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Abstract: Airport detection in remote sensing scenes is a crucial area of research, playing a key role
in aircraft blind landing procedures. However, airport detection in remote sensing scenes still faces
challenges such as class confusion, poor detection performance on multi-scale objects, and limited
dataset availability. To address these issues, this paper proposes a novel airport detection network
(TPH-YOLOv5-Air) based on adaptive spatial feature fusion (ASFF). Firstly, we construct an Airport
Confusing Object Dataset (ACD) specifically tailored for remote sensing scenarios containing 9501
instances of airport confusion objects. Secondly, building upon the foundation of TPH-YOLOv5++,
we adopt the ASFF structure, which not only enhances the feature extraction efficiency but also
enriches feature representation. Moreover, an adaptive spatial feature fusion (ASFF) strategy based
on adaptive parameter adjustment module (APAM) is proposed, which improves the feature scale
invariance and enhances the detection of airports. Finally, experimental results based on the ACD
dataset demonstrate that TPH-YOLOv5-Air achieves a mean average precision (mAP) of 49.4%,
outperforming TPH-YOLOv5++ by 2% and the original YOLOv5 network by 3.6%. This study
contributes to the advancement of airport detection in remote sensing scenes and demonstrates the
practical application potential of TPH-YOLOv5-Air in this domain. Visualization and analysis further
validate the effectiveness and interpretability of TPH-YOLOv5-Air. The ACD dataset is publicly
available.

Keywords: airport detection; remote sensing scene imagery; Airport Confusing Object Dataset (ACD);
TPH-YOLOv5-Air; APAM

1. Introduction

Typical object detection in remote sensing scene imagery is a research hotspot in
the field of image processing [1–3]. Airports, as high-value infrastructure, play a crucial
role in both military and civilian domains, encompassing aircraft takeoff and landing,
communication, transportation, and energy supply, among others. The development of
remote sensing technology and the increasing availability of high-spatial-resolution remote
sensing scene imagery have elevated global airport detection to new level, enabling the
precise identification and localization of airports through remote sensing scene imagery [3].
Performing rapid and accurate intelligent detection of airports from remote sensing scene
imagery is an effective measure for reducing accident rates during the landing phase of
civil aviation aircraft and a necessary component for unmanned aerial vehicles (UAVs) to
accomplish autonomous landing and other critical tasks [4]. In addition, during times of
war or in the aftermath of a disaster event such as a natural disaster or man-made accident,
when certain navigation and communication equipment become unavailable, civil aircraft
or UAVs may need to conduct blind landings by relying on onboard equipment to search
for suitable airports or areas for emergency landings in unknown territories. Therefore,
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the automatic detection of airport objects based on remote sensing scene images holds
significant application value for improving flight safety and enabling the realization of
autonomous landing capabilities for unmanned aircraft.

However, airport detection also faces challenges. These include the varying shapes of
airport targets and their susceptibility to interference from ground objects like urban roads
and bridges [5]. Furthermore, the airport area exhibits varied sizes and diverse textural
characteristics, along with a heterogeneous background environment. Moreover, due to
platform constraints, remote sensing scene images may exhibit multi-scale, unpredictable
weather conditions, changes in viewing angles, variations in altitude, and similar interfer-
ence phenomena. Consequently, achieving airport detection quickly and accurately based
on aerial and remote sensing images is an exceptionally challenging task.

As illustrated in Figure 1, airport detection in remote sensing scene faces three main
challenges: First, as indicated by markers 1, 2, 4, and 5 in Figure 1, linear geometric
configurations exist in the terrain and buildings (such as roads, bridges, highways, and
service areas) [6,7] that resemble airports, leading to class confusion, particularly from aerial
and remote sensing perspectives. Second, markers 1, 3 and 1, 4 exhibit variations in size,
textural features, as well as heterogeneous background environments. Third, as depicted by
markers 1–5, airports are typically situated in intricate environments characterized by the
presence of various densely packed structures, aprons, roads, and other facilities, thereby
intensifying the complexity associated with the detection and recognition of airport objects.

1

2

3

4 5

6

Figure 1. The task of detecting objects in airport scenes using remote sensing scene imagery poses
significant challenges.

In response to the aforementioned challenges in airport detection, based on our previ-
ous work conducted with TPH-YOLOv5++, we present an enhanced model, namely TPH-
YOLOv5-Air, which builds upon the foundations of TPH-YOLOv5++ and incorporates the
principles of ASFF [8]. Firstly, despite the problem of linear geometric configurations in the
terrain and buildings resembling airports, it has been indicated that linear runways are the
primary distinctive feature of airports, despite their diverse aspect ratios and configura-
tions. To fully utilize this linear characteristic, we employ data augmentation, an ensemble
inference strategy with multiple models, and the Convolutional Block Attention Module
(CBAM) [9].

Then, to address the variations in size, orientation, and texture features of target
objects, as well as the heterogeneous background environment, we incorporate the con-
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cept of ASFF, enabling the network to learn features at different scales from different
layers [10]. Additionally, we introduce the adaptive parameter adjustment module (APAM)
to adaptively learn the fusion spatial weights for each scale feature map, allowing for the
utilization of information at different scales and improving the model’s scale invariance
and detection performance. As a result of the airport targets not exhibiting a high-density
distribution, the complexity of the background and dense scenes primarily poses challenges
for airport target detection. To address this, we employ a Transformer Prediction Head
(TPH) as an extension to the CNN-based detection model, enabling better and more efficient
utilization of contextual information.

Furthermore, the unique characteristics of airports pose challenges in acquiring airport
detection datasets, as they are difficult to obtain, require high annotation costs, and exhibit
varying levels of data quality. However, deep learning-based detection methods rely on
large-scale datasets, and both one-stage and two-stage detection models struggle to achieve
satisfactory results when trained on small-scale datasets. Remarkably, up until now, there
has been a lack of openly accessible datasets specifically tailored to the purpose of detecting
confusing airport targets.

