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Abstract: It has been widely certified that hyperspectral images can be effectively used to monitor soil
organic matter (SOM). Though numerous bands reveal more details in spectral features, information
redundancy and noise interference also come accordingly. Due to the fact that, nowadays, prevailing
dimensionality reduction methods targeted to hyperspectral images fail to make effective band
selections, it is hard to capture the spectral features of ground objects quickly and accurately. In
this paper, to solve the inefficiency and instability of hyperspectral feature selection, we proposed
a feature selection framework named reinforcement learning for feature selection in hyperspectral
regression (RLFSR). Specifically, the Markov Decision Process (MDP) was used to simulate the
hyperspectral band selection process, and reinforcement learning agents were introduced to improve
model performance. Then two spectral feature evaluation methods were introduced to find internal
relationships between the hyperspectral features and thus comprehensively evaluate all hyperspectral
bands aimed at the soil. The feature selection methods—RLFSR-Net and RLFSR-Cv—were based
on pre-trained deep networks and cross-validation, respectively, and achieved excellent results on
airborne hyperspectral images from Yitong Manchu Autonomous County in China. The feature
subsets achieved the highest accuracy for most inversion models, with inversion R2 values of 0.7506
and 0.7518, respectively. The two proposed methods showed slight differences in spectral feature
extraction preferences and hyperspectral feature selection flexibilities in deep reinforcement learning.
The experiments showed that the proposed RLFSR framework could better capture the spectral
characteristics of SOM than the existing methods.

Keywords: deep reinforcement learning; actor-critic network; feature selection; hyperspectral image
regression; SOM prediction

1. Introduction

Soil organic matter (SOM) is an essential component of soil, and monitoring SOM is a
crucial element of soil quality assessment [1]. Since the advent of hyperspectral sensors, the
acquisition capability of hyperspectral data has been dramatically enhanced, and large-scale
and detailed ground observation has become possible, which can provide rich data support
for soil environmental quality monitoring [2,3]. As a result, hyperspectral images, with
their rich and continuous spectral bands from visible to short-wave infrared, have been
widely used in predictions of SOM [4–6]. The numerous spectral bands of hyperspectral
images provide the possibility of accurate extraction of SOM reflection features, but at the
same time, the noise and useless information contained in the data can interfere with SOM
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prediction. Therefore, it is necessary to reduce the hyperspectral data redundancy when
building hyperspectral SOM regression models.

To make full use of the valid information from hyperspectral data, researchers have
usually conducted characterization of the raw spectra before building a regression model.
Specifically, spectral transformations based on signal processing, such as simple math-
ematical transformations and frequency domain transformations, are able to detect the
changing features that are sensitive to the target variables and can increase the amount of
effective information in hyperspectral data. Next, researchers have explored various means
of dimensionality reduction concerning the rich spectral information. Feature selection,
which can remove redundant information while preserving the physical meaning of the
original image spectra, is one of the main methods for the dimensionality reduction of
hyperspectral data, which also enhances the interpretation of the subsequent modeling
process from a spectral perspective.

Feature selection is the process of selecting a subset of relevant features or candidate
features and using evaluation criteria to obtain the optimal subset. Subset generation is
mainly accomplished by a heuristic search. There are three main search methods: sequential
search, exhaustive search, and random search [7]. The sequential search iteratively adds and
removes features to complete the subset generation. Many methods have been proposed
based on this idea, such as sequential forward selection (SFS) [8–10], sequential backward
elimination (SBE) [11,12], and bi-directional selection [13]. Shafiee et al. [14] investigated
the performance of support vector regression (SVR) in combination with SFS for grain
yield prediction and showed that SVR in combination with SFS is a robust method. The
exhaustive search iterates through all the possible feature subsets to generate the best
solution. Although it is possible to obtain the best and most stable subset, this usually
consumes a lot of computational resources and time. Random search starts with a random
feature subset and generates the next subset in the feature space according to the preset
strategy. The typical random search algorithms, such as simulated annealing [15], genetic
algorithms [16], evolutionary programming [17], and particle swarm optimization [18,19],
sacrifice optimality guarantees to quickly finding a relatively good solution [20]. However,
due to the random sampling process of the algorithms, there is instability in the search
process, and two random search processes can lead to very different results. Meanwhile, it is
necessary to evaluate the newly generated feature subset using certain criteria. The optimal
subset of features generated from the same data can vary according to the evaluation criteria.
Based on the dependence and independence of the algorithms, there are independent
criteria and dependent criteria. Independent criteria do not involve any learning algorithm,
and they use the underlying characteristics of the training data to evaluate the performance
of a subset of features. Many independent criteria have been proposed in the literature,
including distance measures [21], information or uncertainty measures [22], probability of
error measures [23], dependency measures [24,25], interclass distance measures [26], and
consistency measures [27], which are generally very efficient. However, the dependent
criteria require a predefined mining algorithm to evaluate the goodness of the feature
subset and determine which features are selected. Although dependent criteria usually
obtain better performance, they come with a greater computational cost [21,28].

In hyperspectral data processing, various dimensionality reduction methods are
widely used. The common feature selection methods include variable importance in the
projection (VIP), the successive projections algorithm (SPA), the Pearson product–moment
correlation coefficient (PPMCC), competitive adaptive reweighted sampling (CARS), ge-
netic algorithms (GAs), and simulated annealing (SA). Bangelesa et al. [29] applied the
VIP and recursive feature selection methods to feature selection in partial least squares
(PLS) regression and random forest regression, respectively, and finally determined that
the significant wavelengths for SOM prediction were located in the range of 400–700 nm.
Song et al. [30] reduced the dimensionality of HJ-1A hyperspectral data with the help
of the Pearson’s correlation coefficient and principal component analysis (PCA), and the
extracted feature spectra achieved better results on a back-propagation neural network
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(BPNN) model with double hidden layers. Wei et al. [31] proposed a gradient boosting
regression tree (GBRT) hyperspectral inversion algorithm based on Spearman’s rank corre-
lation analysis (SCA) coupled with CARS, which achieved a better inversion effect than the
support vector machine and random forest. Kawamura et al. [32] applied a GA to select
significant bands in laboratory visible and near-infrared spectroscopy, and found that the
GA has the advantage of optimizing the PLS regression bands.

