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Abstract: Loss of forest cover and derived effects on forest ecosystems services has led to the establish-
ment of land management policies and forest monitoring systems, and consequently to the demand
for accurate and multitemporal data on forest extent and structure. In recent years, spaceborne Light
Detection and Ranging (LiDAR) missions, such as the Global Ecosystem Dynamics Investigation
(GEDI) instrument, have facilitated the repeated acquisition of data on the vertical structure of
vegetation. In this study, we designed an approach incorporating GEDI and airborne LiDAR data, in
addition to detailed forestry inventory data, for estimating tree-growth dynamics for the Laurentides
wildlife reserve in Canada. We estimated an average tree-growth rate of 0.32 ± 0.23 (SD) m/year for
the study site and evaluated our results against field data and a time series of NDVI from Landsat
images. The results are in agreement with expected patterns in tree-growth rates related to tree
species and forest stand age, and the produced dataset is able to track disturbance events resulting in
the loss of canopy height. Our study demonstrates the benefits of using spaceborne-LiDAR data for
extending the temporal coverage of forestry inventories and highlights the ability of GEDI data for
detecting changes in forests’ vertical structure.
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1. Introduction

Establishing forest monitoring systems has become an important objective of interna-
tional agencies and national governments due to concerns over current deforestation rates
and derived loss of forest ecosystem services [1,2]. In particular, forests’ function as sinks
of carbon emissions has become a focal point for strategies of climate change mitigation,
and different countries have adopted policies for enhancing carbon storage in forests via
afforestation and reforestation in accordance with Global climate agreements and environ-
mental conventions [3–5]. Programs such as reducing emissions from deforestation and
forest degradation (REDD+) rely on the estimation of baselines of carbon stocks in forests
and on carbon stock change detection to evaluate the achievement of goals and determine
result-based payments [6–8]. The implementation of these land management policies and
monitoring systems has resulted in the need to produce accurate and multitemporal data
on forest extent and structure [9].

As part of the assessment of forest condition, the estimation of tree-growth rates is
essential for understanding forest regeneration capacity after disturbance events [10] and
carbon sequestration potential [11]. Furthermore, spatially explicit quantification of tree-
growth dynamics is important for designing forest management strategies and estimating
sustainable harvest levels [12], as well as for identifying climate change-related alterations
on forest productivity [11–13].

Remote sensing technologies have become fundamental in the implementation of
forest monitoring initiatives, due to their coverage of large areas, long-term monitoring
capabilities, and the information on vegetation structure they produce [9,14,15]. For these

Remote Sens. 2023, 15, 5352. https://doi.org/10.3390/rs15225352 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15225352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5305-6556
https://orcid.org/0000-0002-9442-4562
https://doi.org/10.3390/rs15225352
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15225352?type=check_update&version=2


Remote Sens. 2023, 15, 5352 2 of 18

reasons, and in contrast to ground inventories, remote sensing data are considered a cost-
and time-effective solution for obtaining information over large or remote forested areas
and for multitemporal-change detection [16]. Passive multispectral satellite imagery is
widely used in forest monitoring systems, such as the Global Forest Watch [17], due to its
capacity to acquire data over regular intervals, and the large repository of data available,
particularly for Landsat imagery which spans several decades [18]. However, passive
sensors are limited by cloud cover, and spectral signal saturation, especially in dense forests,
that limits the estimation of some vegetation parameters such as tree-canopy height [19].
More recently, radar imagery has become commonly used in monitoring forested areas as
this active remote sensing technology is less constrained by weather conditions [20–22].
Particularly, Interferometric Synthetic Aperture Radar (InSAR) is considered an efficient
technique for estimating tree height [23–26]. Still, InSAR datasets for large-scale mapping
and monitoring are not yet readily available in public repositories [20,27].

In contrast to optical and radar imagery, light detection and ranging (LiDAR) tech-
nology produces accurate data on the vertical forest structure at both regional and global
scales [28–32]. However, despite its benefits in accuracy, data collection with airborne Li-
DAR systems can be cost prohibitive for large areas and for multitemporal acquisitions [33].
An alternative to producing repeated LiDAR acquisitions is spaceborne missions. NASA’s
Global Ecosystems Dynamics Investigation (GEDI) instrument, launched to the Interna-
tional Space Station in 2018, has been successfully used to track changes in forest vertical
structure, improving on the temporal coverage of global forest datasets [34–36]. GEDI is
specifically designed to map ecosystem structure by using a full waveform LiDAR system
with a nominal footprint size of ~25 m diameter that acquires information on the vertical
structure of vegetation [37]. Moreover, GEDI data are publicly available with different
levels of processing, which facilitates their use in various forestry applications [37]. In this
study, we evaluate the benefits of using spaceborne and airborne LiDAR data in addition
to forestry field measurements to track multitemporal changes in forest canopy height
(i.e., tree growth) for a forest reserve in Canada. This study is in support of the Surface
Topography and Vegetation, a Target Observable identified for maturation by the U.S.
National Academies’ Decadal Survey [38].

