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Abstract: Pan-sharpening methods based on deep neural network (DNN) have produced state-of-
the-art fusion performance. However, DNN-based methods mainly focus on the modeling of the
local properties in low spatial resolution multispectral (LR MS) and panchromatic (PAN) images
by convolution neural networks. The global dependencies in the images are ignored. To capture
the local and global properties of the images concurrently, we propose a multiscale spatial–spectral
interaction transformer (MSIT) for pan-sharpening. Specifically, we construct the multiscale sub-
networks containing convolution–transformer encoder to extract the local and global features at
different scales from LR MS and PAN images, respectively. Then, a spatial–spectral interaction
attention module (SIAM) is designed to merge the features at each scale. In SIAM, the interaction
attention is used to decouple the spatial and spectral information efficiently for the enhancement
of complementarity and the reduction of redundancy in the extracted features. The features from
different scales are further integrated into a multiscale reconstruction module (MRM) to generate the
desired high spatial resolution multispectral image, in which the spatial and spectral information
is fused scale by scale. The experiments on reduced- and full-scale datasets demonstrate that the
proposed MSIT can produce better results in terms of visual and numerical analysis when compared
with state-of-the-art methods.

Keywords: pan-sharpening; multispectral image; panchromatic image; multiscale transformer;
spatial–spectral interaction attention

1. Introduction

High spatial resolution multispectral (HR MS) images contain abundant spatial and
spectral information, which is helpful in the interpretation of the recorded scenes, such
as environmental monitoring [1] and land survey [2]. However, due to the limitation
of imaging techniques, it is difficult for remote sensing images to achieve both spatial
and spectral resolutions simultaneously. Most satellites, such as QuickBird and GeoEye-
1, only capture high spatial resolution panchromatic (PAN) and low spatial resolution
multispectral (LR MS) images. Therefore, the pan-sharpening technique is employed to
integrate the spatial and spectral information in PAN and MS images for the generation of
HR MS images [3].

Over the past two decades, many pan-sharpening methods have been put forward.
According to their paradigms, these methods can be divided into four categories: com-
ponent substitution (CS)-based methods, multiresolution analysis (MRA)-based methods,
model-based methods, and deep neural network (DNN)-based methods. For the first
category, some linear transforms are used to project the up-sampled LR MS image into a
new space, in which the LR MS image is decomposed as spatial and spectral components.
Then, the spatial component of the LR MS image is substituted by the histogram-matched
PAN image. Finally, the HR MS image is obtained by an inverse transform on the new
components. CS-based methods generally consider intensity–hue–saturation (IHS) [4],
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principal component analysis (PCA) [5], and Gram–Schmidt (GS) [6] transform for the
sharpening of the LR MS image. To adaptively estimate the spatial component of the LR
MS image, adaptive GS (GSA) [7] was proposed, in which the combination weights were
calculated by minimizing the mean square error. To efficiently enhance the spatial details
in different bands of the LR MS image, a band-dependent spatial detail (BDSD) model [8]
was proposed, in which the combined weights of different bands are estimated adaptively.
Recently, robust versions of BDSD were developed in [9] to obtain better fusion results.
In addition, Choi et al. [10] proposed a partial replacement adaptive CS (PRACS), in which
the spatial component of the LR MS image was replaced partially by the PAN image.
For the first kind of method, its implementation is simple and straightforward. However,
spectral distortions generally occur in the fusion results of these methods.

For MRA-based methods, it is assumed that the spatial information lost in the LR
MS image can be found from the corresponding PAN image. Thus, a multiresolution
decomposition is applied to the PAN image to extract spatial details. Then, these details
are injected into the up-sampled LR MS image to produce the pan-sharpened image.
In this category, high-pass filters are designed to extract spatial information, such as
Indusion [11] and generalized Laplacian pyramid (GLP) [12]. Through integrating the
modulation transfer function (MTF), MTF-GLP [13] was proposed for a more accurate
extraction of spatial details. Then, MTF-GLP was further extended by combining the high-
pass modulation (HPM) [14]. Furthermore, some advanced MRA tools [15,16] were also
introduced to represent the spatial information in PAN and LR MS images. For example,
Shah et al. [15] utilized nonsubsampled contourlet (NSCT) to enhance the spatial details in
the LR MS image. Following the decomposition framework, some MRA-like filters [17,18]
were constructed to infer more reasonable spatial information. The fused images of MRA-
based methods exhibit better preservation in terms of the spectral information because
only spatial details are injected into the up-sampled LR MS image. However, the spatial
performance of their fused images is highly dependent on the filter designed in an empirical
process. The design of the filter should consider the MTF of imaging sensors [19].

For the third category, it is assumed that the LR MS image is the result of the HR MS
image through spatial degradation. Similarly, the PAN image is regarded as the spectral
degradation result of the HR MS image. Thus, the relationships between source images
and the HR MS image can be coded in the spatial and spectral degradation models. Then,
the desired HR MS image is obtained by solving the spatial and spectral degradation
models between the source images and the HR MS image. To regularize the solution space
of the spatial and spectral degradation models, various priors [20–22] were employed as
the regularizations. For instance, as a popular prior, sparsity is investigated extensively.
Zhang et al. [23] designed a structural sparsity term for the regularization of the spatial
and spectral degradation models. Palsson et al. [24] combined the total variation (TV)
regularization with the model mentioned above to fuse the LR MS and PAN images.
Furthermore, to find more effective priors, Liu et al. [25,26] explored the Hessian prior in
the gradient domain of images. In [27], a variational method, P + XS, was also proposed
to fuse the LR MS and PAN images. Effective priors will have a strong constraint on
the solution space of the spatial and spectral models. With the help of effective priors,
more accurate HR MS images can be estimated. However, in complex scenes, the priors
adopted in these methods may be invalid and thus limit their generalization. Moreover,
the model-based methods are generally solved by iteration optimization algorithms. Thus,
their complexity cannot be ignored.