The common methods mentioned above usually employ conventional feature col-
lection and evaluation methods, which are not optimized for hyperspectral data. As a
result, the obtained feature subsets cannot guarantee a satisfactory output in the inver-
sion modeling, and the stability of the methods is questionable. Moreover, the above
methods are limited by the inefficient search capability, which makes it challenging to
extract superior and small-scale feature subsets quickly. In addition to the common feature
selection methods already described, deep learning has also been applied to hyperspectral
data processing. In the field of hyperspectral feature selection, a novel ternary weight
convolution neural network (TWCNN) was proposed, which uses a depth-wise convolu-
tional layer with 1 × 1 filters as the first layer of the network, and can achieve end-to-end
feature selection and classification [33]. Lorenzo et al. [34] developed a data-driven hy-
perspectral band selection algorithm that couples an attention-based convolutional neural
network to identify the most information-rich regions in the spectrum. Meanwhile, the
framework named integrated learning and feature selection (ILFS) [35] determines the
characteristic bands by measuring the contribution of each band to the overall loss of the
optimization. This approach is effective for the dimensionality reduction of multispectral
and hyperspectral imagery, and can significantly improve the performance in the semantic
segmentation task for high-dimensional imagery. Bernal et al. [36] learned a convolu-
tional Siamese network by optimizing the contrast loss, and they performed band selection
based on the low-dimensional data embedding generated by the network. However, the
deep network-based feature selection techniques require considerable computational re-
sources and have limitations when balancing the accuracy and efficiency of computing the
optimal subset.

Deep reinforcement learning (DRL) combines the perceptual capabilities of deep learn-
ing with the decision-making capabilities of reinforcement learning in a generalized form.
The powerful exploration capabilities of DRL allow us to strike a better balance between
finding the optimal subset and conserving computational resources, which allows for better
adaptation to different task requirements by adjusting the reward policy. Some researchers
have considered the band selection task of hyperspectral imagery as a combinatorial op-
timization problem of searching for band combinations in discrete space and solving the
feature selection problem with the learning ability of DRL. Mou et al. [37] defined the
unsupervised band selection problem as a Markov decision process (MDP), and explored
the application of DRL in hyperspectral image analysis by using information entropy as
the reward function for adding new bands. Feng et al. [38] established a semi-supervised
convolutional neural network to evaluate the band selection state, and achieved efficient
evaluation of the band state for image classification tasks through limited labeled sample
errors and intra-class tightness constraints for unlabeled samples, which was shown to be
an effective approach for the publicly available hyperspectral classification datasets.

By designing a reasonable reward policy, DRL can quickly and accurately generate
feature subsets that solve the problem of the unstable hyperspectral feature extraction re-
sults of the commonly used methods. In addition, in hyperspectral inversion work, we are
more interested in features strongly correlated with the inversion parameters. According to
the characteristics of the inversion index and the requirements of inversion modeling, DRL
can flexibly adjust the optimization strategy to select the spectral features for better SOM
prediction. In this paper, we propose a feature selection framework named reinforcement
learning for feature selection in hyperspectral regression (RLFSR). By modeling the hyper-
spectral feature search problem as an MDP, we introduce two spectral feature sampling
strategies that use the internal linkage of the hyperspectral features and the accuracy of the
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hyperspectral inversion as comprehensive evaluation indicators. Specifically, we adopted
sample data to pre-train an inverse network and evaluate the feature subsets by inversion
accuracy, which was named RLFSR-Net. In contrast, RLFSR-Cv ran cross-validation on the
dataset to assess the value of the results. Finally, the advantage actor critic (A2C) algorithm
was introduced to optimize the set of features by maximizing the expected cumulative
rewards of the MDP.

Our contributions are summarized as follows:

1. To achieve efficient and accurate feature selection, a reinforcement learning framework
was proposed. A supervised feature selection method was used, which considered
the needs of the inversion task. We believe this is the first time reinforcement learning
has been introduced into feature selection for a hyperspectral inversion task.

2. The spectral feature selection problem was formulated as an MDP. A selection agent
was then constructed, and the state of the agent was updated based on the spectral
feature selection. To comprehensively evaluate the value of the features selected by
the agent, two evaluation strategies were proposed: RLFSR-Net and RLFSR-Cv. With
the support of the two strategies, the training of the feature selection model was
completed to maximize the cumulative reward.

3. The feature subsets selected by RLFSR-Net and RLFSR-Cv achieved inversion results
that were comparable with those of the XGBoost model, and they outperformed the
other data dimensionality reduction methods. As the number of features increased,
the inversion accuracy of the feature subset generally improved. However, after
reaching a certain number of features, the inversion accuracy decreased instead, due
to the increase in noise and invalid information.

4. The spectral features extracted by RLFSR-Net and RLFSR-Cv appeared to be in high
agreement with those extracted by CARS, and were concentrated in the visible range
and 2.2 µm, which was in line with the experience of SOM inversion. However, the
proposed method could extract a more compact subset of features and achieve better
inversion results.

The rest of this paper is organized as follows. Section 2 introduces the proposed
methods in detail, including the Markov modeling for feature selection and the two feature
subset evaluation strategies. In Section 3, we describe the experimental results obtained on
airborne hyperspectral data from the Yitong Manchu Autonomous County in China. The
discussion is presented in Section 4 to show the effectiveness of the RLFSR. In Section 5,
the conclusions of this paper are provided.

