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Abstract: In urban thermal environment research (UTE), urban shadows formed by buildings and
trees contribute to significant variations in thermal conditions, particularly during the mid-day
period. This study investigated the multi-scale effects of indicators, including urban shadows, on
UTE, focusing specifically on the mid-day hours. It integrated field temperature measurements
and drone aerial data from multiple city blocks. Considering both urban shadows and direct solar
radiation, a linear mixed-effects model was employed to study the multi-scale effects of urban
morphological indicators. Results showed that: (1) UTE is a multi-scale, multi-factor phenomenon,
with thermal effects manifesting at specific scales. Under shadow conditions, smaller scales (10–20 m)
of landscape heterogeneity and larger scales (300–400 m) of landscape consistency better explained
temperature variations mid-day. Conversely, under direct sunlight, temperature was primarily
influenced by larger scales (150–300 m). (2) Trees significantly reduced temperature; 100% tree canopy
cover within a 10-m radius reduced air temperatures by approximately 2 ◦C mid-day. However, there
is no significant correlation between temperature and green spaces. (3) Building area and height were
significantly correlated with temperature. Specifically, an increase in building area beyond 150 m,
especially within a 300-m radius, leads to higher temperatures. Conversely, building height within a
10–20 m range exhibits significant cooling effects. These findings provide crucial reference data for
micro-scale UTE investigations during mid-day hours and offer new strategies for urban planning
and design.

Keywords: building and urban tree; spatial correlation; scale effects; urban shadows; urban planning;
urban heat mitigation

1. Introduction

Urban heat island (UHI) is a critical research topic in today’s urban environments [1,2].
Rising temperatures heighten the risk of heat-related illnesses for urban residents in sum-
mer [3,4]. Moreover, increased temperatures escalate air conditioner energy consump-
tion [5] and exacerbate air pollution [6,7], compromising the livability of cities and hinder-
ing sustainable urban ecosystem development. Hence, studying the features and patterns
of the urban thermal environment (UTE) is crucial for urban planning, environmental
protection, heat mitigation, and municipal infrastructure development [8,9].

The UTE is a complex phenomenon characterized by multiple scales and causative
factors [10–12]. Research on UTE can be categorized into three levels: macro, meso, and
micro, encompassing spatial scales ranging from individual buildings to entire urban
areas [13]. As a multifaceted physical phenomenon, UTE is influenced by various factors,
including meteorological conditions, solar radiation, and the urban environment [14].
Notably, the land cover plays a crucial role in shaping the form and layout of urban
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landscape and acts as a significant determinant of temperature variation [15–17]. Previous
studies have shown that the impacts of urban morphology features on UTE vary with
scale and the thermal effects of these indicators differ across different spatial scales [18,19].
Specifically, at the micro scale, indicators such as buildings, roads, and trees within the local
urban landscape can influence the surrounding temperature [20,21]. Meanwhile, at the
meso and macro scales, indicators such as the city’s scale, shape, land use type, and natural
environment also affect the UHI intensity [22,23]. Hence, temperatures within cities are
subject to influences at multiple scales, covering the macro level of the entire city as well as
the micro level of individual buildings and vegetation. An in-depth understanding of the
interdependencies and correlations across these diverse scales within the UTE is paramount.
Such understanding aids in quantifying the scale-dependent impact of factors contributing
to the UHI effect, thus offering valuable insights for the formulation of effective mitigation
strategies and regulatory measures.

Remote sensing (RS) primarily investigates the UHI phenomenon at the meso and
macro scales, which commonly involves analyzing the city and its surrounding areas, with a
specific focus on discussing the thermal variations between urban and rural regions [24,25].
However, this approach reveals that characterizing the UHI as an “archipelago” rather
than an “island” is more apt [10]. As a result, it falls short of offering a comprehensive
understanding of the underlying mechanisms governing the UTE. In recent years, high-
resolution RS images have enabled a clearer visualization of land use types, enabling a
closer association between spatially continuous land surface temperature and alterations
in surface biophysics. This approach better reflects the surface temperature variations
resulting from changes in land cover [26–28]. However, it is worth noting that the spatial
resolution of thermal infrared images employed for surface temperature estimation remains
relatively low (e.g., Landsat 8, 100 m) [29]. At this scale, individual temperature pixels
often amalgamate multiple land cover types, thereby limiting the capability of existing
RS methodologies to discern the subtle temperature differences caused by landscape
heterogeneity at the micro scale [30,31]. In contrast, the concept of Local Climate Zones
(LCZs) [32] classifies urban land surfaces into various categories based on differences in
surface cover, structure, material composition, and human activities. The temperature
differences between different LCZ types are then utilized to estimate urban heat intensity,
serving as a foundation for intracity UTE comparisons [33]. Studies have shown that
LCZs of the same type consistently exhibit temperature characteristics. However, this
classification approach may overlook the microscale landscape heterogeneity intrinsic to
a city’s three-dimensional structure and surface materials, which significantly influence
the accurate assessment of the UTE [34]. Indeed, surfaces of the same type within an
urban environment exhibit varying micro scale landscape parameters, thus resulting in
temperature variations. For example, temperature fluctuations in parks are influenced
by factors such as the size, shape, and type of vegetation patches, while temperature
fluctuations in city blocks are determined by building density, height, and layout. However,
the distribution of green spaces, building areas, and building heights within a city is not
uniform but rather a random combination of natural features and man-made structures at
finer scales. The utilization of numerical and physical models (e.g., Envi-met) is a common
practice in micro scale UTE research [35]. However, this approach is hindered by its demand
for numerous input parameters and its inclination toward simplified modeling techniques,
which pose challenges in accurately capturing the true spatial temperature distribution.
Consequently, this limitation obstructs the comparative analysis of intra-urban thermal
environments. Therefore, current research on UTE spanning from the micro to meso and
macro scales falls short of achieving a comprehensive integration of these diverse scales.
Analyzing UTE exclusively at a single scale neglects a thorough assessment of scale effects
and spatial correlations among influencing factors, thus resulting in a dearth of quantitative
insights elucidating how multiscale spatial indicators collectively impact temperatures
within urban areas.
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Furthermore, despite extensive research on the influence of urban landscape hetero-
geneity on local temperature variations at specific spatial scales, there remains a scarcity
of quantitative investigations specifically addressing the significant effects of shadows
cast by three-dimensional objects, such as buildings and trees, on UTE and its associated
influencing factors [36]. Buildings are crucial components of the urban structure, wield-
ing a substantial influence on UTE by shaping the reflection of solar radiation and the
dispersion of heat within urban areas [37]. Several studies have examined the impact of
buildings on urban temperature, including the relationship between 2D/3D urban spatial
form indicators, such as building area and building height, and UTE [16,38–40]. While
buildings constitute the principal drivers of UTE, it is noteworthy that building shading
can ameliorate the impact of direct sunlight, consequently diminishing the effect of thermal
radiation on the surrounding environment and leading to temperature reduction. However,
in practical studies, there is a limited consideration of the heating effect of buildings and the
cooling effect of shadows together, which may impede the comprehension of the potential
influences of other variables on temperature.

