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Abstract: Registration of optical and synthetic aperture radar (SAR) images is challenging because
extracting located identically and unique features on both images are tricky. This paper proposes
a novel optical and SAR image registration method based on relative total variation (RTV) and
scale-invariant feature transform (SIFT), named RTV-SIFT, to extract feature points on the edges of
structures and construct structural edge descriptors to improve the registration accuracy. First, a
novel RTV-Harris feature point detection method by combining the RTV and the multiscale Harris
algorithm is proposed to extract feature points on both images’ significant structures. This ensures
a high repetition rate of the feature points. Second, the feature point descriptors are constructed
on enhanced phase congruency edge (EPCE), which combines the Sobel operator and maximum
moment of phase congruency (PC) to extract edges from structured images that enhance robustness
to nonlinear intensity differences and speckle noise. Finally, after coarse registration, the position and
orientation Euclidean distance (POED) between feature points is utilized to achieve fine feature point
matching to improve the registration accuracy. The experimental results demonstrate the superiority
of the proposed RTV-SIFT method in different scenes and image capture conditions, indicating its
robustness and effectiveness in optical and SAR image registration.

Keywords: image registration; relative total variation (RTV); structure extraction; phase congruency
(PC); optical and synthetic aperture radar (SAR) images

1. Introduction

Optical and synthetic aperture radar (SAR) image registration serves as the basis for
many tasks in remote sensing image analysis [1–3]. Multimodal remote sensing image
registration has been extensively studied, with intensity-based, feature-based, and learning-
based methods being the main categories [4]. Intensity-based methods use various simi-
larity metrics, such as mutual information [5], normalized cross-correlation coefficient [6],
and cross-cumulative residual entropy [7], to match image patches. However, these meth-
ods are often limited in performance when applied to multimodal images with large
radiation differences, such as optical and SAR Images.

With the development of deep learning technology, some learning-based methods
have been proposed [8–12]) to perform registration on multi-modal images by learning
image features. However, due to the difficulty in obtaining sufficient multi-modal remote
sensing images and ground truth for training and testing [13], and the difficulty in achieving
end-to-end registration implementation, these methods are not widely used. In addition,
learning-based methods have poor adaptability to different remote sensing images and
their training performance is highly dependent on computer hardware [14], so they have
not been widely applied. In contrast, feature-based methods are faster and more flexible.
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In this work, the feature-based approach is adopted to tackle the problem of optical and
SAR Image registration, which faces two fundamental challenges:

1. How to find homology and effective feature points on optical and SAR images that
have significantly different inherent natures?

2. How to overcome nonlinear intensity differences and construct feature descriptors that
are similar at corresponding points but distinguishable at non-corresponding points?

These two issues must be considered together in order to obtain a good registration
performance. To clarify this point, Figure 1 shows the feature points detected and matched
by the PSO-SIFT [15], SAR-SIFT [16], and our proposed RTV-SIFT method in a pair of
optical and Gaofen-3 (GF-3) SAR images. The matched points are marked in green and
the unmatched points are marked in red. The PSO-SIFT method directly adopts the scale-
invariant feature transform (SIFT) detector [17], which extracts many unrepeatable feature
points (the large number of red points in Figure 1a) in both optical and SAR images because
the second-order partial operation in the Difference of Gaussian (DoG) [18] is sensitive to
noise and details [16]. This will not only increase the computational burden of the following
feature matching task but also will increase the incorrect matching rate. To overcome this
problem, Zhang et al. [19] improved the anti-noise capability of SIFT algorithm by using a
Canny edge detector to remove the wrong candidate points on the edges. Fan et al. [20]
combined the spatial relationship of feature points to filter out unrepeatable feature points.
Xie et al. [21] masked the complex regions to avoid extracting the interference points.
Radiation-variation insensitive feature transform (RIFT) [22] proposed to detect corner and
edge points on phase congruency (PC) maps that are robust to noise.

Forero et al. [23] and Sharma et al. [24] compared and analyzed various improved
feature point detectors, many of which still rely on second-order derivatives as in SIFT or
methods that take extremes in the neighborhood, which can make the feature point detectors
sensitive to noise. Harris-Laplace detector [25] is more sensitive to corner points and has
a degree of robustness to speckle noise [26]. Hence, it is widely used for feature point
detection in remote sensing images. Chen et al. [27] employed a Harris detector to detect
feature points on multimodal retinal images. Fan et al. [28] designed a uniform nonlinear
diffusion-based Harris (UND-Harris) feature extraction method, which reduces the effect of
speckle noise and obtains more uniformly distributed feature points. The SAR-SIFT method
improved the traditional multiscale Harris detector by a new gradient calculation method,
such that, as illustrated in Figure 1b, the detected feature points are mainly distributed
on the corners of significant structures, effectively avoiding the influence of noise and
texture details. However, the SAR-SIFT was originally proposed for SAR image registration.
If the nonlinear intensity differences between optical and SAR images are not considered to
construct distinctive feature descriptors, only a few feature points can be matched when
the SAR-SIFT is directly applied to the optical-SAR image registration task.