2. Methods

The proposed RLFSR framework is displayed in Figure 1. This feature selection
framework is designed from a reinforcement learning perspective, and includes the MDP
modeling for the feature-selecting agent and the reward function settings. Firstly, the hyper-
spectral SOM regression dataset was constructed based on airborne hyperspectral images
and laboratory chemical observations, and the training set and test set were randomly,
divided according to the SOM distribution, with a ratio of 2:1. The training set was then
used for the feature selection modeling. With regard to the agent’s MDP modeling, the
feature selection status was described in the form of a {0,1} array, where 0 means unselected
and 1 means selected. Every time the actions of selecting features were executed, the state
and reward were updated for the training of the agent. Two reward strategies—RLFSR-Net
and RLFSR-Cv—were then introduced to evaluate the subset of features. RLFSR-Net is
based on pretraining an inverse network to obtain the reward function, and RLFSR-Cv
evaluates the subset with the help of cross-validation accuracy. Finally, the reinforcement
learning agent was trained based on the A2C algorithm, which used an experienced pool
for recording the agent behavior. Finally, a subset of features was generated for the training
and testing with the help of the trained DRL-based algorithm, and the SOM regression
model was built to perform the SOM mapping.
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2.1. Feature Selection Modeling

As is shown in Figure 1, a reinforcement learning agent was introduced for the
feature selection. It was necessary to formulate the process as an MDP, which allowed the
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reinforcement learning agent to optimize the feature selection problem. The core elements
of the MDP were the state, the action, the Markov transition function, the reward, and the
discount factor.

(1) The state s: In this feature selection case, the state s records the history of the feature
selection. It consists of a set of n-dimensional vectors, which are coded to represent the
selection among the n features. The i-th chosen feature among n is denoted as si = 1, while
si = 0 means that this feature is not selected for now.

(2) The action a: The action of the agent, in this case, includes choosing a feature from
the hyperspectral image or stopping. The action is determined by the current state of the
agent and constraints. Until the set number of features is reached, the agent will continue
the act of selection; otherwise, it will end the work.

(3) The transition function P: When an action is performed, the state s transitions from
the previous state to a new one. This transformation process is defined as the transition
function P. The function P is determined by the current state–action pair. For example,
the state st at time t will convert to a new state st+1 if the action is to choose a new feature.
The state st will remain the same if the selected feature already exists in st, and will finally
terminate when reaching the preset number of bands.

st+1 =


Terminal i f reaching the preset number
st i f at = select a f eature that already exists in st

st + fi i f at = select a new f eature

(1)

(4) The reward r: The reward rt refers to the reward expectation that can be obtained
by performing the action at in the current state st and moving to the next moment. The
reward function is the reward gained by leaving the state, not the reward gained by
entering the state. In this case, two types of reward functions are modeled— RLFSR-Net
and RLFSR-Cv—which evaluate the final feature subset in different ways.

rt =


Final reward f unction i f reaching the preset number
Penalty f actor C i f at = select a f eature that already exists in st

Process reward f unction i f at = select a new f eature

(2)

The final reward function and process reward function in the above formula are
defined differently in RLFSR-Net and RLFSR-Cv, and they are introduced in Sections 2.2
and 2.3. The penalty factor C is a constant to suppress repetitive features.

(5) The discount factor γ: In most Markov reward processes and MDPs, the discount
factor γ ∈ [0, 1] is introduced to reduce the uncertainty of the forward earnings, in that
immediate rewards can be more beneficial than longer-term ones.

2.2. Feature Evaluation in RLFSR-Net

The current research on feature selection using reinforcement learning frameworks
has focused on classification tasks, with unsupervised and semi-supervised methods being
primarily used to evaluate the feature subsets. In the inversion task, we are more interested
in whether the features are correlated with the inversion parameters, so we designed
a supervised evaluation procedure. Inspired by the pre-trained evaluation networks
introduced in [38], we built a hyperspectral regression deep neural network (DNN) that
was trained by random features extracted from the dataset as the final reward function.
In each epoch, some feature dimensions were shut down randomly in the training set to
explore the most effective feature combinations. The objective function of the regression
part was MSE loss.

As is shown in Figure 2, the framework of RLFSR-Net included three main parts:
(1) feature generation; (2) the DNN for inversion; and (3) the reward calculation module. In
the part of feature generation, the state of the MDP coded as {0,1} arrays was translated to a
subset of the original feature data for reward calculation. A common type of DNN, which
is mainly stacked by fully connected layers, was introduced for evaluation. To avoid the
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gradient disappearance problem and to speed up the training, batch normalization layers
were added after the fully connected layers. The coefficient of determination (R2), the mean
square error (MSE), and the mean absolute error (MAE) are usually measured in terms of
prediction accuracy. Therefore, in the reward calculation module, the MSE of the output of
the DNN with respect to the true value was taken as the evaluation index.
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It was finally necessary to perform the computation of the reward with the {0,1} array
transformed by the feature selection case. Therefore, random {0,1} arrays were generated in
the training process, and the corresponding numbered features were selected and fed into
the DNN, with MSE as the loss function.

When evaluating feature subsets transformed from the terminal state coded as a {0,1}
array, the MSE of the subset of all the hyperspectral training datasets is taken to calculate
the final reward. Since it can be expected to obtain a subset of features with higher accuracy,
and since the MSE represents the error about the true value, reward = −MSEsubset was
accepted in RLFSR-Net. Thus, the reward function of RLFSR-Net was modified as follows:

rt =


−MSEsubset i f reaching the preset number
C i f at = select a f eature that already exists in st

0 i f at = select a new f eature

(3)

where MSEsubset represents the MSE of the DNN for inversion, and C is a constant number
to avoid repetitive actions. As it is not necessary to reward or punish the new features, the
reward will be 0 when selecting a new feature.