Urban trees, in addition to buildings, assume a pivotal role in temperature mitigation
through various mechanisms such as intercepting incoming solar radiation, providing direct
surface shading, and reducing ambient temperature through evapotranspiration [41,42].
However, it is noteworthy that in many studies investigating the UTE, trees are often
grouped together with other forms of vegetation, such as grasslands and shrubs [10].
Although trees have a more pronounced cooling effect compared to low-lying vegetation,
the understanding of the extent and scale of tree effects on urban micro scale temperature
is hindered by the lack of extensive, fine-grained temperature data as well as the absence of
real-time ground coverage data of tree shadows. Therefore, in the process of quantifying
the influence of urban spatial indicators on temperature, it is imperative to fully account
for the effects of shadows cast by both buildings and trees.

In summary, to comprehend the patterns of urban temperature distribution, it is
imperative to take into account a multitude of influencing factors and employ multiscale
analysis methods to unravel the underlying spatial correlations. Only by investigating the
multiscale framework of UTE based on the heterogeneity of the urban landscape can a
more comprehensive and profound understanding of the UTE generation mechanism and
temperature distribution variation patterns be achieved.

Our research endeavors are geared towards exploring phenomena within the urban
thermal environment across multiple scales, with a keen focus on discerning how different
spatial scales influence temperature distribution. We investigate micro scale factors, such as
individual buildings and trees, as well as meso/macro scale factors, including street-level
regions. Combining remote sensing data and ground-level temperature observations, we
employ linear mixed-effects models to investigate how urban spatial indicators, building
characteristics, and tree shading affect temperature distribution within the city. We analyze
the independent effects of different scales on temperature and reveal their integrated impact.
Moreover, we quantify the range and intensity of influence of urban spatial indicators,
building characteristics, and tree shading on temperature variations. These comprehensive
insights enrich our understanding of urban thermal complexity and offer valuable strategies
for future urban planning and design.

2. Study Area and Data
2.1. Study Area

Wuhan, located in central China, serves as a representative of major cities in the
region (Figure 1a), with a population of 13,648,900, of which 11,541,500 reside in urban
areas. Wuhan has a subtropical monsoon climate, characterized as humid, with the highest
recorded extreme high temperature reaching 41.3 ◦C on 10 August 1934 [43]. The period
from June to September registers the highest temperatures of the year. Over several
decades of urbanization, an obvious UHI phenomenon has emerged. The temperature
measurements for this study primarily span four functional zones within the city: university
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campus (Z1), residential area (Z2), park (Z3), and commercial center (Z4) (Figure 1b). The
land cover types mainly consist of buildings, green space (comprising grass and trees), and
impervious surfaces, but the proportions of these land cover types vary across the four
zones (Figure 1c). The key characteristics of each zone are as follows: Z1 features relatively
few buildings but boasts an abundance of trees, Z2 exhibits a high density of both trees
and buildings, Z3 encompasses abundant trees but fewer buildings, and Z4 has fewer trees
and a high density of buildings. Among these zones, Z4 carries the highest proportion of
buildings, Z3 has the highest proportion of trees and green spaces, and Z1 has the highest
proportion of impervious surfaces.
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2.2. Collection of Temperature Measurements and UAV Data Acquisition

During the three days of 29 August, 30 August, and 17 September 2021, temperature
and location data were simultaneously collected from different points within the four areas.
These measurements were conducted from 12:00 to 13:30 using temperature recorders (Omega
H3009) and global positional system (GPS) devices. The temperature measurements were
annotated to indicate whether they were taken in direct sunlight or shaded areas. The
thermometer was positioned at a height of 0.8 m above the ground to ensure minimal
interference and a stable measurement environment. Temperature readings were obtained
after allowing the instrument to stabilize for one minute under calm wind conditions.

During the three sampling sessions, a total of 448 temperature records were obtained
from 182 sampling points (as detailed in Table 1). Specifically, under sunny conditions,
45 points were sampled on the first day, resulting in 45 records; 47 points were sampled
on the second day, resulting in 47 records; and 30 points were sampled on the third day,
resulting in 30 records. Among them, 25 points remained in the same location throughout
the three days, accumulating a total of 75 records. The remaining points were randomly
observed on one or two days, resulting in 47 records. Under shade conditions, a total of
326 records were collected, with 106, 111, and 109 points sampled, respectively. Among
them, 94 points were measured on all three days, contributing to a total of 282 records,
while the remaining points accounted for 44 records.
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Table 1. Summary of three sampling sessions.

