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Abstract: Urban forests globally face severe degradation due to human activities and natural disasters,
making deforestation an urgent environmental challenge. Remote sensing technology and very-
high-resolution (VHR) bitemporal satellite imagery enable change detection (CD) for monitoring
forest changes. However, deep learning techniques for forest CD concatenate bitemporal images
into a single input, limiting the extraction of informative deep features from individual raw images.
Furthermore, they are developed for middle to low-resolution images focused on specific forests such
as the Amazon or a single element in the urban environment. Therefore, in this study, we propose
deep learning-based urban forest CD along with overall changes in the urban environment by using
VHR bitemporal images. Two networks are used independently: DeepLabv3+ for generating binary
forest cover masks, and a deeply supervised image fusion network (DSIFN) for the generation of a
binary change mask. The results are concatenated for semantic CD focusing on forest cover changes.
To carry out the experiments, full scene tests were performed using the VHR bitemporal imagery
of three urban cities acquired via three different satellites. The findings reveal significant changes
in forest covers alongside urban environmental changes. Based on the accuracy assessment, the
networks used in the proposed study achieved the highest F1-score, kappa, IoU, and accuracy values
compared with those using other techniques. This study contributes to monitoring the impacts of
climate change, rapid urbanization, and natural disasters on urban environments especially urban
forests, as well as relations between changes in urban environment and urban forests.

Keywords: deep learning; transfer learning; forest cover change detection; very high resolution
(VHR); DeepLabv3+; deeply supervised image fusion network (DSIFN)

1. Introduction

Urban forests, consisting of urban trees, grass, and forests, are components of urban
ecosystems providing a full spectrum of services such as alleviating urban heat, enhancing
air quality, reducing stormwater runoff, and reducing greenhouse gas emissions, benefiting
humans directly or indirectly [1–4]. However, urban forests around the world are under
the significant pressure of degradation due to various reasons, including natural disasters
and human activities such as wildfires, floods, new constructions, or illegal logging [5]. As
a result, these days deforestation has become one of the most intractable environmental
problems [6]. Generally, deforestation monitoring is usually conducted through tedious
manual procedures including visual inspections, which require frequent visits to forest
regions and can be costly and dangerous [7].

In the last few decades, with the advancements in remote sensing technology and the
availability of bitemporal satellite imagery, change detection (CD) is being used for forest
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change monitoring [8]. In traditional methods, either vegetation masks for bitemporal
images are generated by using a conventional vegetation detection technique such as
the normalized difference vegetation index (NDVI) [9], or CD is carried out by using
traditional approaches such as pixel-based CD or object-based CD [10]. The NDVI takes
advantage of different solar radiation absorption phenomena of green plants in the red and
near-infrared spectral bands [11]. However, vegetation masks generated by NDVI from
very-high-resolution (VHR) satellite images of urban environments can suffer from noise
because of the abundance of detailed information in VHR imagery [12,13]. Furthermore,
researchers have shown that pixel-based CD techniques are sensitive to noise because
they do not fully consider the spatial context [14,15]. On the other hand, object-based CD
approaches showed better accuracies [16]. However, the effectiveness of these approaches
depends on image segmentation quality [17]. Because of the complex land cover types such
as large urban areas in VHR satellite imagery, the over- and under-segmentation of objects
occur, reducing the efficiency and accuracy of object-based CD techniques [17]. Moreover,
these techniques are usually developed for a specific dataset or site, meaning that similar
results cannot be achieved when applied to a new dataset or site [18].