2.3. Feature Evaluation in RLFSR-Cv

The basic idea of cross-validation is to group the original data into a training set and a
validation set. The training set is first applied to train the model, and then the validation
set is used to test the trained model, which is taken as the performance index for evaluating
the model. Cross-validation algorithms perform well in parameter tuning for most models
and perform the feature selection task in CARS very well. Consequently, in introducing the
idea of cross-validation into the DRL framework, we proposed RLFSR-Cv.
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2.3.1. Selecting a New Feature

Since there is a dependency between the soil hyperspectral features, especially in
the neighboring bands, the selected new features may not enhance the information of the
feature subset, and may cause only a small improvement in model accuracy, which does
not meet our goal of feature robustness. To avoid selecting spectral features that were too
similar, the reward for selecting a new feature was defined as a negative function:

ρxy = r(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

(4)

The Pearson’s correlation coefficient, which ranges from −1 to 1, describes the degree
of linear correlation between the variables. The correlation coefficient ρxy quantitatively
portrays the degree of correlation between X and Y. That is, the larger

∣∣ρxy
∣∣ is, the greater

the correlation. In this case, to suppress the selection of relevant features, the Pearson’s
correlation coefficient was computed between the newly selected feature and the features
already existing in the subset, and min −

∣∣ρxy
∣∣ was taken as the reward for selecting the

new feature, as is shown in the following equation:

Process Reward Function = min(−|r( fi, fselected)|) (5)

where fi means the newly chosen feature, and fselected represents the features already
existing in the subset.

2.3.2. Termination

When the stopping condition of the MDP was satisfied, meaning that the feature
subset reached a preset number, the reward function was calculated by the cross-validation
algorithm. In this case, the 10-fold cross-validation method was chosen to evaluate the
feature subsets. As is shown in Figure 3, the dataset was divided into ten parts, nine of
which were rotated for training and testing the accuracy of the remaining data. After
completing all the tests, the opposite of the average MSE of the dataset was presented as
the final reward:

Final Reward Function = −mean(MSEcv) (6)
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Therefore, the reward function of RLFSR-Cv was modified as follows:

rt =


−mean(MSEcv) i f reaching the preset number
C i f at = select a f eature that already exists in st

min(−|r( fi, fselected)|) i f at = select a new f eature

(7)

where MSEcv represents the MSEs of the 10-fold cross-validation, C is a constant number
to avoid repetitive actions, and r( fi, fselected) refers to the Pearson’s correlation coefficient
between the new feature and the previous ones.

2.4. Deep Reinforcement Learning for the RLFSR Framework
2.4.1. Introduction to Deep Reinforcement Learning

In Section 2.3, we described how the feature selection problem was modeled as the
MDP and defined the two forms of reward functions. After completing these tasks, it was
now possible to solve the problem by employing a reinforcement learning approach.

In the MDP, it seeks to maximize the long-term return, denoted as Gt, which, in the
simplest case, is the sum of the returns at each time step:

Gt = ∑
t≥0

γtrt = rt + γrt+1 + γ2rt+2 + · · ·+ γT−t (8)

where T represents the terminal time, and γ represents the discount factor that demonstrates
a focus on future returns. The larger the value of γ, the more visionary the discounted
payoff is in considering more future returns, while the smaller the value of γ, the more
short-sighted the intelligence is. When γ = 0, the intelligence only considers maximizing
the current payoff.

In the MDP, the state value function of policy π, denoted as vπ(s), represents the
probability expectation value of the gain obtained by the agent from state s by deciding
according to policy π, which is denoted as:

vπ(s) = Eπ [Gt | St = s] = Eπ

[
∞

∑
k=0

γkrt+k+1 | St = s

]
(9)

Similarly, the action value function of policy π, denoted as qπ(s, a), represents the
probability expectation of all the subsequent gains obtained by the agent after taking action
starting from state s, which is denoted as:

qπ(s, a) = Eπ [Gt | St = s, At = a] = Eπ

[
∞

∑
k=0

γkrt+k+1 | St = s, At = a

]
(10)

Since there is a recursive relationship between vπ(s) and qπ(s, a), based on the Bellman
equation, the above equations can be rewritten as follows:

vπ(s) = Eπ [rt+1 + γvπ(St+1) | St = s] (11)

qπ(s, a) = Eπ [rt+1 + γqπ(St+1, At+1) | St = s, At = a] (12)

To solve the reinforcement learning problem, finding an optimal policy that maximizes
the reward of the agent in the long-term process is necessary. In the MDP, the optimal
policy is denoted as π∗, and its state value function v∗ is the optimal state value function,
which is denoted as:

v∗(s) = max
π

vπ(s) (13)



Remote Sens. 2023, 15, 127 10 of 23

2.4.2. Training of the A2C Algorithm

Unlike the value-based and policy-based reinforcement learning algorithms, the A2C
algorithm is an algorithm that combines value-based and policy-based methods, in that the
policy-based actor learns a policy and interacts with the environment, and the value-based
critic evaluates the goodness of the policy to guide the next actions.

The actor part is implemented by the policy gradient method, which belongs to the
Monte Carlo class of methods. The objective of the policy gradient method is to maximize
the reward function by adjusting θ under policy π. The objective function is expressed as
Jθ = Eπ∼i[R(t)].

The derivation yields the gradient of the objective function as:

∇θ J(θ) = Eπθ
[∇θ log πθ(s, a)vt] (14)

The A2C algorithm assesses the policy based on an advantage function that reduces
the variance without introducing bias, and the advantage function subtracts the estimated
value function from a set benchmark, which is generally estimated using the state value
function, which is denoted as Aπθ (s, a) = Q(s, a)−Vπθ (s).

Therefore, the policy gradient of the A2C algorithm is formalized as follows:

∇θ J(θ) = Eπθ
[∇θ log πθ(s, a)(Q(s, a)−Vπθ (s))] (15)

Figure 4 shows how an actor network and a critic network are constructed and stacked
by several fully connected layers. The two networks share the first few layers in order to
extract common features and save computational power.
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In the case of RLFSR-Net and RLFSR-Cv, the selected features were encoded as {0,1}
arrays and fed into the network to learn the policy. The actor (policy network) generates
the probability distribution of all the possible actions, which determines the next action.
The critic (value network) evaluates the current state–action pair and guides the network
to maximize the cumulative reward.