Sampling Date
Sunlight Shadow

Records Different
Location

Records from
Same Location

Total
Records

Records Different
Location

Records from
Same Location

Total
Records

29 August 2021 20
25

45 12
94

106
30 August 2021 22 47 17 111

17 September 2021 5 30 15 109
total 122 326

In September and November 2021, a DJI-M300 RTK UAV equipped with a ZENMUSE
P1 lens (f = 35 mm) was deployed to capture vertical images of the experimental area. The
flight parameters included an 80% heading overlap and a 70% side overlap. The absolute
flight altitude was 500 m, and the collection ground range was 7 km2.

3. Method

The framework of multi-scale influence analysis is illustrated in Figure 2. First, digital
orthophoto model (DOM) and high-precision digital surface model (DSM) are generated
from UAV images. Second, based on DSM, DOM, and temperatures data, 17 circular buffers
surrounding each temperature measurement point are determined, the land cover data are
visually interpreted based on DOM, and eight indicator parameters can be obtained. Third,
a linear mixed-effects model (LME) analysis is conducted on the data, and the quality is
assessed. Finally, scale analysis is performed based on three distinct experiment results.
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3.1. UAV Image Processing

DJI Map software was utilized to process the UAV images, resulting in the generation
of a high-resolution DOM and high-precision DSM of the study area. The ground resolu-
tions of the UAV images, without ground control points, were 4.7 cm for the DOM, 9.4 cm
for the DSM, and 0.5 m for elevation accuracy.
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3.2. Spatial Form Indicators

We calculated urban spatial form indicators within 17 circular buffers surrounding
each temperature measurement point with radii ranging from 2.5 m to 500 m. These
buffers are denoted as D2.5, D5, D10, D20, D30, D40, D50, D60, D70, D80, D90, D100,
D150, D200, D300, D400, and D500. Within each of these circular buffers, we derived eight
indicator parameters, treating each buffer as a distinct scale. These parameters included six
primary percentages of land cover, specifically: buildings (BldgL), green spaces (GreenL),
impervious surfaces (ImpS), roads (RoadD), water bodies (Water), and bare ground (BareL).
Additionally, we calculated the percentage of tree canopy coverage (TreeC) and the average
building height (BldgH).

The land cover data were visually interpreted based on DOM data to ensure the
utmost accuracy in data analysis. It was classified into six categories: impervious surfaces
(comprising open squares, parking lots, sidewalks, and other cement surfaces), green spaces
(with a specific emphasis on grass and shrubs), buildings, roads (encompassing municipal
roads, excluding small roads within the area), bare land, and water bodies.

Tree canopy coverage was extracted using absolute height values from the DSM within
the 4–28 m range. It was further refined using DOM data to eliminate any misclassifications
of building data within this height range. Building height was derived based on the land
cover classification data and DSM data, using Geographic Information System spatial
analysis to extract the corresponding values.

3.3. Data Analysis

In the experiment, ANOVA testing was used to analyze the temperature data collected
from the samples. This analysis was primarily conducted to investigate whether there
were significant differences in the average temperature values among different regions.
Subsequently, the Least Significant Difference (LSD) test was applied for post hoc com-
parisons between regions to determine if there were notable statistical variations in the
average temperature values among them. Furthermore, a LME analysis was conducted
on the data, following the approach described by [44,45]. This analysis considered the
repeated measurements of data and the spatial correlation between sampling points. By
employing this method, we could avoid the issue of losing important information that
may occur when using simple mean-based analyses, thereby resulting in more robust and
dependable conclusions.

The LME model serves as an extension of the linear model, where the traditional
general linear model assumes fixed effects for the independent variables. Independence
of samples is one of the key assumptions in linear models, which requires that each data
point originates from a distinct population. However, due to the presence of repeated
measurements and spatial correlation among the sampling points, the data may not adhere
to the independence assumption. The LME model addresses this issue by incorporating
random effects, allowing for the inclusion of the non-independence properties of the
samples and improving the model fit.

Formulated with each sampling point as the primary unit of analysis, the LME model
is expressed as follows:

Yti = β1 ∗ X(1)
ti + β2 ∗ X(2)

ti + · · ·+ βp ∗ X(p)
ti ( f ixed)

+u1i ∗ Z(1)
ti + · · ·+ uqi ∗ Z(q)

ti + εti (random)

where Yti represents the temperature measurement for the t-th subject (sample) on the
i-th day; During the fixed part, X(P)

ti represents the p-th urban spatial form indicator on
the i-th day for the t-th subject. βp is the corresponding coefficient; εti represents the
random error in the temperature of each sample point. Additionally, U and Z represent
the random variation in each independent variable. However, only the fixed effects and
random intercepts are considered in the experimental analysis, and U and Z of the random
coefficient slope are not considered.
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The experimental data were modeled using the R language [45]. The lme4 and lmerTest
toolkits were utilized for stepwise regression of the LME model, while the Car package
calculated the multicollinearity (VIF). The LME model’s quality was assessed using the
Akaike information criterion (AIC), where smaller values indicate higher quality. Furthermore,
it is worth noting that the data analysis process could also be performed in SPSS software.

3.4. Scale Analysis

We divided all the sampling points into two categories: data collected in direct sunlight
and data gathered under shadow conditions. For each set of data, we conducted three
distinct experiments:

Experiment 1 (Exp. 1: Single scale): Only the spatial form indicators of a single scale is
used to analyze the temperature change characteristics.