The use of deep learning networks reduces the number of manual steps in monitoring
changes via automating feature extraction, avoiding feature selection, and reducing man-
ual steps during CD [19]. Recently, deep learning-based techniques have demonstrated
considerable success in a range of applications, including segmentation and CD, particu-
larly in the context of forest detection and forest change monitoring [20–24]. For example,
researchers in [25] have performed forest cover CD in incomplete satellite images by using
a deep neural network in a data-driven format for automatic feature learning. In another
study, land cover classification and CD using Sentinel-2 satellite data were carried out
in which a fully convolutional network was combined with a long short-term memory
network [26]. A baseline Unet model and Sentinel-2 data for regular CD in a Ukrainian
forest were used [27]. Furthermore, analysts introduced a semantic segmentation-based
framework for forest estimation and the CD technique, in which multitemporal Landsat-8
images were employed into a trained U-net model, and binary forest cover maps were
generated. Afterward, the pixel-wise difference between two binary maps (i.e., pre-change
and post-change binary maps) was calculated for generating a change map [28]. In another
study, forest CD in bi-temporal satellite images is performed by generating anenhanced
forest fused difference image, extracting changed and unchanged regions of forest with a
recurrent residual-based Unet network [29]. Moreover, coastal forest CD was carried out
by using convolutional neural networks (CNNs) [30].

However, most of the CD networks are modified from networks that are proposed for
single-image semantic segmentation tasks. In these networks, bitemporal images are con-
catenated in order to meet the requirement of a single image input because of which early
fusion networks fail to provide the informative deep features of individual raw images
for image reconstruction [31]. In [31], Zhang et al. addressed this problem by introducing
a deeply supervised image fusion network (DSIFN) for CD in VHR imagery. In order to
generate highly representative deep bitemporal features, feature extraction is conducted via
an independently trained fully convolutional two-stream architecture [31]. Furthermore,
among different semantic segmentation networks, analysts have demonstrated the effec-
tiveness of Deeplabv3+ [32] for various types of vegetation extraction and detection [33–38].
With Deeplabv3+, high-level features of different scales can be extracted using atrous
spatial pyramid pooling (ASPP). Additionally, Deeplabv3+ combines multiple features
with the encoder–decoder approach, making it a highly efficient and accurate semantic
segmentation method [39].

Earlier mentioned techniques either used low-resolution or middle-resolution satellite
images in which small changes related to vegetation could be easily ignored or remain
undetected. The final forest CD result may suffer from a large amount of false detections
or miss detections when tested on VHR bitemporal imagery. Also, these studies focused
on huge regions such as Amazon forests and did not consider forests around urban areas
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where changes in forest and other urban elements occur simultaneously due to rapid
urban expansions. Additionally, forest changes in these regions are small compared to
other change in an urban environment, and a deep learning technique used to directly
detect changes in forest cover may suffer from the class imbalance problem because non-
change regions in the scene will be huge compared to the changes in the forest region
only. By utilizing pre- and post-change binary forest covers with a binary change mask,
forest change can be monitored together with overall changes in an urban environment.
Therefore, in this study, we addressed the priorly mentioned problems by benefiting
from Deeplabv3+ and DSIFN. We introduced transfer learning-based forest change (i.e.,
increase or decrease) detection together with the detection of overall urban changes in VHR
bitemporal satellite imagery in a semantic CD manner [40]. We trained the two networks
independently on open-source datasets and then performed transfer learning using our
own datasets. Trained Deeplabv3+ was used for the generation of binary forest masks
from both pre- and post-change VHR images, while DSIFN was used for binary change
mask generation.

The contributions of the proposed study are as follows: (1) the utilization of two
networks for CD, in a semantic CD manner, in an urban environment while focusing on
forest cover decrease as well as increase concerning overall changes in the scene, (2) the
usage of VHR bitemporal imagery for deforestation detection, (3) the utilization of the
detected binary forest mask of pre- and post-change imagery for reducing false detections,
missed detections, and salt-and-pepper noise in the final result, and (4) the transfer learning
of both networks trained on open-source datasets to our own VHR imagery dataset.

2. Datasets

For forest detection, a remote sensing land cover dataset for domain-adaptive semantic
segmentation known as LoveDA [41] was used. The dataset consists of 2522 training images
and 1669 validation images composed of 1024 × 1024 pixels with red, green, and blue
bands. Labels have seven classes such as buildings, roads, water, barren, forest, agriculture,
and background. However, as our task is related to urban forest detection, we extracted
only the forest class from the labels and combined other classes with a background class.
Moreover, due to memory issues, we cropped each image into four image patches of
512 × 512 pixels; the final dataset became 10,088 images for training and 6676 for validation
with two classes (i.e., forest and background). For performing change detection, we used
the dataset provided by the authors of DSIFN. Initially, the dataset consisted of 3600 images
composed of 512 × 512 pixels with red, green, and blue spectral bands for training and
340 for validation. However, we reduced the image size to 128 × 128 pixels.