2. Materials and Methods

We used the information from a forestry inventory containing airborne LiDAR and
in situ data to determine the baseline conditions of a forested area, and the repeated
acquisitions of GEDI to track changes in forest height beyond the initial acquisition date of
the forestry inventory. As part of our approach, we first evaluate the accuracy of the GEDI
Relative Height (RH) metrics compared to the airborne LiDAR data, then, we estimate
average tree height growth at the forest stand level using GEDI height estimates, with
airborne LiDAR estimates as a baseline. We evaluate our canopy growth results against the
in situ forestry data and Landsat imagery.

2.1. Study Area and Input Data

Our study area was the Laurentides Wildlife Reserve (Réserve faunique des Lauren-
tides), located 100 km north of Québec city, Canada. The reserve extends for 8900 km2 and
is dominated by boreal and temperate forest cover and sustains an important ecotourism
industry [39]. Intense forestry exploitation during the 20th century significantly reduced
mature forest stands in the reserve, which, in addition to natural perturbations such as
insect outbreaks, windthrow, and fires, has resulted in a heterogeneous landscape [39]. The
differences in forest stand development makes the Laurentides reserve an interesting study
area for assessing changes in canopy height due to different types of disturbances.

The Laurentides reserve has detailed field data available and complete coverage of air-
borne LiDAR data as part of the forestry inventories produced by the Québec government:
“Inventaire Écoforestiere de Quebec Meridionel” [40]. Currently, there are five forestry
inventories publicly available for the reserve. For our analysis we used the field data
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from permanent sample plots, the airborne-LiDAR raster products, and the forest stand
classification defined in the inventory. All the information of the forestry inventory, as well
as its documentation and user guides, were downloaded from the Québec government
data portal: https://www.donneesquebec.ca/ (accessed on 12 July 2022).

The field data of the forestry inventory includes values of dbh, height, and species for
individual trees located in permanent sample plots covering a large portion of the study
area (Figure 1). The data from the permanent sample plots include a total of 3758 individual
trees with available measurements for more than one survey date. This dataset was used
for calculating rates of tree growth using the repeated measurements.

The airborne LiDAR data covering the Laurentides reserve were acquired over a total
of five years, including 2013, 2015, 2016, 2017, and 2019 (Figure 1), and they are publicly
available as processed products of Canopy Height Model (CHM), Digital Elevation Model
(DEM) of 1 m pixel resolution, and a Slope product of 2 m pixel resolution. We used all
three raster products in the analysis to determine the baseline conditions of the forest and
to evaluate the terrain conditions of the study area.

The forest stand classification defined in the inventory was produced based on pho-
tointerpretation and expert knowledge of the area [40]. In this classification, each individual
forest stand polygon indicates a group of trees relatively homogeneous in age, structure,
composition, and environmental conditions [41]. The shapefile with the forest stand clas-
sification was processed following the forestry inventory documentation [40] to include
information on type and year of disturbances.
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tion year of the airborne LiDAR data, with the coverage of each airborne acquisition represented in 
a different color; (e) location of the field-data permanent sample plots from the forestry inventory. 
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elevation of the highest return and the TanDEM-X value (included in the GEDI product) 
below or over 20 m. Considering that the GEDI data have a footprint of ~25 m in diameter, 
we processed the GEDI dataset as polygons instead of points, and evaluated the corre-
spondence of the different RH metrics with the information from the CHM for each GEDI 
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detected by the airborne-LiDAR data. The correspondence between the GEDI RH metrics 

Figure 1. Study area and input data: (a) location of the Laurentides Wildlife reserve and its land-cover
classification according to the Copernicus Global Land Service land cover map for 2019 [42]; (b) CHM
product in meters; (c) coverage of the GEDI data available for the study area; (d) acquisition year of
the airborne LiDAR data, with the coverage of each airborne acquisition represented in a different
color; (e) location of the field-data permanent sample plots from the forestry inventory.

We based the evaluation of tree growth with the forest stand as the unit of analysis
and used the forest stand classification shapefile as the base layer of our workflow. The
main assumption of our study was that the canopy height of individual trees in a specific
forest stand is homogeneous and the average tree height within a stand represents the

https://www.donneesquebec.ca/
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height of the trees in that polygon. Following this assumption, the sparse coverage of the
GEDI data, which have a large separation between footprints, should still produce a good
representation of the average tree height conditions of the forest stand.

All the available GEDI satellite passes covering the study area for dates between the
years 2019 and 2022, inclusively, were downloaded and the relative height metrics of the
L2A product “Elevation and Height Metrics Data”, and the canopy cover values of the
L2B product “Canopy Cover and Vertical Profile Metrics data” were incorporated into the
analysis. The dataset is available at the NASA/USGS Land Processes Distributed Active
Archive Center [37].