To enhance the detection performance of airports, we propose an Airport Confusing
Object Dataset (ACD) specifically designed to address the characteristics of confusing
targets at airports. The ACD consists of 6359 aerial images, encompassing 9501 instances
of confusing objects in a bar-shaped configuration. The images have spatial resolutions
ranging from 0.5 to 50 m, and their dimensions vary from 800 × 800 to 1024 × 1024 pixels.
In comparison with other datasets, the ACD introduced in this paper exhibits the following
characteristics: (1) the inclusion of annotations for confusing categories and instances;
(2) the coverage of diverse scenes; (3) captured at different times and under varying weather
conditions; (4) a wide range of pixel sizes; and (5) a wide range of aspect ratios [11–13].

Compared to TPH-YOLOv5++, TPH-YOLOv5-Air incorporates ASFF and APAM,
effectively addressing challenges related to scale variations, complex geographical infor-
mation, and large coverage targets in remote sensing scene imagery. To tackle the lack of
publicly available large-scale datasets and the limitations of existing methods, we introduce
an Airport Confusing Object Dataset (ACD) for airport target detection. Experimental re-
sults on the ACD demonstrate that TPH-YOLOv5-Air significantly improves the detection
efficiency of airports.

This paper makes the following significant contributions:

• We propose an airport confusion detection dataset, named the ACD. The ACD is
a publicly available airport confusion dataset with the most realistic and complex
instances of data for real application scenarios. It furnishes a benchmark reference
for the advancement of sophisticated airport object detection techniques or other
related endeavors.

• We propose a new airport detection algorithm, TPH-YOLOv5-Air, by adding the ASFF
module on the basis of TPH-YOLOv5++ for airport detection, which can effectively
solve the problems caused by scale change, complex geographical information, and
large coverage targets in remote sensing scene imagery.

• Extensive experiments and evaluations have demonstrated that TPH-YOLOv5-Air
achieves state-of-the-art (SOTA) results on the ACD dataset, surpassing TPH-YOLOv5++
(the previous SOTA method) by an impressive margin of 2%.

2. Related Works

Within this section, we provide a succinct exposition on the detection of airport targets
and the existing datasets and methodologies pertaining to airport object detection in remote
sensing scene imagery.

2.1. Object Detection

The objective of object detection is to identify and classify all relevant objects in an
image while accurately determining their spatial coordinates [14–16]. The applications
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of object detection span diverse domains, such as autonomous driving systems (ADSs),
surveillance, robotics, and healthcare [17,18]. Classical object detection algorithms include
feature-extraction-based methods (e.g., Haar features and HOG features) [19] and machine-
learning-based methods [20,21]. In the past few years, notable advancements have been
achieved in the domain of deep-learning-based object detection, leading to remarkable
progress in this field.

Deep neural network (DNN)-based models play a crucial role in object detection
tasks. These methods can be categorized into different types based on various criteria.
Based on the approach of generating candidate boxes prior to detection, the models can be
categorized as either one-stage detectors or two-stage detectors. A one-stage target detector
is characterized by a single end-to-end feed forward network that integrates classification
and regression tasks. It takes the region of interest (ROI) features obtained from the region
proposal network (RPN) and utilizes them in the classification head to determine class
labels and in the regression head to determine bounding box locations. Notable examples
of one-stage detectors include the YOLO series by Redmon et al. In contrast, a two-
stage detector employs a separate region proposal network (RPN) to perform foreground–
background classification. The ROI features extracted from the RPN are then forwarded to
the classification head for class label determination and to the regression head for bounding
box localization. Prominent instances of two-stage detectors include the Faster R-CNN
proposed by Girshick et al. [22] and the Cascade R-CNN introduced by Cai et al. [23].
Meanwhile, object detection models can also be classified based on the utilization of
predefined anchors in a working pipeline. Models are divided into anchor-based detectors
and anchor-free detectors. Anchor-based detectors, such as Faster R-CNN and YOLOv5,
rely on predefined anchor points. On the other hand, anchor-free detectors, including
YOLOX [24] and CornerNet [25], do not require anchor points for object localization.

2.2. Object Detection in Remote Sensing Scene Imagery

Object detection in remote sensing scene imagery can be broadly classified into two
research directions: specific object detection and general object detection. Specific object
detection focuses on identifying and localizing significant and valuable objects in remote
sensing scene imagery, such as airplanes, cities, buildings, and vehicles [26]. General object
detection refers to the detection of many different types of objects in remotely sensed images
and is not limited to specific target classes. Meanwhile, object detection in remote sensing
scenes also faces several typical technical challenges, such as class imbalance, complex
background, scale variation, and the presence of small objects [27].

Class imbalance is a common issue in both natural images and remote sensing scene
imagery. It refers to situations where a large number of proposals represent background
regions during training, which can dominate the gradient descent and result in performance
degradation. To tackle the class imbalance problem, various methods have been proposed
for natural image object detection, such as focal loss [28], GHM [29], and OHEM [30].

Complex background refers to the diverse range of backgrounds present in remote
sensing scene imagery compared to natural images, as the field of view in remote sensing
scene images is typically wider. In natural images, the background for detecting objects
like vehicles (e.g., in the Pascal VOC [31] and COCO datasets [32]) is often composed of
streets, buildings, and the sky. However, in remote sensing scene imagery, the background
can exhibit a high level of diversity, including urban areas, forests, grasslands, and deserts,
all of which may contain vehicles. Therefore, addressing object detection in complex
backgrounds is a crucial research problem.