For the transfer learning of both networks and the evaluation of the proposed method-
ology, we generated datasets for each network from VHR bitemporal images of three sites
acquired via three different satellites. The images were acquired over cities in South Korea
such as Sejong, Daejeon, and Gwangju via Kompsat-3, QuickBird-2, and WorldView-3,
respectively. The overall description of bitemporal images is provided in Table 1. Binary
forest labels for each bitemporal image and binary CD labels were generated through the
visual inspection and manual digitization of images. Bitemporal images together with
binary forest labels are given in Figure 1, and their CD labels are shown in Figure 2. Briefly,
2800 image patches and corresponding label patches composed of 512 × 512 pixels for
transfer learning for a forest detection network were generated from the bitemporal images
of Sites 1 and 3. We extracted the patches with NIR, red, and green spectral bands because
red and NIR bands give useful information regarding the vegetation in satellite images.
Similarly, for the change detection network, 2800 image patches at a size of 128 × 128 pixels
were generated with red, green, and blue spectral bands. The patches consisted of pre-
change, post-change, and CD label images. Site 2 was utilized as the test dataset to evaluate
the performance of transfer learning.
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Table 1. Specifications of VHR bitemporal satellite images.

Sites Site 1 (Sejong) Site 2 (Daejeon) Site 3 (Gwangju)

Sensor Kompsat-3 QuickBird-2 WorldView-3

Acquisition Date Pre-change (16/11/2013)
Post-change (26/02/2019)

pre-change (12/2002)
Post-change (10/2006)

Pre-change (05/2017)
Post-change (05/2018)

Spatial Resolution 2.8 m 2.44 m 1.24 m

Bands Blue, green, red, NIR Blue, green, red, NIR Blue, green, red, NIR

Size 3879 × 3344 pixels 2622 × 2938 pixels 5030 × 4643 pixels
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3. Methodology

The proposed method is mainly divided into three steps: (1) binary forest mask
generation by using a well-known semantic segmentation technique, Deeplabv3+, (2) binary
change mask generation through DSIFN, and (3) forest change monitoring with respect to
overall changes in the scene. The flowchart of the proposed method is provided in Figure 3.
VHR bitemporal images are independently employed in DeepLabv3+ for urban forest mask
generation. At the same time, these images are given as inputs to DSIFN for binary change
mask generation. Then, the three binary masks are combined to generate a semantic CD
result and forest change is monitored with overall changes.
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3.1. Binary Forest Mask Generation

In this study, to generate binary forest masks for VHR bitemporal satellite images,
Deeplabv3+ was used. Deeplabv3+ is a semantic segmentation network designed for image
classification at the pixel level and is developed for improving the segmentation results.
It extends by adopting an encoder–decoder architecture and improving the decoder via
the use of ASPP. The encoder uses a pre-trained CNN for generating high-level features
from the input image. The input image passes through multiple convolutional layers
for decreasing the spatial dimensions and enhancing the feature channels. Multi-scale
contextual information is generated at the end of the encoder module by the ASPP. The
decoder module is responsible for restoring the spatial resolution of a segmented image.
This is achieved by upsampling the feature maps and incorporating fine-grained features
between the encoder and decoder stages. Detailed information regarding the architecture
of DeepLabv3+ can be found in [32].