In recent years, DNNs have attracted a great deal of attention in numerous fields,
especially in computer vision tasks [28,29], due to their powerful learning capability.
For pan-sharpening, DNN-based methods also present state-of-the-art fusion performance.
Masi et al. [30] first proposed a pan-sharpening neural network (PNN) inspired by the
super-resolution convolutional neural network (CNN) in [28]. Then, advanced PNN (A-
PNN) [31] was further proposed to improve the performance of PNN. As an efficient
framework, residual learning [32] is used to depict the spatial structures in the MS image.
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For example, Yang et al. [33] injected the spatial details learned by a residual network
(ResNet) into the up-sampled LR MS image. Wei et al. [34] developed a deep convo-
lution neural network through residual learning to boost the accuracy of the fusion re-
sults. Taking the minimax game between the distributions of real and fake images into
consideration, generative adversarial network (GAN) [35] is also considered to fuse the
LR MS and PAN images. Liu et al. [36] employed GAN to synthesize the HR MS image,
and two sub-networks were established to extract the features from LR MS and PAN images.
To alleviate the demand for supervised datasets, Ma et al. [37] adopted two discriminators
to distinguish the spatial and spectral information in the fused images. Diao et al. [38]
proposed a multiscale GAN framework to progressively generate the fused images, and the
fused image was discriminated scale by scale by the corresponding discriminators.

Despite the success of DNNs in pan-sharpening, DNN-based methods only focus
on the local properties of images owing to the limited receptive field. Thus, it is difficult
for DNN-based pan-sharpening methods to capture the global similarity among images
efficiently, which makes these methods fail to model various spatial and spectral structures
in LR MS and PAN images. To learn the global information in images, a transformer [39]
was developed by introducing the self-attention mechanism. Thus far, transformers have
demonstrated tremendous potential in high- and low-level vision tasks. For instance,
Yang et al. [40] employed a transformer to learn relevant textures for the super-resolution of
the low-resolution image. Chen et al. [41] proposed a pre-trained transformer model, which
achieved state-of-the-art performance in super-resolution and denoising. Furthermore,
the contents of the image at different scales are reflected by distinct global similarities.
Thus, the global similarities at different scales should be combined to reconstruct the HR
MS image.

In order to exploit the local and global properties at different scales, we propose a
multiscale spatial–spectral interaction transformer (MSIT) to integrate the multiscale feature
maps for pan-sharpening. First, features are extracted by two multiscale sub-networks
based on convolution–transformer encoder from PAN and LR MS images, respectively. To
efficiently fuse the information from the two sub-networks at different scales, we design a
spatial–spectral interaction attention module (SIAM). Through the interaction of spatial
and spectral attention, the redundancy among the features from the two sub-networks
is reduced, and meanwhile, their complementarity is enhanced. Finally, a multiscale
reconstruction module (MRM) is constructed to generate the fused image. In this module,
the features at different scales are merged from coarse to fine to recover the spatial and
spectral information in the fused image scale by scale. The experimental results on different
datasets show that the proposed MSIT produces better fusion results in terms of objective
and subjective evaluations when compared with the classical and state-of-the-art methods.
To the best of our knowledge, it is the first transformer for pan-sharpening to explore the
spatial–spectral features of PAN and LR MS images via the interaction attention mechanism.

Our contributions are summarized as follows:

• To model the local and global dependencies simultaneously, we design multiscale
convolution–transformer sub-networks. Spatial and spectral features in PAN and LR
MS images are extracted scale by scale by the sub-networks for the description of local
and global similarity information in images.

• We propose a spatial–spectral interaction attention module to integrate the features
from different sub-networks. In SIAM, the spatial information in the concatenated
feature of PAN and LR MS images is extracted by the self-attention mechanism. In
the same way, the spectral information in the LR MS image is emphasized. Through
SIAM, the reduction of redundancy and the enhancement of complementarity among
these features are achieved.

• To efficiently integrate the local and global information in the features at different
scales, we construct a multiscale reconstruction module. In MRM, the feature contents
at different scales are inherited into the fused image to recover the subtle spatial and
spectral information.
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The remainder of the paper is organized as follows. Section 2 introduces the proposed
MSIT in detail, including the network structure and the loss function. Experimental results
on different datasets are presented in Section 3 to show the effectiveness of the proposed
MSIT. Conclusions are provided in Section 4.

2. Proposed Method

The proposed MSIT framework is displayed in Figure 1. The network is composed
of two sub-networks, three designed spatial–spectral interaction attention modules, and a
multiscale reconstruction module. First, the spatial and spectral features from the PAN
image P ∈ RH×W and the LR MS image L ∈ RH×W×B are learned by sub-networks with
the same architecture of the multiscale transformer. Each sub-network consists of a basic
convolution block and three convolution–transformer (CT) encoders. The basic convolution
block is introduced to adjust the difference in terms of the number of bands in LR MS and
PAN images. H and W are the height and width of the image, respectively. B is the number
of bands in the MS image. n denotes the number of filters, which is set as 32 empirically [39].
s = 2 is the convolution stride. For the extracted features in different sub-networks, they
encode the information of the scene in spatial and spectral domains. Then, SIAM is used
to fuse the spatial and spectral information from different sub-networks efficiently. In the
module, the spatial–spectral features are combined by the interaction attention to avoid
redundancy among the features. Finally, outputs of SIAMs at different scales are fed into
the MRM for the reconstruction of the fused image H.
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2.1. Multiscale Convolution–Transformer Encoder