Experiment 2 (Exp. 2: Potential Multiscale): On the basis of Exp. 1, Exp. 2 incorporates
the zone attribute (Z1, Z2, Z3, and Z4) as a control variable. This approach allows us to
investigate the explanatory capability of a single-scale spatial form indicator regarding
temperature variations within the constraints of a larger spatial context.

Experiment 3 (Exp. 3: Multiscale effect): Exp. 3 aims to identify scales that can
characterize the zones defined in Exp. 2 (which are of man-made definition and have
varying size ranges). Within the set of 17 existing scales, we select any two scales and
employ their spatial form indicators to model the temperature data. This analysis explores
the explanatory power of different combinations of two scales’ spatial form indicators
on temperature variations, aiming to understand the scale–space relationship of UTE.
Considering all possible pairs of scales, Exp. 3 will generate a total of C2

17 = 136 models
fitting results.

Due to the temperature difference over the three-day sampling period, the sampling
date (time = 0829, 0830, and 0917) was included as a control variable in each experimental
group’s model calculation. The variables for each experimental group are listed in Table 2.
To ensure the quality of the mixed model, VIF between variables needed to be less than 5,
on the basis of a correlation analysis. A stepwise regression approach was employed in
the experiment, resulting in some indicators not being included in the model calculation.
Therefore, the actual number of indicators included in the model calculation was lower
than the total number of variables listed in Table 2.

Table 2. Experiment setup.

Attribute
Total Number of VariablesUrban Spatial Form Indicators Control Variables

Time Zone

Exp. 1 8
√

-- 9
Exp. 2 8

√ √
10

Exp. 3 16
√

-- 17

4. Results
4.1. Data Processing Results

The distribution maps of DOM and DSM obtained from UAV data processing are
shown in Figure 3a,b. Land cover data, tree canopy distribution data, and building height
data are presented in Figure 3c–e, respectively. Additionally, four sampling points with
different radius ranges are selected within Z1 and Z4, and the corresponding images are
displayed in Figure 4.
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4.2. Descriptive Statistics

Significant temperature variations were observed within the urban area (Figure 5a–d).
ANOVA statistical analysis revealed significant differences in temperatures between the
sun and shade conditions in all three sampling periods (p < 0.01, Figure 5f). Additionally,
there were significant differences in temperatures among the four functional zones (Z1–Z4)
under both sunlight and shade conditions (p < 0.01) (Figure 5e). Under shade conditions,
the average temperatures showed the following trend: Z4 > Z2 and Z3 > Z1. However,
under sunlight, the average temperatures showed the following trend: Z4 > Z2 > Z3 and Z1.
This indicates the presence of temperature variations among different zones.
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Figure 5. Statistical chart of measured temperature distribution. (a–d) represent the temperature
level distribution within the university campus (Z1), residential area (Z2), park (Z3), and commercial
center (Z4) under both direct sunlight and shaded conditions, respectively. (e) displays the LSD
comparison of temperatures among different functional zones at different time points, where *
indicates statistical significance with p < 0.05 (* The more you have, the more significant it is.),
ns indicates non-significance with p > 0.05, and “n” represents the number of sampling points.
(f) presents temperature box plots under both sunlight and shaded conditions (ANOVA, p < 0.01).

Table 3 describes the temperatures recorded at Time = 0830. Under shade conditions,
the mean and standard deviation (SE) for each zone (Z1–Z4) were 34.5 ± 1.24, 34.9 ± 1.07,
35.8 ± 0.85, and 38.6 ± 0.91, respectively. However, under sunlight, variations in ground-
level solar irradiance due to cloud cover resulted in larger SE values. These observations
indicate that within the same zone, there is a similarity in temperature patterns, while
temperature variations exist within the zone.

Table 3. Description of the recorded temperature for Time2 = 0830.

Zone
Sunlight Shadow

Mean SE Minimum Maximum Mean SE Minimum Maximum

Z1 42.2 1.76 39.1 45 34.5 1.24 32.5 37
Z2 43.7 1.66 41.5 46.4 34.9 1.07 33.4 36.8
Z3 41.5 1.83 37.6 45.1 35.8 0.85 34.3 37.4
Z4 45.9 2.05 44.1 48.9 38.6 0.91 37.1 39.8

However, the subjective zoning of Z1–Z4 functional areas with inconsistent sizes is
inadequate for representing urban temperature characteristics without fixed range sizes.
To account for complex land use and landscape heterogeneity, a universally applicable
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scale is needed to reflect temperature similarity in large-scale urban areas and variability in
small-scale local areas.

4.3. Spatial Correlation of Scales

Under shadow condition, the D40–D50 and D300–D500 scales show higher quality
(Figure 6a), while under sunlight condition, D150–D300 performs better (Figure 6b) in Exp.
1, indicating their effectiveness in explaining urban temperature variations.
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Figure 6. Model quality distribution. (a) Under shadow conditions, Exp. 1 and Exp. 2 regress the
AIC distribution of model quality values. (b) Under direct solar light, Exp. 1 and Exp. 2 regress the
AIC distribution of model quality values. (c) Exp. 3 displays the AIC distribution of model quality
values for multiscale regression under shadow conditions. (d) Under shadow conditions, Exp. 3
demonstrates the distribution of residuals for the multiscale D10 + D400 regression model.

In Exp. 2, the inclusion of the zone attribute as a control variable, which represents the
influence of larger-scale factors, revealed that smaller scales D10 and D20 exhibit relatively
higher quality (Figure 6a). Furthermore, the AIC quality measure improved from 912 for
D40 in Exp. 1 to 827 for D10 in Exp. 2. However, under sunlight conditions, the quality
distribution curve across the entire scale range shows minimal fluctuations (Figure 6b).