Scale variations refer to the size variations of objects within the same category, while
the issue of small objects pertains to the relative sizes of objects with respect to the entire
image. Multi-scale methods have been widely explored for use in natural image object
detection to handle scale variations. Common approaches involve scaling the images to
create an image pyramid and extracting features at different scales to generate feature maps
for each scale. Finally, individual predictions are made for each scale.
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Small object detection is also a challenge in remote sensing scene images, because
they are relatively small with a wide field of view. To address this challenge, TPH-
YOLOv5, an extension of YOLOv5, introduces prediction heads that are capable of detecting
objects at various scales. This approach leverages self-attention to explore the predictive
potential and employs Transformer Prediction Heads (TPHs) as replacements for the
original prediction heads. Moreover, the integration of the Convolutional Block Attention
Model (CBAM) aids in identifying attention regions within dense scenes. In order to further
enhance the computational efficiency and improve the detection speed, TPH-YOLOv5++
is proposed as an advanced version of TPH-YOLOv5. This upgraded model replaces
the additional prediction head with a CA-Trans, while still maintaining its functionality.
These advancements collectively contribute to the improved performance and efficiency of
TPH-YOLOv5++.

2.3. Airport Object Detection

Due to the diverse structure and complex background of airports, it is a challenge
to detect airports quickly and accurately in remote sensing scene imagery. Currently,
there are four main approaches to detect airports based on remote sensing scene imagery,
including line-based, image-segmentation-based [33], saliency-based [6], and deep-learning-
based [19,34]. Line-based approaches leverage the presence of prominent line segments
connecting the airport runway and its surrounding environment to detect the airport area.
On the other hand, saliency-based methods focus on predicting saliency maps wherein the
airport area exhibits high saliency values. Typically, saliency maps are computed based
on line segments, frequency domain features, and geometric information derived from
superpixels. Overall, these diverse approaches aim to address the challenges associated
with airport detection in remote sensing scene images, with each method offering unique
advantages and insights for this important task.

The rapid advancement of deep learning theory has led to increasing utilization of
deep-learning-based object detection methods for airport detection. These methods adopt
deep learning models specialized for object detection as their framework and incorporate
additional optimizations to achieve more precise localization, such as the adjustment of
anchor scales or the integration of image segmentation modules. These adaptations aim to
enhance the accuracy of airport detection by leveraging the capabilities of deep learning
and tailoring the models to the specific challenges and requirements of airport detection
tasks.

Deep-learning-based approaches leverage robust feature extraction and representation
capabilities, but their performance is heavily reliant on the data quality and quantity. As a
data-driven field, the effectiveness of various deep learning methods is closely tied to the
availability and characteristics of the utilized datasets. The quality of the data, including
their diversity, relevance, and accuracy, directly influences the model’s ability to learn
representative features and generalize well to new instances. Furthermore, the quantity
of data plays a crucial role in training deep learning models, as larger datasets often
lead to an improved model performance by providing more comprehensive coverage of
the underlying data distribution. Thus, high-quality and sufficient data are essential for
achieving an optimal performance with deep-learning-based approaches.

Currently, there are several datasets available for airport object detection:
SAD: This dataset aims to establish a standardized benchmark for airport detection in

Synthetic Aperture Radar (SAR) imagery. Comprising a total of 624 SAR images, each with
a resolution of 2048 × 2048 pixels, the dataset is derived from the Sentinel-1B satellite. The
dataset encompasses 104 instances of airports, exhibiting diverse characteristics such as
varying scales, orientations, and shapes. However, this dataset is specifically tailored to
facilitate airport object detection in SAR images, offering valuable resources for algorithm
evaluation and comparative analysis.

BARS: BARS is the most extensive and diverse dataset available, offering a wide range
of categories and detailed instance annotations. With a collection of 10,002 images and
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29,347 instances, the dataset encompasses three distinct categories. The data are captured
through the employment of the X-Plane simulation platform. The dataset accounts for
various factors such as different airports, aircraft views, weather conditions, and time
intervals, with a primary focus on runway segmentation in airport imagery.

DIOR: DIOR serves as a comprehensive benchmark dataset that is specifically tailored
for object detection in optical remote sensing scene images. It encompasses a vast collection
of 23,463 images, comprising 190,288 instances across diverse object classes, while also
accounting for variations in seasons and weather conditions. Some of the included classes
are airplanes, airports, bridges, ships, and vehicles. The images in this study are uniformly
resized to 800 × 800 pixels, and they exhibit resolutions ranging from 0.5 m to 30 m.

While the above datasets are related to airports, they do not specifically address the
detection of easily confusable objects within airports. Therefore, there is a need to construct a
dataset that includes structurally diverse airports, complex backgrounds, and significant scale
variations to enhance the detection performance of airports in remote sensing scene imagery.

3. ACD: Airport Confusing Object Dataset

While current remote sensing scene imagery datasets include conventional targets
such as aircraft and airports, they have certain limitations in terms of scale and quantity,
which restricts their adequacy for use in a comprehensive analysis. Consequently, there is a
pressing demand for the creation of a dataset that is specifically designed to address the
challenges associated with detecting airport-confusion-prone strip targets.

This section begins by providing a detailed account of the origin and annotation
process employed for the Airport Confusing Object Dataset (ACD). Subsequently, we
present a comprehensive analysis of the ACD, encompassing aspects such as the target
size, aspect ratio, orientation, quantity, and the intricate contextual factors influencing the
identification and differentiation of these confusable targets.

3.1. Image Collection of the ACD

In this study, a comprehensive dataset was developed to improve the detection and
localization accuracy of airports, specifically targeting the challenge of airport confusion
objects. The dataset encompasses a total of 6359 images, containing 9501 instances of airport
confusion objects. As shown in Table 1, the dataset consists of 1058 airport images, 2176
bridge images, and 1125 highway service area images extracted from the DIOR, as well as
an additional 2000 images collected from Google Earth, representing 2000 different airports.
The spatial resolution of the images ranges from 0.5 m to 50 m, and the size ranges from
800 × 800 to 1024 × 1024 pixels.