2.2. Data Preprocessing

We produced two accuracy assessments of the GEDI data against the CHM product,
one at the footprint level, and another at the forest stand level. The objective of the
assessment at the footprint level was to determine the best filtering process for the GEDI
data, while the goal for the second assessment was to identify the aggregated GEDI RH
metric that best represented the average-canopy-height condition for each forest stand.
For these analyses, we assumed that the CHM product accurately represented the canopy-
height conditions of the study area. Although airborne-LiDAR data are not exempt from
biases and errors [43], there is agreement in the literature regarding the high accuracy of
this data source [44,45]. For both analyses, only the overlapping airborne-LiDAR and GEDI
data from the year 2019 were used as input, as this was the only concurrent acquisition
date for the two datasets, which corresponded to a total of 130,374 GEDI footprints and to
2369 forests stands.

For the accuracy assessment at the footprint level, the GEDI data were filtered, fol-
lowing the products’ guides, by using the quality and degraded flags to filter out GEDI
footprints with degraded or invalid measurements. Additionally, we removed footprints
with zero detected modes, and filtered out any footprint that had a difference between
the elevation of the highest return and the TanDEM-X value (included in the GEDI prod-
uct) below or over 20 m. Considering that the GEDI data have a footprint of ~25 m in
diameter, we processed the GEDI dataset as polygons instead of points, and evaluated the
correspondence of the different RH metrics with the information from the CHM for each
GEDI footprint.

For each GEDI footprint we first extracted the data from the CHM pixels within the
footprint polygon and calculated different percentile values of canopy height. Using this
approach, we evaluated how the GEDI RH metrics are related to the vertical structure
detected by the airborne-LiDAR data. The correspondence between the GEDI RH metrics
and the CHM percentiles was evaluated by visual assessment of the plotted data, and by
calculating the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), bias, and
Pearson’s correlation coefficient (CORR). The GEDI RH values 50, 70, 75, 80, 85, 88, 90, 95, 99,
and 100, were evaluated against the CHM percentiles 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 88, 90, 95, and 100. After identifying the GEDI RH metric and CHM percentile with the
best agreement, we analyzed the error distribution due to different parameters to determine
the best filtering process for the GEDI data. The following parameters were considered:
beam type, slope, elevation, tree cover (from the GEDI L2B product), Landsat tree cover,
number of modes of the waveform, local and total energy of the return, solar elevation,
acquisition date of the GEDI data, Landsat water permanence, and latitude. We used the
performance statistics (CORR, RMSE, MAE, bias) in addition to the visual assessment of the
plotted data to evaluate if a specific filtering process improved the correspondence of the
datasets. Following this accuracy assessment analysis, the complete filtering processes for
the GEDI data was established to include the parameters and thresholds listed in Table 1.
The complete filtering process resulted in a final dataset of 688,249 GEDI footprints covering
the study area, with a significant portion in the year 2020 (255,011 footprints).
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Table 1. Parameters used for filtering out biased GEDI measurements.

Parameter Threshold

Degraded flag 6=0
Quality flag 6=0

Number of detected modes =0 OR >7
Elevation of the highest return—TanDEM-X elevation <−20 m OR >20 m

Landsat water persistence >80
Total canopy cover from GEDI <5% OR >90%

Total Energy <2000
Last mode energy ÷ energy total <0.195

For waveforms with only one mode: last mode energy <2000
For waveforms with only one mode: zcross local energy <150

For the second accuracy assessment, we aggregated the filtered GEDI data to the
forest stand level by selecting only the GEDI points that were at least 11.2 m from the
border of any forest stand. This threshold was determined so that approximately 90% of
the GEDI footprint was inside a specific forest stand and the relative height information
from the GEDI point was representative of the tree height within the forest stand. Using the
GEDI points that overlapped each forest stand polygon, we calculated the mean, minimum,
maximum, and standard deviation values of different RH metrics (85, 88, 90, 95, 99, 100) of
the GEDI points grouped by acquisition year (2019, 2020, 2021, and 2022). Additionally, we
calculated the number of GEDI footprints per forest stand and the point density, i.e., the
number of GEDI points divided by the forest stand area; this last parameter was used for
establishing whether a specific forest stand had sufficient GEDI data to be included in the
tree-growth analysis. A minimum density threshold of 40 points per km2 was estimated
by calculating an idealized circular GEDI-footprint coverage area of 145 m of diameter, or
0.0165 km2 (~25 m diameter of the footprint plus the 60 m along track separation between
footprints, on each side of the footprint). We wanted to make sure that at least two thirds
of the area of each forest stand were covered by GEDI points, which would result in a
minimum ratio of one GEDI point per forest stand with an area of 0.025 km2.