In Figure 1, we design two sub-networks for feature extraction. The sub-networks
are composed of the cascaded CT encoders. LR MS and PAN images are first fed into
the first convolution layer to obtain the feature maps with the same number of channels.
Then, spatial and spectral features are learned by the following CT encoders scale by scale.
The structure of the CT encoder is presented in Figure 2a. For the ith CT encoder in sub-
networks, the feature maps with the size of H

2i × W
2i × 2i−1n is first fed into a convolution

embedding block. i is the index of the CT encoder or the scale. Specifically, strides of
two convolution layers in the convolution embedding block are 2 and 1, respectively.
Batch normalization (BN) is also introduced into the convolution embedding block. Then,
the feature maps are embedded into a coarse scale with the size of H

2i+1 × W
2i+1 × 2in. In the

sub-network, the number of feature maps increases with the increasing number of scales
for more efficient learning of spatial and spectral features. Meanwhile, the local properties
of the input image are captured by the convolution embedding block.
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After the convolution embedding, six transformer blocks as shown in Figure 2a are
used to learn the global dependencies in the image. First, feature maps from the convolution
embedding block are flattened and projected as embedded features with the position
information. In the transformer block, the linear projection is first added with position
information and then fed into the layer normalization (LayerNorm) [42]. The LayerNorm
can be written as:

LayerNorm(x) =
g√

σ2 + ε
� (x− µ) + b (1)

where x is the linear projection containing position encoding. g and b denote gain and bias,
respectively. µ and σ2 are the mean and variance of the elements in x. ε is small and is in-
troduced to avoid meaningless computation. Then, the output of the LayerNorm is viewed
as Vi, Ki, and Qi. Obviously, Vi, Ki, and Qi are the same and are used for the calculation of
self-attention. Furthermore, residual connections are added for effective learning.

Moreover, to reduce the computation cost for feature maps with large sizes, the multi-
head attention with spatial reduction (SRA) [43] is considered to model the representations
of the LRMS and PAN images in different subspaces. In Figure 2a, Ki and Vi are first fed
into SRA to reduce their size, specifically the number of rows in Ki and Vi. Then, Qi and the
outputs of SRA are regarded as the inputs of the multi-head attention module to calculate
the attention among them. Thus, SRA is introduced into Figure 2a for less computation
cost, and the SRA operator is shown in Figure 2b. By SR of the ith CT encoder, we reduce
the sizes of key Ki and value Vi via the SR operator S(·):

S(Ki) = R−1(BN(Conv(Maxpool(R(Ki), ri))))WS
K (2)

S(Vi) = R−1(BN(Conv(Maxpool(R(Vi), ri))))WS
V (3)

where ri is the down-sampling ratio in the SR operator of the ith CT encoder. The convolu-
tion layer in Equations (2) and (3) involves 2in filters with the size of 3× 3. WS

K ∈ R2in×2in

and WS
V ∈ R2in×2in are the corresponding linear projection matrices. R(·) reshapes Ki or

Vi to their 3D counterparts. R−1(·) denotes flattening, which is also the inverse operation
ofR(·). For the three cascaded CT encoders in sub-networks, we set the down-sampling
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ratio ri set as 4, 2, and 1. Through the settings, the sizes of feature maps at different scales
will be the same.

When we obtain the reduced versions of Ki and Vi, according to the calculation of the
attention mechanism in [43], SRA in the ith CT encoder can be calculated by:

SRA(Qi, Ki, Vi) = Concat
(
headi,1, . . . , headi,j, . . . , headi,J

)
WO

i (4)

headi,j = Attention
(

QiW
Q
i,j , S(Ki)WK

i,j, S(Vi)WV
i,j

)
(5)

Attention(q, k, v) = softmax
(

qkT
√

d

)
v (6)

where WQ
i,j ∈ R2in×d, WK

i,j ∈ R2in×d, and WV
i,j ∈ R2in×d are the linear projections of the jth

head in the ith CT encoders. WO
i ∈ R2in×2in is the linear projection matrix for concatenated

heads. T denotes the matrix transpose. d is typically set as 2in
J . J is the number of heads in

SRA and is set as 8. Finally, these features flow into a multi-layer perception (MLP). In the
CT encoder, the local and global information in LR MS and PAN images can be described
efficiently, which is helpful for the spatial and spectral preservation of the fused image.

2.2. Spatial–Spectral Interaction Attention Module

In MSIT, the feature maps are extracted from PAN and LR MS images through sub-
networks. For existing DNN-based methods, there is no explicit attention mechanism to
guarantee the interaction between sub-networks. Thus, it will lead to some redundant
information among these features. To fuse the spatial and spectral features efficiently, we
design a new attention module SIAM, which is shown in Figure 3. In SIAM, the feature
maps Fi

P and Fi
L at the ith scale of sub-networks are unfolded firstly. The kernel size of the

unfolding operator is 4× 4 with a stride of 4 in the first two CT encoders. For the last CT
encoder, we set the kernel size of the unfolding operator as 1× 1. Then, their corresponding
key Ki

P and value Vi
P of Fi

P are obtained by the linear projection and layer normalization:

Ki
P = LayerNorm

(
F
(

Fi
P

)
WK,P

i

)
(7)

Vi
P = LayerNorm

(
F
(

Fi
L

)
WV,P

i

)
(8)

where F (·) stands for the unfolding operator. Ki
P and Vi

P are the corresponding results
after the linear projection of WK,P

i and WV,P
i , respectively. Similarly, through the linear

projection matrices WK,L
i and WV,L

i , we produce the key Ki
L and value Vi

L of Fi
L from the

sub-network of the LR MS image. For the Query Qi
C, it is estimated from the concatenation

of Fi
P and Fi

L by:

Qi
C = LayerNorm

(
F
(

Concat
(

Fi
P, Fi

L

))
WQ

i

)
(9)

where the concatenation operation is denoted by Concat(·). WQ
i is the linear projection

matrix of Concat
(

Fi
P, Fi

L
)
. Then, the spatial–spectral interaction between sub-networks is

achieved by:

Attention
(

Qi
C, Ki

P, Vi
P

)
= Softmax

(
Qi

CKi
P

T
√

b

)
Vi

P (10)

Attention
(

Qi
C, Ki

L, Vi
L

)
= Softmax

(
Qi

CKi
L

T
√

b

)
Vi

L (11)

where b is equal to the number of columns of Vi
P or Vi

L. By the multiplication of Qi
C and

Ki
P, the spatial information existing in Qi

C is captured and encoded the attention result.
In the same way, the spectral information is further highlighted by Equation (11). After
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the attention estimation with Qi
C, the redundancy of these features is reduced and their

complementarity is enhanced further. Finally, the features with interaction attention are
folded and concatenated together for the generation of the fused image.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 20 
 

 

where the concatenation operation is denoted by  Concat  . Q
iW  is the linear projection 

matrix of  Concat ,i i
P LF F . Then, the spatial–spectral interaction between sub-networks is 

achieved by: 

 , , Softmax
i i T

i i i iC P
C P P P

Q KAttention Q K V V
b

 
  

 
 (10)

 , , Softmax
i i T

i i i iC L
C L L L

Q K
Attention Q K V V

b
 

  
 

 (11)

where b  is equal to the number of columns of i
PV  or i

LV . By the multiplication of i
CQ  

and i
PK , the spatial information existing in i

CQ  is captured and encoded the attention 
result. In the same way, the spectral information is further highlighted by Equation (11). 
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CQ , the redundancy of these features is reduced and 
their complementarity is enhanced further. Finally, the features with interaction attention 
are folded and concatenated together for the generation of the fused image. 
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2.3. Multiscale Reconstruction Module

When the spatial and spectral features are fused by SIAMs at different scales, we
propose an MRM to generate the desired HR MS image from these features. The architecture
of MRM is presented in Figure 4. In MRM, the feature maps at coarse scales are up-sampled
gradually via a block consisting of convolution and pixel shuffling [44]. In this block, pixel
shuffling [44] is employed for the up-sampling of feature maps and the up-sampling ratio
is 2 or 4, which is decided by the index of scale. The activation function used in MRM
is LeakyReLU:

LeakyReLU(x) =
{

x, x ≥ 0
x/a, x < 0

(12)

where x is the element in feature maps and a is a preset parameter. Before feature maps
are fed into the pixel shuffling operator, the number of channels in the feature maps are
improved by the previous convolution layer to enhance the spatial and spectral information.
Compared with traditional up-sampling methods, pixel shuffling has a better reconstruction
performance in the resolution improvement task. Then, the up-sampled feature maps are
combined with those at fine scales to recover the spatial and spectral details in the HR MS
image. Through the scale-wise fusion, the feature maps at fine scales are concatenated to
produce the HR MS image.
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2.4. Optimization

Finally, the proposed MSIT is learned by minimizing the loss:

LFusion =
M

∑
m=1
‖Fm −Rm‖2

F (13)

where LFusion stands for the loss function. Rm and Fm are the reference image and the fused
image, respectively. M denotes the number of training images. Specifically, the proposed
MSIT is trained on the PyTorch framework and the server is configured with an Intel
Xeon 4210R/64G and an NVIDIA GeForce RTX 3080 GPU. The reliability and stability of
Intel Xeon 4210R are better and the CPU is cost-effective. The GPU adopted in this paper
behaves better in terms of parallel computing. Moreover, we use the Adam optimizer [45]
to minimize the loss in Equation (13). The batch size is set as 4. The learning rate and the
number of epochs are set as 0.0001 and 2000, respectively. When the proposed MSIT is
trained, the LR MS and PAN images are fed into the model to produce the pan-sharpened
MS image.

3. Experimental Results and Discussion

In this section, comparison experiments are conducted on the datasets from different
satellites to verify the effectiveness of the proposed method. Then, ablation study and
analysis of network structure are explored to present the proposed MSIT comprehensively.
The source code is publicly available at https://github.com/RSMagneto/MSIT (accessed
on 11 February 2022).

3.1. Dataset, Methods, and Metrics

In the experimental section, some classical methods and DNN-based methods are con-
sidered, including BDSD [7], SVT [46], VPLGC [47], A-PNN [31], DRPNN [34],
PanNet [34], PSGAN [36], and TFNet [48]. BDSD and SVT are CS- and MRA-based meth-
ods, respectively. VPLGC is classified as a model-based method. The latter five methods are
DNN-based methods. For DNN-based methods, they are trained and tested on the same
server as that mentioned in Section 2.4. The codes of BDSD and A-PNN are downloaded
from [49].

For a comprehensive comparison, the fusion experiments are conducted on the
reduced-scale and full-scale datasets from GeoEye-1 [50] and QuickBird satellites [51].
In the reduced-scale case, the HR MS image named the reference image is available for
reference-based evaluation. Thus, Wald’s protocol [52] is employed to produce the reduced-
scale datasets. According to Wald’s protocol, the MS and PAN images at the original scale
are first blurred and down-sampled by a specific ratio to synthesize the LR MS and PAN
images. Generally, the down-sampling ratio is 4. Then, the original MS image is viewed as
the reference image. Thus, the fused image obtained from the synthesized LR MS and PAN
images is compared with the reference image directly. In the full-scale case, the reference
image is unavailable. For no-reference evaluation, the fused image is compared with LR
MS and PAN image from spectral and spatial perspectives, respectively.