The images cover a wide range of seasons, weather conditions, and complex image
patterns, capturing a total of 3369 airports instances, 3967 bridge instances, and 2165 high-
way service area instances. In addition, the images vary in terms of height, viewing angle,
and lighting conditions.The diversity and richness of this dataset provide a comprehensive
representation of various real-world scenarios encountered in airport object detection tasks.

Table 1. Image Collection of the ACD.

Dataset Source Number of Images Instance Image Size Resolution

ACD DIOR 4359 7501 800 × 800 0.5 m∼30 m
Google Earth 2000 2000 800 × 800∼1024 × 1024 20 m∼50 m

3.2. Annotation Method

We utilize horizontal bounding boxes to represent airport targets, given their sparser
distribution. The standard representation of a horizontal bounding box is (c, xc, yc, w, h),
where c indicates the category and (xc, yc) represents the center position of the bounding
box within the image. The values of w and h correspond to the width and height of the
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bounding box, respectively. Figure 2 showcases several samples of the original images
annotated in the Airport Confusing Object Dataset (ACD).

Figure 2. Samples of annotated images in the ACD.

3.3. Dataset Splits

To accurately simulate the sample imbalance and long-tail effect observed in real-world
airport and other confusable target data, we established a training and testing set ratio of
1:9. Specifically, we randomly allocated 635 images to the training set, while the remaining
5724 images were designated as the testing set. This division ensured a comprehensive
evaluation of the model’s performance on diverse data samples.

3.4. Complex Background

As discussed in the preceding section, one of the primary challenges encountered
in airport detection is the presence of airport-like regions within real-world settings, ac-
companied by intricate backgrounds. Figure 2 provides a visual representation of this
phenomenon, where airports are observed across a wide range of backgrounds, such as
grasslands, islands, deserts, mountains, cities, and villages. Moreover, the presence of
lakes, bridges, roads, coastlines, and highway service areas adds further complexity and
interference to the detection process. Consequently, accurately identifying airports amidst
such diverse and complex backgrounds poses a formidable task.
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3.5. Various Sizes of Airport Objects

We conducted pixel size calculations for each airport by measuring the number of
pixels within their respective bounding boxes. These pixel sizes were categorized into
three ranges: small, indicating a pixel size between 0 and 100,000; middle, representing
a pixel size between 100,001 and 200,000; and large, denoting a pixel size exceeding
200,000. In Table 2, we present the distribution of these size categories as a percentage of
the 3369 airport instances found in the ACD. Notably, the pixel sizes of different airport
targets exhibit significant variations and tend to concentrate around the central range. This
characteristic poses a considerable challenge for existing detection methods.

However, despite the ability of this computational approach and classification method
to partially indicate the size and distribution of airports, there are inherent limitations
that cannot be completely avoided. For instance, in cases where the airport is elongated
and oriented at a certain angle, the bounding box may encompass a significant number of
background pixels, leading to the potential misclassification of airport sizes.

Table 2. Various Sizes of Airport Targets.

Intervals Small Middle Large

Proportion 47.7% 37.5% 14.8%

3.6. Various Aspect Ratios of Airports

The aspect ratios play a crucial role in determining the detection accuracy of anchor-
based object detection models, and therefore, we analyzed the aspect ratios of all airport
targets within the ACD. The computed aspect ratios of airport targets in the ACD range
from 0.04 to 38.4. Notably, Table 3 highlights a significant number of airport targets with
large aspect ratios, which greatly influences the effectiveness of airport object detection.
This characteristic also contributes to the realism of our dataset, as it aligns with the real-
world scenario where airport targets can have diverse aspect ratios depending on their
usage. The wide distribution of aspect ratios enhances the generalized performance of the
model.

Table 3. Various Aspect Ratios of Airports.

Range (0, 1) [1, 2) [2, 3) [3, 38.4]

Proportion 44.3% 34.2% 12.3% 9.2%

3.7. Various Orientations of Airports

As illustrated in Figure 3, there are a large number of airports with different orienta-
tions and confusing targets, and the ACD simulates real scenarios in the real world well, but
this distribution of airports with various orientations poses a challenge for airport object de-
tection. Figure 3 illustrates the presence of numerous airports with varying orientations and
their potential confusable targets, which is a common occurrence in real-world scenarios.
The ACD dataset effectively captures this distribution, simulating realistic environments.
The diverse orientations of airports pose a challenge for airport object detection algorithms,
requiring them to handle variations in object rotation and orientation.
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Figure 3. Samples of complex backgrounds in the ACD. The red box shows the labeled location of
the airport.

4. Methodology

To demonstrate the effectiveness and challenge of ACD in the field of airport detection,
we tried to design a novel algorithm based on the TPH-YOLOv5 series as well as the AFSS
(Adaptively Spatial Feature Fusion) mechanism.

4.1. YOLOv5

The YOLOv5 model consists of four key components: input, backbone, neck, and
head. Compared to YOLOv4, it incorporates mosaic data augmentation and the adaptive
anchor box calculation to enhance the network’s generalization capability. Additionally,
it integrates ideas from other detection algorithms, such as the Focus structure and CSP
structure, into the backbone network. Moreover, it introduces the FPN and PAN structures
between the backbone and head. These advancements result in significant improvements
in both speed and accuracy.