To avoid the effect of nonlinear intensity difference on the descriptors, Chen et al. [27]
proposed a partial intensity invariant feature descriptor (PIIFD) that uses the averaging
squared gradients in place of the traditional gradient to restrict the gradient direction
within [0, π) for solving the gradient reversal phenomenon. LNIFT [13] proposes a local
normalization filter, which first transforms the original image into a normalized image,
and then detects and describes feature points on the normalized image, in order to reduce
the nonlinear intensity differences between multi-modal images. PSO-SIFT suggested
calculating the gradient direction and gradient magnitude of the feature descriptors on
the image boundaries. Shuai et al. [29] and Yu et al. [30] constructed descriptors by
combining phase consistency [31–33] and gradient amplitude to address the gradient
direction inconsistency in multimodal images. Fan et al. [28] built phase congruency
structural descriptor (PCSD) on PC structure images which can get discriminable and
robust structural edge descriptors.
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(a) PSO-SIFT: mCMR = 66.84%

(b) SAR-SIFT: mCMR = 19.32%

(c) Ours: mCMR = 95.49%

Figure 1. Feature points extracted and matched in an optical image (left) and a SAR image (right) by
(a) PSO-SIFT, (b) SAR-SIFT, and (c) our RTV-SIFT method. The points shown in the images are the
detected feature points, with the green points indicating the correctly matched points. mCMR is the
mean correct matching ratio (CMR, defined in Section 3).

Xie et al. [21] found that the unavailable features are mainly concentrated in complex
regions, so they masked these regions to avoid extracting the interference points. We found
that complex regions are texture-rich regions [34] such as mountainous areas, vegetation-
covered areas, and dense urban areas. And the speckle noise in SAR images can also
be regarded as a texture feature. The image inherent nature of optical and SAR images
differ significantly in these texture regions, affecting the repeatability of feature points and
descriptors’ uniqueness. Smoothing the images can reduce the feature points extracted
in the texture regions. However, many studies have shown that Gaussian smoothing
destroys the natural edges of the image so that both details and noise are smoothed to the
same extent, which reduces the localization accuracy of feature points and Description
accuracy [16,28]. Therefore, how suppressing the texture while maintaining the sharpness
of the edges of the image structure becomes the crux of the problem.

The relative total variation (RTV) method [34] has proven to be effective in smoothing
texture while preserving the edges. Building upon this, we propose a novel RTV-Harris
feature point detection method by combining the RTV smoothing and multiscale Harris
detector. Our approach allows for more accurate extraction of feature points focusing on
the structure edges, where the feature points have a higher matching potential. To account
for the nonlinear differences in intensity between optical and SAR images, we propose an
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enhanced phase congruency edge detector to construct the structural feature descriptor.
Finally, a coarse-to-fine matching strategy is adopted to increase the correct matching rate.
Experimental results demonstrate that our method yields higher feature point matching
rates, as illustrated in Figure 1c. For ease of description, we name the proposed method
as RTV-SIFT.

The contributions of this paper are as follows.

1. Based on the RTV theory and multi-scale Harris detector, an RTV-Harris feature point
detector is proposed so that the detected feature points are distributed at the structural
edges with higher matching potential.

2. To mitigate the effect of nonlinear intensity difference between optical and SAR
images, an enhanced phase consistency edge (EPCE) descriptor is proposed for the
structural feature description of the feature points.

3. A coarse-to-fine matching strategy based on feature point position and orientation
Euclidean distance (POED) is introduced to improve the registration precision.

The paper is organized subsequently as follows. Section 2 describes the proposed
registration method, including the RTV-Harris feature point detector, the EPCE feature
descriptor, and the POED based matching method. The experimental setup, procedure,
and result analysis are provided in Section 3. Section 5 gives the conclusion of this paper.

2. Proposed Method

The schematic diagram of the proposed RTV-SIFT method is shown in Figure 2 and
the modules are described as follows.

×＆

(a) RTV-Harris feature 

point detection 

⊕

Sobel edge

EPCE Log-polar 

sectors

(b) EPCE feature description

Coarse matching using 

NNDR and FSC

H1

Finetuning feature point 

distance using the POED

Fine matching using

NNDR and FSC

Transformation 

model H2

(c) Coarse-to-fine matching 

+

PC edge

Iterative RTV smoothing

......

Harris feature point detection

......

Figure 2. Diagram of the RTV-SIFT method. Abbreviations: RTV: Relative Total Variation; EPCE:
Enhanced Phase Consistent Edge; NNDR: Nearest Neighbor Distance Ratio; FSC: Fast Sample
consensus; POED: Position Orientation Euclidean Distance. “&”, “x”, “+” denote the “and”, “multiply”
and “add” operations for the corresponding pixel values, respectively.

2.1. Iterative Structure Preserving Smoothing Using RTV

As discussed in Section 1, it should be avoided to extract feature points for registration
in the texture region. Therefore, the original optical and SAR images are first smoothed us-
ing the RTV method [34] to remove the texture while preserving the structural information
in the images. This is achieved by optimizing the following objective function:

arg min
S

∑
p

{
(S(p)− I(p))2 + λ · (WTVx(p)

WIVx(p)
+

WTVy(p)
WIVy(p)

)

}
, (1)
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where I is the original optical or SAR image, S is the estimated structural image, p = (x, y)
is the pixel coordinate, and λ is a weight coefficient. WTV and WIV are the windowed
total variation and windowed inherent variation measures, respectively, defined as

WTVx(p) = Gσ ·
∣∣∣∣∂S(p)

∂x

∣∣∣∣, WTVy(p) = Gσ ·
∣∣∣∣∂S(p)

∂y

∣∣∣∣,
WIVx(p) =

∣∣∣∣Gσ ·
∂S(p)

∂x

∣∣∣∣, WIVy(p) =
∣∣∣∣Gσ ·

∂S(p)
∂y

∣∣∣∣, (2)

where Gσ is a two-dimensional Gaussian kernel with variance of σ. Both the texture and
structural regions will yield a large WTV response, while the WIV response is smaller in
pure texture regions than in the structural regions.

