shown in Table 1, from the perspective of model capacity, we preferred the en-
coder structure with fewer parameters and a faster computation speed and constructed
three encoding forms of network structures based on this. For the convolutional architec-
ture, we selected ResNet18 as the standard encoder and made the appropriate modifications.
Unlike the original ResNet18 [13] architecture, the initial convolutional step was set to 1.
Therefore, the resolution of the feature map of the first block in the figure became 1/2 that
of the original one, which led to a greater computational burden. As the number of blocks
increased, the resolution of the feature map became 1/2 that of the previous level layer by
layer and the number of channels became twice that of the previous level layer. For the
transformer architecture, we adopted SegFormer-b0 [45] as the encoder and did not make
any modifications. S3 indicates that we obtained only the feature maps of the first three
block outputs for decoding, while S4 indicates that all the features of the block outputs
were involved in decoding. Therefore, the final output feature channel numbers C1, C2, C3,
and C4 of the ResNet18-S4 and SegFormer-b0 encoders were (64, 128, 256, 512) and (32, 64,
160, 256), respectively.

Table 1. Capacity analysis of the entire model with three different encoders.

Encoder Input Size Params. (M) FLOPS (GFLOPS)

ResNet18-S3 (3, 1024, 1024) 3.65 510.60
ResNet18-S4 (3, 1024, 1024) 12.13 588.51

SegFormer-b0 (3, 1024, 1024) 4.22 89.31

3.3. PDA Decoder

For a Siamese CD network architecture, constructing a robust bi-temporal feature
fusion module to minimize pseudo-variation is the most critical part. Two problems need
to be solved [21]: (1) different-period images often suffer from color inhomogeneities and
spatial position shifts caused by alignment errors; and (2) the complex distribution of
features in remote sensing images greatly increases the number of categories of change
information in images in different periods. To address the problem of bias between such
diachronic features, some researchers have constructed a series of change feature-extraction
mechanisms based on the use of direct subtraction and tandem methods to fuse features.
However, these methods are usually affected by the width and resolution of the features
to some extent, which introduces a greater computational burden and results in more
memory consumption.

Here, we propose a simple and effective PDA feature-fusion module. The purpose of
PDA was to give more attention to the regions that changed in the feature space during
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change-information extraction under the condition of ensuring spatial adaptation and
channel adaptation and to pay less attention to the regions that did not change to reduce
the effects of pseudo-change due to the semantic differences from illumination and subtle
alignment differences in different phases.

To ensure the semantic continuity of the positions to be compared in the before and
after period images as much as possible, we had to use the PDC structure to achieve the
initial change position localization. The formula can be denoted as follows:

Tc =
[
fk × k

(
T1

1, T1
2

)
; fk × k

(
T2

1, T12
2

)
; · · · ; fk × k

(
TN

1 , TN
2

)]
(1)

Tpdc = F1 × 1 (Tc) (2)

where fk × k denotes group convolution using the convolution kernels of size k and F1 × 1
denotes standard convolution with kernels of size 1. The number of convolution kernels
was consistent with the number of channels N of the original features T1

1, T1
2. First, the

spatial fusion of features was performed channel by channel using a group convolution
and then the correlation between the channels was calculated using a 1 × 1 convolution for
the fused feature maps.

T1attn = Frelu
3 × 3

(
Tpdc ⊗ T1

)
(3)

T2attn = Frelu
3 × 3

(
Tpdc ⊗ T2

)
(4)