The YOLOv5 object detection network includes four versions, namely YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x, as provided in the official code. These versions are
controlled by two parameters: the depth multiple and width multiple. The depth multiple
parameter determines the network depth, while the width multiple parameter determines
the network width. Among the YOLOv5 series, YOLOv5s has the smallest depth and the
smallest width of the feature map. The other three versions are enhanced in terms of depth
and width compared to YOLOv5s.
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Although YOLOv5s has the smallest network and the lowest AP accuracy, YOLOv5s
is lightweight while maintaining accuracy, so we chose YOLOv5s as the benchmark.

4.2. TPH-YOLOv5 Series
4.2.1. TPH-YOLOv5

To address the major challenges in object detection for remote sensing scene im-
agery using YOLOv5, a general detector called TPH-YOLOv5 is proposed specifically for
unmanned aerial vehicle (UAV) scenarios. The schematic diagram of TPH-YOLOv5 is
presented in Figure 4, showcasing the architectural design of the model.
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Figure 4. Network structure diagram of TPH-YOLOv5.

Prediction Head. Due to the significant variations in the pitch and height during data
acquisition, objects in aerial images exhibit diverse scales and appearances. Moreover, these
objects often appear in densely clustered regions. To address the challenge of detecting
tiny objects, TPH-YOLOv5 extends the YOLOv5 model by incorporating an additional
prediction head. Although the inclusion of the extra prediction head introduces notable
computational and memory overhead, it significantly enhances the performance of tiny
object detection.

Transformer Prediction Head. Moreover, in remote sensing scene images, the presence
of complex scenes can lead to similarities between objects of different classes, particularly
in large-scale scenarios. Therefore, it is crucial to extract comprehensive contextual infor-
mation and establish relationships between objects and other instances within the scene.
Drawing inspiration from the Transformer architecture, TPH-YOLOv5 replaces certain SCP
bottleneck modules with a transformer encoder module. This integration allows for the
exploitation of contextual information by generating attentions among pairs of pixels.

Nevertheless, with the increase in the resolution of remote sensing scene images, the
utilization of transformer modules introduces significant computational and storage costs.
Moreover, in order to effectively leverage the channel and spatial information within the
features, TPH-YOLOv5 incorporates the convolutional block attention module (CBAM)
following the CSP bottleneck and transformer encoder module. The presence of large-
scale scenes in remote sensing scene images often results in the confusion of geographical
elements.

Mathematical description of TPH-YOLOv5. For TPH-YOLOv5, we denote the input
image as x, and consequently, the four features extracted by the backbone network can be
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represented as f (i), where i = 1, . . . , 4. As per the network architecture of TPH-YOLOv5,
the formulation of f (i) can be derived as stated in Equation (1).

f (i) = Bi( f (i− 1)), Bi(·) = bi(Conv(·)) (1)

where b1, b2, and b3 represent three, six, or nine CSP bottleneck modules and one SPP
module respectively.

In Neck, f (i) is obtained after a series of operations to obtain another set of fea-
tures, denoted as f ′(i), and the last four features before convolution are defined as f ′′(i),
i = 1, . . . , 4.

4.2.2. TPH-YOLOv5++

Despite the remarkable performance of TPH-YOLOv5, it also exhibits high compu-
tational costs. To address this challenge and achieve significant reductions in the compu-
tational overhead while improving the detection speed, we propose an enhanced variant
called TPH-YOLOv5++. TPH-YOLOv5++ builds upon the foundation of TPH-YOLOv5
and introduces innovative optimizations tailored to optimize the computational efficiency
and enhance the detection speed.

TPH-YOLOv5++ incorporates a CA-Trans in place of the additional prediction heads.
In the VisDrone Challenge 2021, TPH-YOLOv5 achieved a commendable fourth place,
demonstrating competitive performance and closely approaching the first-ranked model
with an average precision (AP) of 39.43%.

Compared to TPH-YOLOv5, TPH-YOLOv5++ uses a CA-Trans to put in f (1) and f ′(2)
to obtain f ′′(2). Compared to TPH-YOLOv5, TPH-YOLOv5++ has no f ′(1) and f ′′(1), and
there is a CA-Trans module, as shown in Equation (2):

y(i) = Conv(CA-Trans( f (i− 1), f ′(i))) (2)

where the symbol CA-Trans(·, ·) represents the CA-Trans module.

4.3. TPH-YOLOv5-Air

The Feature Pyramid Network (FPN) is a widely adopted technique in object detection
for predicting targets at various scales and addressing the common issue of scale variation.
However, the inconsistency between different feature scales remains a primary limitation
of FPN-based detectors. To mitigate this limitation, other researchers have proposed
a data-driven pyramid feature fusion strategy known as ASFF [10]. ASFF suppresses
inconsistencies by learning spatial filters to effectively filter conflicting information, thereby
enhancing the scale invariance of the features.

The key to achieving ASFF lies in the ability to dynamically learn the fusion spatial
weights for each scale’s feature map. This process involves two essential steps: uniformly
rescaling the feature maps and adaptively fusing them.

The TPH-YOLOv5-Air algorithm enhances the feature scale invariance and object
detection capability by seamlessly integrating the ASFF structure into the PANet architec-
ture. Following a similar approach as TPH-YOLOv5++, TPH-YOLOv5-Air employs the
CA-Trans module to fuse feature f (1) and feature f ′(2) , resulting in the generation of
feature f ′′(2). This fusion process not only achieves significant reductions in computational
costs but also leads to an improved detection speed.

