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Abstract: Accurate and stable positioning is significant for vehicle navigation systems, especially
in complex urban environments. However, urban canyons and dynamic interference make vehicle
sensors prone to disturbance, leading to vehicle positioning errors and even failures. To address
these issues, an adaptive loosely coupled IMU/GNSS/LiDAR integrated navigation system based
on factor graph optimization with sensor weight optimization and fault detection is proposed. First,
the factor nodes and system framework are constructed based on error models of sensors, and the
optimization method principle is derived. Second, the interactive multiple-model algorithm based
on factor graph optimization (IMMFGO) is utilized to calculate and adjust sensor weights for global
optimization, which will reduce the impact of disturbed sensors. Finally, a multi-stage fault detection,
isolation, and recovery (MSFDIR) strategy is implemented based on the IMMFGO results and IMU
pre-integration measurements, which can detect significant sensor faults and optimize the system
structure. Vehicle experiments show that our IMMFGO method generally obtains better performance
in positioning accuracy by 23.7% compared to adaptive factor graph optimization (AFGO) methods,
and the MSFDIR strategy possesses the capability of fault sensor detection, which provides an
essential reference for multi-source vehicle navigation systems in urban canyons.

Keywords: factor graph optimization; interactive multiple models; vehicle navigation; complex
environment; fault detection; isolation and recovery

1. Introduction

Effective positioning and navigation are vital for autonomous systems, such as un-
manned driving and intelligent vehicles, especially in complex urban environments [1–3].
The realization of autonomous transportation systems depends on multi-sensor informa-
tion fusion from the inertial measurement unit (IMU), global navigation satellite system
(GNSS), and vision sensor measurements [4]. However, due to the disturbance caused by
complex environments, vehicle sensors are prone to significant errors and even failures [5].
An inertial navigation system (INS) is a good choice for urban positioning because of its
short-time high precision characteristic. Nevertheless, the errors in INS measurements
will accumulate over time and may have a sudden increase affected by the fluctuation or
vibration of the transport systems without auxiliary sensors [6]. GNSS has the ability to
provide high-precision navigation information and compensates for the accumulation of
INS errors through an integrated navigation scheme, but its signals are susceptible to exter-
nal environmental influence [7]. Affected by occlusion from complex environments, such
as high-rise buildings and tunnels, GNSS may become completely ineffective. Therefore,
the urban environment has a significant impact on the navigation accuracy of GNSS [8].
Visual navigation systems have attracted significant attention in autonomous systems,
and LiDAR is widely used due to its high precision and high-frequency data acquisition
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capability. LiDAR alone for navigation may be difficult due to the loss of features or the
insensitivity to dynamic targets in urban environments [9]. Considering the disturbance
under complex urban environments, an effective fault detection and adaptive integrated
navigation method is necessary for vehicle safety.

Integrated navigation schemes based on multi-source information fusion for vehicle
navigation have been extensively investigated. Considering the difficulties of accurate mod-
eling and prediction for external dynamic disturbance, the traditional extended Kalman
filter (EKF) algorithm fails to satisfy the robustness requirements [10,11]. To address this
problem, the adaptive Kalman filter (AKF) provides a solution. Shen et al. introduced an
improved multi-rate strong tracking cubature Kalman filter (CKF) to estimate the system
covariance adaptively [12]. Also, a dual optimization scheme comprising a CKF-multiple
layer perceptron and radial basis function-CKF was proposed to maintain system accuracy
during GNSS denying [13]. The factor graph algorithm is featured due to its multi-source
asynchronous information fusion and plug-and-play abilities. It has been widely applied
in navigation and simultaneous localization and mapping (SLAM) areas for data optimiza-
tion [14]. As a probability graph model, the factor graph is able to estimate and update the
state variables through graph modeling of mathematical problems. A direct method for
navigation is constructing the multi-source navigation system under factor graph modeling
and using graph optimization as a filter for information fusion. Indelman proposed an
inertial/visual integrated navigation system which describes sensor error models of factor
nodes and estimates the system states through the factor graph optimization algorithm [15].
To verify the effectiveness of the factor graph model, Xu. et al. compared the factor graph
algorithm with EKF using dataset experiments. The results showed that as an information
fusion strategy, the factor graph performs better in disturbed environments owing to its his-
torical information fusion ability [16]. Additionally, the sliding window algorithm enables
the factor graph to marginalize information, thus reducing the computational burden of
the whole system and improving the real-time performance. Another application of factor
graphs is solving the SLAM backend optimization problem. SLAM has a strong ability to
establish the model of the surrounding environment by applying visual sensors, which
is a complementary strategy for GNSS disturbance scenes [17]. Nevertheless, SLAM has
limitations for weak characteristic environments, such as piping and tubes, resulting in
error accumulation and scene degradation [18]. The collaborative navigation method is a
feasible solution. Through the collaboration constraints measured by multi-robots, the state
can be updated based on pose constraint factors and achieve high positioning accuracy [19].
Regarding favorable environment estimation, Chen et al. constructed a prior map by
LiDAR to assist in estimating an inertial/GNSS tight-coupled navigation system when
GNSS is in good condition. The scene optimizer and sliding window also improve the sys-
tem’s performance [20]. Therefore, the factor graph algorithm can satisfy the multi-source
asynchronous fusion function and improve the comprehensive system’s performance in
various conditions. Nevertheless, it is still inevitable that the system suffers from sensor
failure, which significantly reduces the navigation accuracy of the global system.