The optimization problem in Equation (1) can be implemented iteratively [34],
expressed as

vn+1
S = (1+ λLn)−1 · vI , (3)

where vS and vI are vector representations of S and I, respectively; L is the weight ma-
trix computed based on the structural vector vS, 1 is an identity matrix, and n is the
iteration index.

For an optical or SAR image, a series of images {Sn, n = 1, · · · , N} with progressively
suppressed texture information can be generated using the Equation (3), which is hereafter
named the RTV iteration space. The choice of the maximum number of iterations N,
referred to as the number of layers of the RTV iteration space, is discussed in Section 3.3.

2.2. Multiscale Feature Point Detection

The feature points of optical and SAR images are detected by Harris operators [25]
with different scales in their RTV iteration spaces, respectively. Specifically, a gradient
covariance matrix is first computed for each pixel in each structural image Sn in the RTV
iteration space. The covariance matrix is then smoothed with a Gaussian convolution
kernel with standard deviation

√
2σn and multiplied by a scale factor σ2

n . The resulting
covariance matrix is written as

C(p) = σ2
n · G√2σn

∗


( ∂Sn(p)

∂x )2 ∂Sn(p)
∂x · ∂Sn(p)

∂y

∂Sn(p)
∂x · ∂Sn(p)

∂y ( ∂Sn(p)
∂y )2

, (4)

where we set σn = σ0 · 2−n/3 with σ0 the initial Gaussian kernel variance.
Finally, the feature points in Sn are obtained by thresholding the Harris response score

R(p) = det(C(p))− d · Tr2(C(p)), (5)

where d is a constant sensitivity factor, “det” and “Tr” denote the determinant and trace of
a matrix, respectively.

2.3. Feature Point Description

In order to alleviate the impact of nonlinear intensity differences between optical
and SAR images on registration accuracy and to improve the discriminability of feature
point representation, feature descriptors can be constructed by utilizing the image edge
information. Existing methods usually use the Sobel operator (e.g., in [15]) or phase
congruency (e.g., in [29]) to extract the image edges. However, the Sobel operator is
sensitive to noise and prone to multi-pixel width, while the phase congruency maximum
moment cannot reflect the contrast of edges.

In this study, we propose an enhanced phase consistent edge (EPCE) detector that
combines the advantages of phase congruency and Sobel operator. More specifically,
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for each structural image Sn in the RTV iteration space, its maximum moment of phase
congruency edge map Mn and the Sobel edge map Hn are first computed. Figure 3
shows the Sobel and phase congruency edge maps of an example optical image. Due
to the sensitivity of the Sobel operator to image details, the Sobel edge map looks quite
noisy. To remove the noisy edge fragments from the Sobel edge map, Hn is filtered by its
intersection with the phase congruency edge map Mn, which is formulated as

Hn(p) = (Mn(p)&Hn(p)) · Hn(p), (6)

where the symbol “&” denotes the pixel-wise “AND” operation. The results obtained are
logical 0 or 1. Finally, the filtered Sobel edge map is summed with the phase congruency
edge map Mn to obtain an enhanced EPCE map Mn

en, written as

Mn
en(p) = Hn(p) + Mn(p). (7)

Figure 3d illustrates that the EPCE detector is effective in extracting image contours
and filtering out the noisy edge fragments. The gradient amplitude and orientation of the
EPCE map Mn

en are calculated as

Gn(p) =

√
(

∂Mn
en

∂x
)2 + (

∂Mn
en

∂y
)2,

Rn(p) = arctan(
∂Mn

en
∂y

/
∂Mn

en
∂x

).

(8)

The domain orientations of feature points and the construction of descriptors are
computed using histograms of gradient orientation, similar to SIFT. Instead of using a
square neighborhood for feature points in SIFT, we use log-polar sectors neighborhoods to
compute the descriptor as in PSO-SIFT, which generates 17 bins as the Log-polar sectors in
Figure 2b. And the gradient orientations are quantized in eight bins, so that EPCE yields a
136-dimensional feature descriptor.

(a) (b) (c) (d)

Figure 3. Example edge maps of (a) an optical image extracted by (b) the Sobel operator, (c) the phase
congruency, and (d) the proposed enhanced phase congruency edge detector.

2.4. Coarse-to-Fine Feature Point Matching

In the feature point matching process, we first employ the Nearest Neighbor Distance
Ratio (NNDR) [17] to coarsely match the feature points of the optical and SAR images, and
use the Fast Sample Consensus (FSC) algorithm [35] to reject incorrect corresponding points
and obtain the coarse affine transformation model H1 between the optical and SAR images.