The CHM, DEM, and terrain slope rasters were also aggregated by forest stand by
calculating the mean and standard deviation values of all pixels overlapping each forest
stand polygon. Finally, we evaluated the correspondence between the aggregated values of
CHM and GEDI RH by visual assessment of the plotted data and by using the performance
statistics (CORR, RMSE, MAE, bias). Following our assumption of tree-height homogeneity
within each forest stand, our goal was to identify the aggregated GEDI RH metric that best
represented the average-canopy-height condition, and then use this metric and the average
CHM value to calculate tree growth. Therefore, we specifically focused on identifying the
aggregated GEDI RH metric with the best fit against the mean CHM value.

2.3. Tree-Growth Estimation

For this study, tree growth was evaluated as the rate of change in average canopy
height per forest stand. First, we filtered out forest stand polygons with an annual GEDI
point density below 40 points/km2, then we constructed a time series of forest stand-height
values using the average-CHM data, and the annual GEDI stand height estimates. The
year range of the time series for each forest stand varied depending on the acquisition
year of the airborne-LiDAR data (Figure 1d). Due to limitations in data availability, the
resulting time series were not filtered by any specific year range; therefore, the shortest time
difference between the GEDI and CHM data was one year, and the longest was nine years.
Finally, we calculated the Theil–Sen slope [46,47] for each forest stand with the available
data. The Theil–Sen slope analysis was selected due to its robustness to outliers, and for its
higher efficiency for small datasets [46,48,49].

To calculate the statistics of tree growth in the Laurentides reserve, only forest stands
with Theil–Sen slope values between 0 and 1 m/year were considered. The selection of
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these cut-off values aimed to improve the representation of actual tree-growth rates in the
analysis dataset by removing values that were unlikely to correspond to real gains in canopy
height, thus improving the quality of the data. Positive slope values beyond 1 m/year were
likely not related to actual biological rates of gain in tree height, particularly considering
that trees in the boreal forest grow at a rate of up to 1 m per year [50]. Furthermore, negative
slope values likely correspond to disturbance events within the forest stands that resulted in
partial or total loss of the canopy cover; therefore, including these values in the estimation
of tree-growth statistics would bias our results.

2.4. Assessment of Tree-Growth Rates

To validate our tree-growth rate estimates, we used the field data from the permanent
sample plots. We selected trees with multitemporal measurements and calculated the
Theil–Sen slope for the available survey dates. Negative values in individual tree-growth
estimates were attributed to human error, differences in instrument accuracy, or partial loss
of the top stem between survey years and were removed from the analysis. Finally, the
average-tree-growth rates of the individual trees from the field data were compared to the
growth rate at the forest stand level calculated from the LiDAR data to determine whether
the results were within the same order of magnitude.

Further evaluation of the correspondence between the tree-growth rates from the field
data and the LiDAR data included inspecting variations in the datasets by species and
forest type. The goal of this analysis was to determine if similar patterns in tree-growth
rate would emerge at the individual-tree and forest stand levels when grouped by these
categories, particularly considering that tree growth is largely affected by species and forest
composition [51,52].

The information on species is reported in the field data measurements for all the trees
in the permanent sample plots, while at the forest stand level, the forestry inventory reports
the tree species in each forest stand and the proportion of the total basal area they occupy.
For this analysis, the tree species with the highest proportion of the total basal area for each
forest stand was selected as the dominant species and was used to compare the LiDAR
tree-growth rates against the permanent plot data. Only the five most abundant species
were used in the analysis; these species include, from higher to lower abundance: Balsam
fir (Abies balsamea (L.) Mill.), Black Spruce (Picea mariana (Mill.) BSP), Paper Birch (Betula
papyrifera Marsh.), White Spruce (Picea glauca (Moench) Voss), and Quaking Aspen (Populus
tremuloides Michx.).

The information on forest type is included in the forest stand dataset, and covers three
categories: deciduous, coniferous, and mixed forests. The class of forest type was assigned
to each individual tree in the permanent sample plots based on the corresponding forest
stand where the plot is located.

Using the information on disturbance events available in the forestry inventory, we
also evaluated the variation in tree-growth rates at the forest stand level by disturbance
type and years since the disturbance. The time since the disturbance was used as a proxy
of forest stand age and the type of disturbance would indicate recovery dynamics that
could also affect tree-growth rates. Both of these factors were expected to result in distinct
patterns of tree-growth rates for the forest stand dataset and were used as an indicator of
the accuracy of the calculated tree growth.

Finally, as an additional accuracy analysis of the tree-growth estimations from the
LiDAR data, we evaluated temporal changes in Normalized difference Vegetation Index
(NDVI) for the forest stand polygons with negative tree-growth rates and positive slopes
over 1 m/year to determine if these values coincided with changes in NDVI as a proxy
of tree-cover loss or permanence. The goal of this analysis was to determine whether
extreme tree-growth rates could be explained by actual changes in the forest stand canopy.
Positive tree-growth values were expected to coincide with tree-cover permanence between
the evaluated years, resulting in stable or increasing values of NDVI, and negative tree-
growth values were expected to correspond to tree-cover loss, which may coincide with a
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decline in NDVI or a break in the NDVI time series. For this analysis, we used Google Earth
Engine [53] to query and extract data from the Landsat 8 Level 2 collection 2 Tier 1 repository.
For each of the forest stand polygons included in this accuracy analysis, we calculated
annual mean NDVI values for all years between the available airborne-LiDAR and GEDI
data dates by constructing cloud-free annual maximum-value composites of NDVI [54]
using all available Landsat images for each year and averaging all the Landsat pixels in
each forest stand polygon. This process guaranteed that the NDVI values corresponded to
vegetation’s peak productivity, which would indicate maximum tree cover.