With the increasing number and variety of sensors in vehicle navigation systems,
the possibility of sensor faults is also increasing, resulting in poor system estimation and
positioning accuracy. Fault detection, isolation, and recovery (FDIR) methods, which
generally obtain system state and identify faults to isolate or restore sensors by determining
whether the index of sensor measurements exceeds the target threshold, become significant
to the system reliability and safety [21–23]. The residual chi-square statistical method
is typically applied in navigation fault detection system, and the detection function is
constructed to calculate the index through Kalman filter (KF) method, which detects
the positioning faults of sensors based on the prediction information and determines
whether a fault exists [24]. Wang et al. constructed the IMU/GNSS tightly coupled system
based on EKF and detected the system faults with the assistance of LiDAR real-time
estimation [25]. In urban areas, GNSS signals may suffer from the multipath effect or
non-line-of-sight (NLOS) signal interference due to reflections, and the whole system tends
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to provide poor positioning results. The pseudo-range errors are well calculated and
account for signal strength, satellite elevation angle, and coordinate information. These
algorithms have been developed based on the KF algorithm under the assumption that
GNSS measurements come with Gaussian uncorrelated white noise. But the existence
of colored noise in GNSS measurements, typical for positioning with low-cost GNSS
receivers, will degrade the performance of KF-based fault detection and exclusion (FDE)
algorithms. To obtain more accurate estimation results, Gao et al. proposed an improved
considering colored noise model to improve the FDE performance [26]. However, satellites
still suffer from multipath signals, and the error model cannot be constructed. Multiple
model adaptive estimation (MMAE) provides a feasible solution to avoid directly estimating
unknown faults. Considering that the dynamic model of the localization is highly nonlinear,
Kheirandish et al. provided the navigation strategy of fusing multi-sensor measurements
with an interactive multiple model (IMM) algorithm based on unscented Kalman filters
(UKF) and EKF [27]. Xiong et al. proposed a hybrid robust Gaussian belief propagation
method as a cooperative positioning system for transportation navigation, which applies
an IMM structure to fuse FDE with Huber’s M-estimation method and combines the
advantages of both without drawbacks [28]. Given the decline in estimation and diagnostic
accuracy caused by the fixed transformation probability models of IMM, Wang et al.
combined an adaptive interacting multiple model filter and federated Kalman algorithm to
achieve an outlier detection function [29]. All of the above algorithms are suitable for the
FDE of vehicle navigation systems in complex urban environments. However, the systems
are mainly constructed using KF, EKF, and UKF filters, and the structure is challenging
to change adaptively for sensor isolation and recovery [30]. Therefore, building a flexible
system structure with multi-sensors is necessary to adapt to different scenarios.