After the initial localization of the change position was completed, the fused feature
map was multiplied by the previous feature maps and subjected to a 3 × 3 convolution to
calculate the spatiotemporal attention. The details of the depth-separable change feature
extraction are given in Figure 2a,b, which show the implementation details of the overall
attention mechanism.
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of the PDC effect. The blue part represents the range in the space as well as the channel relationship
considered to find a point (yellow point). The blue color on the left represents the computation
of spatial position relations and that on the right represents the computation between features in
different channels. (b) Details of the PDA decoder.
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Throughout the PDA decoder, we did not introduce BN or LN to normalize the
features; our proposed PDC had to introduce only a small number of model parameters to
increase the feature representation of the model in space and channel locations compared
to directly finding the absolute value of features or the Euclidean distance between features.
We validated this module with the features in the PDA decoder (Figure 3). The visualization
of the feature maps showed that PDA did prevent the introduction of redundant variation
noise and computed more accurate variation features.
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Figure 3. Visualization of the features in the PDA decoder. T1 and T2 denote the before- and after-
period feature maps of the input. The PDC in the third column is the change attention feature map
generated under a depth-separable difference pre-extraction. T1attn and T2attn in the fourth column
represent the feature maps generated after the attention calculation. The plots in the last column
indicate the final generated change feature maps.

3.4. Classification Head

The role of the classification header section was to perform pixel-by-pixel classification
of the fused feature maps. This process is often accompanied by two operations: reducing
the number of channels and resampling back to the original remote sensing image resolu-
tion. The former is used to output the final change probability map and the latter ensures
the loss calculation in the pixel-by-pixel classification process. The structure is shown in
Figure 1; we used a residual join operation after two layers of convolution of the fused
features to increase the robustness of the model. Finally, the feature map was sampled to
the original image size using bi-quadratic linear interpolation; a 1 × 1 convolution was
used to complete the final classification.

3.5. Loss Function

Since the CD process used in this paper was considered a semantic segmentation task,
the dataset in this paper suffered from some class imbalance. Here, we used the sum of
the softmax cross-entropy loss and Dice loss as the final loss function. By default, this
combination was used in all experiments in this paper.

3.5.1. Dice Loss

The Dice loss was named after the Dice coefficient [46], which is a measure function
used to assess the similarity of two samples; a larger value means that the two samples are
more similar. The Dice loss function is formulated as follows:

LDice = 1 − 2 ∑N
i=1 xi ỳi

∑N
i=1 xi + ∑N

i=1 ỳi
(5)

where xi and ỳi denote the label value and predicted value of pixel i, respectively; and
N is the total number of pixels, which is equal to the number of pixels in a single image
multiplied by the batch size.
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3.5.2. Cross-Entropy Loss

As the CD process used in this paper was treated as a multiclass semantic segmentation
task, we used cross-entropy loss in the training phase for implementation. The loss formula
is as follows:

lce =
1
N ∑N

i=1[yi × log xi + (1 − yi)× log(1 − xi)] (6)

where, similar to the Dice loss, y is the true value of a point (usually 0 or 1), x is the predicted
value of a point, N is the batch size multiplied by the total number of pixels on a single
image, and w is the weight given to each batch.

4. Experiments

We validated the model on two publicly available building CD datasets: the LEVIR-
CD [17] dataset and the SYSU-CD [20] dataset. The experimental results showed that the
proposed model outperformed other recently proposed CD methods.

In this section, we begin by introducing the experimental dataset. Then, we describe
the details of our implementation and present the utilized evaluation metrics. Finally, we
compare our method with some other methods. For ease of presentation, we present here
an overview of some of the abbreviations used in the following sections. “XX-CD” indicates
the XX experimental dataset. The proposed network was named PDACN based on the
general structure of the network; this network with the three different encoder structures
(ResNet18-S3, ResNet18-S4, and SegFormer-b0) was respectively named PDACN-R18S3,
PDACN-R18S4, and PDACN-Segb0. Regarding the PDACN that appears in later figures,
we defaulted to that with the encoder structure that yielded the best detection accuracy.