3. Results
3.1. GEDI Footprint Accuracy Assessment

The accuracy assessment for the GEDI data at the footprint level resulted in the best
agreement between the GEDI RH 99 metric and the 95th CHM percentile (Figure 2b,e), with
performance statistics after filtering of CORR = 0.77, RMSE = 2.65 m, MAE = 1.77 m, and
bias = 0.33 m, similar to values reported in the literature on GEDI’s accuracy [55–57]. Con-
trary to other studies on GEDI data performance, we did not find a significant relationship
between the error and slope, or elevation [55,56]. However, the GEDI footprints used in
the analysis are mostly located in low elevation areas with slopes below 20%, which likely
explains our results. We found that the number of detected modes and the GEDI L2B tree
cover were the stronger indicators of flawed GEDI measurements, with values of tree cover
over 90% and a number of detected modes over seven resulting in errors on the relative
height of approximately −6.4 m (Figure 2c,d).
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Figure 2. For the GEDI data with only the quality and degrade flags filtering: (a) location of the 2019
GEDI footprints overlapping the CHM for the year 2019 included in the analysis; (b) correspondence
of GEDI RH 99 and CHM percentile 95 with the colors indicating the density of points in the
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of detected modes; (d) error distribution of the GEDI data in relation to the GEDI tree cover. For the
GEDI data with the complete filtering: (e) correspondence of GEDI RH 99 and CHM percentile 95
with the colors indicating the density of points in the scatterplot, 1:1 line in red for reference; (f) error
distribution of the GEDI data in relation to the CHM percentile 95. Number of footprints per-bin are
labeled at the top of the boxplots and mean value marked as a black line inside the boxes.
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The complete filtering process for the GEDI data resulted in the removal of approxi-
mately 82% of the GEDI footprints from the original 2019 raw dataset, from 130,374 original
footprints to 22,880 filtered footprints. A large portion of the removed points were located
at the lower end of the distribution (Figure 2b) where the GEDI RH values overestimate
the canopy height, compared to the CHM 95th percentile. This cluster of points drove
the linear relation between the GEDI RH and the CHM percentile away from the 1:1 line
and toward a line with an intercept around 1.2 m. For this reason, the removal of these
points reduced the correlation and bias parameters, but greatly improved the RMSE and
MAE values.

Although the accuracy statistics of the filtered data improved after the complete
filtering process, a pattern of over- and underestimation of canopy height in areas of low
and high canopy height, respectively, still remained in the dataset as shown in Figure 2f.
We believe that this pattern could be related to the signal reflected from the terrain in
low height and sparse canopy areas, and to poor signal penetration in tall and dense
canopy areas [56,57]. Additionally, errors in the horizontal geolocation accuracy of the
GEDI data [58], or differences in the acquisition date between the airborne-LiDAR and
GEDI footprints could also be related to the remaining error in the filtered dataset.

3.2. Correspondence of Aggregated GEDI RH and Mean CHM

The analysis of correspondence between the aggregated GEDI RH values and the
mean CHM, using the forest stands that had overlapping data for the year 2019, resulted in
the best fit between the average GEDI RH 88 and the mean CHM value (Figure 3b), with
performance statistics of CORR = 0.8, RMSE = 2.04 m, MAE = 1.41 m, and bias = −0.01 m,
similar to the statistics at the footprint-level analysis. We calculated the error as the
difference between the mean CHM value and the aggregated GEDI RH 88 and evaluated
its variation according to the mean and standard deviation of the CHM of the forest stands,
as well as the GEDI point count and density.
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Figure 3. (a) Location of the forest stands with overlapping CHM and GEDI data for the year 2019
included in the analysis; (b) correspondence of GEDI RH 88 and mean CHM aggregated at the
forest stand level with the colors indicating the density of points in the scatterplot, 1:1 line in red for
reference. Error distribution according to the following: (c) bins of mean CHM; (d) CHM standard
deviation; (e) GEDI point count; (f) GEDI point density. The number of polygons per bin are labeled
at the top of the boxplots, the mean value is marked as a black line inside the boxes, and outliers
shown as hollow circles.
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We found that the aggregated GEDI RH values tend to overpredict tree height in
areas with short canopy, and underpredict tree height in areas with tall canopy (Figure 3c),
following the same pattern observed in the GEDI accuracy analysis at the footprint level.
Additionally, we found that there is higher variance in the tree-height error for forest
stands with high CHM standard deviation (Figure 3d), and for forest stands that are only
covered by one GEDI footprint (Figure 3e). The intersection of a heterogeneous forest stand
that was only covered by one GEDI point would likely result in large errors of estimated
average tree height, as the GEDI footprint could fall in an area of the forest stand with a
tree height that is not representative of average canopy-height conditions. Finally, we did
not find any pattern in the error variance due to the GEDI point density, which indicates
that the threshold of 40 points·km−2 was adequate for filtering forest stands with enough
GEDI data.