In this paper, a multi-source integrated navigation system with interactive multiple
models based on factor graph optimization and multi-stage fault detection, isolation, and
recovery functions for urban positioning is proposed to deal with the existing problems. On
the one hand, the IMU/GNSS/LiDAR factor graph navigation system is constructed, and
the bias of IMU pre-integration is estimated and corrected by GNSS pseudo-range difference
measurements and LiDAR iterative closest point (ICP) measurements [31]. Therefore, multi-
source asynchronous sensors are fused based on the high-frequency IMU integration by
factor graph optimization. Then, the sliding window algorithm is applied to marginalize
the historical information and guarantee the real-time performance of the whole system [32].
On the other hand, the location-level interactive multiple models algorithm based on factor
graph optimization (IMMFGO) of GNSS and LiDAR is performed to update sensor weights
in global optimization. The multi-stage fault detection, isolation, and recovery (MSFDIR)
method is applied to reduce the impact of fault measurement and to adaptively optimize
system structures. Vehicle experiments with adequate analysis have verified the accuracy
and efficiency of the proposed method, which can realize good performance for positioning
and fault detection for vehicle navigation in urban canyons. The main contributions of this
paper are as follows:

• An IMU/GNSS/LiDAR integrated navigation system framework based on factor
graph optimization is constructed. Meanwhile, the error models of sensors are con-
structed in a formulaic factor graph optimization system, and the ISAM2 sliding
window algorithm is applied to marginalize the historical information and improve
the real-time performance.

• The IMMFGO algorithm of GNSS and LiDAR sub-model measurements is applied
to update the weights of the sensors in global optimization. The MSFDIR strategy
is employed to detect, isolate and restore fault sensors and reconstruct the system
frameworks to adapt to external disturbances.

• Vehicle experiments are conducted to verify the effectiveness of the proposed methods.
Qualitative and quantitative analyses are applied to comprehensively compare the
performance of proposed IMMFGO and MSFDIR with other typical algorithms to
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demonstrate the superiority of the proposed method and the possibility of application
in natural vehicle navigation systems.

2. System Structures
2.1. System Solution

The overview of the proposed framework is described in Figure 1, which is a loosely
coupled IMU/GNSS/LiDAR integrated navigation system based on factor graph optimiza-
tion. The main structure of the system is constructed by IMU measurements, while GNSS
and LiDAR provide auxiliary information to correct state variables.
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Figure 1. Overview of the proposed method.

The navigation system can be divided into three parts: (1) Factor construction: the IMU
pre-integration factors and IMU bias factors are constructed based on IMU measurements,
and the pseudo-range difference algorithm and iterative closest point algorithm (ICP)
are applied to deal with GNSS and LiDAR measurements. (2) Nonlinear optimization:
the factor graph framework is constructed based on modelled factors, and the ISAM2
sliding window algorithm is applied for filtering. The proposed IMMFGO algorithm can
change the weights of corresponding sensors to achieve an adaptive optimization function.
The IMMFGO includes parts of the input interactions of models, smoothing and fusion
of models, and probability update of models, while the system will finally output the
navigation states. (3) Multi-stage fault detection, isolation, and recovery: the results of
IMMFGO and the navigation state will be used for system fault detection, isolation, and
recovery. The system will detect faults based on the results of IMMFGO and IMU pre-
integration measurements, respectively. The detection results determine whether to isolate
or restore the fault sensor, and the factor graph navigation framework will be reconstructed
on time. The frames and the notations used in the system are defined as follows:

• The coordinate of IMU is defined as {·}B, which is set at the center of the IMU sensor
and is the same as the body-fixed coordinate;

• The GNSS frame is defined as {·}G, which is set as the WGS-84 coordinate, and the
measurement of GNSS is transferred into a navigation coordinate by the transform
matrix RW

G ;
• The LiDAR frame is defined as {·}L, which is set at the center of the LiDAR sensor,

and the transform matrix from the LiDAR coordinate into the navigation coordinate
is RW

L ;
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• The world frame is the ENU frame and is defined as {·}W, which is set at the initial
position of the vehicle and is assumed to coincide with the initial LiDAR frame.

2.2. Factor Graph Structure

The factor graph optimization approach has the characteristics of plug-and-play and
historical information fusion. The ability of multi-source asynchronous data fusion makes
factor graphs more reliable and robust than the EKF [33]. Therefore, the IMU/GNSS/LiDAR
factor graph integrated system for vehicle navigation is constructed to estimate the navi-
gation state in complex urban areas, which applies the ISAM2 sliding window algorithm
to ensure real-time performance and accuracy. The structure of the factor graph system is
shown in Figure 2.
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integrated navigation system.