4.1. Dataset Settings
4.1.1. LEVIR-CD Dataset

LEVIR-CD is an open dataset containing 637 ultrahigh-resolution (0.5 m resolu-
tion) Google Earth image pairs with 1024 × 1024 pixels. Images of 20 different loca-
tions in several cities in Texas were collected from 2002 to 2018; the image pairs ranged
from 5 to 14 years. Architecture-related changes include building development (changes
from soil/grassland/hardened ground or areas under construction/new building areas)
and building decay. The dataset covers various types of buildings such as villas, high-
rise apartments, small garages, and large warehouses. The dataset contains a total of
31,333 individual building changes with an average of approximately 50 building changes
per image pair and an average size of approximately 987 pixels per change area. Note
that most of the changes were due to building growth. The author of LEVIR-CD provided
a standard training/validation/test split that assigned 70% of the samples for training, 10%
for validation, and 20% for testing.

4.1.2. SYSU-CD Dataset

This dataset contains 20,000 pairs of aerial images that are 256 × 256 in size and
0.5 m in resolution that were taken in Hong Kong between 2007 and 2014. The main types
of changes in SYSU-CD include: (a) newly built urban buildings; (b) suburban dilation;
(c) groundwork before construction; (d) vegetation changes; (e) road expansion; and
(f) sea construction. Therefore, in addition to urban expansion and renewal-related change
types, this dataset introduced some natural change types, which further increased the
difficulty of CD. The entire dataset was divided at a ratio of 6:2:2; we ultimately obtained
12,000 training images, 4000 validation images, and 4000 test images. Table 2 shows the
basic information for these two datasets.

4.2. Training Details

Our model was PyTorch-based and trained with mixed precision in the Ubuntu
20.04 OS using one NVIDIA Tesla V100 GPU. For the encoder consisting of ResNet [13], we
used the official pre-training weights published by torchvision. For the encoder composed
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by Segformer [45], we used pre-training weights from training on the Citispace dataset, in
which the images are sized at 1024 × 1024. The other modules in the network structure were
randomly initialized. During training, we performed random horizontal and vertical flips
and on-the-fly rotations (90◦|180◦|270◦) of the images with a probability of 0.5. By default,
the batch sizes of images sized at 1024 and 256 were 2 and 16, respectively, during the
training process. The model was fully trained at 300 epochs using the AdamW optimizer
with a weight decay of 0.01. During this period, the learning rate decreased linearly from
3 × 10−2 with the epoch to 0. At the end of each epoch, we performed a metric evaluation
on the validation set and saved the highest weight of the relevant metric as the final result.
In addition, we terminated the training if the highest value of the validation set metric still
had not been achieved after 50 epochs.

Table 2. A brief introduction to the two datasets.

Name Bands Image Pairs Resolution (m) Image Size Train/Val./Test Set

SYSU-CD 3 20,000 0.3 256 × 256 12, 000/4000/4000
LEVIR-CD 3 637 0.5 1024 × 1024 445/64/128

4.3. Evaluation Metrics

To compare the performance of our model with the performances of other methods, we
report their F1 and IoU scores with regard to the change class as the primary quantitative
indices. Additionally, we report the precision and recall values for the change category
of the CD task. The IoU and F1 values ranged from 0 to 1; the higher each value was,
the better the performance. The IoU and F1 scores were calculated as follows, where TP
denotes true positives, FP denotes false positives, and FN denotes false negatives:

IoU =
TP

TP + FP + FN
(7)

F1 = 2 ∗ precision ∗ recall
precision + recall

(8)

The precision was calculated as:

precision =
TP

TP + FP
(9)

The recall was calculated as:

recall =
TP

TP + FN
(10)

We plotted the performances of PDACN-R18S3, PDACN-R18S4, and PDACN-Segb0
on the validation sets as shown in Figure 4. Since the sizes of the two datasets were very
different, we chose the step size as the horizontal coordinate here for better presentation.
As can be seen in Figure 4, PDACN achieved the best performance below 20,000. To further
validate our model on the test set, we used the highest weight of the validated F1 as the
checkpoint for the test.