Moreover, reduced-scale datasets are constructed for the training and test of the
proposed MSIT and DNN-based methods. The GeoEye-1 dataset is made up of 700 image
pairs. The sizes of LR MS and PAN images are 64× 64 and 256× 256, respectively. These
images are captured from Hobart, Australia in February 2009. In the QuickBird dataset,
there are 600 image pairs and the sizes of LR MS and PAN images are the same as those
of the GeoEye-1 dataset. The images in the QuickBird dataset are taken in September
2008 from Xi’an, China. Finally, the GeoEye-1 and QuickBird datasets are partitioned into
80%/10%/10% for training, validation, and test. Furthermore, DNN-based methods are
trained on the GeoEye-1 and QuickBird datasets independently to produce the best fusion
results on the respective datasets. Table 1 presents the details of the used images from
GeoEye-1 and QuickBird satellites.

https://github.com/RSMagneto/MSIT
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Table 1. Details of datasets from GeoEye-1 and QuickBird satellites.

Satellite Spatial Resolution of
PAN Image

Spatial Resolution of
LR MS Image

Number of Bands in
MS Image

Radiometric
Resolution

GeoEye-1 0.46 m 1.84 m 4 11 bits
QuickBird 0.61 m 2.44 m 4 11 bits

For the reduced-scale experiments, the reference-based evaluation is achieved by
three metrics, such as Q4 [53], spectral angle mapper (SAM) [54], and Erreur Relative Glob-
ale Adimensionnelle de Synthèse (ERGAS) [52]. Q4 and SAM are proposed to measure the
spectral distortions in the fused image. Q4 varies from 0 to 1 and its best value Q4 is 1.
For SAM, a smaller value means better fusion quality and the optimal value is 0. As a global
metric, ERGAS records the spatial and spectral distortions of the fused image. Smaller
ERGAS denotes the better result. In addition, Q4 and ERGAS are dimensionless and
the measurement unit of SAM is ◦ and labeled in the following tables. In the full-scale
experiments, we utilize Dλ, DS, and QNR [55] for the assessment of the fused images.
The spatial and spectral information in the fusion result is measured by DS and Dλ, respec-
tively. QNR is calculated by integrating DS and Dλ. For QNR, the value closer to 1 corre-
sponds to the better fusion result. The metrics for full-scale evaluation are dimensionless.

3.2. Experiments on Reduced-Scale Dataset

In this section, the fusion experiments are performed on the reduced-scale GeoEye-1
and QuickBird datasets. For the intuitive perception, some interesting areas are highlighted
by a red rectangle, and their magnified versions are placed in the bottom right corner of the
fused image. Figure 5 shows the results of all compared methods on the GeoEye-1 dataset.
Red, Green, and Blue bands in the fused images are selected to form the true color images
in Figure 5 for comparison. The absolute difference maps between fused images and the
reference image are also displayed for further perception. The color bar is also shown
in Figure 5 and used as the reference for the analysis of the reconstruction performance
in the absolute difference maps. LR MS and PAN images are displayed in Figure 5a,b.
The reference image is given in Figure 5c. Compared with the reference image, it can be
observed that the result of BDSD in Figure 5d has a better performance in terms of spatial
details. However, some spectral distortions also arise in Figure 5d. For example, the tree
area in the lower-left corner of Figure 5d presents an unnatural color. For the result of
VPLGC in Figure 5f, we can see some spatial artifacts in the magnified area. DRPNN also
suffers from blurring effects because some edges and textures of buildings in Figure 5h
are lost. For spectral information, the hue of the result of A-PNN in Figure 5g is slightly
different from the reference image. The color of the PSGAN result in Figure 5j is darker
than that of other results. Furthermore, we can find that the reconstruction errors of BDSD,
SVT, VPLGC, and DRPNN are obvious. In the building areas, traditional methods, such as
BDSD, SVT, and VPLGC, have larger reconstruction errors. Furthermore, DRPNN also has
a poor performance in terms of the reconstruction performance in building areas. For other
DNN-based methods, the reconstruction errors are small. The reconstruction performance
of DNN-based methods is better than that of the traditional methods. Compared with
PSGAN and TFNet, the proposed method achieves the best approximation because errors
in the difference map of the proposed method are closer to 0.
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Figure 5. Visual analysis of the fused images from different methods on the GeoEye-1 dataset. (a) LR
MS image; (b) PAN image; (c) reference image; (d) BDSD; (e) SVT; (f) VPLGC; (g) A-PNN; (h) DRPNN;
(i) PanNet; (j) PSGAN; (k) TFNet; (l) MSIT.

Table 2 lists the objective evaluations of the average results on the test image pairs
from the reduced-scale GeoEye-1 dataset. The best values are boldfaced. Thus, the values
of the proposed are the best, which reflect better fidelity of the MSIT result in spatial and
spectral preservation. Furthermore, one can find that the metric values of A-PNN are close
to those of the proposed MSIT.

Table 2. Numerical evaluations of the fused images in Figure 5 (GeoEye-1 dataset).

Metric BDSD SVT VPLGC A-PNN DRPNN PanNet PSGAN TFNet MSIT

Q4 0.7898 0.7879 0.7665 0.8220 0.7588 0.8132 0.8194 0.8228 0.8494
SAM ◦ 5.3859 5.0245 4.2757 3.0625 6.4912 3.6527 3.2514 3.0674 3.0559
ERGAS 1.8209 1.7188 1.7622 1.0184 2.6106 1.2167 1.0788 1.0328 1.0111