In this study, ResNet-50 trained on ImageNet was used for extracting high-level
features. Through a series of convolutional layers, the spatial dimensions of the images were
reduced while enhancing the feature channels. ASPP generated feature maps that contained
contextual information at different scales, and enhanced the model’s ability to understand
and segment forest regions accurately. In the decoder module, the spatial resolution of the
forest segmentation map was retrieved. This process ensured that detailed information was
maintained during the upsampling process, resulting in a higher-resolution forest mask.
Finally, pixel-level classification was performed using a sigmoid activation function. The
sigmoid function transformed the pixel values to a range between 0 and 1, representing the
probability of each pixel belonging to the forest class. To obtain a binary mask, a manual
thresholding approach was employed in this study. Furthermore, both pre-change and
post-change images were independently inputted into DeepLabv3+, and binary forest
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masks were then generated for each image. The overall architecture of binary forest mask
generation is illustrated in Figure 4.
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3.2. Binary Change Mask Generation

To generate a binary change mask, we used DSIFN introduced in [31]. The main
idea behind the DSIFN is to develop a deep learning-based network that can effectively
fuse information from two bi-temporal remote sensing images and perform CD. DSIFN
preserves the change region boundaries and reconstructs high-quality maps by extracting
deep bitemporal features independently and via the layer-wise concatenation of deep
features and image difference features. DSIFN is divided into three streams. The first
stream extracts deep features from the pre-change image using layers of a pre-trained
VGG16 network. The second stream extracts deep features from the post-change image by
sharing the structure and parameters of the first stream. The extracted features from pre-
and post-change images are stacked at the same scales in order to supply both low-level
and high-level raw image features to the third stream (i.e., CD stream). Overall, the first
two streams consist of several convolutional layers each followed by a non-linear activation
function such as the rectified linear unit (ReLU).

CD stream uses a difference discrimination network responsible for upsampling the
features back to the original resolution and generating the fused CD map. The lowest layers
of the first two streams acquire broad receptive fields and condense global information
after progressive abstraction using layered convolutional and pooling layers. Therefore, the
last layers of these streams serve as an initial input to the difference discrimination network
to generate a preliminary global change map of a small size. Earlier layers that include the
low-level information of input images are skip-connected to a difference discrimination
network with the same scales. Three convolutional layers are applied to generate compact-
sized difference image features. For features map refinement across the spatial dimensions,
a spatial attention module is used. Then, the image difference feature maps are upsampled
for enlarging feature maps. For fusing raw deep features with image difference features, a
channel attention module is used. A detailed explanation regarding DSIFN can be found
in [31]. The overall network architecture of DSIFN is provided in Figure 5.
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3.3. Forest Change Monitoring

For generating the final semantic change result, firstly, pre- and post-change forest
masks obtained through the proposed forest detection technique were separately utilized
with a change mask generated via a change detection network (expressed in Equation (1))
for extracting the forest change pixels from the two forest masks. The pre- and post-
change binary forest maps were used for identifying forest cover decrease (Forestd) and
increase (Foresti).

Forestd =

{
1, i f MaskT1 ∩MaskC = 1
0, else

Foresti =

{
1, i f MaskT2 ∩MaskC = 1
0, else

(1)

where MaskT1 and MaskT2 are the pre- and post-change binary forest masks, and MaskC
denotes the change mask.

From Equation (1), after the integration of the two masks, a binary forest change map
was generated (e.g., MaskT1 and MaskC for the forest decrease map, and vice versa) by
assigning 0 to the unchanged forest pixels and changed non-forest pixels, and 1 to the
changed forest pixels. Via the aforementioned process, the forest maps’ pixels belonging to
the change in the two masks could be preserved and the pixels related to non-change forest
regions could be eliminated.

After concatenating the bitemporal binary forest increase and decrease masks and the
binary CD mask, we created a comprehensive semantic change map as shown in Figure 6.
The semantic change map provides a detailed representation of the forest cover changes
during the specific period under consideration. The semantic change map includes four
classes: forest cover increase, forest cover decrease, non-forest change regions, and falsely
change regions.