4.4. Results
4.4.1. Comparison with Other Methods on LEVIR-CD

In this section, we present a comparison of the results of PDACN and other CD
methods for the application to LEVIR-CD. FC-EF and its two variants (FC-Siam-Conc and
FC-Siam-Diff) were not evaluated in the original paper on LEVIR-CD for the metrics. To
ensure a consistent comparison of these methods, we fully retrained the methods used
for comparison using the training approach and loss functions in this paper; both were
validated on the same test set.
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Figure 4. The performance of PDACN on the validation sets: (a) validation on the LEVIR-CD dataset;
(b) validation on the SYSU-CD dataset.

Here, the quantitative evaluation results are given in terms of F1, IoU, precision, and
recall, which are commonly used in CD task metrics; the results are shown in Table 3. Note
that we used two inference testing strategies for image size (LEVIR-CD256 and LEVIR-
CD1024) in the test set. The first one ensured that the test environment used in the original
paper [38] method was available; i.e., the test set images were cropped into 2048 non-
overlapping 256-sized image blocks for testing. The second one directly used 128 1024-sized
test images for testing.

By using the LEVIR-CD256 approach to test the model performance, the BIT approach
achieved slight improvements of 0.81% and 1.33% over the F1 and IoU metrics of the
original paper, respectively, which we believe was probably due to the training hyperpa-
rameters such as the learning rate and training time used in this paper. Compared with
LEVIR-CD256, LEVIR-CD1024 achieved a greater improvement in all metrics to different
degrees, which we believe occurred because the second test image used a 1024-sized image
from the original test set, which made the input of the network richer in global and texture
information, thus improving the network’s expressive power.
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Table 3. Quantitative results of different methods on the LEVIR-CD test set.

Method

LEVIR-CD1024 LEVIR-CD256

F1 (%) Precision
(%)

Recall
(%) IoU (%) F1 (%) Precision

(%)
Recall

(%) IoU (%)

FC-EF [35] 87.61 88.84 86.40 77.94 86.87 88.48 85.32 76.79
FC-Siam-Conc [35] 87.96 89.65 86.34 78.51 87.17 89.05 85.37 77.26
FC-Siam-Diff [35] 89.13 90.57 87.73 80.39 88.34 90.16 86.59 79.11

BIT [38] 90.72 93.11 88.45 83.01 90.12 88.16 92.15 82.01
PDACN-R18S4 92.13 92.87 91.40 85.41 91.81 93.25 90.41 84.86
PDACN-R18S3 91.59 90.64 92.55 84.48 91.18 90.00 92.38 83.78
PDACN-Segb0 92.27 93.52 91.06 85.65 91.85 93.09 90.63 84.92

The bolded values are the maximum values of the corresponding columns.

Here, we focus on analyzing the results of the 1024-size inference test, which are
shown in Table 3 corresponding to LEVIR-CD1024. FC-EF obtained the lowest F1 of 87.61%
and IoU of 77.94%, while its variant in the form of a Siamese network structure (FC-
Siam-Conc) obtained a slight performance improvement in IoU, which indicated that the
Siamese network structure could improve the performance expression of the model using
this dataset. When using the Siamese network in the case of taking the difference and
absolute value, the FC-Siam-Diff network yielded a 1.52% and 2.45% higher F1 and IoU,
respectively, compared to the FC-EF. We believe this was because in this building dataset,
the semantic information of the buildings in the images from different periods was similar,
so a simple absolute value difference was sufficient for change-information extraction. In
contrast, concatenation introduced unnecessary noise to limit the model expression while
increasing the number of model parameters. The BIT constructed spatiotemporal attention
to enhance the features using a transformer before absolute-value differencing and obtained
a 2.62% and 2.45% higher IoU and precision than those of FC-Siam-Diff. This showed that
using feature enhancement before absolute value extraction could further reduce the noise
difference between features in different time phases, thus improving the detection accuracy
and reducing “pseudo-variation” caused by misclassification. Our method (PDACN)
achieved the best results for all metrics of the methods tested. Compared with those of BIT,
we achieved a 1.55%, 2.64%, and 2.61% higher F1, IoU, and recall, respectively. We believe
that the BIT filtered some useful information during the feature-reinforcement process on
this dataset, which resulted in some missing building identifications; while our PDACN
reduced “pseudo-variation” by pre-locating the change locations while reinforcing the
integrity of individual buildings in the change areas. Finally, it should be noted that our
network exhibited the best performance with the encoder form SegFormer-b0, followed by
ResNet18-S4 and ResNet18-S3.