The experimental results above demonstrate that incorporating the zone attribute, repre-
senting potential large-scale influence, can improve quality. This multiscale effect is partic-
ularly pronounced under shadow conditions. However, under sunlight conditions, where
continuous heating from the sun is present, no significant variation patterns are observed.
Therefore, with a focus on shadow conditions and in order to find a quantitative mea-
sure for describing the large-scale range, a multiscale comprehensive experiment (Exp. 3)
was conducted.

In Exp. 3, we combined different spatial form indicators from any two scales and
discovered some relationships among the scales through a heatmap of fitting quality
for 136 mixed models (Figure 6c). Compared with the results of Exp. 1, the results of
Exp. 3 demonstrate that certain combinations of scales significantly improved the model
fit. Among them, the combination of D10 and D400 exhibited the highest quality at
843, approaching the maximum quality of 829 in Exp. 2. Compared to the single-scale
analysis in Exp. 1, where D40 (AIC of 912) and D400 (AIC of 882) were considered,
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there was a substantial improvement in quality. Specifically, under shadow conditions,
the combinations of small scales D10 and D20 with different large scales (D200, D300,
D400, and D500) had relatively higher fitting quality. The fitting quality for D10 was
888, 855, 843, and 863, while D20 had slightly lower quality at 875, 856, 845, and 863,
respectively. Figure 6d presents a histogram of residuals predicted by the multiscale
analysis model, indicating that the majority of residual values are close to zero, with a peak
around zero (at 0.28). Additionally, we superimposed a normal curve on the histogram, and
the results indicate that the residual distribution closely approximates a normal distribution.
This suggests that the model performs well in fitting the data, with residuals uniformly
distributed around zero. Thus, it indicates that the analysis of multiple scales can better fit
the temperature distribution than a single scale under shadow conditions. Therefore, it can
be concluded that the large scales of D300–D400 m under shadow conditions in Exp. 3 can
achieve an influence similar to that of the zone variables in Exp. 2. This suggests that the
combined effects of small scales (D10–D20 m) and large scales (D300–D400 m) in spatial
form indicators can better explain the temperature variation within the urban environment.

4.4. Scale Effect of Influencing Factors

(1) Under sunlight conditions

Based on the results (Table 4), higher precision is observed within the D150–D400
scale under sunlight conditions. As for individual variables, only road distance shows a
significant impact on temperature at D2.5–D20, while impervious surfaces and building area
positively correlate at D30. Tree canopy and water bodies consistently lead to temperature
reduction at D40–D100. Beyond D150, building area has a significant aggregating effect on
temperature rise (p < 0.01).

Table 4. Single scale analysis under sunlight conditions: Stepwise linear regression results with
significant parameter coefficients and AIC quality for each model.

Scale INT * Time1 Time2 RoadD TreeC Water BldgL ImpS AIC Input Variables

D2.5 39.45 1.09 4.52 −0.003 516

RoadD
D5 39.45 1.09 4.52 −0.003 516

D10 39.45 1.09 4.52 −0.003 516
D20 39.45 1.09 4.52 −0.003 516

D30 36.72 1.16 4.58 0.034 0.030 515

RoadD
Water
BldgL

GreenL
ImpS

D40 39.87 1.13 4.55 −0.044 −0.046 511 Road
TreeC
Water
BldgL
BldgH
ImpS

GreenL

D50 39.99 1.16 4.57 −0.048 −0.045 509
D60 39.99 1.18 4.59 −0.047 −0.045 509
D70 40.09 1.21 4.61 −0.051 −0.045 507
D80 40.17 1.23 4.62 −0.053 −0.046 506
D90 40.23 1.23 4.63 −0.055 −0.047 505
D100 40.23 1.23 4.63 −0.055 −0.047 504
D150 37.02 1.12 4.53 0.065 501 Road

TreeC
BldgL
ImpS

D200 36.72 1.19 4.53 0.077 497
D300 36.61 1.24 4.55 0.078 500
D400 36.42 1.28 4.58 0.086 502
D500 36.31 1.32 4.60 0.093 506

* The INT (Intercept) represents the model’s predicted value when all independent variables are zero. It serves as
the baseline prediction. In each model, Time3 = 0907 was chosen as the reference category, while Time1 = 0829
and Time2 = 0830 were compared to Time3. The numerical values for Time1 and Time2 in the model represent the
increments relative to Time3 when all other conditions are held constant.

Specifically, within the D40–D100 scale, a 10% increase in tree canopy coverage leads
to a temperature reduction of approximately 0.44–0.55 ◦C, and water bodies cause a tem-
perature decrease of around 0.45 ◦C. At the D30 scale, a 10% increase in building area and
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impervious surfaces raises the temperature by 0.3 ◦C. However, in the D150–D500 scale, a
10% increase in building area results in a temperature rise ranging from 0.65 ◦C to 0.93 ◦C,
indicating a warming effect beyond the critical range of 150 m. Analyzing the temperature
distribution in different zones (Figure 3), Z1 with dense tree coverage exhibits an average
temperature of 42.2 ◦C (ranging from 39 ◦C to 44.1 ◦C), while Z4, dominated by buildings,
has an average temperature of 45.9 ◦C (ranging from 44 ◦C to 48.9 ◦C). These temperature
variations under solar conditions are primarily influenced by building area beyond 150 m.

As the multi-scale effect under the solar condition is not significant, it was not
further discussed.