3.3. Tree-Growth Results

We calculated tree-growth rates for 56,562 forest stand polygons (Figure 4a), represent-
ing 27% of the forest stands in the Laurentides study area. Of these polygons, 31,325 (55.4%)
had tree-growth rates between 0 and 1 m/year (Figure 5a) and were used for calculating
statistics, resulting in an average tree growth of 0.32 m/year with a standard deviation of
0.23 m/year (Table 2). This average rate is of the same order of magnitude as the mean
tree-growth rate calculated from the survey data of the permanent plots: 0.21 m/year with
a standard deviation of 0.12 m/year (Table 2).

Table 2. Tree-growth rates at the forest stand level calculated from LiDAR data and at the individual-
tree level calculated from field data.

Dataset
Tree Growth (m/Year)

Samples
Mean Min Max SD

All forest stands with data 0.09 −9.78 11.22 0.76 56,562
Forest stand with values of 0–1 m/year 0.32 0 1 0.23 31,325
Individual trees from permanent plots 0.21 0 0.92 0.12 3579

The forest stands with negative slopes corresponded to a total of 22,108 polygons
(39.1%) and the forest stands with tree-growth rates over 1 m/year comprised a total of
3129 (5.5%). Although the majority of the forest stands with data (90%) have tree-growth
values between ±1 m/year (Figure 4b), there were large outliers in the calculated dataset.
The extreme tree-growth values were partially related to the scarcity of the GEDI data and
the location of the GEDI footprint inside the forest stand polygon, as mentioned in the
previous section. Due to the sparse coverage of the GEDI data, and the filtering process that
we established, most of the polygons with growth rates (80%) only had one year of GEDI
data available. Moreover, 18% of the polygons with growth rates only had one year and
one footprint of GEDI data for the year. The effects of the GEDI data scarcity are evident in
the larger variance in tree-growth rates for higher values of CHM standard deviation per
forest stand (Figure 4c). This pattern indicates that a more heterogeneous forest stand with
only one GEDI footprint is likely to produce extreme growth rates due to the GEDI data
not being representative of average canopy-height conditions (Figure 4d,e).
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Figure 4. Tree-growth estimates for all the forest stands with data in the Laurentides reserve: (a) spa-
tial distribution of the tree-growth estimates; (b) histogram of estimated tree-growth rates compared
to the rates from individual trees from permanent sample plots; (c) distribution of the tree-growth
rates according to bins of CHM standard deviation, with the mean value marked as a black line
inside the boxes and the number of polygons per bin labeled at the top of the boxplots; (d,e) exam-
ples of extreme tree-growth rates in forest stands with only one GEDI point and over 3m of CHM
standard deviation.
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Figure 5. Tree-growth estimates for forest stands with values between 0 and 1 m/year: (a) spatial
distribution of the tree-growth estimates; (b) histogram of estimated tree-growth rates for the forest
stands and the individual trees from permanent sample plots; (c) distribution of the tree-growth rates
according to the year of disturbance, with the mean value marked as a black line inside the boxes, the
number of polygons per bin labeled at the top of the boxplots, and the global mean of the dataset
shown as a horizontal red line. Analysis of tree-growth rates for the individual trees from permanent
sample plots and forest stands per: (d) species and dominant species, respectively, and (e) forest type.
The mean value of each group is labeled and marked inside the boxes with a black line, the number
of individual trees or forest stands is labeled at the top of the boxplot, and the global mean of each
dataset is shown as a horizontal red line.

3.4. Patterns of Tree-Growth per Species, Forest Type, and Disturbances

The analysis of correspondence between the tree-growth rates from the field survey
and the LiDAR data show similar patterns between the two datasets when classified by
species and forest type. For the species classification (Figure 5d), both the individual trees
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and the forest stands dataset show the highest mean-tree-growth rates for Quaking aspen,
Balsam fir, and White spruce, which are medium- to fast-growing tree species [10,59], and a
lower mean-tree-growth for Black spruce, a tree species of moderate growth [10,59]. Inter-
estingly, both datasets indicate below-average tree-growth rates for Paper birch, with the
individual tree dataset showing the lowest mean rate for this tree species which is typically
considered a fast-growing species [59]. These results indicate that, as expected, tree species
is an important factor in determining tree-growth rates, and that the dominant species in a
forest stand will also influence the overall gain in canopy height for temperate forests.