To further improve the matching accuracy, Ma et al. [15] employed the position, scale,
and main orientation information of the feature points to recalculate the Euclidean distance
between the feature points, which is named PSOED and expressed as

PSOED(pi, pj) = err(pi, pj)ED(pi, pj),

err(pi, pj) = (1 + ep(pi, pj))(1 + es(pi, pj))(1 + eo(pi, pj)),
(9)
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where pi and pj are the feature points on the reference image and sensed image, respectively;
ED(pi, pj) represents the Euclidean distance between the feature descriptors of pi and pj,
ep(pi, pj), es(pi, pj) and eo(pi, pj) respectively denote the position error, scale error and
main orientation error between pi and pj, which are defined as

ep(pi, pj) = ||pi − H1(pj)||2,

es(pi, pj) = |1− r∗ ·
sj

si
|,

eo(pi, pj) = |∆θi,j − ∆θ∗|,

(10)

where H1 denotes the coarse transformation model, || · ||2 represents the Euclidean distance
calculation, si and sj are the scales of pi and pj respectively, ∆θi,j is the main orientation
difference between pi and pj, r∗ and ∆θ∗ are the statistical maxima of the scale ratio and
the major orientation differences between the matched pairs obtained from the initial
matching, respectively.

Due to the different resolution and edge diffusion effects of different scale images in
Gaussian scale space, it is difficult to correctly match the feature points with large-scale
disparity. Whereas in the RTV-Harris scale space, the images have consistent resolution
and clear edges, thus minimizing the impact of scale difference on our method. To reduce
the computational burden, we discard the scale error term in the PSOED method and refer
to the new Euclidean distance function as POED, expressed as

POED(pi, pj) = (1 + ep(pi, pj))(1 + eo(pi, pj))ED(pi, pj). (11)

After coarse registration and obtaining the coarse transform matrix H1, the Euclidean
distances between descriptors of the feature points are fine-tuned using Equation (11).
Then NNDR is used again to match the feature points with the fine-tuned distance be-
tween descriptors and the FSC algorithm is used to obtain a more accurate transformation
matrix H2.

3. Experiments and Results

In this section, we evaluate the performance of the proposed RTV-SIFT and compare it
with several state-of-the-art registration algorithms. The hardware device for our experi-
ments is a computer equipped with AMD Ryzen 9 3900XT CPU and 32GB memory, and the
software platform is MATLAB R2019a.

3.1. Evaluation Metrics

The metrics for evaluating the registration method are as follows
Repeatability rate. repeatability rate [36] is a criterion for evaluating the stability of

the feature point detector in detecting the homonymous point on two modal images. Let
x̃1 and x̃i be points that lie on the common part of the images of I1 and Ii, and they are
defined as

{x̃1} = {x1|H1ix1 ∈ Ii}, {x̃i} = {xi|Hi1xi ∈ I1}. (12)

where Hij denotes the homography between images Ii and Ij. Then, a neighborhood size ε
is determined, and the ε-repetition rate is defined as

Ri(ε) = {(x̃1, x̃i)|dist(H1i x̃1, x̃i) < ε}. (13)

where dist() denotes The Euclidean distance between two points. Thus, the repeatability
rate for image Ii is defined as

ri(ε) =
|Ri(ε)|

min(n1, ni)
. (14)

where n1 = |{x̃1}| and ni = |{x̃i}| are the number of points detected in the common part
of images I1 and Ii respectively.
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Correct Matching Number (CMN). CMNis an important indicator of the robustness
of registration algorithms. In our experiments, we manually selected more than 20 pairs
of uniformly distributed and reliable corresponding points in each pair of the test images
to estimate a standard transformation matrix Ho. After applying the Ho transformation,
matches with position errors of less than 3 pixels are considered correct matches.

Correct Matching Ratio (CMR). CMR is the ratio of the CMN to the total number of
matches Nm, written as

CMR =
CMN
Nm

. (15)

Root Mean Square Error (RMSE). RMSE is an important indicator of registration
accuracy and the formula is written as

RMSE =

(
1

Nm

Nm

∑
i=1
||(xi

r, yi
r)−Ho(xi

s, yi
s)||2

)1/2

, (16)

where (xi
r, yi

r) and (xi
s, yi

s) are the coordinates of the ith matched point pair on the reference
image and the sensed image, respectively.

Distribution of the matched points (Scat). Goncalves et al. [37] points out that the
correct corresponding points should be distributed over the whole image as much as
possible, and proposes a quantitative metric Scat to measure this distribution. First, given
that x = {x1, x2, · · · , xN} denotes the correct corresponding feature points in the reference
image. Then, the Euclidean distances between every feature point and all of the feature
points are calculated as

Di = {dist(xi, x1), dist(xi, x2), · · · , dist(xi, xN)}. (17)

where i ∈ {1, 2, 3, · · · , N}. Finally, Scat is calculated as

Scat =
∑N

i=1 med(Di)

N
. (18)

where med(Di) denotes the medians of Di. On the same order of magnitude, the more
uniform the distribution of feature points is, the larger the Scat value is. Note that the
coordinates of feature points used in the calculation of Scat are normalized.

Time(s). The time required for two images to be successfully matched from input to
output was calculated.

3.2. Test Images

This paper uses two sets of test images. The first one is a subset of the OS (Optical-SAR)
dataset [38]. Since this dataset contains aligned optical and SAR Images, we use it to verify
the repeatability of the proposed RTV-Harris feature point detector. We randomly selected
8 pairs of aligned optical and SAR images of different scenes (size 512X512, resolution 1 m)
from the OS dataset [38], as shown in Figure 4.