3.4. Validation

To assess the overall extent of changes in the scene, we calculated the percentage of
overall changed regions by dividing the total number of changed pixels in the semantic
change map by the total number of pixels in the scene. To gain further insights into the
forest cover changes, we analyzed the forest cover decrease and increase individually. The
percentage of forest cover decrease is determined by dividing the total number of pixels
indicating a decrease in forest cover by the total number of changed pixels in the semantic
change map. Similarly, the percentage of forest cover increase is calculated by dividing the
total number of pixels indicating an increase in forest cover by the total number of changed
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pixels. These metrics show the trend of forest cover change with respect to other urban
changes.
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Firstly, the two networks were trained independently on open-source datasets for each
task. Then, transfer learning was performed using our dataset. Tests were carried out by
using the full-scene bitemporal images of Site 2 as well as Sites 1 and 3. For the quantitative
evaluation of networks used in this study, the F1-score, kappa, accuracy, intersection
over union (IoU), false alarm rate (FAR), and miss rate (MR) were calculated using each
predicted result and the manually digitized labels. The binary forest masks generated via
DeepLabv3+ in this study were compared with the binary forest masks generated via
Unet [42], SegNet [43], and the NDVI. Moreover, we compared the final semantic change
detection result using the proposed method with the results generated by combining the
change detection map in this study with the deforestation detection result generated by
using unsupervised deforestation detection, which was introduced in [13].

4. Experimental Results

The networks were trained using Tensorflow, AMD Ryzen 7 5800X 8-Core Processor
CPU with 64.0 GB RAM, and NVIDIA GeForce RTX 3060 GPU. Networks were trained
via the open-source datasets on several epochs, and the ones with the best accuracies were
chosen (i.e., 25 for DeepLabv3+, and 60 for DSIFN). A binary cross-entropy loss and an
Adam optimizer were used for both networks. The minimum and maximum learning rates
during training with a learning rate reduction for DeepLabv3+ were set to 0.000001 and
0.0001, and those for DSIFN were set to 0.000001 and 0.0001, respectively. The maximum
learning rate was set differently for both networks according to the variations in the training
and validation accuracies and losses. The batch size was set to 8 and 32 for DeepLabv3+
and DSIFN, respectively.

After training networks on open-source datasets, the final training and validation
accuracies, and losses for DeepLabv3+ were 0.954 and 0.937, and 0.115 and 0.175, while
those for DSIFN were 0.958 and 0.926, and 0.095 and 0.185, respectively.

Then, the transfer learning of both networks was performed using our own dataset.
During transfer learning, the epochs with better accuracies achieved via DeepLabv3+,
and DSIFN were 100, and 40, respectively. The training and validation accuracies of
DeepLabv3+, and DSIFN were 0.942 and 0.903, and 0.991 and 0.972, respectively. Simi-
larly, the losses were 0.148 and 0.267, and 0.022 and 0.087. The training and validation
performance of the two neural networks are visually represented in Figures 7 and 8, where
accuracy and loss metrics are depicted.
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4.1. Binary Forest Masks

Firstly, full scene binary forest masks were generated using the bitemporal images of
the three sites. Patches were generated from the pre-change VHR image of each site. Then,
a trained Deeplabv3+ network was used to predict and thus generate a forest cover mask
from the patches. The resulting patches after prediction were combined to generate the
same size result as that of the original image for each site. Afterward, multiple thresholds
were tested and the one with the best results such as 0.4 was selected for binary forest mask
generation. A similar process was repeated using a post-change VHR image. After binary
forest mask generation for both (i.e., pre-change and post-change) images, we visually
compared the results with the binary forest masks generated by using the NDVI. For
generating the masks using the NDVI, a threshold with the best accuracy was selected.
The binary forest masks generated via DeepLabv3+ in this study, and the NDVI from the
pre-change image of each site are shown in Figure 9 along with label images.
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Compared to the label images (i.e., Figure 9c,f,i) and the results generated via the
NDVI (Figure 9a,d,g), the proposed method effectively detected forest covers shown in
Figure 9b,e,h. Through a visual inspection, binary forest covers generated via the NDVI
for all three sites have missed as well as falsely detected regions, which makes them seem
like salt-and-pepper noise. Furthermore, in the binary results generated via the NDVI,
trees or grass beside roads and streams are detected as forest covers, while the proposed
method effectively differentiated between grass and forest. The quantitative assessment of
predicted results using the proposed technique, Unet, SegNet, and the NDVI for bitemporal
images at each site is presented in Table 2. When comparing the forest masks extracted via
Unet, SegNet, and the NDVI, the proposed method consistently demonstrated superior
performance, as indicated by the higher F1-scores, kappa, IoU, and accuracy values across
all sites. The values obtained from the Unet and SegNet were lower than those generated via
the proposed method. This discrepancy can be attributed to the fact that these techniques
exhibited deficiencies in accurately detecting forest cover in bitemporal images, resulting in
instances of both missed detections and false detections. Conversely, the values generated
via the NDVI were considerably low because of the copious amount of salt-and-pepper
noise, as well as falsely detected forest covers.