The fusion results of different methods are presented in Figure 6. The fusion results in
Figure 6 are composed of red, green, and blue bands in the corresponding fused images.
The second and fourth rows in Figure 6 illustrate the absolute difference maps of all
methods. The color bar in Figure 6 is the same as that in Figure 5. It is obvious that the
color of the BDSD result in Figure 6d is distinct from that of the reference image. The SVT
result in Figure 6e also contains spectral distortions, which may be caused by improper
fusion of high frequencies in SVT. Similar to Figure 5g, the A-PNN result in Figure 6g has
a different visual appearance in terms of hue. We can find some blurring effects in the
results of VPLGC and DRPNN. The results of PanNet, PSGAN, TFNet, and MSIT have a
competitive performance in terms of visual comparison. However, some spatial artifacts
also can be observed from the result of TFNet in Figure 6k. The absolute difference maps in
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Figure 6 reflect similar performance. The errors of BDSD, VPLGC, and DRPNN are worse
than those of other methods. The DNN-based methods can approximate the reference
image better. However, their reconstruction performance is also limited in the edges of
buildings. From the error maps, we can see that the proposed method behaves better in
terms of reconstruction accuracy because more pixel values are closer to 0.
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Furthermore, we report the average performance of all methods on the 10% test da-
taset from the QuickBird satellite in Table 3. The best values in Table 3 are labeled in bold. 
The best values in Table 3 imply that the proposed MSIT is better than PanNet, PSGAN, 

Figure 6. Visual analysis of the fused images from different methods on the QuickBird dataset.
(a) LR MS image; (b) PAN image; (c) reference image; (d) BDSD; (e) SVT; (f) VPLGC; (g) A-PNN;
(h) DRPNN; (i) PanNet; (j) PSGAN; (k) TFNet; (l) MSIT.

Furthermore, we report the average performance of all methods on the 10% test
dataset from the QuickBird satellite in Table 3. The best values in Table 3 are labeled in bold.
The best values in Table 3 imply that the proposed MSIT is better than PanNet, PSGAN,
and TFNet. For example, the ERGAS value of MSIT is much smaller than those of the
compared methods.

Table 3. Numerical evaluations of the fused images in Figure 6 (QuickBird dataset).

Metric BDSD SVT VPLGC A-PNN DRPNN PanNet PSGAN TFNet MSIT

Q4 0.8916 0.9122 0.8978 0.9552 0.6990 0.9466 0.9564 0.9542 0.9612
SAM ◦ 3.8061 4.4888 2.8761 1.8715 5.4055 2.6835 1.9888 2.0717 1.8665
ERGAS 1.9949 1.7674 1.4610 0.7582 5.8181 1.1278 0.7873 0.8842 0.7174

3.3. Experiments on Full-Scale Dataset

This section presents the fusion results of full-scale datasets from GeoEye-1 and
QuickBird satellites. Figure 7 demonstrates the fusion results of all methods and the fusion
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results in Figure 7 are composited by red, green, and blue bands in the corresponding fused
images. Compared with the LR MS image in Figure 7a, spatial details in the fused images of
different methods are enhanced well. However, the spatial information is lost in the result
of VPLGC in Figure 7e. For example, the magnified area in Figure 7e suffers from blurring
effects, and the edges of the roof are blurred. The loss of spatial details in Figure 7e may be
caused by the gradient constraint in VPLGC. For BDSD and TFNet, the spectral information
in Figure 7c,j is not consistent with that of other fusion methods. For PanNet, PSGAN,
and the proposed MSIT, visual differences can be found in the magnified areas of their
results. The color of the PanNet result is over-enhanced. However, the spectral information
in Figure 7i is distorted. The result of MSIT in Figure 7k has a better performance in terms
of the spatial details. However, the color of the road areas in Figure 7k is slightly different
from that in the original LR MS image of Figure 7a.
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Figure 7. Visual analysis of the fused images from different methods on the GeoEye-1 dataset. (a) LR
MS image; (b) PAN image; (c) BDSD; (d) SVT; (e) VPLGC; (f) A-PNN; (g) DRPNN; (h) PanNet;
(i) PSGAN; (j) TFNet; (k) MSIT.

The evaluation values of all test images from the full-scale GeoEye-1 dataset are
provided in Table 4, where the best values are marked in bold. From Table 4, we can see
that the proposed MSIT produces the best DS and Dλ, which means better preservation
and enhancement in terms of spatial and spectral information. As an overall metric,
the QNR of MSIT is also the best.

Table 4. Numerical evaluations of the fused images in Figure 7 (GeoEye-1 dataset).

Metric BDSD SVT VPLGC A-PNN DRPNN PanNet PSGAN TFNet MSIT

Dλ 0.0956 0.0704 0.0539 0.0662 0.0633 0.0618 0.0642 0.0659 0.0280
DS 0.0482 0.0439 0.0617 0.0361 0.0684 0.0352 0.0350 0.0353 0.0246

QNR 0.8611 0.8890 0.8879 0.9002 0.8722 0.9052 0.9031 0.9012 0.9474

The fusion results on the full-scale QuickBird dataset are illustrated in Figure 8.
The fusion results in Figure 8 are composed of the red, green, and blue bands of the
fused images. We can see that the visual differences of different results are obvious.
For instance, the spectral degradation is observed in the result of SVT in Figure 8d,
and the color of the trees becomes gray. Compared with other methods, the local estimation
of gains may lead to spatial distortions in the BDSD result, and the spatial information
loss of VPLGC is the most serious. For DNN-based methods, obvious spectral distortions
are generated in the roof and road areas of the PSGAN result in Figure 8i. For further
perception, slight spectral loss appears in the magnified area of the TFNet result in Figure 8j.
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From the result of the proposed MSIT in Figure 8k, we can see that the color of the ground
is nearly white when compared to the LR MS image in Figure 8a. Furthermore, some subtle
texture information of tree areas is lost in Figure 8k when compared with the PAN image
in Figure 8b. The loss of textural information makes it possible to separate the canopy from
the trees.
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Figure 8. Visual analysis of the fused images from different methods on the QuickBird dataset.
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The 10% image pairs from the full-scale QuickBird dataset are randomly selected for
the test, and Table 5 lists the average values of all metrics of the test image pairs. For the
numerical results in Table 5, the best values are labeled in bold. The proposed MSIT
provides the best values of all metrics, which demonstrate the effectiveness of SAIM in the
proposed method.