By incorporating the principles of AFSS, TPH-YOLOv5-Air introduces a redesigned
PANet architecture into TPH-YOLOv5++. After the feature extraction stage within the
FPN structure, the ASFF algorithm is incorporated at each layer for weighted fusion. The
weight parameters are obtained using the squeeze and excitation operations from SENet,
enabling channel-wise adjustments to enhance the focus on important channels and thereby
improving the model’s performance. The architectural configuration of TPH-YOLOv5-Air
is visually depicted in Figure 5, providing a clear representation of the model’s structure.
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The squeeze operation aims to reduce the dimensionality of feature maps in each
channel by applying global average pooling, resulting in a single real-valued scalar. It can
be perceived as a process of extracting features for individual channels and deriving the
corresponding importance coefficient. The mathematical representation of this process is
depicted in Equation (3).

g(i) = GAP( f ′′(i)) (3)

where GAP(·) denotes the Global Average Pooling (GAP) module.
The excitation operation leverages the importance coefficients obtained from the

squeeze operation to weight the feature maps of each channel. It accomplishes this by
applying a fully connected layer to learn the importance coefficients and obtain a weight
vector. This approach captures the interdependencies between channels and provides a
global description of each feature map. Finally, a fully connected layer is employed to
derive spatial importance weights across different levels. Excitation can be expressed as

e(i) = σ(FC(δ(FC(g(i))))) (4)

Here, the symbol FC(·) represents the module of a fully-connected (FC) layer, δ(·)
represents the ReLU function, σ(·) represents the sigmoid function, and the variable i takes
on values of 2, 3, and 4.

In order to simultaneously represent the features from different layers, it is necessary
to combine the feature maps from each layer, as illustrated in Equation (5).

E(i) = σ(FC(Concat(e(2), e(3), e(4)))) (5)

where Concat(·) denotes the Concat module. Thus, each layer obtains three weights αl
e,

βl
e, and γl

e, denoted as feature mapping from layer l to layers 2, 3, and 4, respectively, and
satisfying αl

e + βl
e + γl

e = 1.
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Figure 5. The network structure diagram of TPH-YOLOv5-Air. It is noteworthy that TPH-YOLOv5-
Air omits the additional probe head introduced in TPH-YOLOv5.

Since the three different levels of features in YOLOv5 have different resolutions and
different numbers of channels, it is imperative to adjust the sampling strategies between
different layers. We define xi→j; i, j = 2, 3, 4 as the feature vector in the feature map adjusted
from the i-th level to the j-th level.

Meanwhile, in order to ensure that the original layer features can have greater weights
in the detection head, we obtain the SE parameters by the softmax function with λl

α, λl
β, λl

γ

as the control parameter, as shown in Equation (6):

αl
s =

eλl
α

eλl
α + eλl

β + eλl
γ

, βl
s =

eλl
β

eλl
α + eλl

β + eλl
γ

, γl
s =

eλl
γ

eλl
α + eλl

β + eλl
γ

(6)

where λl
α, λl

β , and λl
γ represent the feature maps obtained by convolving the input xxtoj

with a 1× 1 kernel, which satisfies αl
s + βl

s + γl
s = 1.
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By combining Equations (5) and (7), the final weights are obtained, as shown in
Equation (7):

αl =
αl

e + αl
s

2
, βl =

βl
e + βl

s
2

, γl =
γl

e + γl
s

2
(7)

The following equation can be obtained from Equations (6) to (7):

αl + βl + γl = 1 (8)

The architecture of the adaptive parameter adjustment module is illustrated in Figure 6
below.

The spatial importance weights are multiplied by the feature vectors to obtain
Equation (9), which represents the feature output at the j-th layer.

y(j) = αl x2→j + βl x3→j + γl x4→j (9)

As a result, the features from all levels can be adaptively aggregated across different
scales. Since the aggregation is performed by addition, it is necessary to ensure that the
features from different layers have the same spatial size and channel dimensions. Therefore,
upsampling or downsampling, as well as channel adjustment, is required for the features
from different layers.

C

Conv 1×1 Conv 1×1 Conv 1×1

FC ReLU FC

+ W

softmax

softmax

APAM

Figure 6. Adaptive parameter adjustment module.

5. Experiment
5.1. Dataset and Settings
5.1.1. Dataset

In this study, the ACD mentioned earlier was utilized. The dataset comprises 6359 im-
ages with a total of 9501 instances, covering various seasons, weather conditions, and
complex image patterns. The images in the dataset exhibit a spatial resolution ranging from
0.5 to 50 m, while their dimensions span from 800 × 800 to 1024 × 1024 pixels. The ACD
dataset is divided into 636 training images, 5087 validation images, and 636 testing images.

5.1.2. Evaluation Metrics

In this study, we employed the evaluation metrics of AP, AP50, and AP75. The first
metric, AP, represents the AP computed over a range of IoU thresholds (0.50 to 0.95 with
a step size of 0.05). In addition, we considered other performance evaluation metrics,
such as precision, recall, the model parameter size (Params), the number of floating-point
operations per second (FLOPs), and the number of frames per second (fps).
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5.1.3. Experimental Setup

We implemented our method on the Windows operating system and conducted all
experiments on an NVIDIA RTX3080ti GPU with 12 GB of memory. These methods were
developed using PyTorch 1.10.1, conda 4.12.0, and CUDA 11.7, with pretraining performed
on the COCO dataset.

For the training of these methods on the ACD dataset, a total of one hundred iterations
were conducted, where the initial three iterations were dedicated to the warm-up. To
validate the effectiveness of the algorithm, we used uniform hyperparameters based on
the default hyperparameters of YOLOv5 across different comparison models and our TPH-
YOLOv5-Air, including an initial learning rate of 0.01, a momentum of 0.937, and a weight
attenuation of 0.0005 with the input image size adjusted to 640 × 640 and a batch size of 16.

To assess the efficacy of the algorithm, we adopted the following hyperparameters: an
initial learning rate of 0.01, a momentum of 0.937, a weight decay of 0.0005, an input image
size resized to 640 × 640, and a batch size of 16. These hyperparameters were determined
through multiple comparative experiments, and they proved to be nearly optimal choices
for all models selected in this study.