Table 2. Quantitative assessment of predicted forest cover masks.

Site Technique Images F1-Score Kappa IoU Accuracy FAR MR

1

Proposed method Pre-change 0.908 0.855 0.831 0.933 0.0679 0.0967
Post-change 0.874 0.813 0.777 0.917 0.062 0.147

Unet
Pre-change 0.887 0.831 0.797 0.924 0.089 0.099
Post-change 0.849 0.778 0.738 0.903 0.082 0.123

SegNet Pre-change 0.902 0.843 0.822 0.925 0.120 0.098
Post-change 0.774 0.686 0.631 0.871 0.092 0.186

NDVI
Pre-change 0.789 0.665 0.753 0.840 0.198 0.079
Post-change 0.825 0.724 0.694 0.870 0.160 0.064

2

Proposed method Pre-change 0.915 0.887 0.844 0.958 0.032 0.68
Post-change 0.902 0.872 0.821 0.952 0.037 0.080

Unet
Pre-change 0.903 0.870 0.823 0.950 0.012 0.398
Post-change 0.894 0.857 0.809 0.944 0.032 0.203

SegNet Pre-change 0.889 0.846 0.801 0.937 0.102 0.063
Post-change 0.868 0.814 0.767 0.922 0.145 0.035

NDVI
Pre-change 0.733 0.669 0.617 0.892 0.012 0.398
Post-change 0.841 0.792 0.620 0.925 0.032 0.203

3

Proposed method Pre-change 0.853 0.834 0.744 0.965 0.035 0.093
Post-change 0.836 0.816 0.719 0.963 0.026 0.102

Unet
Pre-change 0.827 0.801 0.705 0.954 0.047 0.099
Post-change 0.820 0.792 0.695 0.950 0.059 0.102

SegNet Pre-change 0.823 0.799 0.699 0.958 0.124 0.098
Post-change 0.774 0.746 0.618 0.951 0.102 0.120

NDVI
Pre-change 0.643 0.601 0.551 0.924 0.037 0.429
Post-change 0.525 0.475 0.473 0.905 0.039 0.546

4.2. Change Detection

After obtaining forest masks, in the same manner, a full scene test on the CD network
trained in this study was carried out for CD mask generation using bitemporal images of
each site. The final CD results were compared with the CD label images. The predicted
results demonstrated outstanding performance metrics across Sites 1, 2, and 3. Specifically,
for Site 1, the F1-score was 0.815, the kappa coefficient was 0.815, the accuracy was 0.950,



Remote Sens. 2023, 15, 4285 12 of 18

and the IoU was 0.737. At Site 2, the F1-score reached 0.824, the kappa coefficient was
0.817, the accuracy was 0.987, and the IoU was 0.701. Similarly, for Site 3, we observed an
F1-score of 0.823, a kappa coefficient of 0.811, an accuracy of 0.977, and an IoU of 0.700. The
FAR and MR of each site were 0.036 and 0.124, 0.005 and 0.201, and 0.006 and 0.243. The
predicted CD masks and CD labels of each site are provided in Figure 10. It is apparent that
the CD network in the proposed study detected the changes successfully in all the three
sites. However, upon visual comparison with the CD label images, it can be observed that
the boundaries of the detected objects in the results generated via the proposed method
exhibited instances of both over-detection and missed detection. Furthermore, it is worth
noting that certain falsely detected regions, such as high-rise buildings, were present
in the results due to variations in the acquisition angles of the satellite sensor during
image acquisition.
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4.3. Finalizing Forest Cover Changes