Table 5. Numerical evaluations of the fused images in Figure 8 (QuickBird dataset).

Metric BDSD SVT VPLGC A-PNN DRPNN PanNet PSGAN TFNet MSIT

Dλ 0.0332 0.0545 0.0503 0.0401 0.0388 0.0990 0.0453 0.0391 0.0227
DS 0.0457 0.0455 0.1652 0.0874 0.0893 0.1488 0.1103 0.0999 0.0429

QNR 0.9227 0.9024 0.7931 0.8763 0.8754 0.7722 0.8496 0.8651 0.9354

4. Discussion

In this section, the effects of the proposed MSIT are further discussed.

4.1. Ablation Study

The effectiveness of each module is verified by removing the module from the pro-
posed MSIT in Figure 1. In Figure 9, we investigate the influences of the transformer block,
SIAM, pixel shuffling, and MRM on the reduced-scale GeoEye-1 dataset. The absolute
error maps between the reference image and the fused images are also displayed in the
second row of Figure 9. Moreover, the third row of Figure 9 demonstrates the histograms
of the reconstruction errors of different methods. Although it is difficult to distinguish
the visual performance in Figure 9e,f, we can see obvious differences from the absolute
error maps in Figure 9. More distortions in the texture areas result from the removal of the
transformer block, which reflects the learning ability of the transformer block in terms of
the global information. Furthermore, when MRM is removed, the errors are more obvious
than those in other error maps. Thus, MRM can integrate spatial information at different
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scales efficiently. For the complete MSIT equipped with all modules, its fusion result shows
the best reconstruction fidelity.
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Figure 9. Ablation study of different modules on the GeoEye-1 dataset. (a) LR MS image; (b) PAN
image; (c) reference image; (d) w/o transformer block; (e) w/o SIAM; (f) w/o pixel shuffle; (g) w/o
MRM; (h) complete MSIT.

The third row in Figure 9 shows the histograms of the difference values between the
reference image and the fused images. The horizontal axis of the histogram represents
the difference values. The number of difference values is reflected by the vertical axis of
the histogram. There will be more difference values close to 0 if the reference image and
the fused images are similar. From the histograms in the third row of Figure 9, we can
see that most reconstruction errors for the results of different configurations are close to 0.
For the complete MSIT, its variance in the histogram is smaller than that in other histograms.
Smaller variance means that the reconstruction errors are closer to 0. Thus, the complete
MSIT has better reconstruction performance when compared with other variants of MSIT.
Table 6 provides objective evaluations of different fusion results in Figure 9. The best values
are produced by the complete MSIT, which is consistent with the performance of error
maps in Figure 9.

Table 6. Numerical evaluations of the fused images in Figure 9 (GeoEye-1 dataset).

Metric W/o Transformer
Block W/o SIAM W/o Pixel

Shuffle W/o MRM Complete
MSIT

Q4 0.8246 0.8231 0.8127 0.8178 0.8497
SAM ◦ 3.6820 3.6447 3.4937 3.7918 3.1440
ERGAS 1.2319 1.2009 1.1928 1.3220 1.0082

4.2. Comparison of Different Attention Modules

In this part, different attention mechanisms are explored to show the effectiveness of
the proposed SIAM. Figure 10 illustrates two variants of SIAM. In Figure 10a, the attention
mechanism is achieved by cascaded formulation. Thus, it is named a spatial–spectral
cascaded attention module (SCAM). In Figure 10a, the spatial attention between the features
of the PAN image and the concatenated image is estimated first. Then, spectral attention is
calculated from the output of spatial attention and the LR MS image. Thus, the cascaded
formulation will lead to the weakening of the spatial information in the extracted features
because spatial attention is placed in front of spectral attention. Figure 10b plots the global
attention mechanism, and it is dubbed as the spatial–spectral global attention module
(SGAM). In the module, the concatenated image, PAN image, and LR MS image are
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regarded as query, key, and value to compute the global attention among these images.
Then, feature maps with global attention are combined with PAN and LR MS images.
In Figure 10b, the global attention ignores the differences between spatial and spectral
features. Compared with the two variants in Figure 10, the adopted SIAM in Figure 3
estimates the spatial and spectral attention from PAN and LR MS images, respectively.
Thus, the formulation of SIAM can ensure that as much spatial and spectral information as
possible is learned efficiently.
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Figure 10. Different variants of SIAM. (a) SCAM; (b) SGAM. 

Figure 11 shows the fusion results of the proposed framework with different atten-
tion mechanisms on the reduced-scale GeoEye-1 dataset. The error maps and their corre-
sponding histograms of the fused images are also given in the second and third rows of 
Figure 11. From Figure 11, we can see that the fusion results of SCAM and SGAM in  
Figure 11d,e suffer from spatial and spectral distortions. The phenomenon is obvious in 
the error maps. When SIAM in the proposed network is replaced by SCAM or SGAM, the 
reconstruction errors of the network become larger. Through the comparison of recon-
struction errors in Figure 11, we can find that SIAM can extract the spatial and spectral 
features sufficiently in LR MS and PAN images. 

Figure 10. Different variants of SIAM. (a) SCAM; (b) SGAM.

Figure 11 shows the fusion results of the proposed framework with different attention
mechanisms on the reduced-scale GeoEye-1 dataset. The error maps and their correspond-
ing histograms of the fused images are also given in the second and third rows of Figure 11.
From Figure 11, we can see that the fusion results of SCAM and SGAM in Figure 11d,e
suffer from spatial and spectral distortions. The phenomenon is obvious in the error maps.
When SIAM in the proposed network is replaced by SCAM or SGAM, the reconstruction
errors of the network become larger. Through the comparison of reconstruction errors in
Figure 11, we can find that SIAM can extract the spatial and spectral features sufficiently in
LR MS and PAN images.
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Figure 11. Influences of different attention modules on the GeoEye-1 dataset. (a) LR MS image;
(b) PAN image; (c) reference image; (d) SCAM; (e) SGAM; (f) SIAM.