5.2. Comparison with State-of-the-Art Methods on the ACD

To evaluate the effectiveness of the ACD dataset in the domain of airport detection and
assess the performance of our proposed algorithm, we conducted experiments to compare
our model with the current SOTA methods on the ACD dataset. As presented in Table 4,
our TPH-YOLOv5-Air surpasses existing methods and achieves new SOTA results across
all three evaluation metrics. Building upon TPH-YOLOv5++, our TPH-YOLOv5-Air further
enhances the performance of these metrics, achieving SOTA results of 49.4%, 80.5%, and
53.8% for AP, AP50, and AP75, respectively. This represents improvements of 2%, 1.6%, and
2.4% compared to the previous best-performing method. In addition to the aforementioned
metrics, the results demonstrate that TPH-YOLOv5-Air maintains a competitive fps rate,
ensuring real-time processing capabilities suitable for practical applications in remote
sensing scenarios. Moreover, our algorithm achieves excellent precision and recall scores,
indicating its proficiency for accurate detection while minimizing false positives and
negatives. Regarding the computational efficiency, TPH-YOLOv5-Air showcases promising
results with relatively low Params and GFLOPs, making it a cost-effective solution for
airport detection tasks.

Table 4. The results of our method and the current SOTA method on the ACD validation set.

Method AP [%] AP50 [%] AP75 [%] Precision [%] Recall [%] Params GFLOPs fps

RetinaNet 42.6 61.7 27.8 77.8 65.7 38.0 M 150.0 17.0

Faster R-CNN 40.2 59.6 25.5 75.5 67.9 41.4 M 134.0 5.0

YOLOv5 45.8 77.9 50.2 81.8 72.6 7.0 M 16.0 25.1

YOLOv7 40.4 70.9 41.5 75.3 65.1 37.2 M 105.1 18.3

YOLOv8 47.1 77.9 48.1 81.9 72.2 11.1 M 28.7 48.8

TPH-YOLOv5 44.6 77.4 49.1 80.6 70.2 7.3 M 25.2 20.3

TPH-YOLOv5++ 47.4 78.9 51.4 83.8 75.6 15.4 M 16.5 27.6

TPH-YOLOv5-Air 49.4 80.5 53.8 85 74.4 15.8 M 16.7 24.4

Based on the results presented in Table 4, we observed that YOLOv5 exhibited a
superior performance compared to YOLOv7 and TPH-YOLOv5. A closer analysis reveals
that our ACD validation set encompasses diverse instances of confusing objects with
varying spatial resolutions and sizes. It is likely that the architectural design and feature
representation capabilities of YOLOv5 contributed to its exceptional performance in this
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context. These factors enable YOLOv5 to effectively capture the nuanced features and
variations present in the challenging task of airport object detection.

However, it is important to highlight that our proposed TPH-YOLOv5-Air algorithm
surpassed YOLOv5 in terms of its performance on the ACD validation set. This observation
emphasizes the algorithm’s effectiveness in addressing the specific challenges associated
with airport object detection in remote sensing scenes.

Furthermore, we extended our experiments to the publicly available remote sensing
dataset NWPU VHR-10 [35]. The results, as presented in Table 5, demonstrate the ef-
fectiveness of our method with AP, AP50, and AP75 values of 62.0%, 89.8%, and 71.2%,
respectively. These results surpass those of YOLOv5 and are comparable with those of
YOLOv8. Moreover, we also observed slight improvements over other SOTA methods,
such as the Faster R-CNN. These results highlight the generalization and robustness of our
proposed method across various datasets and its competitive performance compared to
SOTA methods.

Table 5. Results of our method and current SOTA methods on NWPU VHR-10.

Method AP [%] AP50 [%] AP75 [%]

Faster R-CNN 56.5 86.5 66.9

YOLOv5 57.1 88.2 69.7

YOLOv8 62.7 90.5 72.3

TPH-YOLOv5-Air 62.0 89.8 71.2

5.3. Ablation Study
5.3.1. ASFF

To assess the effectiveness of the proposed algorithm, we conducted ablation experi-
ments on the ASFF and SE modules, using TPH-YOLOv5++ as the baseline. The results of
these experiments are presented in Table 6.

The performance of the TPH-YOLOv5-Air approach was validated on the remote
sensing scene image datasets. Notably, a significant improvement in AP was observed,
increasing from 47.4% to 49.4%. Further analysis revealed that the majority of this improve-
ment can be attributed to the ASFF and APAM modules.

Table 6. Comparison of ASFF and other fusion methods.

Methods AP [%] AP50 [%] AP75 [%] Params GFLOPs

Baseline 47.4 78.9 51.4 15.4 M 16.5

Baseline+ASFF 48.5 79.2 51.3 15.6 M 16.6

Baseline+same weight (αl , βl , γl = 0.33) 48.7 79.5 51.2 15.4 M 16.5

Baseline+ASFF+APAM 49.4 80.5 53.8 15.8 M 16.7

5.3.2. Loss Function

Various loss functions were experimented with to enhance the object detection per-
formance. The CIoU loss considers overlap, size, and aspect ratio differences between the
predicted and ground truth bounding boxes, resulting in a better localization accuracy
and convergence speed. However, the imbalanced training sample distribution posed
a challenge with fewer high-quality anchor boxes and more low-quality samples with
significant errors. To address this, alternative loss functions such as EIOU loss, Focal loss,
and Focal EIOU loss were explored. Table 7 shows that the Focal EIOU loss outperformed
the others.
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Table 7. Different loss functions.