After generating all the binary masks, they were concatenated in order to generate
semantic change results for each site focusing on forest changes. This process helps in
minimizing noise as well as falsely detected forest change regions. The semantic change
map and reference maps were generated firstly by adding the predicted results and label
images for extracting forest change regions from the binary forest masks. Then, these forest
change regions were concatenated with the change mask for the final result.

In order to show the effectiveness of the proposed method, we compared the results
generated via the proposed method with an unsupervised deforestation detection tech-
nique [13]. To this end, the unsupervised deforestation detection technique was used to
generate the deforestation masks (i.e., forest decrease masks) while the forest increase
mask was generated by swapping the bitemporal images. However, the technique is
mainly developed for middle- to low-resolution satellite imagery and due to the use of
VHR imagery the final forest change masks suffered from falsely detected regions and a
copious amount of salt and pepper noise. Therefore, for effective comparison, we utilized
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the masks with the change masks generated in the proposed study. The final semantic
change maps generated via the proposed methodology, semantic change maps generated
after the utilization of the change mask with forest decrease and increase masks using the
unsupervised deforestation detection technique, are shown in Figure 11 together with the
semantic change reference maps. In Figure 11, the yellow color indicates a decrease in
forest cover, purple is an increase in forest cover, red is non-forest changes, white is falsely
detected or falsely labeled forest changes, and black is a no-change region.
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(f) reference data of Site 2; (g) unsupervised deforestation detection, (h) proposed method, and
(i) reference data of Site 3.

It can be seen that the proposed method effectively detected decreased forest cover with
a small number of false detections and missed detections in all three sites (i.e., Figure 11b,e,h)
compared to the reference data (i.e., Figure 11c,f,i). Furthermore, undetected change regions
were present in the binary change mask used in the proposed study; however, since our



Remote Sens. 2023, 15, 4285 14 of 18

focus is forest cover CD, it is obvious from the figures that these undetected change regions
have a subtle impact on forest cover CD and can thus be ignored. Moreover, due to the
higher MR of the post-change binary forest mask compared to that of the pre-change binary
forest mask generated via the proposed method and a minute amount of increase in forest
cover, it remained undetected or falsely detected via the proposed method in Site 1. On the
other hand, while using the unsupervised deforestation detection technique together with
a change mask, numerous non-forest related changes were detected as decreased forest
regions (i.e., shown by a yellow color in Figure 11a,d,g). Similarly, the increased forest
regions were either missed or falsely detected by unsupervised deforestation detection
technique in Sites 1 and 3.

After the generation of semantic change maps, forest changes concerning overall
changes in the scenes were determined. The percentage of change in the overall scene
of Site 1 was around 16.736% in the results predicted via the proposed method, whereas
in the reference map it was around 15.64%. Moreover, in the results predicted via the
proposed method, the total decrease in the forest cover compared to overall changes was
around 13.617% and the calculated increase was 1.034%. In the reference map, these values
were 15.74% and 2.49%. Due to the higher MR of the post-change forest cover map and
lower percentage, the percentage of increase in the proposed study in Site 1 was considered
to be an inaccurate result. Moreover, the percentage of decrease in the predicted results
was higher than that in the reference map because in some regions the non-forest changes
were detected as forest decreased regions. On the other hand, it is worth noting that the
results obtained through the unsupervised deforestation detection technique displayed
a significantly different pattern. Here, the percentages of decrease and increase in forest
cover compared to overall changes were approximately 43.99% and 21.81%, respectively.
This discrepancy can be attributed primarily to the numerous falsely detected forest change
regions resulting from the use of VHR imagery.