Figure 5 provides a visual comparison of the various methods used on the LEVIR
dataset, where red and green represent the false and missed detection parts, respectively.
Since the encoder for SegFormer-b0 performed best, we visualized only PDACN-Segb0.
From top to bottom, their names in the test set were test_20, test_45, test_21, test_77,
test_ 80, test_103, and test_107. Siam-Conc was able to determine the obvious range of
variation in general. FC-Siam-Conc improved the visual effect on building edges but was
not robust to pseudo-variations caused by lighting and shadows. According to the first and
second rows, our PDACN and the BIT yielded better building boundaries and complete
building profiles compared to the FC series approach. We believe that this occurred because
both were robust against the effects of lighting and alignment on the bi-temporal images
due to building attention mechanisms. According to rows 3 and 4, PDACN yielded the
fewest red and green parts of all methods, which indicated that our method maintained
a good performance when detecting small buildings. According to rows 5, 6, and 7, all
methods exhibited some lack of connectivity in the detection of relatively large buildings,
which we believe was a misclassification phenomenon due to the lack of differentiation
between bare soil and buildings.
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4.4.2. Comparison with Other Methods on SYSU-CD

In this section, we focus on comparison with DSAMNet [20], a method proposed
together with SYSU-CD. Similar to the attention mechanism PDA proposed for the method
in this paper, DSAMNet reinforces features by channel and spatial attention mechanisms
before changing them. Here, we also used F1, IoU, precision, and recall as quantitative
comparisons. We used the same training strategy as for LEVIR-CD except that the batch size
was adjusted to 16. Since the data were at a fixed size of 256, the DSAMNet experimental
results did not differ much from those of the original paper. Therefore, we directly cited
the work related to the metrics of the model using the original paper. Among them,
BiDateNet used LSTM to enhance temporal information between images and STANet
included a spatiotemporal attention mechanism to enhance the features using ResNet18 as
the encoder. DSAMNet, which also used ResNet18 as an encoder, additionally included
shallow-feature supervised reinforcement through the introduction of spatial and channel
attention mechanisms. These networks were essentially the same as the approach used
in this paper, with the decoding part of the network modified on the basis of generating
a change feature map.

As we can see in Table 4, compared to the LEVIR-CD single-building CD dataset,
the F1, precision, recall, and IoU of our model (PDACN-Segb0) on the SYSU-CD dataset
decreased by 10.27%, 11.62%, 8.96%, and 16.16%, respectively. This was because this
dataset, in addition to significant artificial structures such as buildings alone, contained
more intensive complex changes such as the expansion of built-up areas and bare soil
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conversion of grass. This made the types of changes in complex scenes very expansive,
which made the CD more difficult.

Table 4. Quantitative results of different methods on the SYSU-CD test set.

Method F1 (%) Precision (%) Recall (%) IoU (%)

BiDateNet [36] 76.94 81.84 72.60 62.52
STANet [17] 77.37 70.76 85.33 63.09

DSAMNet [20] 78.18 74.81 81.86 64.18
PDACN-R18S4 79.09 83.08 75.46 65.40
PDACN-R18S3 80.20 81.76 78.69 66.94
PDACN-Segb0 82.55 84.63 80.57 70.28

In addition, our method achieved a better performance than DSAMNet in all metrics,
especially in the case of the SegFormer-b0 encoder. The F1 and IoU were 6.10% and
4.37% higher, respectively, which showed that our method could still maintain excellent
results in complex change scenes.