Loss Function AP [%] AP50 [%] AP75 [%]

CIoU Loss 48.5 79.4 52.6

EIOU Loss 49.2 79.5 52.7

Focal Loss 49.1 79.8 53.1

Focal EIOU Loss 49.4 80.5 53.8

5.3.3. Fusion Method

In order to enhance the target detection effectiveness, we conducted ablation ex-
periments on various post-processing methods. Weighted Box Fusion (WBF) is a post-
processing technique used in object detection algorithms, which aims to fuse the detection
results from multiple models to enhance the detection accuracy [36]. In Table 8, the re-
sults demonstrate that WBF exhibits a slightly better performance compared to NMS and
Soft-NMS.

Table 8. Different post-processing methods.

Fusion Function AP [%] AP50 [%] AP75 [%]

NMS 49.3 79.8 52.9

Soft NMS 49.1 80.2 53.5

WBF 49.4 80.5 53.8

5.4. Visualization Experiment

This section encompasses the comprehensive findings derived from the visualization
experiment conducted on the integrated model, which incorporates all of the employed
techniques and methodologies.

5.4.1. Visualization of Heatmaps

The generated heatmaps effectively capture and highlight the salient features of
detected objects, providing a valuable tool for accurate object analysis and understanding.
As illustrated in Figure 7, (a) represents the original image, while (b), (c), and (d) display
the heatmaps generated by YOLOv8, TPH-YOLOv5++, and TPH-YOLOv5-Air, respectively.
The heatmaps generated by YOLOv8 indicate the presence of a significant amount of
background in the regions of interest. On the other hand, the heatmaps produced by
TPH-YOLOv5++ demonstrate a strong focus on local regions but lack global attention. In
contrast, TPH-YOLOv5-Air exhibits a superior performance in terms of both local and
global attention.

5.4.2. Visualization between TPH-YOLOv5++ and TPH-YOLOv5-Air

In order to provide a visual assessment of the effectiveness of TPH-YOLOv5-Air, we
present visualizations of the predicted outcomes generated by both models on the ACD
dataset. These visualizations are displayed in Figure 8. The visualization results vividly
demonstrate the superiority, robustness, and adaptability of TPH-YOLOv5-Air in tackling
the challenging task of airport target detection in complex remote sensing scenarios.

The experimental results clearly demonstrate the outstanding performance and quality
of our method in handling challenging object detection tasks with complex backgrounds,
diverse scales, and unique viewpoints. Notably, TPH-YOLOv5-Air excels in accurately
localizing the objects of interest while providing a comprehensive portrayal of their spatial
extent and intensity, thereby presenting a comprehensive characterization of their intrinsic
attributes. These findings validate the efficacy and superiority of our methodology in ad-
dressing the intricacies inherent in remote sensing scene imagery, contributing to enhanced
object detection and analysis in this domain.
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As illustrated in Figure 8, (a) represents the original image, (b) displays the predictions
from YOLOv8, (c) displays the predictions from TPH-YOLOv5++, and (d) showcases the
predictions from TPH-YOLOv5-Air. The first comparison indicates that TPH-YOLOv8
exhibits false positive detections in complex backgrounds, while TPH-YOLOv5++ lacks
precision in bounding box placement. The second comparison reveals that both YOLOv8
and TPH-YOLOv5++ mistakenly identify one airport as multiple instances. The third and
fourth comparisons demonstrate the presence of various confusing objects in complex
backgrounds, such as coastlines, roads, and bridges. In this scenario, TPH-YOLOv5-Air
demonstrates higher robustness, whereas YOLOv8 and TPH-YOLOv5++ exhibit instances
of missed detections. Additionally, TPH-YOLOv5-Air achieves higher confidence levels for
target identification.

The visualized results provide compelling evidence of TPH-YOLOv5-Air’s superior
performance, showcasing its ability to effectively handle the complexities associated with
airport target detection in remote sensing scene imagery. These findings underscore the
significant advancements achieved by our proposed model in terms of accuracy, robustness,
and adaptability in this specific domain.

(a) Original Image (b) YOLOv8 (c) TPH-YOLOv5++ (d) TPH-YOLOv5-Air

Figure 7. Comparison of original images and heatmaps for complex background and scale-variant im-
ages. The red box shows the labeled location of the airport.
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(a) Original Image (b) YOLOv8 (c) TPH-YOLOv5++ (d) TPH-YOLOv5-Air

Figure 8. A visualization of the prediction results obtained by TPH-YOLOv5++ and TPH-YOLOv5-
Air on the ACD dataset is presented for analysis. The red box shows the labeled location of the
airport.

6. Conclusions

In this paper, we propose TPH-YOLOv5-Air, a novel airport detection network based
on ASFF. We started by constructing the ACD, specifically designed for remote sensing
scenarios, comprising 9501 instances of airport confusion objects. Based on our previous
work on TPH-YOLOv5++, we incorporated the ASFF structure, which not only improved
the feature extraction efficiency but also enriched the feature representation.Furthermore,
we introduced an ASFF strategy based on the APAM, enhancing the feature scale invariance
and improving the airport detection performance.

When evaluating TPH-YOLOv5-Air on the ACD dataset, it achieved a mean average
precision (mAP) of 49.4%, demonstrating a 2% improvement over the previous TPH-
YOLOv5++ and a 3.6% improvement over the original YOLOv5 network. Comparative
experiments and ablation studies provided empirical evidence supporting the effectiveness
of the proposed method in addressing detection errors and omissions of airport targets in
airport scenes and thereby enhancing the detection accuracy of airport objects in complex
backgrounds.These findings highlight its ability to handle the complexity associated with
airport object detection in remote sensing scene imagery. The visualizations and analyses
further validate the effectiveness and interpretability of TPH-YOLOv5-Air.

However, this method also has certain limitations. The experiments focused on only
three types of confusing elements. Future work will expand the dataset to encompass a
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broader range of confounding objects for automatic identification and detection. Addition-
ally, the model exhibits omissions in detecting extremely small-sized objects, necessitating
further enhancements to improve its detection capabilities.
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