As for the forest-type classification, both datasets show that the mean tree-growth
values per forest type are not significantly different from the global average of each dataset
(Figure 5e). These results indicate that forest type alone is not a relevant factor affecting tree
growth and canopy-height gain for the study site, and that other environmental conditions
or management practices are likely producing local effects on tree growth.

The analysis of tree growth based on the disturbance information show that the forest
stands follow some expected patterns in relation to the year-of-occurrence of disturbances
if we consider this variable a proxy for forest stand age. Younger trees are expected
to grow faster than older trees [60], and that pattern between tree growth and year-of-
disturbance is present in our resulting dataset (Figure 5c). We found that forest stands
with registered disturbances after 2016 have a higher average-tree-growth rate, while forest
stands with disturbances before 2016 show a progressive reduction in average tree-growth
rates, reaching the smallest average-tree-growth for the forest stands with disturbances
before 1980 (correlation of forest stands with time-since-disturbance: −0.11). This pattern
indicates that disturbance events create younger forest stands with overall larger growth
rates that decrease as the forest stand ages.

3.5. Evaluation of Extreme Tree-Growth Rates with NDVI

For the analysis of temporal variation in NDVI as a proxy of canopy cover permanence
or loss, polygons with negative slopes and positive slopes over 1 m/year were evaluated
separately. We found that 13% (2821) of polygons with negative values (tree growth below
0 m/year) underwent tree-canopy loss events, as indicated by a significant negative NDVI
slope (p value < 0.05), or by a detected break in the NDVI time series (Figure 6a). Moreover,
6% (1554) of negative polygons have a reported disturbance occurring after the airborne-
LiDAR acquisition date, which matches a break in the NDVI time series. Most of the
reported disturbances correspond to different types of selective cutting. These results
indicate that some negative values in the tree-growth dataset correspond to actual change
in canopy height (Figure 6c).

For the forest stands with positive values over 1 m/year, we found that 95% (2961) of
polygons correspond with tree-canopy cover gain or permanence as indicated by NDVI
slopes that are not significantly different from zero (p value ≥ 0.05), or significant positive
NDVI slopes (p value < 0.05), and, in all cases, forest stands that do not register any breaks
in the NDVI time series (Figure 6d). Of these polygons, 64% (1896) have at least one
reported disturbance event, which mostly occurred before the CHM acquisition date. Most
of the reported disturbances correspond to different types of selective cutting and planting
processes (Figure 6e). These results indicate that although the estimated extreme-positive
tree-growth rates are unlikely to correspond to actual biological rates of gain in tree height,
the GEDI data are accurately recording the permanence of tree canopy (Figure 6f). As
explained before, a clear source of error in the tree-growth estimations is derived from
GEDI data scarcity and the heterogeneity of forest stands. Additionally, a possible source of
error that was not explored in this study is related to the horizontal positional uncertainty
of the GEDI footprints of approximately ±10 m [61]. This geolocation uncertainty could
further bias tree-growth rates, particularly if the GEDI footprints are close to the boundaries
of the forest stands, so that the GEDI data are no longer representative of the average tree
height of the corresponding forest stand.
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Figure 6. Results for polygons with negative (below 0 m/year) and positive (over 1 m/year) tree-
growth rates matching trends in NDVI: (a,d) plots of NDVI trend against the estimated negative
and positive tree-growth rate, respectively, with the colors indicating the density of points in the
scatterplot; (b,e) distribution of the negative and positive tree-growth rates according to the year
of the recorded disturbance, with the most common type of disturbance labeled by color, the mean
value marked as a black line inside the boxes, and the number of polygons per bin labeled at the
top; (c) before and after of a forest stand with a tree-growth rate of −2.3 m/year calculated between
2015 and 2019, that has a reported disturbance in 2018; (f) before and after of a forest stand with
a tree-growth rate of 2.3 m/year calculated between 2019 and 2020 with no visible change in tree
canopy cover.

4. Discussion

We developed a methodology for detecting tree growth by using GEDI data to extend
the temporal coverage of an airborne-LiDAR and forestry dataset. Our results show the
capabilities of the GEDI products to accurately characterize forests’ vertical structure and
evaluate stand height. Clearly, our study largely benefitted from the detailed forestry in-
ventory information for the study site, considering that such data coverage and availability
would be rare in other locations with important forest resources. However, our results
show that repeat spaceborne-LiDAR data could facilitate the replication of our methods in
other locations, given a sufficient density of footprints.