(2) Under shadow condition

In Exp. 1 (single-scale), different significant variables were observed at different scales
under shadow condition. The tree canopy exhibited a significant cooling effect within the
range of D2.5 to D200. The building area showed a significant heating effect beyond the
critical range of D150. Building height significantly reduced the temperature at the small
scale (D20–30), while it significantly increased temperature at the large scale (D400–D500).
Impervious surfaces significantly decreased temperature in the range of D300–D500 (p < 0.01,
Table 5).

Table 5. Single scale analysis under shadow conditions: Stepwise linear regression results with
significant parameter coefficients and AIC quality for each model.

Scale INT. Time1 Time2 TreeC BldgH BldgL ImpS AIC Input Variables

D2.5 33.52 1.18 2.67 −0.013 960 TreeC

D5 33.57 1.19 2.67 −0.017 949
TreeC

GreenL
ImpSD10 33.73 1.19 2.68 −0.024 933

D20 34.06 1.19 2.67 −0.032 −0.014 921
TreeC

GreenL
ImpS

BldgH
D30 34.23 1.18 2.65 −0.040 −0.012 916
D40 34.32 1.16 2.64 −0.051 912 TreeC

GreenL
ImpS

D50 34.44 1.16 2.64 −0.056 912
D60 34.51 1.17 2.65 −0.060 917
D70 34.55 1.17 2.66 −0.062 922
D80 34.61 1.17 2.66 −0.065 924

TreeC
GreenL
BldgL

D90 34.57 1.17 2.65 −0.064 929
D100 34.53 1.16 2.65 −0.064 931
D150 33.96 1.15 2.64 −0.057 0.014 936
D200 33.84 1.15 2.64 −0.060 0.023 930
D300 33.43 1.11 2.61 0.093 −0.068 904 TreeC

BldgL

BldgH
ImpS
Water

D400 32.58 1.11 2.61 0.051 0.113 −0.088 882

D500 32.21 1.12 2.63 0.050 0.153 −0.099 894

TreeC

BldgH
ImpS

Specifically, the tree canopy width (TreeC) had a strong influence on temperature
cooling at small scales. Within the range of D2.5–D10, a 10% increase in tree canopy width
resulted in a temperature cooling of approximately 0.13◦, 0.17◦, and 0.24◦. In slightly larger
scales of D20 and D30 ranges, it led to a temperature reduction of about 0.36◦. Within the
larger scales of D40–D200, a consistent temperature reduction of approximately 0.5–0.6◦

can be achieved.
An increase in building area (BldgL) led to a rise in temperature, with the extent

of its impact on temperature varying across different scale ranges. Within the range of



Remote Sens. 2023, 15, 4902 13 of 19

D150–D200, a 10% increase in building area resulted in a temperature rise of 0.14◦ to
0.23◦, while within the range of D300–D400, the temperature increase ranged from 0.93◦ to
1.13◦. This indicated that the cumulative effect of building area above D200 significantly
influenced the temperature at the current point, causing it to increase. The temperature
distribution in different zones in Figure 5a–d validated this finding as well: Z1, with a
dense tree canopy, had the lowest temperature at 32.2◦, while Z4, with the highest number
of buildings, experienced the highest temperature at 39◦. This further illustrated the impact
of building area on temperature, which was consistent with the behavior of buildings above
D150 under the sun condition.

Impervious surfaces (ImpS) exhibited a significant cooling effect on temperature within
the large scale range. Within the range of D300–D500, a 10% increase in impervious surface
area can lower the temperature by 0.68◦, 0.88◦, and 0.99◦. Building height (BldgH) showed
a negative correlation with temperature within the scale range of D20–D30, indicating that a
10-m building can lower the temperature by 0.14◦ and 0.12◦. However, within the range of
D400–D500, it showed a significant positive correlation, where an average building height
of 10 m could increase the temperature by 0.5◦.

Road distance (RoadD) did not have a significant impact on urban temperature under
shadow conditions, and green space (GreenL), bare land (BareL), and water bodies (Water)
showed no significant correlation with temperature at most scales. Hence, they were either
not included in the model calculation or were not significant in regression models.

Exp. 3 (multi-scale) revealed (Table 6) the complex multiscale relationship between
urban temperature variation and tree canopy, building height, impervious surface, and
building area. At a small scale, increases in tree canopy and building height caused cooling,
while at larger scales, increases in building area and height resulted in temperature rise.
Moreover, at larger scales, the presence of impervious surface area showed a cooling effect.
In comparison to Exp. 1, which examined single-scale impact factors, the multi-scale results
demonstrated some discrepancies. For instance, the green space of D200 exhibited a cooling
effect in the combined influence of D10 and large scale D200. Under multi-scale conditions,
a 10% increase in tree canopy area in D10 and D20 stabilized the temperature decrease by
0.2 ◦C at the current point. The combined impact of D20 with larger scales indicated that a
10-m building height within D20 contributed to a temperature reduction of 0.25◦, while
an area percentage of 10% in building within D200 led to a temperature rise of 0.16 ◦C.
Furthermore, a 10% increase in building area within D300 and D400 resulted in temperature
increases of 0.77◦ and 1.01◦. The multiscale analysis also demonstrated that the building
density above D200 had a cumulative and additive effect on raising urban temperature.

Table 6. Multiscale analysis under shadow conditions: Stepwise linear regression results with
significant parameter coefficients and AIC quality for each model.