The procedure for training the A2C-based network is summarized in Algorithm 1.
The two policies, i.e., RLFSR-Net and RLFSR-Cv, were applied to the reward function.
RLFSR-Net required a prior pre-trained regression network stage, and RLFSR-Cv was input
into the operation directly.
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Algorithm 1: The procedure of training the A2C-based network
Input: hyperspectral training dataset X
Output: selected feature code number

1: randomly initialize policy network parameter θ and value network parameter θv
2: initialize max iteration K, update interval T
3: for 1 to K:
4: for 1 to T:
5: while st is terminate

6: initialize state s =
→
0 , the reward r = 0

7: end
8: compute the output distribution of action according to policy πθ(st)
9: perform at based on probability
10: at = πθ(st)
11: get the reward rt and new state st+1
12: st+1, rt = STEP(st, at)
13: st ← st+1
14: end
15: calculate long-term return Gt = ∑t≥0 γtrt
16: update θv based on the TD error
17: θv = θv + α∇θv logπθv

(at | st)δ(t)
18: update θv according to the advantage function
19: θ = θ + α∇θ logπθ

(at | st)A(s, A, w)
20: end

3. Experimental Results

In this section, the hyperspectral data used in the experiments are presented. The
aim was to test the influence of the number of features of RLFSR-Net and RLFSR-Cv
on the inversion accuracy. Comparison experiments were also conducted with other
dimensionality reduction methods and inversion models.

3.1. Datasets and Preprocessing

A total of nine airborne hyperspectral image strip datasets were acquired in the Yitong
Manchu Autonomous County in Jilin province, China, between 18 April and 22 April 2017,
using a HyMap airborne imaging spectrometer. After stitching, the hyperspectral image
data were formed into a spectral cube consisting of 2734 rows, 2508 columns, and 135 bands.
The spectral resolution was 10–20 nm, and the spatial resolution was 4.5 m. As is shown in
Figure 5, 90 soil samples were sampled simultaneously and were evenly distributed in the
study area.

3.1.1. Preprocessing of the Hyperspectral Data Cube

Firstly, to convert the digital number (DN) values into radiometric values that have a
physical meaning, the original hyperspectral images were radiometrically calibrated using
the standard data obtained by an integrating sphere. After obtaining parameters, such as the
atmospheric conditions in the study area, an atmospheric correction was performed using
the MODTRAN4 atmospheric radiation transmission model [39]. To solve the problem
of geometric distortion, a look-up table was constructed using high-precision position
and orientation system (POS) data and digital elevation model (DEM) data. A geometric
correction was performed strip by strip, and the photometric correction algorithm based
on the bi-directional reflectance distribution function (BRDF) was also used to correct the
radiation differences between strips [40]. Finally, a spatial-spectral cube was created with
the help of image-stitching technology. As the imagery contained some bands disturbed
by water vapor, which are ineffective for the inversion task, the contaminated bands were
deleted, and 101 spectral bands were finally retained.
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3.1.2. Processing of the Soil Samples

Ninety topsoil samples at depths of 0–20 cm were processed by removing impurities,
air-drying, grinding, and 100-mesh sieving. Soil organic carbon content (SOCC) was
measured using the K2Cr2O7–H2SO4 oxidation method. A conversion factor of 1.724 is
commonly used to convert SOCC to SOMC, where SOMC (%) = SOCC (%) × 1.724 [41].

In order to reasonably assess the advantages and disadvantages of the selected features
and the inversion accuracy, the 90 samples were divided into training and test sets in a
2:1 ratio, according to the distribution of the SOM.

For spectral preprocessing, the soil spectrum is a combination of various kinds of
information, and feature extraction processing can reduce the influence of noise and
other interference factors to a certain extent, as well as highlight the feature information.
Specifically, continuum removal can be introduced to suppress the background information
and normalize the values of weakly absorbed spectra [42], and the first-order differentiation
is taken to enhance the correlation between the SOM and the spectrum [6,43]. The band
ratio can express the hyperspectral response characteristics of SOM from two-dimensional
spectral spaces, which reduces the impact of other soil composition information on the
estimation. Therefore, the continuum removal, first-order differentiation, and band ratio
were computed for the raw spectrum, and a new set of hyperspectral features was generated
by combining the above results, which are explained in the following steps:

(1) Calculate the absorption depth after continuum removal processing:

Scr = S/C (16)

Dcr = 1− Sc (17)

where Scr represents the continuum removal spectrum, S represents the raw spectrum, C
represents the continuum curve, and Dcr is the absorption depth of the continuum removal.

(2) Calculate the first-order differentiation of the spectrum:

FDi =
Si+1 − Si−1

Bi+1 − Bi−1
(18)
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where Si+1 and Si−1 respectively represent the reflectance of the former and latter
bands, Bi+1 and Bi−1 respectively represent the wavelength of the former and latter
bands, and FDi is the first-order differential value at that band.

(3) Calculate the band ratio: Since there were 101 bands in the dataset, calculating all
the band ratios would result in a large amount of feature redundancy. Therefore, for
each band, its ratio to the other bands was calculated, and the ratio with the highest
correlation with SOM in all band ratios was selected as the optimal ratio of that band.

(4) Combine all the above features (raw spectrum, absorption depth of the continuum
removal, first-order differentiation, and optimal band ratios).

(5) Sample expansion based on the spatial distance: Considering Tobler’s first law of
geography and the stability of the SOM at the meter level, to improve the model
stability, the training set was expanded according to the spatial distance and spec-
tral angle distance from the labeled samples. Unlabeled samples that were spa-
tially neighboring and spectrally close to the training set were added to the new
training set.