Another test dataset contains 11 pairs of unaligned large-scene optical and SAR images.
The details of the images are shown in Table 1. These test images are used to evaluate the
performance of the overall registration algorithm, shown in Figure 5.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Randomly selected 8 pairs of aligned optical (top) and SAR (bottom) images from the OS
dataset [38]. where, (a,c,h) is urban area, (b,f,g) is farmland area, (e) is suburban area, and (d) is
airport area.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 5. 11 pairs of unaligned large-scene optical and SAR images. (a–k) are image pairs 1–11,
respectively.

3.3. Parameter Settings

The variance σ of the Gaussian kernel in Equation (2) plays a crucial role in feature
point detection. We set σ to 2 pixels for the optical images and 4 pixels for the SAR images
in the experiments. It can be fine-tuned according to the texture size.

Under the guidance of Xu et al. [34], the parameter λ in Equation (3) is set to 0.004.
In the traditional multi-scale Harris algorithm, as the Gaussian smoothing scale increases,
the image edges gradually spread, so a gradually increasing scale window is needed to
detect feature points. On the contrary, in the RTV-Harris scale space, the size of the spatial
scale window σn is gradually decreasing in order to preserve the sharpness of the edges.
We set the initial scale σ0 of the RTV-Harris detector to 6 pixels and the ratio of adjacent
scales to 2−

1
3 . The constant d in the Harris response score function is set to 0.04. The score

function threshold for feature point detection is set to 0.1. The ratio threshold of NNDR is
set to 0.9.
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Table 1. Information about the test images.

Type Image Pairs
1 2 3 4 5 6 7 8 9 10 11

Size SAR 1025 × 800 600 × 675 735 × 768 788 × 888 350 × 675 975 × 925 875 × 552 975 × 800 501 × 494 900 × 898 705 × 878
Optical 832 × 640 496 × 544 468 × 528 720 × 704 224 × 416 656 × 624 677 × 482 864 × 608 356 × 366 665 × 689 919 × 643

Resolution SAR 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m
Optical 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m

Source SAR GF-3 GF-3 GF-3 GF-3 GF-3 GF-3 GF-3 GF-3 GF-3 GF-3 GF-3
Optical Google Earth Google Earth Google Earth Google Earth Google Earth Google Earth Google Earth Google Earth Google Earth Google Earth Google Earth

Scene Airport Airport Airport Airport Airport Airport Dense Airport Airport Airport Suburb with
urban area large rotation angle

Note: GF-3 is the Chinese satellite Gaofen-3.
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In addition to the above parameters, the number of layers N of the RTV iteration
space, a key parameter of the RTV-SIFT method, was determined experimentally. We
evaluated the average CMN and the average consumption time of the RTV-SIFT method
on the test images with N ranging from 1 to 11, while other parameters were kept the same
as above. The results in Figure 6 show that the average CMN does not always increase
with the number of layers. When N is greater than 8, the growth of average CMN is
no longer significant and even starts to decrease after 10 layers. However, the average
consumption time of the algorithm keeps increasing with the number of layers. The results
suggest that increasing the number of layers in the RTV iteration space does not necessarily
lead to better registration performance. As the number of feature points increases, more
redundant feature points are involved in matching, which ultimately leads to a decrease in
registration performance. Therefore, to strike a balance between computational efficiency
and algorithmic robustness, we advocate setting N = 8 for the RTV iteration space in all the
following experiments.

1 2 3 4 5 6 7 8 9 10 11

Numbers of layer in RTV iteration space
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Figure 6. The average CMN (a) and the consumption time (b) of the RTV-SIFT method with the
number of layers N in the RTV iteration space varying from 1 to 11.

3.4. Performance of RTV-Harris Feature Point Detector

The repeatability rate [36] with different thresholds was calculated for the 8 pairs of
aligned optical and SAR images from the OS (Optical-SAR) dataset. The comparison results
with the DoG method [17], the SAR-Harris method in SAR-SIFT [16], and the modified
multi-scale Harris (multiscale-Harris with refinement) method in OS-SIFT are shown in
Figure 7.

Among the four methods, the RTV-Harris detector achieves the highest repeatability
rate of feature points for different senses and localization errors, as shown in Figure 7.
In particular, for scenes with more small targets, such as the image pair (d), the advantage
of the RTV-Harris detector is more pronounced. When the localization error is 4 pixels,
the feature point repeatability rate has exceeded 50%. The RTV-Harris detector performs
best for several reasons. First, the RTV method is able to attenuate texture and eliminate
speckle noise, which prevents extracting invalid feature points to a certain extent. Second,
the detection window of RTV-Harris gradually narrows, which improves the localization
accuracy of feature points. These two factors contribute to the low false alarm rate and
high repeatability rate.
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Figure 7. (a–h) are the feature points repeatability rate of the images pairs (a–h) in Figure 4, respec-
tively. The independent variable of the line graph is the localization error.

3.5. Performance of EPCE Feature Descriptor

The performance of the EPCE feature descriptor was evaluated on the 11 large-scene
optical and SAR image pairs by comparing it with descriptors constructed on the gradient
of the Sobel edge and PC edge. For each group of experiments, the RTV-Harris detec-
tor with the same parameters was used to extract the feature points, and the matching
method is the proposed coarse-to-fine method as described in Section 2.4. On average,
the CMN of the EPCE descriptor is 32.55 ± 23.86 higher than that of the Sobel edge de-
scriptor and 34.36 ± 22.81 higher than that of the PC edge descriptor. The resulting CMN
metrics are shown in Figure 8. It shows that the EPCE descriptor provides a more precise
characterization of feature points.