Scales INT. Time1 Time2 Significant Parameter AIC

D10 + D200 35.36 1.17 2.66
TreeC-D10 GreenL-D200

888−0.022 −0.054

D10 + D300 34.27 1.12 2.61
TreeC-D10 BldgL-D300 ImpS-D300

855−0.018 0.078 −0.060

D10 + D400 34.21 1.13 2.62
TreeC-D10 BldgL-D400 ImpS-D400

843−0.017 0.101 −0.071

D10 + D500 33.77 1.20 2.68
TreeC-D10 TreeC-D500 BldgH-D500

863−0.016 −0.118 0.076

D20 + D200 34.33 1.17 2.65
TreeC-D20 BldgH-D20 BldgL-D200 TreeC-D200

875−0.022 −0.025 0.016 −0.041

D20 + D300 34.01 1.13 2.62
TreeC-D20 BldgH-D20 BldgL-D300 ImpS-D300

856−0.021 −0.018 0.077 −0.048

D20 + D400 33.98 1.14 2.63
TreeC-D20 BldgH-D20 BldgL-D400 ImpS-D400

845−0.019 −0.018 0.101 −0.061

D20 + D500 33.28 1.19 2.67
TreeC-D20 BldgH-D20 TreeC-D500 BldgH-D500

863−0.020 −0.015 −0.102 0.091
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5. Discussion

We quantified the effects of urban spatial morphology indicators on atmospheric
temperature at different scales, considering the influences of direct sunlight and shade, and
paying attention to the interactions between scales. Critical values for the main influencing
factors were identified based on the results of this study: in the city, the tree layout should
focus more on the shading effect produced within 10 m, while the building layout should
avoid excessively dense clusters of buildings beyond 150 m, especially within 300 m.
Through a reasonable tree distribution and building layout, the local temperature increase
in the city can be effectively alleviated.

5.1. Scale Dependence of Urban Temperature

This study has shown that urban temperatures exhibit multi-scale effects. Under direct
sunlight, large-scale influences (150–300 m) dominate the temperature patterns. Conversely,
under shadows, the combined effect of small-scale heterogeneity (10–20 m) and large-
scale consistency (300–400 m) better determines temperature variations within the city.
Specifically, spatial indicators within the 300-m scale determine the temperature’s relative
level at specific locations within the urban temperature distribution. Meanwhile, the 10-m
scale governs temperature disparities among different locations at the same temperature
level. These two scales provide crucial insights into understanding the similarity and
variability in urban temperature distribution.

Therefore, previous studies focusing mainly on a single scale will not be able to ad-
equately explain the formation mechanisms of temperature variations within cities. In
contrast, the integrated approach of this study provides a more comprehensive understand-
ing of urban temperature distributions by providing insight into the potential mechanisms
of spatial correlation between such scales.

5.2. Influence of Urban Spatial Form on Atmospheric Temperature

We conducted detailed sampling and analysis of spatial form indicators at different
scales within the city. Through precise ground observations and data processing, we were
able to detect the impacts of different land surface types at various scales on the urban
thermal environment. Tree canopies, impervious surfaces, and buildings are the primary
influencing factors of urban atmospheric temperature variation, both under direct sunlight
and shadow conditions. However, these factors may only show significant relationships at
specific scales. For instance, tree canopies within 200 m have a notable effect on reducing
local temperatures, while buildings exhibit a warming effect beyond 150 m. This indicates
the importance of considering spatial form indicators across different scales and recog-
nizing that their impact mechanisms may vary at different scales when studying urban
temperature changes.

Furthermore, in this study, we drew different conclusions compared to previous
research by distinguishing between trees and green space. It was found that trees can effec-
tively reduce the temperature, with 100% tree coverage within the D10 scale contributing
to a temperature reduction of approximately 2◦ (Table 6). Green space did not show a
significant correlation with atmospheric temperatures, which differs from the findings of
previous studies [36,46]. This difference can be attributed to the previous studies not differ-
entiating between green space and trees, making it difficult to explore their temperature
impacts at a finer scale. As a result, in urban design, careful consideration of how to plan
and position urban trees to maximize the combined benefits of shading and transpiration
becomes crucial.

In addition, under direct sunlight, we observed that small-scale impervious surfaces
(D30) increased ambient temperatures, while under shadow conditions, large-scale im-
pervious surfaces (D300–500) showed a cooling effect. This finding differs from many
previous remote sensing studies that suggested that impervious surfaces would lead to
higher surface temperatures [47–49].The reason behind this discrepancy lies in the fact
that remote sensing studies often compare urban and rural temperature differences at a
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macro scale. Rural areas mainly consist of bare land and vegetation, while urban areas
are dominated by impervious surfaces, which have higher thermal emissivity and lower
albedo, storing more heat and resulting in higher surface temperatures [50]. Additionally,
the low spatial resolution of RS temperature inversion, combined with the prevalence of
sunlit areas in urban regions compared to shaded areas, means that more information about
the temperature under direct sunlight is reflected within a pixel. This leads to a tendency
to observe a positive correlation between impervious surfaces and surface temperature.

However, our research observed a cooling effect of large-scale impervious surfaces
under shaded conditions. This can be attributed to the abundance of trees in the four
sampled areas of our study (excluding commercial center Z4), especially in the university
campus Z1, where tree cover exceeds 50% and impervious surfaces account for 50%. These
trees are predominantly planted on impervious surfaces. Under shadow conditions, the
trees provide shade and transpiration, reducing ambient temperatures and increasing the
cooling effect of impervious surfaces on a large scale. This explanation aligns with the
findings of [10], whose research indicated that in their study area, for 25% of impervious
surface locations (e.g., most residential areas), temperature decreased most rapidly when
canopy coverage exceeded 40%. Therefore, our study emphasizes the need for further
investigation into the interaction between impervious surfaces and trees to understand the
complex mechanisms of urban temperature variations.