When we used the same encoder as DSAMNet (ResNet18), we obtained 0.91%, 8.27%,
and 1.22% for F1, precision, and IoU, respectively, with the PDACN-R18S4 structure; and
2.02%, 6.95%, and 2.76% for F1, precision, and IoU, respectively, with the PDACN-R18S3
structure, respectively. Furthermore, the accuracy of the transformer-based encoder was
better than that of the convolutional architecture and R18S3 with fewer network parameters
returned better results than R18S4, which we believe was because the transformer-based
network generalized better while the convolutional architecture was more likely to overfit
this dataset.

Figure 6 shows a visual comparison between PDACN and DSAMNet on the SYSU-
CD test dataset, where red and green represent false detections and missed detections,
respectively. Here, we selected some representative types of changes in the test set for
visualization (from top to bottom): vegetation changes (01536), pre-construction founda-
tion work (01524), marine construction (00028), suburban expansion (00101), new urban
buildings (00503), and road expansion (00147), followed by their names. Overall, compared
with DSAMNet, the red parts in the last three columns of the figure show that our method
yielded significantly fewer false detections under the transformer architecture. In particular,
in the vegetation CD in row 1, DSAMNet incorrectly detected roads with a color mismatch
caused by lighting factors while our PDACN was able to overcome this difficulty. The
other types of CD, R18S3 and R18S4 with convolutional structures, still had false-detection
performances similar to that of DSAMNet; while Segb0 with a transformer architecture
performed the best, which indicated that the latter had a better generalization ability for
complex change scenes.

4.5. Ablation Study

In this subsection, we report the results of an ablation study on the LEVIR-CD and
SYSU-CD datasets regarding the PDA module to assess the effectiveness of each component
presented in PDACN.

Based on the generation mechanism of the change feature map, our proposed PDA
module utilized the simple absolute value difference (ABS), a simple 3 × 3 convolu-
tional structure (CONV), and a PDC structure built based on depth-separable convolution.
In the following experiments, “ABS” indicates that the network model performed only
a simple absolute value operation on the feature map, “CONV” indicates that the model
used a 3 × 3 convolution to simply reinforce the features, and “PDC” indicates that the
model used the method of the pre-generation of significant change regions proposed in
this paper to construct attentional mechanisms to strengthen the features.

As we can see in Table 5, the use of feature enhancement prior to ABS enhanced the
CD performance of the model with a small increase in model parameters. In more detail,
after adding the PDA module before utilizing ABS (0.154 M), the model F1 improved by
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0.72% and the IoU by 1.23% on the LEVIR dataset and the F1 by 1.92% and the IoU by
2.71% on the SYSU-CD dataset, which indicated that using PDA before worsening the
feature map could increase the model’s fitting ability. In addition, adding the convolution
operation after using attention to the PDA could further enhance the detection accuracy;
we believe that this step could further eliminate the introduction of noise errors. Notably,
the PDA module proposed in this paper assumed a significant role in the overall model
performance improvement and facilitated the generation of more discriminative variance
difference information.
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Table 5. A study on the ablation of the PDA module in DACN-Segb0 networks. Experiments were
conducted on the LEVIR-CD dataset and the SYSU-CD dataset.

Method Param (M)
LEVIR-CD SYSU-CD

F1 (%) IoU (%) F1 (%) IoU (%)

ABS 0 91.31 84.01 80.01 66.68
CONV + ABS 0.017 91.89 85.04 80.85 67.86
PDC + ABS 0.154 92.03 85.24 81.93 69.39

PDC+ CONV + ABS 0.171 92.27 85.65 82.55 70.28
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5. Discussion
5.1. Sensitivity Analysis of Convolution Kernel Parameters

To enable semantic continuity of the positions to be compared in the before and after
images, we constructed a PDC structure for initial change position localization throughout
the PDA attention mechanism. This structure first performed spatial feature fusion using
convolution kernels on a channel-by-channel basis before calculating interchannel correla-
tion using a 1 × 1 convolution for the fused feature maps. Therefore, the spatial feature
fusion was sensitive to the choice of convolution kernel size here. To explore the effect of
different convolution kernel sizes on PDACN, we conducted comparison experiments on
two datasets by setting different values for the kernel size. The results are shown in Table 6.