1 2 3 4 5 6 7 8 9 10 11
Image No.
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Figure 8. CMN of feature descriptors based on different edge detectors.

3.6. Overall Registration Performance of RTV-SIFT

In this subsection, we compare the effectiveness of the proposed RTV-SIFT method
with the SAR-SIFT [16], Harris-PIIFD [27], and the other four state-of-the-art feature point-
based methods, namely LNIFT [13], PC-SIFT and its enhanced version PCG-SIFT [29],
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PSO-SIFT [15] and OS-SIFT [39]. To ensure the validity of the experimental results, we
followed the parameter settings in the original method.

The comparison results are presented in Table 2. It can be inferred that the SAR-SIFT,
LNIFT, PC-SIFT, and PCG-SIFT methods often fail to achieve image registration for optical
and SAR images with significant nonlinear intensity differences. Although some methods
perform better than others, they lack robustness in different scenarios. For example,
OS-SIFT and PSO-SIFT fail to register in dense urban areas (image pair 7), while Harris-
PIIFD and OS-SIFT fail to register in suburban areas with large rotation angles and high
vegetation coverage (image pair 11). In addition, the existing methods detect fewer and
more concentrated feature points, which leads to larger registration errors in the RMSE
values. In contrast, the feature points detected by our RTV-SIFT are mainly distributed
at the edges and thus have higher matching potential, resulting in higher CMN and
CMR. Furthermore, since the detected feature points are more evenly distributed over the
whole image, the registration error (RMSE) is smaller. Hence it is more robust in various
situations. The last two rows of Table 2 also give the results of RTV-SIFT without/with the
coarse-to-fine feature point matching strategy POED. The results indicate that RTV-SIFT
achieves superior registration performance compared to existing algorithms only when
coarse alignment is applied. The introduction of the fine-matching POED strategy leads
to a significant improvement in the registration performance of RTV-SIFT. In addition, we
also demonstrate the registration performance with N = 5 in Table 2. It can be seen that
when N = 5, better results than the SOTA method can be achieved, and the average time
consumption is only 70% of that with N = 8.

The qualitative comparison of the better performing Harris-PIIFD, OS-SIFT, PSO-SIFT,
and our RTV-SIFT methods on the airport area, suburban area, and vegetation-covered area,
respectively, are shown in Figure 9. It is visible that the correct matching points obtained
from the OS-SIFT and PSO-SIFT algorithms are mainly concentrated on the roads with clear
features. In contrast, our RTV-Harris detector produces a wider distribution of matching
points. The concentrated distribution of matching points will increase the registration error
in areas without matching points, while a uniform distribution of matching points can
achieve more accurate alignment over the whole image range, as illustrated in Figure 10.

Finally, we also report the time spent on each step of RTV-SIFT to give a reference
for subsequent studies, as shown in Table 3. Note that the results are the average time
consumed for all the test image pairs.

Table 2. Performance comparison of different registration methods.

Method Criterion Image Pairs
1 2 3 4 5 6 7 8 9 10 11

SAR-SIFT

CMN 1 0 1 5 0 2 0 0 0 0 24
CMR(%) 20.00 0 33.33 71.43 0 18.18 0 0 0 0 88.89

RMSE 10.68 130.21 322.64 2.36 71.54 3.50 486.83 477.25 165.60 386.00 1.72
Scat - - - 0.021 - - - - - - 0.175

Time(s) 14.70 10.25 10.81 17.22 1.06 122.65 5.72 5.82 1.86 21.36 28.52

PC-SIFT

CMN 1 16 1 0 0 0 0 4 1 0 1
CMR(%) 33.33 100 33.33 0 0 0 0 80.00 25.00 0 33.33

RMSE 240.54 1.16 108.66 324.02 31.41 289.85 342.71 1.92 42.07 357.27 284.56
Scat - 0.172 - - - - - 0.240 - - -

Time(s) 10.15 3.97 6.13 8.65 0.61 8.64 5.36 4.84 0.77 12.69 14.70

PCG-SIFT

CMN 7 27 0 7 0 8 0 7 1 1 8
CMR(%) 77.78 100 0 87.50 0 72.73 0 63.64 25.00 25.00 88.89

RMSE 4.56 1.18 181.67 5.20 213.82 2.61 295.51 2.69 56.42 36.66 4.65
Scat 0.094 0.182 - 0.197 - 0.187 - 0.167 - - 0.067

Time(s) 9.28 4.11 6.03 7.90 0.6 8.15 5.25 4.86 0.79 11.89 17.81

Harris-
PIIFD

CMN 8 23 13 9 5 8 3 8 8 12 0
CMR(%) 80.00 100 100 64.29 83.33 57.14 27.27 66.67 80.00 68.42 0

RMSE 2.41 0.71 1.39 3.82 1.94 3.77 5.33 4.62 2.77 3.26 625.37
Scat 0.146 0.206 0.208 0.368 0.337 0.272 0.298 0.321 0.345 0.266 -

Time(s) 1.48 1.14 1.26 1.32 1.06 1.41 1.26 1.39 1.27 2.23 1.35

LNIFT

CMN 0 0 0 0 0 0 19 19 18 15 70
CMR(%) 0 0 0 0 0 0 37.25 44.19 40.00 39.47 86.42

RMSE 235.57 206.51 239.47 517.31 106.19 285.63 3.41 3.67 3.51 6.90 2.19
Scat - - - - - - 0.284 0.253 0.251 0.319 0.296

Time(s) 44.27 32.82 36.26 50.77 20.04 45.08 34.58 50.98 24.00 49.93 40.49
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Table 2. Cont.