Additionally, the height and density of buildings have been a focal point of numer-
ous studies. This study reveals that the main reason for urban temperature rise is the
aggregation effect caused by buildings with a size of more than 150 m (D150 and above).
This phenomenon can also explain the urban heat island effect, which is generated by the
cumulative increase of buildings taller than 150 m. Of particular concern is the significant
warming effect caused by the cumulative impact of buildings with a size of D300 and
above (for example, within D10 + D300 m/D400 m, 10% increase of buildings will raise
the temperature by 0.78◦/1◦, as shown in Table 6). It is worth noting that this research
specifically quantified the relationship between building height and temperature within
different scales. At the small scale (D10–20 m), the study found that building height has
a cooling effect on summer temperatures. This is because tall buildings can enhance the
efficiency of land–air convection, accelerating air circulation and increasing shading on the
ground, leading to reduced solar radiation absorption. Thus, under shadow conditions, the
combined effect of building shadows and canopy coverage results in a cooling phenomenon.
However, at the large scale (D400–500 m), the increase in building area leads to the heat
island effect. Specifically, as the building area around a point increases, the warming effect
becomes more pronounced, counteracting the cooling effect caused by local tall building
shadows. This phenomenon can be attributed to the different effects of various factors
and mechanisms at different scales [51], which explains seemingly contradictory results in
the studies of [16,52]. While Huang’s research at the small scale indicates a cooling effect
of building height on summer temperatures, Zhou’s study at the large scale suggests a
warming effect of building height on summer temperature.

Therefore, this study comprehensively considers the influence of different factors
under sunlit and shadow conditions, delving into the relationship between various spa-
tial form indicators and atmospheric temperature at multiple scales. Understanding the
threshold and quantified contributions of each influencing factor to temperature is crucial
for improving urban climate.

5.3. How Should Urban Landscape Be Laid Out to Most Effectively Cool the City?

The urban thermal environment (UTE) effect is influenced by multiple factors, and its
formation mechanisms vary from micro to macro scales. Therefore, it is essential to consider
a comprehensive set of factors to devise effective mitigation strategies. In meticulous urban
planning, special attention should be given to buildings, trees, and impervious surfaces. We
suggest urban planners control building height and density as crucial measures to mitigate
the UTE. Reducing the concentration of buildings over 150 m, particularly those beyond
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300 m, can lower the formation of heat islands. Additionally, in low-density building areas,
vertical expansion of buildings instead of horizontal expansion can reduce daytime urban
heat environments.

Increasing tree canopy cover in urban areas is an effective measure to improve lo-
calized microclimates. In urban planning, tree layout and planting should be carefully
considered, especially in densely built areas. Planting large-canopy trees or increasing
planting density within every 10 m can alleviate the warming effect caused by buildings.
Moreover, prioritizing tree planting in sun-exposed areas, rather than dispersing trees
around buildings, can better utilize the shading and transpiration effects of trees.

Impervious surfaces in the city, such as concrete and asphalt, absorb and release
heat under direct sunlight, exacerbating the heat island effect. To lower temperatures, it
is advisable to disperse impervious surfaces and appropriately distribute trees around
them. This can effectively reduce the temperature of the surrounding areas through the
transpiration and shading effects of trees.

5.4. Limitations

In our experimental design, we carefully considered factors influencing the selection
of the measurement time period. Due to relatively minor temperature variations in the
morning, we opted to conduct experiments during the mid-day and later hours. While our
research findings have provided valuable insights into the thermal environment mid-day, it is
important to emphasize that these results pertain specifically to this particular time window.
Future studies should consider expanding the time range to include data from the afternoon
and evening, enabling a more comprehensive understanding of urban thermal dynamics.

6. Conclusions

This paper quantitatively investigates the impacts of factors influencing the UTE at
different scales and determines the comprehensive effects between spatial scales to better
understand the characteristics and formation mechanisms of urban heat islands. The
study focuses on the effects of urban shading and spatial form features on the thermal
environment at various scales. The following conclusions are drawn:

(1) Research on urban heat environment requires comprehensive consideration of influ-
encing factors at different scales to better understand the mechanisms responsible for
urban heat environments formation.

(2) Tree canopy cover, impervious surfaces, and buildings are the primary factors influ-
encing the urban heat environment, and their critical thresholds of impact have been
clearly identified.

(3) Trees play a significant role in temperature reduction, particularly under direct sun-
light and shadow conditions, with the cooling effect dependent on the canopy cover-
age ratio. Notably, no significant correlation was observed between temperature and
green space.

(4) Impervious surfaces exhibit a significant cooling effect under shadow conditions. The
impact of impervious surfaces on temperature is altered by the presence of shadows, and
the final effect depends on the proportion of impervious surfaces covered by shadows.

(5) Building density and height demonstrate a significant correlation with temperature.
Increasing building density leads to higher temperatures during summer days, while
within smaller scales, taller buildings contribute to temperature reduction.

In summary, this study conducted a comprehensive quantitative analysis, taking into
account the influence of urban shadows and spatial form features on the mid-day urban
thermal environment. However, due to limitations in data collection time, our research pri-
marily focused on the mid-day period (12:00 to 13:30) during three summer days. Therefore,
our research findings are primarily applicable to this specific time window. Other time peri-
ods may introduce additional complexities, such as variations in atmospheric temperature
exchange due to different shadow positions, which require further investigation.
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We recognize that UHI effects can vary throughout the day, and the role of tropical
nights in the urban thermal environment is also significant. Future research should consider
expanding the data collection to include additional time periods for a more comprehensive
understanding of UTE dynamics.

Nevertheless, our study provides valuable insights into the quantitative relationship
between urban spatial morphology and midday UHI intensity. It offers scientific guid-
ance to urban planners for managing and mitigating UTE at various scales during the
mid-day hours. For a more comprehensive understanding of UTE throughout the day
and night, further research is needed to explore these additional time frames and their
unique characteristics.
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