Table 6. The effect of the convolution kernel size on the model structure in PDA. Experiments were
conducted on the LEVIR-CD1024 with a default image input size of 1024 and a DACN-Segb0 model.

Kernel Size
LEVIR-CD SYSU-CD

F1 (%) IoU (%) F1 (%) IoU (%)

1 92.05 85.26 81.93 69.39
3 92.12 85.38 81.90 69.47
5 92.27 85.65 82.55 70.28
7 92.09 85.34 81.52 68.81
9 91.87 84.96 81.71 69.07

5.2. Efficiency Test

Table 7 reports the number of parameters (Params.), floating point operations per
second (FLOPS), and the F1/IoU scores for the different methods used on the LEVIR-CD
test set. Our PDACN obtained the highest F1/IoU scores with the SegFormer-b0 encoder
and maintained the characteristics of the lightweight model.

Table 7. Comparison of the computational effort of the models used in this paper. Experiments were
performed on the LEVIR-CD256 dataset with default input images sized at 256 × 256.

Method Params. (Mb) FLOPS (G) F1 (%) IoU (%)

FC-EF 1.35 3.55 86.87 76.79
FC-Siam-Conc 1.54 5.3 87.17 77.26
FC-Siam-Diff 1.35 4.7 88.34 79.11

BIT 3.55 10.60 90.12 82.01
DSAMNet 16.95 72.18 - -

DACN-R18S4 12.13 36.78 91.81 84.86
DACN-R18S3 3.65 31.91 91.18 83.78
DACN-Segb0 4.22 5.58 91.85 84.92

5.3. Future Work

The proposed method could accurately identify the change regions to be detected;
the experimental results showed that our proposed method achieved a 6.1% and
4.4% improvement in the intersection over union (IoU) and F1 metrics, respectively, over
those of the state-of-the-art method on the SYSU-CD public remote sensing image dataset.
However, compared to those for the LEVIR-CD single-building CD dataset, the F1, pre-
cision, recall, and IoU of our PDACN-Segb0 model for the SYSU-CD dataset decreased
by 10.27%, 11.62%, 8.96%, and 16.16%, respectively. This indicated that there was also
a significant challenge in terms of the performance of this model using cross-domain
datasets. In the future, we will develop more effective CD algorithms to improve the
generalization ability of the model. In addition, the PDACN in this paper was studied
under only two lightweight encoder architectures. In contrast, the transformer architecture
had more obvious advantages. Next, we will continue to investigate the effect of boosting
the network encoder in the model.
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6. Conclusions

In this paper, we presented PDACN, an effective method for dual-time remote sensing
CD. PDACN consisted of an encoder that could extract multiscale features, a decoder that
focused on the semantic alignment between temporal features, and a classification head.
In the decoder, we constructed a new convolutional attention structure, PDA, which was
able to reduce the network’s attention to unchanged regions before generating change
features, thus reducing pseudo-change in the data source potentially caused by semantic
differences due to illumination and subtle alignment differences. To demonstrate the ef-
fectiveness of the PDA attention structure, we designed lightweight network structures
for encoders under both convolution-based and transformer architectures. The experi-
ments were conducted on a single-building CD dataset (LEVIR-CD) and a more complex
multivariate-change-type dataset (SYSU-CD). The results showed that our PDA attention
structure resulted in the generation of more differentiated change variance information and
that PDACN achieved the best performance results with the same level of network model
parameters in the transformer architecture.
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