Method Criterion Image Pairs
1 2 3 4 5 6 7 8 9 10 11

OS-SIFT

CMN 11 25 5 15 3 15 1 4 5 11 1
CMR(%) 100 100 83.33 88.24 75.00 88.24 20.00 80.00 62.50 73.33 33.33

RMSE 1.37 1.08 2.05 1.99 28.33 1.89 5.44 4.01 3.80 2.67 126.29
Scat 0.109 0.201 0.276 0.265 0.284 0.243 - 0.253 0.366 0.182 -

Time(s) 18.65 10.83 12.37 18.36 1.04 23.53 6.97 11.36 2.17 22.31 27.31

PSO-SIFT

CMN 33 63 4 10 9 27 0 2 17 6 14
CMR(%) 100 96.92 26.67 71.43 90.00 80.95 0 28.57 100 66.67 46.67

RMSE 1.26 1.38 5.09 5.13 1.67 2.76 61.36 6.71 1.80 2.55 5.20
Scat 0.087 0.174 0.109 0.168 0.364 0.174 - - 0.228 0.053 0.246

Time(s) 41.00 9.91 22.44 27.48 0.48 40.21 11.24 6.55 0.88 70.73 99.19

RTV-SIFT
with
POED
(N = 5)

CMN 34 53 26 35 7 86 30 10 18 32 36
CMR(%) 100 100 86.67 100 70 94.51 93.75 58.82 85.71 84.21 81.81

RMSE 1.18 1.52 2.09 1.68 2.39 1.78 2.64 3.28 2.33 1.54 2.27
Scat 0.197 0.226 0.276 0.439 0.318 0.283 0.313 0.129 0.333 0.267 0.241

Time(s) 23.96 10.86 14.52 21.72 1.79 38.34 22.84 22.29 2.29 22.32 26.41

RTV-SIFT
without
POED
(N = 8)

CMN 46 51 23 31 8 78 10 12 21 17 55
CMR(%) 97.87 100 100 100 100 89.66 76.92 100 91.3 100 100

RMSE 1.04 1.11 1.02 0.85 0.72 1.95 2.86 1.85 2.03 1.75 1.01
Scat 0.161 0.195 0.230 0.291 0.355 0.257 0.247 0.165 0.277 0.266 0.206

Time(s) 31.08 15.75 18.8 29.84 2.22 46.39 26.07 28.99 3.10 29.42 44.94

RTV-SIFT
with
POED
(N = 8)

CMN 94 127 69 108 47 126 96 23 44 58 87
CMR(%) 100 100 100 100 100 100 100 54.76 95.65 100 100

RMSE 0.64 0.75 0.80 0.68 2.27 0.75 0.69 3.89 1.91 0.77 3.12
Scat 0.258 0.272 0.30 0.416 0.35 0.274 0.266 0.237 0.296 0.312 0.328

Time(s) 32.43 17.29 20.35 31.59 2.41 49.45 28.81 28.11 3.10 30.59 48.62

Note: The values of CMR are shown in percentage. Bolded fonts are the best performers in this metric.

(a)

(b)

(c) Paire C

(c)

(d)

Figure 9. Qualitative comparison of different registration methods, from left to right, Harris-PIIFD, OS-
SIFT, PSO-SIFT, and RTV-SIFT (ours). (a–d) are the results on test image pair 1, 2, 7, and 11, respectively.
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(a) Result of PSO-SIFT (b) Zoomed-in view of patches (c) Result of RTV-SIFT

Figure 10. Qualitative comparison of the registration results of PSO-SIFT and RTV-SIFT (ours) on
test image pair 1. The registration results are shown as checkerboard images. The left patches of
the zoomed-in views in (b) are from the result of PSO-SIFT, and the right patches are from that
of RTV-SIFT.

Table 3. Average consumption time on each step of RTV-SIFT.

RTV-Harris Space
Construction Keypoints Detection EPCE Feature

Description Corse-to-Fine Match Final Time

5.82 s 0.38 s 18.39 s 2.02 s 26.61 s

3.7. Validation under Different Conditions

Except for the interference from speckle noise, SAR images are unaffected by the
weather conditions and time of day they are taken. However, optical images are susceptible
to various factors such as illumination intensity and weather conditions. In this subsection,
we employ simulated images under different imaging conditions to test the robustness
of the proposed RTV-SIFT registration method. The simulated images were generated by
processing real optical images with varying illumination, different levels of noise interfer-
ence, and cloud occlusion, as depicted in Figure 11. Since the number and distribution of
matching points significantly influence the registration effect, we utilize CMN and Scat to
evaluate the algorithm’s performance.