After processing the soil samples in the spatial and spectral dimensions, 243 training
samples and 30 test samples (each with 385 features) were finally obtained.

3.2. Experiment in RLFSR

In this section, we describe how the RLFSR feature selection algorithm was performed
on the Yitong airborne hyperspectral dataset. The performance of the two strategies (RLFSR-
Net and RLFSR-Cv) with different feature numbers was also tested. Some other popular
methods for the dimensionality reduction of hyperspectral data were also performed for
comparison. The spectral dimensionality reduction methods involved in the experiments
were as follows:

(1) PCA: principal component analysis, which extracts features to a cumulative contribu-
tion rate of 0.99.

(2) ICA: independent component analysis with 10 components.
(3) Pearson: the Pearson product-moment correlation coefficient, which selects the

30 characteristics that are most relevant to the dependent variable.
(4) VIP: variable importance projection, which selects the 30 features of the highest

importance for the inversion modeling.
(5) SOS: symbiotic organisms search.
(6) IRF: interval random frog.
(7) CARS: competitive adaptive reweighted sampling.

After acquiring the appropriate features, the accuracy evaluation was performed using
four commonly used hyperspectral inversion models:

(1) PLS: partial least squares regression with 20 latent variables.
(2) RF: random forest regression, which is a supervised learning algorithm that uses an

ensemble learning method for the regression.
(3) SVM: support vector machine regression equipped with a radial basis function (RBF)

kernel. Parameters γ and C were determined by 10-fold cross-validation.
(4) XGBoost: extreme gradient boosting, which is an implementation of gradient-boosted

decision trees designed for speed and performance. The main parameters were
determined by 10-fold cross-validation.

The coefficient of determination (R2), the MSE, and the MAE were calculated to
measure the regression accuracy of the models:

(1) R2: the coefficient of determination is the proportion of the variation in the dependent
variable that is predictable from the independent variable.

(2) MSE: the mean squared error of an estimator measures the average of the squares of
the errors, i.e., the average squared difference between the estimated value and the
true value.
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(3) MAE: the mean absolute error is the arithmetic average of the absolute errors.

3.3. Results of Different Dimensionality Reduction Methods

The proposed method was evaluated by comparing it with the widely used dimen-
sionality reduction methods described in Section 3.2. For each dimensionality reduction
method, the inversion performance was validated for the Yitong airborne hyperspectral
dataset, and the accuracy indicators of the selected features obtained using the current
model were calculated for the training set and the test set.

From Table 1, it can be seen that ICA had the worst performance among the seven
methods, mainly because the uncertainty of the energy and the order of the independent
components led to a failure to effectively eliminate irrelevant information. In contrast, PCA
removed the noise while retaining most of the information, thus achieving effective dimen-
sionality reduction, but its extracted features could not explain the spectral characteristics
of the SOM. These signal-processing techniques are oriented to retain as much information
as possible and are not optimized for specific tasks, so the extracted features cannot always
effectively represent the spectral response of SOM. The Pearson and VIP methods evaluate
the importance of each feature with different metrics, and select the most important features
to form the subset of features. As a result, these two methods achieved high-precision
inversion with the XGBoost model. The SOS algorithm simulates the symbiotic interaction
strategies that organisms use to survive in the ecosystem [44], but it performed poorly.
The IRF provided satisfactory prediction results, but over 100 features were selected, and
the dimensionality reduction task was not well accomplished. The proposed methods
of RLFSR-Net and RLFSR-Cv obtained the best prediction accuracy, with at least a 0.05
increase in R2 on the test set. Based on the XGBoost model, the two methods yielded
similar prediction results, with R2 exceeding 0.75, which represents very high accuracy.
The PLS model achieved worse inversion results than SVM, RF, and XGBoost, which is
shown in Table 1. PLS regression employs independent variables to extract latent variables
and conducts regression modeling; thus, the redundant features selected by IRF and CARS
will have a greater impact on the generation of latent variables. The DRL-based algorithms
incorporate the SOM prediction accuracy into the optimization metric and can effectively
explore the optimal subset of features for the current scenario, which is the most applicable
to SOM inversion modeling. Since RLFSR-Cv utilizes the cross-validation accuracy of the
XGBoost model to evaluate the feature subset when selecting features, its performance on
the XGBoost model was naturally better than that of the RLFSR-Net, but it was relatively
slightly worse for other regression models. Furthermore, in RLFSR-Net, the specially
designed accuracy evaluation network greatly improves the stability of the feature subset
under different inversion models. As a result, the extracted spectral features showed better
accuracy under multiple models, and the evaluation policy of multiple cross-validations
in RLFSR-Cv also had a similar effect. In conclusion, the two proposed feature selection
methods realized stable and excellent dimensionality reduction by introducing 10-fold
cross-validation and an evaluation network trained by random features, respectively.

In Figure 6, the SOM prediction maps obtained from the best models of different
feature reduction methods are plotted. Many methods demonstrated an overall high
(ICA) or low (PCA, Pearson, VIP, SOS, and IRF) bias in SOM predictions. In contrast,
the CARS and DRL-based methods demonstrated excellent cartographic results, and they
accurately characterized the spatial distribution of the SOM in the study area. The CARS
and proposed methods indicated a zone of high SOM values in the study area extending
from the northwest to the southeast. When compared with CARS, the proposed methods
captured the spatial differences of the SOM more clearly, and the distribution of the high-
value regions was also more apparent, which demonstrated the superior performance of
the proposed methods in the spectral feature recognition task.



Remote Sens. 2023, 15, 127 15 of 23

Table 1. Regression results of PCA, ICA, Pearson, VIP, SOS, IRF, CARS, RLFSR-Net, and RLFSR-Cv
using the representative regression models of PLS, SVM-RBF, RF, and XGBoost. The best three
regression performances of the dimensionality reduction methods are highlighted in bold, italic, and
underlined, respectively.