The third row in Figure 11 demonstrates the histograms of the difference values
between the reference image and the fused images. The horizontal axis and the vertical
axis of the histogram record the difference values and the number of difference values,
respectively. A larger number of values closer to 0 means better reconstruction performance.
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From the third row in Figure 11, it can be found that more reconstruction errors are
concentrated near 0 in the histogram of SIAM compared with the other histograms of
SCAM and SGAM. The numerical results of Figure 11 are demonstrated in Table 7, where
the best values are labeled in bold. The improvement of Q4 and SAM is significant, which
proves the effectiveness of the interaction attention mechanism.

Table 7. Numerical evaluations of the fused images in Figure 11 (GeoEye-1 dataset).

Metric SCAM SGAM MSIT

Q4 0.8192 0.8160 0.8465
SAM ◦ 3.2618 3.3125 3.0812
ERGAS 1.0999 1.1603 1.0489

4.3. Analysis of Network Architecture

In this part, we investigate the influences of the number of CT encoders on the fusion
results. The LR MS and PAN images to be fused are from the reduced-scale GeoEye-1
dataset. With the introduction of more CT encoders into the proposed MSIT, the number
of scales increases and the network is deeper. Concomitantly, the model size is larger.
In this part, the number of CT encoders in the sub-networks varies from two to four. Fusion
results of different architectures are shown in Figure 12. Moreover, the absolute error maps
and histograms are also illustrated. We can find that the results in Figure 12d–f are close.
However, as the network deepens, the errors in the second row of Figure 12 decrease first
and then increase. The reconstruction errors of the network with three CT encoders are
the smallest. For the network with two CT encoders, the representation capability may
be limited by the depth of the network. Thus, the corresponding errors in Figure 12d
are larger. When the sub-networks are composed of four4 CT encoders, the number of
scales also increases and the size of feature maps in the fourth will be 32× 32. The spatial
and spectral information at coarse scales will be limited. Thus, CT encoders will extract
more low-frequency information, which leads to inefficient training of the network. In the
histograms of different network architectures, we can observe that the reconstruction errors
are closer to 0 when the network is equipped with three CT encoders.
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Table 8 depicts the evaluation results of the fused images in Figure 12. The sub-
networks with three CT encoders produce the best metric values in terms of Q4 and SAM.
Furthermore, Table 8 also reports the training time and model size of the network with
different CT encoders. Thus, more CT encoders mean a larger model size and more training
time. Taking the overall performance of the proposed MSIT into consideration, we set the
number of CT encoders in the proposed MSIT as three, finally.

Table 8. Numerical evaluations of the fused images in Figure 12. (GeoEye-1 dataset).

Metric S = 2 S = 3 S = 4

Q4 0.8151 0.8474 0.8152
SAM ◦ 3.3141 3.1750 3.3039
ERGAS 1.2131 1.0935 1.0806

Training time 28.3 h 35.1 h 41.67 h
#Para. 20.8 M 32.6 M 45.2 M

4.4. Training and Test Time

To analyze the computation complexity, Table 9 gives the training and test times of
all methods. Traditional methods need not be trained in advance, and thus only test time
is recorded in Table 9. For DNN-based methods, although the structure of A-PNN is
simple, satisfactory fusion results are achieved after enough iterations, e.g., 106 iterations.
For DRPNN and PanNet, the depth of the network is improved. Thus, the training time is
more than that of A-PNN. PSGAN involves a more complex structure, which contains a
generator and a discriminator. The complexity of PSGAN is higher than A-PNN, DRPNN,
PanNet, and TFNet. For TFNet, the network is moderate. Thus, it can converge fast.
Compared with other methods, the proposed MSIT needs more training time due to the
involved matrix multiplication in the transformer block. For the test time, DRPNN and
PSGAN spend more time. The test time of MSIT is comparable to that of TFNet.

Table 9. Training and test times of different methods.

Method BDSD SVT VPLGC A-PNN DRPNN PanNet PSGAN TFNet MSIT

Training (h) — — — 14.01 16.67 21.09 31.56 10.56 35.1

Test (s) 0.0192 1.8942 16.9028 0.0008 3.4032 0.0018 4.5482 0.0103 0.0811

5. Conclusions

In this paper, we propose a new pan-sharpening method based on a multiscale spatial–
spectral interaction transformer (MSIT). To capture the local and global properties in PAN
and LR MS images, the sub-networks are constructed by a series of multiscale CT encoders
for feature extraction. Then, SIAM is designed to integrate the features from the sub-
networks. In SIAM, the interaction between the features from different sub-networks
is achieved via the attention mechanism, which can enhance the complementarity and
reduce the redundancy among spatial and spectral features. Finally, the spatial and spectral
features at different scales are fed into MRM for the reconstruction of the fused image.
In MRM, feature maps at coarse scales are up-sampled progressively to combine with the
counterparts at fine scales. Through the architecture in MRM, the spatial and spectral
information at different scales can be merged efficiently. The experiments at reduced and
full-scale datasets from GeoEye-1 and QuickBird satellites demonstrate the effectiveness
of the proposed MSIT in terms of objective and subjective evaluations. The multiscale
transformer adopted in the proposed network can be easily used for the feature extraction
of other related tasks, such as remote sensing image super-resolution. For future work,
a transformer with more efficient structures will be explored to reduce the training and
test time of the proposed method. Furthermore, the proposed method cannot efficiently
preserve the spectral information in some areas containing rich color information, which
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may be caused by the information loss in MRM. Thus, we will also investigate more efficient
reconstruction modules to integrate the spatial and spectral information in feature maps.
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