4.1. Effects of GEDI Data Scarcity

The sparse coverage of the GEDI data constitutes the main limitation of our approach.
To overcome data scarcity, we established the forest stand as the unit of analysis and used
a pre-established forest stand delineation to aggregate the GEDI footprints. Moreover, a
minimum footprint density was determined to guarantee that sufficient data were available
to characterize each forest stand polygon. Despite the benefits of an object-oriented ap-
proach for upscaling the spatial coverage of the GEDI data, there are clear drawbacks to our
methods. First, our analysis was based on the assumption that the forest stands represent
a homogeneous group of trees with similar canopy height. While this assumption might
work well for some cases, forest stands are likely to have complex vertical structures with
heterogenous tree height, resulting in a misrepresentation of average tree-height conditions
for these areas due to the sparse GEDI data. Secondly, as our results demonstrate, footprint
density alone does not guarantee a good representation of average tree height, since the
location of the GEDI footprints inside the forest stand can result in the detection of extreme
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values of tree height. And, thirdly, the forest stand delineation included in the forestry
inventory might not be updated after disturbance events and might not represent current
homogeneous patches of forest in the study area. Nevertheless, our study shows that we
can infer overall trends in canopy growth or detect disturbance events resulting in changes
in overall stand height. Albeit losing the spatial resolution at the scale of the GEDI footprint,
we gain accuracy in the estimation of average tree-height conditions by aggregating the
data. Additional work to possibly improve our results, would include constructing a forest
stand delineation that coincides with the GEDI-data-acquisition time frame by using remote
sensing imagery and object detection or image-segmentation processes.

4.2. Tree Growth in the Laurentides Reserve

We estimated an average tree-growth rate for the Laurentides reserve of 0.32± 0.23(SD)
m/year, which is of the same order of magnitude as estimates from field data corresponding
to 0.21 ± 0.12(SD) m/year. The resulting dataset follows expected patterns of tree growth
according to year-of-disturbance as proxy for age, and tree species, and although our
results include extreme values of tree growth, we were able to determine that some of those
extreme values correspond with either recorded disturbance events, in the case of negative
rates, or with the permanence of tree cover in a forest stand, in the case of positive trends.
These results provide valuable insight into the benefits of using GEDI data for tracking
spatio-temporal changes in forest vertical structure and add to the body of knowledge
on the capabilities of GEDI data for accurately tracking changes in canopy height [62,63];
however, important caveats and limitations of our results need to be considered.

As mentioned before, the drawbacks of our approach resulted in uncertainty in the es-
timation of average tree-height conditions for heterogenous forest stands, and the accuracy
assessment of the GEDI data indicates overestimation of average tree height for short forest
stands, and underestimation for tall forest stands. More importantly, equating increases
in canopy height to increases in average tree height is not straightforward, considering
the growth patterns of trees, possible seasonal or phenological differences between the
GEDI acquisition’s dates, and forest stand-specific characteristics of the canopy structure.
In the first place, lateral growth of tree crowns could result in increases in the relative
height of the GEDI data, due to changes in the returns of the GEDI signal between years.
Similarly, differences in seasonal (for example snow cover) and phenological conditions
(for example leaf-off) during the GEDI acquisition date affect the signal returns and could
have resulted in erroneous or biased measurements of average tree growth. Unfortunately,
due to limitations in data availability, we did not filter the GEDI data by specific months
of the year; therefore, further work is required to determine the effects of seasonality on
the GEDI data. Finally, the growth signal between forest stands may have affected by the
structure of the canopy, where a multi-layered canopy could result in values of relative
height and tree growth that do not represent the whole forest stand, but that were caused
by growth of the understory vegetation.

These limitations in the GEDI data and our methods may have resulted in uncer-
tainty in the average tree height per forest stand and would have consequently led to
error propagation into the tree-growth rates. For these reasons, we consider that our
tree-growth estimations should be regarded as general trends of forest dynamics, and that
further work is needed to improve the accuracy of tree-growth estimates, for example by
considering other relative height metrics, different processing methods, or, as mentioned
before, producing new forest stand delineation maps that truly represent homogeneous
canopies. Nevertheless, we believe that the GEDI data provides valuable information
for detecting changes in canopy height, particularly considering the cost restrictions of
producing multitemporal airborne-LiDAR acquisitions for large areas and with high tem-
poral frequency, in contrast to the coverage and repeated pass of the GEDI acquisitions.
Moreover, improvements in the accuracy of tree-growth rates from GEDI data could be
achieved with longer time series, as this would facilitate the detection of outliers and a
robust estimation of trends.
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5. Conclusions

This study shows the benefits of integrating airborne- and spaceborne-LiDAR data for
monitoring forest tree growth. The use of repeat GEDI acquisitions allowed for us to extend
the temporal coverage of the airborne-LiDAR and forestry-field data for the Laurentides
wildlife reserve, and to estimate general trends in tree growth. While recognizing the
limitations of our methodology, we believe that our approach could be useful for tracking
changes in the vertical structure of forests. This study supports the potential of future space-
borne missions, such as the Surface Topography and Vegetation (STV), Target Observable
discussed in the U.S. Decadal Survey [38]. Finally, these types of assessments are important
when considering the possible future effects of climate change on forest ecosystems services,
and the derived feedback on the carbon cycle, as well as the relevance of spatially detailed
information on forest tree growth for land and forest resource management.
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