Method Regression Model
Training Set Test Set

R2 MAE MSE R2 MAE MSE

PCA

PLS 0.5968 3.2967 16.9878 0.3386 3.9512 25.6450
SVM-RBF 0.9998 0.0989 0.0098 0.0636 4.6384 36.3075

RF 0.5580 3.3086 18.6191 0.5488 3.3328 17.4946
XGBoost 0.9729 0.7786 1.1435 0.5332 3.5420 18.0982

ICA

PLS 0.4182 3.9287 24.5114 0.5788 3.2597 16.3295
SVM-RBF 0.9998 0.0991 0.0099 0.0791 4.6205 35.7049

RF 0.6942 2.6750 12.8822 0.3452 4.0807 25.3871
XGBoost 0.8526 1.8588 6.2109 0.3386 3.8821 25.6452

Pearson

PLS 0.4609 3.7721 22.7120 0.4209 3.7285 22.4544
SVM-RBF 0.6623 2.2414 14.2281 0.5977 3.3790 15.5993

RF 0.6763 2.8541 13.6371 0.5891 3.1342 15.9333
XGBoost 0.7929 2.2260 8.7256 0.6122 2.8507 15.0379

VIP

PLS 0.5880 3.3063 17.3584 0.2480 4.0115 29.1573
SVM-RBF 0.5636 2.9460 18.3826 0.5134 3.3498 18.8654

RF 0.5861 3.2546 17.4362 0.5579 3.5180 17.1430
XGBoost 0.9960 0.3060 0.1696 0.5686 3.2672 16.7250

SOS

PLS 0.6217 3.1355 15.9358 0.3224 3.8480 26.2733
SVM-RBF 0.8166 1.5208 7.7243 0.4664 3.7999 20.6903

RF 0.7841 2.3960 9.0969 0.5541 3.5191 17.2875
XGBoost 0.9999 0.0472 0.0043 0.5024 3.6873 19.2929

IRF

PLS 0.7738 2.4291 9.5302 0.0012 5.4822 57.2887
SVM-RBF 0.9211 0.7375 3.3228 0.5682 3.1987 16.7439

RF 0.7910 2.3532 8.8043 0.6649 3.0512 12.9923
XGBoost 0.9999 0.0470 0.0041 0.6514 2.9768 13.5181

CARS

PLS 0.7418 2.6394 10.8791 0.0018 4.9548 44.3211
SVM-RBF 0.8302 1.4981 7.1515 0.6902 2.8810 12.0125

RF 0.6943 2.8585 12.8799 0.6541 2.9864 13.4113
XGBoost 0.9750 0.7535 1.0512 0.6228 2.9414 14.6253

RLFSR-Net

PLS 0.5211 3.4638 20.1745 0.4080 3.6995 22.9549
SVM-RBF 0.7514 1.8932 10.4742 0.6955 2.7447 11.8063

RF 0.7320 2.5578 11.2919 0.7312 2.6398 10.4218
XGBoost 0.9999 0.0006 0.0001 0.7506 2.7276 9.6700

RLFSR-Cv

PLS 0.5390 3.4213 19.4200 0.3960 3.3683 23.4192
SVM-RBF 0.7227 2.0551 11.6808 0.6549 2.9157 13.3790

RF 0.7739 2.3723 9.5260 0.6800 2.8373 12.4054
XGBoost 0.9997 0.0735 0.0108 0.7518 2.4512 9.6215
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Table 2 shows the inference time of the proposed DRL-based method and other di-
mensionality reduction methods. Some dimensionality reduction methods do not include
a feature subset collection process; hence, they have short inference times and the effec-
tiveness is also relatively limited, e.g., PCA, ICA, Pearson and VIP. Other methods include
feature subset generation and feature subset evaluation and have longer inference times.
The proposed method consumes a relatively small amount of inference time.

Table 2. Comparation of the computational times on different methods.

Method Inference Time (s)

PCA 0.04

ICA 0.10

Pearson 0.01

VIP 0.12

CARS 22.96

SOS 353.46

IRF 397.84

RLFSR-Cv 177.51

RLFSR-Net 92.97

4. Discussion
4.1. Performance with Different Numbers of Selected Features

For the dimensionality reduction methods with a constant number of features, we
explored their prediction performance with different feature subsets. Since the SVM-RBF
and XGBoost regression models demonstrated satisfactory accuracy in the experiments
described in Section 4.1, we explored the performance of several dimensionality reduction
methods with the SVM-RBF and XGBoost regression models. As is shown in Figure 7,
in general, the inversion accuracy improved as the number of features increased, but
the accuracy of each model stabilized or decreased slightly beyond 40 features, which
was probably due to the gradual redundancy of features. Modeling with all features did
not yield a satisfactory prediction, with the R2 below 0.6. The prediction accuracy of
the VIP method was poor, and no suitable spectral features were effectively extracted.
The spectral extraction method based on the Pearson’s correlation coefficient showed a
more stable inversion accuracy with a different number of features, but due to the strong
correlation within the spectral features, increasing the number of selected features may
not have resulted in consistent changes in the spectral information, i.e., the added spectral
features were mostly redundant information. The CARS method was quite random in
generating feature subsets and achieved good prediction accuracy after several iterations.
The proposed RLFSR-Net and RLFSR-Cv methods achieved better feature selection results
than the VIP and Pearson methods, and they achieved a close or better R2 for each number
of features.

Both the SVM-RBF and XGBoost regression models provided excellent prediction
accuracy, but the two proposed methods obtained better performance with XGBoost, and
achieved higher R2 values and better prediction results than the CARS method. Therefore,
we analyzed the regression results of RLFSR on different numbers of features in Table 3.
When the number of features reached 35, RLFSR-Net and RLFSR-Cv achieved the highest
inversion accuracy at 35 features, with R2 values of 0.7506 and 0.7518, respectively. Both
methods failed to select suitable features and showed poor inversion accuracy with XGBoost
when too few features were selected. When the number of features exceeded 35, the
spectral feature information started to appear redundant, which led to a slight decrease in
prediction accuracy.
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Table 3. Regression Results of RLFSR on different number of features.