Similarly, in Site 2, through the proposed method we observed that in 4 years around
3.5% of total change occurred in the full scene; 12.6% of total changes were related to a
decrease in the forest cover whereas 1.43% were related to an increase in the forest cover. In
the overall scene of Site 3, 5.63% of changes occurred in 1 year. Out of the total changes, the
decrease in forest cover was 8.21% while the increase in forest cover was 1.25%. In Site 2 and
3, the forest cover increase was detected with less falsely detected forest increase regions
compared to those in the results generated for Site 1, while for the results generated through
the unsupervised deforestation detection technique for Sites 2 and 3, the decrease in forest
cover was around 50.03% and 43.99% of overall changes. The increase in forest cover in Site
3 was shown to be 21.81% and in Site 2 it was not detected via the aforementioned method.

5. Discussion

Traditional CD methods that perform direct CD between binary forest masks will
result in an increase in the number of incorrectly identified forest change covers. The
proposed methodology accurately detected the decreased regions of forest cover in Site 1,
Site 2, and Site 3 with a lower amount of missed and falsely detected regions. The non-forest
change regions, however, contained an inadequate amount of miss detections, but since
our study is focused on detecting changes in forest cover, these missed detections or false
detections can be disregarded. Figure 12 shows a close-up view of regions of interest (ROIs)
from the results predicted via the proposed method together with pre- and post-change
images of the same ROIs from each site.

As mentioned earlier, in Site 1 due to the low percentage of increase in forest cover as
well as the higher MR of the post-change forest cover map, the detected increased forest
cover regions are considered to be inaccurate. A close-up view of the forest cover increase
detected via the proposed method in a ROI from Site 1 is shown in Figure 13 in which
the changes occur from a built-up region to agricultural land or from agricultural land to
bare soil. In sites 2 and 3, the proposed method effectively detected the increased forest
regions provided in Figure 14. In Site 3, as shown in Figure 14d–f, although it detected the
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increase, half of the forest change region in the close-up view was detected as a non-forest
changed region.
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6. Conclusions

In this study, we proposed a semantic CD technique while focusing on urban forest
changes along with other urban changes. To this end, two networks, DeepLabv3+ for binary
forest mask generation and DSIFN for binary change detection, were utilized and trained
independently on open-source datasets. Then, transfer learning was performed using
the dataset generated from VHR bitemporal images acquired via two different satellite
images with different spatial resolutions. Then, the results generated by each network
were concatenated for generating a semantic change result. To carry out the experiments,
full scene tests were performed using the VHR bitemporal imagery of three urban cities
acquired via three different satellites. The binary forest masks, generated via the proposed
method from pre- and post-change images, showed a higher F1-score, kappa, IoU, and
accuracy compared with the results generated via the NDVI, Unet, and SegNet. The final
semantic change results showed that the proposed method can detect the changes in forest
cover along with other urban changes. Moreover, the results showed that with the changes
in the urban environment forest covers are changing considerably. Overall, in sites 1, 2
and 3, changes of 16.73%, 3.5%, and 5.63% occurred, in which 13.61%, 12.6%, and 8.21% of
the total changes were related to a decrease in the urban forest cover. The use of both pre-
and post-change VHR images minimized salt-and-pepper noise in regions related to forest
cover changes in the sematic change result.

The results showed that the proposed method can effectively detect the regions related
to forest cover decrease. However, because the tendency of forest cover decrease is usually
higher than that of forest cover increase, as well as in the bitemporal images used in this
study the forest cover increase regions were too small, regions where the forest cover
was decreased were detected more effectively than those where there was an increase in
forest cover. The proposed method can be used for monitoring the impacts of climate
change, rapid urbanization, and natural disasters on urban environments especially on
urban forests, as well as relations between changes in urban environments and urban
forests. Moreover, this study can be used for the planning and development of cities and
map updating. In the future, we will integrate the two networks in order to minimize the
use of the two networks and independent training. A complex dataset will be generated
for a semantic CD task containing changes in the classes related to the urban environment
(i.e., urban grass, urban forest, urban trees, and built-up regions). Furthermore, we will
apply the proposed method to additional datasets related to forest cover increase regions
acquired via different satellite sensors.
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