3.7.1. Illumination Intensity

Variations in illumination intensity are the most common weather conditions that
affect the contrast of optical images, thereby interfering with the registration results. We sim-
ulated optical images of different illumination intensities by attenuating and enhancing the
intensity of the image to varying degrees. In order to vary the illumination intensity uniformly
from weak to strong, we set 11 illumination levels as [0.5, 0.6, 0.7, 0.8, 0.9, 1, 1

0.9 , 1
0.8 , 1

0.7 , 1
0.6 , 1

0.5 ].
Figure 12a,d show the average CMN and average Scat values of the 11 pairs of test

images. The proposed RTV-SIFT performs better and is more stable than the other two
competing algorithms in all cases at different illumination levels. This is attributed to
the fact that the EPCE descriptor inherits the PC’s insensitivity to light intensity and
contrast [40].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Example images of simulated optical images under different imaging condition and their
registration results by RTV-SIFT method. (a,d,g) are the simulated optical images with illumination
variation, noise, and cloud covering, respectively. (b,e,h) show the corresponding points in the image
pairs. (c,f,i) show the checkerboard images of the registration results.

3.7.2. Noise Interference

Since the space optical cameras mainly use linear array CCDs (Charge-coupled Devices)
as the sensor and the readout noise of CCD cameras follows Gaussian distribution [41], we
simulated noise interference to optical images by adding different levels of Gaussian noise.
The mean values of Gaussian noise were set to 0 and the variance was divided into 11 levels
sampled at equal intervals from 0 to 0.1.

As shown in Figure 12b,e, the RTV-SIFT is able to maintain good performance all the
time with different levels of noise disturbances, with almost no fluctuations in the average
CMN and average Scat values. This proves that the RTV-SIFT is robust to noise.
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Figure 12. Average CMN (top row) and average Scat (bottom row) of the PSO-SIFT, OS-SIFT, and RTV-
SIFT (ours) on the test images under different simulated optical imaging conditions. (a,d) Results
of simulated illumination variation. (b,e) Results of simulated noise interference. (c,f) Results of
simulated cloud obscuration.

3.7.3. Cloud Covering

Optical remote sensing images can be negatively impacted by cloud occlusion during
capture [42], resulting in degraded image quality and affecting feature extraction. A good
registration algorithm should be robust to cloud occlusion to ensure optimal performance.
To evaluate the impact of cloud occlusion on registration results, we used a mask with
controlled transparency and extent to simulate clouds in optical images, with the cloud
center set at the image center. 11 levels were set to represent varying cloud thicknesses and
influence ranges.

The results in Figure 12c,f show that the average CMN and average Scat of RTV-SIFT
decrease with the increase of cloud thickness and occlusion area, but its performance is still
far superior to the other two algorithms.

3.8. Summary of Experimental Results

Based on the above experimental results, we can draw the following conclusions.

1. Our proposed RTV-Harris feature point detector is robust to speckle noise and texture,
so the extracted feature points are mainly distributed at the edges of the structure with
a higher repeatability rate than the traditional DoG and multiscale-Harris approaches.

2. The EPCE feature descriptor can effectively overcome the nonlinear intensity differ-
ences between optical and SAR images, and is more accurate than the descriptors
constructed on the Sobel and PC edges.

3. The POED based fine matching method can effectively increase the number of correct
corresponding points and make their distribution more uniform, as shown in the last
two rows of Table 2.

4. The RTV-SIFT method outperforms other algorithms in various scenes and imaging
conditions, showcasing its superior robustness and adaptability.
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4. Discussion

Despite significant radiometric differences between optical and SAR images, their
structural information is consistent and stable. Our proposed method leverages this
structural information to effectively address the two problems outlined in Section 1. Firstly,
we use the RTV method to smooth speckle noise and texture regions while preserving edge
accuracy. By detecting feature points on the structure image, we significantly increase the
likelihood of detecting the homology point on both images. The experiments in Section 3.4
suggest this property. Next, we construct EPCE descriptors on the structure image to
assign each feature point an accurate, unique descriptor. The structural edge descriptors
of homonymous points are stable and similar, leading to a significant improvement in the
correct matching rate of feature points as shown in Table 2.

In summary, the experiments conducted in this paper provide valuable insights into
the registration of optical and SAR images and demonstrate the effectiveness of the pro-
posed methods. The findings in this study have important implications for future research
in the field of remote sensing image applications. however, since our method relies on
the structural features of the images, it may not perform well in weakly structured re-
gions, as depicted in Figure 13. These areas are localized with very small fields of view
(256 m × 256 m), thus lacking significant structural features, leading to registration failure.
Nevertheless, in practical engineering applications, we can still harness structural infor-
mation to register large scene images, thereby achieving registration of local regions with
weakly structural features.

Figure 13. Registration effects in local weakly structured regions.

5. Conclusions

In conclusion, we have proposed a novel algorithm for registering optical and SAR
images based on structure extraction and structural edge descriptors. Our approach utilizes
the RTV-Harris detector to extract feature points located mainly on the structural edges,
resulting in a high repeatability rate. The EPCE feature descriptors constructed on the
RTV iteration space effectively overcome the intensity nonlinear difference between the
optical and SAR images, obtaining accurate descriptors. Furthermore, the POED-based
fine-matching method combines the position and principal direction information of feature
points, resulting in more precise correspondences and improved registration accuracy.
In comparison to several state-of-the-art methods, we found that the proposed RTV-SIFT
method achieves superior registration results and is more robust to illumination variations,
noise, and cloud occlusion. Our work provides a novel idea for optical and SAR image
registration and demonstrates the potential of utilizing multi-modal image structural
information for registration. We believe that our proposed method can be extended to
other multimodal image registration fields, making significant contributions to the remote
sensing domain.
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