Method Number of Features
Training Set Test Set

R2 MAE MSE R2 MAE MSE

RLFSR-Net

10 0.9977 0.2144 0.0959 0.4514 3.7140 21.2701
15 0.9991 0.1346 0.0364 0.6758 2.6654 12.5721
20 0.9989 0.1518 0.0457 0.6609 3.0678 13.1479
25 0.9995 0.1097 0.0223 0.7055 2.9341 11.4206
30 0.9995 0.1003 0.0205 0.7103 2.8101 11.2323
35 0.9999 0.0006 0.0001 0.7506 2.7276 9.6700
40 0.9997 0.0742 0.0111 0.7171 2.3913 10.9676
45 0.9998 0.0685 0.0097 0.7044 2.9024 11.4620
50 0.9999 0.0556 0.0058 0.6690 3.0277 12.8336

RLFSR-Cv

10 0.9985 0.1862 0.0624 0.4876 3.6880 19.8690
15 0.9996 0.0848 0.0154 0.5100 3.7000 18.9994
20 0.9994 0.1113 0.0254 0.6744 2.6709 12.6227
25 0.9997 0.0764 0.0122 0.6886 2.9802 12.0740
30 0.9997 0.0825 0.0125 0.6529 2.9904 13.4596
35 0.9997 0.0735 0.0108 0.7518 2.4512 9.6215
40 0.9999 0.0480 0.0052 0.7362 2.3955 10.2286
45 0.9999 0.0563 0.0060 0.6949 2.8559 11.8290
50 0.9999 0.0473 0.0042 0.6710 2.9491 12.7550

4.2. Analysis of the Spectral Features

To further explore the value of the proposed framework in SOM prediction, we
extracted the distribution of the selected feature subsets. Figure 8 plots the spectral features
of the 90 soil samples and annotates the locations of the feature subsets selected by the three
best-performing algorithms. The CARS method selected more than 70 features, which was
far more than the 35 features of the RLFSR-Net and RLFSR-Cv, and it mainly focused on
the 2.2 µm area of the original spectrum and the other preprocessed spectra. In the original
spectrum, the proposed RLFSR methods tended to extract features at 0.5 µm, 0.8 µm, and
2.2 µm, which was consistent with the distribution range of spectral characteristics of the
SOM found by some scholars [6,45–48]. For the pre-processed spectra, the SOM spectral
features appeared in the same position as the original spectrum. However, from Figure 8b,c,
it can be clearly observed that there are more significant peaks in the visible range and in
the 2.2 µm range, which demonstrated the vital enhancement of the pre-processing method
for extracting spectral features.
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Generally, the feature subsets of the three methods had relatively high consistency, and
the feature subset of the CARS method contained most of the spectral features of RLFSR-
Net and RLFSR-Cv. However, when compared with the CARS method, the two proposed
methods exhibited better prediction accuracy on multiple models and significantly reduced
the size of the feature subset. The large reward for the feature subset prediction accuracy in
Markov modeling makes the RLFSR-Net and RLFSR-Cv algorithms more inclined to search
for the spectral features that contribute the most to the SOM prediction, while limiting the
number of features that do not contribute much to SOM prediction. This design enables the
proposed methods to fully characterize the SOM distribution with a small feature subset,
which improves the accuracy of SOM inversion while suppressing information redundancy
with excellent performance.

A comparison of the two proposed methods shows that RLFSR-Net selected several
spectral features in nearby bands, while RLFSR-Cv avoided the duplicate selection of
similar features as much as possible. This discrepancy can be attributed to the difference in
the preference for the agents’ reward policies in the design of reinforcement learning. In
RLFSR-Net, an environment is designed where the prediction accuracy of the pre-trained
network serves as a reward. Meanwhile, in RLFSR-Cv, an environment that includes
a greater variety of rewards and punishments is proposed, for which the correlation
coefficient serves as the negative reward and the cross-validation accuracy serves as the
active reward. By fine-tuning the interaction behavior of the reinforcement learning agents
with the environment, the model’s preference in feature selection changes correspondingly,
and the selected feature subsets demonstrated an excellent SOM inversion performance.

5. Conclusions

In this paper, we have proposed a feature selection method using reinforcement
learning as a framework (RLFSR) to address the problem of unclear features in airborne
hyperspectral SOM regression. To model the feature subset selection process, an MDP
was formulated. Two feature evaluation structures were proposed by introducing a pre-
trained evaluation network and a cross-validation technique, respectively. In RLFSR-Net,
the spectral features were randomly fed to train a deep regression network, and the
performance of the reinforcement learning agent was measured using the prediction error
for a subset of features in the deep network. In contrast, 10-fold cross-validation was
used in RLFSR-Cv to evaluate the feature subset and add a suppression condition for the
inter-feature correlation. Through this design, unique and valuable spectral features could
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be effectively selected. The effectiveness of the proposed methods was demonstrated using
HyMap airborne hyperspectral data from the Yitong Manchu Autonomous County in China.
The extracted feature subsets performed well in each inversion model, while outperforming
commonly used feature selection methods, such as CARS, which demonstrated the better
stability of the proposed framework and obtained the best inversion results with the
XGBoost model. The R2 values for RLFSR-Net and RLFSR-Cv were 0.7506 and 0.7518,
respectively. The DRL-based method and CARS method both demonstrated good accuracy
in the SOM mapping, but the two proposed methods extracted more concise and efficient
subsets of features, which makes them better for the feature selection task. By flexibly
setting the reward strategy of reinforcement learning, the proposed methods showed
different performances, with RLFSR-Cv demonstrating better results in suppressing the
repetitive selection of similar features. In our future work, optimizing the feature evaluation
policies for different applications will be an exciting application of reinforcement learning
in hyperspectral inversion.
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