As shown in Figure 2, the system is estimated by fusing information from IMU pre-
integration factors, LiDAR factors, and GNSS factors and introducing five types of factors
to construct the whole framework. The information fusion frequency is based on the lowest
frequency sensor, which is set as the GNSS frequency in this paper. The factor graph
G = (Fl , Xm, En) is a probabilistic graphical model (PGM) and mainly includes two kinds
of nodes with edges connecting between them [34]. The factor node fi ∈ Fl represents
the measurement information from the sensors, and the variable node xj ∈ Xm represents
the state information to estimate the navigation state. The system is constructed by the
factor nodes, with variable nodes connecting them by edges eij ∈ En. The definition and
the structure of the nodes are illustrated in Sections 2.3 and 2.4.

Since the northeast up coordinate system is set as the navigation system, the system
navigation state and the variable nodes at time k can be defined as follows:

Xk = [pW
k , vW

k , qW
k , bak, bgk]

T
(1)

where the first three parameters are information from each sensor measurement. pW
k

includes the pE, pN, pU position results, vW
k includes the vE, vN, vU velocity results, and

qW
k includes the qE, qN, qU platform rotation. bak and bgk are accelerometer bias and

gyroscope bias, respectively, including slowly changing bias and random noise bias.
According to the state estimation and the factor graph mathematical model principle,

the factor graph optimization method is typically derived as a nonlinear least-squares
problem [35]. Assuming that the system model follows the Gaussian noise distributions,
the factor edges can be defined as follows:
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fi(Xk) ∝ exp(−1
2
∥hi

k(Xk)− Zk∥
2
Σi
) (2)

where i indicates the type of sensor, hi
k(·) represents the nonlinear measurement function, Zk

represents the actual measurements of the sensors, and ∑i represents the covariance matrix.
The factor graph estimates the system state by solving the maximum a posteriori (MAP)
probability of the probability distribution function (PDF) [36]. Through the transformation
of the MAP formula, it can be defined as follows:

X∗
k = argmin∑

I
∥hi

k(Xk)− Zk∥
2
∑i

(3)

where X∗
k represents the global optimal solution. To solve the nonlinear least squares

problems, we generally apply the first-order Taylor expansion formula to linearize the
function and use the Gaussian Newton method or Levenberg–Marquardt method.

2.3. IMU Factor and Bias Factor Modeling

The IMU pre-integration method proposed in [37] is used to construct the main
structure of the factor navigation system, and other sensors are introduced to correct it. In
addition, the bias function is applied to correct the errors of IMU and to obtain the accurate
navigation state in the whole system. The acceleration and angular velocity information
is obtained from the IMU sensor, and the IMU model in the body system at time k can be
defined as follows: {

âB
k = RBk

W (aW
k − gW

k ) + bak + na
ω̂B

k = ωB
k + bgk + ng

(4)

where âB
k represents the raw acceleration measurements in the IMU body frame and ω̂B

k
represents the raw gyroscope measurements. aW

k represents the theoretical values of
acceleration in the world frame and gW

k represents the gravity in the world frame. ωB
k

represents theoretical values of the gyroscope. RBk
W ∈ SO3 is the transfer matrix from the

world frame to the body frame, bak represents the slowly changing acceleration bias, and
bgk represents the slowly changing bias of the gyroscope. na ∼ N(0, σ2

a ) and ng ∼ N(0, σ2
g)

are the random noise functions which follow the Gaussian distribution. The pre-integration
of the rotation, velocity, and position between the two consecutive states Xk and Xk+1 is
defined as follows:

pW
Bk+1

= pW
Bk

+ vW
Bk

∆t +
s

t∈[k,k+1]
(RW

Bk
(âB

k − bak − na)− gW
k )dt2

vW
Bk+1

= vW
Bk

+
∫

t∈[k,k+1]
(RW

Bk
(âB

k − bak − na)− gW
k )dt

qW
Bk+1

= qW
Bk

⊗
∫

t∈[k,k+1]

1
2 RW

Bk
⊗ (ω̂B

k − bgk − ng)dt

(5)

where ∆t denotes the time interval between Bt and Bt+1, and RW
Bk

is the transfer matrix
from the body frame to the world frame at time k. The pre-integration of IMU assumes
that the integration processes last a short time and the bias value at each state is a variable.
According to the IMU factor node, the reference frame is under the IMU coordinate and
the formula of the pre-integration between time k and k + 1 can be transformed into
the following:

RBk
W pW

Bk+1
= RBk

W (pW
Bk

+ vW
Bk

∆t − 1
2 gW

k ∆t2) + α
Bk
Bk+1

RBk
W vW

Bk+1
= RBk

W (vW
Bk

− gW
k ∆t) + β

Bk
Bk+1

qBk
W ⊗ qW

Bk+1
= γ

Bk
Bk+1

(6)
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where α
Bk
Bk+1

, β
Bk
Bk+1

, and γ
Bk
Bk+1

represent the true value of the navigation state of pre-
integration and can be defined as follows:

α
Bk
Bk+1

=
s

t∈[k,k+1]
(RBt

Bk
(âB

t − bak − na))dt2

β
Bk
Bk+1

=
∫

t∈[k,k+1]
(RBt

Bk
(âB

t − bak − na))dt

γ
Bk
Bk+1

=
∫

t∈[k,k+1]

1
2 RBt

Bk
⊗ (ω̂B

k − bgk − ng)dt

(7)

where RBt
Bk

represents the transfer matrix from the body frame at time k to time t. Then, the
generated measurements by IMU pre-integration can be defined as follows:

ZBk
Bk+1

= [α
Bk
Bk+1

, β
Bk
Bk+1

, γ
Bk
Bk+1

, bak+1, bgk+1]
T

(8)

According to Figure 2, the factor node of IMU can be constructed as a binary factor,
and the residual function rimu(Z

Bk
Bk+1

, Xk) can be defined as follows:

rimu(Z
Bk
Bk+1

, Xk) =


δα

Bk
Bk+1

δγ
Bk
Bk+1

δβ
Bk
Bk+1

δba
δbg

 =


RBk

W (pW
Bk+1

− pW
Bk

− vW
Bk

∆t − 1
2 gW

k ∆t2)− α
Bk
Bk+1

2[(γBk
Bk+1

)
−1

⊗ (RW
Bk
)
−1 ⊗ RW

Bk+1
]

RBk
W (vW

Bk+1
− vW

Bk
− gW

k ∆t)− β
Bk
Bk+1

bak+1 − bak
bgk+1 − bgk

 (9)

The errors of IMU are corrected during the global factor graph optimization process.

2.4. Other Factors Modeling

It is known from Figure 2 that measurements of GNSS and LiDAR are employed
to assist IMU positioning in the factor graph integrated navigation system. The GNSS
positioning is mainly calculated using the pseudo-range difference method to obtain final
information for factor node construction. Assuming that GNSS nodes follow the Gaussian
noise distribution, the measurement model of the GNSS can be written as follows:

Zgnss
k = hgnss

k (Xk) + ngnss (10)

where ngnss represents the Gaussian noise, hgnss
k (Xk) represents the nonlinear measurement

function and Zgnss
k includes GNSS positioning pG

k and velocity vG
k information. The infor-

mation obtained from GNSS is transformed into a world frame by the rotation matrix RW
G .

Thus, the GNSS factor node residual can be computed as follows:

rgnss(Z
gnss
k , Xk) = Zgnss

k − hgnss
k (Xk) =

[
pG

k − pW
k

vG
k − vW

k

]
(11)

The data from LiDAR is typically calculated using the ICP method to obtain the
relative pose information between adjacent moments [38,39].

(RL
k , tL

k )
∗
= arg min

1
Pk−1

Pk−1

∑
i=1

∥Pi
k − (RL · Pi

k−1 + tL)∥2
(12)

where RL
k and tL

k represent the calculation results of rotation and translation of LiDAR point
clouds Pk−1 and Pk at time k. RL and tL are the process variables. The optimal LiDAR
measurements can be obtained through iterative solving, which can be defined as follows:

Zlidar
k = hlidar

k (Xk) + nlidar (13)
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Based on the factor graph function, it is assumed that the navigation parameters from
LiDAR follow a Gaussian noise distribution, and LiDAR measurements are transformed
into the world frame by RW

L . The LiDAR factor node residual can be expressed as follows:

rlidar(Z
lidar
k , Xk) =

[
RW

L tL
k − pW

k

RW
L

∂tL
k

∂tk−1,k
− vW

k

]
=

[
pL

k − pW
k

vL
k − vW

k

]
(14)

where pL
k and vL

k represent the final positioning and velocity information of the LiDAR
measurement. The rotation information obtained from LiDAR is used to calculate the
transition matrix and to assist in IMU rotation correction. Based on the sensor measurement
residuals, the MAP estimation of the whole system can be described as follows:

X∗
k = arg min

X

{
∥rp − hp(Xk)∥2

∑p
+ ∑

m∈[k−N,k]
∥rimu(Z

Bm
Bm+1

, Xm)∥
2

∑imu,m
+

∑
m∈[k−N,k]

∥rgnss(Z
gnss
m , Xm)∥

2
∑gnss,m

+ ∑
m∈[k−N,k]

∥rlidar(Zlidar
m , Xm)∥

2
∑lidar,m

} (15)

where ∥rp − hp(Xk)∥2
∑p

denotes the initialize and marginalize information and ∑p rep-

resents the prior covariance. ∑imu,m, ∑gnss,m, and ∑lidar,m represent the measurement
covariances of IMU, GNSS and LiDAR at time m, respectively, and N represents the width
of the sliding window.

3. Key Technology
3.1. Interactive Multiple Models Algorithm Based on Factor Graph Optimization

The traditional IMM algorithm divides the motion states of vehicles into sub-systems
and updates probability weights to obtain the final state estimation by calculating the
weight values of each system, thus possessing adaptive characteristics [40]. We propose an
improved interactive multiple model vehicle navigation algorithm based on factor graph
optimization, which sets the measurements of sensors as sub-systems and adjusts weights
in factor graph global estimation. The state equation of the sub-systems is the same as that
of sensor nodes, and only position parameters are employed to adjust the weights through
the IMM updating process. Then, the state function of the sub-model mn, n ∈ (1, 2, 3, . . .)
can be described as follows:

Zn
k = HIMMXk + Vn

HIMM =
[
03×6 I3×3 03×6

] (16)

where n represents the type of sub-models and Zn
k represents the measurement of sub-

models at time k. HIMM represents the measurement functions and only the positioning
information is considered for IMM models. Vn represents the error matrix and is the same
as the error matrix of sensors. Then, the residual can be defined as follows:

rn(Zn
k , Xk) =

[
pn

k − pW
k

vn
k − vW

k

]
(17)

where pn
k and vn

k represent the position and velocity of the sub-model n at time k, respec-
tively. The information obtained from sub-models is transformed into the world frame.
Then, the overall process of the IMMFGO algorithm can be constructed, as in Figure 3.

Figure 3 shows that the IMMFGO algorithm consists of three parts: (1) Input interac-
tions of models, (2) smoothing and fusion of models, and (3) probability update of models.
Parts (1) and (2) can provide information for part (3), and the final updated values will
optimize the global estimation in part (2) for the next moment. In this paper, only two
sub-models are considered, and the function describes the formula of a single sub-model in
the case of two sub-models. The number of the sub-models is two; sub-model m1 is the
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GNSS navigation system and sub-model m2 is the LiDAR navigation system. The formula
is derived based on two sub-models, and the process of each part is shown as follows.
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3.1.1. Input Interactions of Models

Assuming that the process of sub-model mj transforming into sub-model mi follows
a Markov chain with a given state transition probability at time k, mi, mj ∈ mn, n ∈ (1, 2).
Then, the transition probability pij can be defined as follows:

pij = p
{

mi(k)
∣∣mj(k − 1)

}
(18)

Then, calculate the normalization constant cj
k and initial mixing probability µ

ij
k−1|k−1

of sub-model mj, which can be expressed as follows:

cj
k =

n
∑

i=1
pijµ

i
k−1

µ
ij
k−1|k−1 = pijµ

i
k−1/cj

k

µ
jj
k−1|k−1 = pjjµ

i
k−1/cj

k

(19)

where µi
k−1 represents the model update probability of model mi calculated at time k − 1.

µ
ij
k−1|k−1 and µ

jj
k−1|k−1 represent the initial mixing probability from sub-model mi to mj and

mj to itself, respectively. pjj represents the transfer probability to itself of sub-model mj, and
is set as one as usual. In the IMMFGO algorithm, the accuracy of the sub-model is evaluated
through mixed state inputs. The mixed state variables and covariance of sub-model mj can
be defined as follows:

^
Z

0j

k−1|k−1 = Zi
k−1µ

ij
k−1|k−1 + Zj

k−1µ
jj
k−1|k−1

^
P

0j

k−1|k−1 = µ
ij
k−1|k−1

Pi
k−1 + [Zi

k−1 −
^
Z

0j

k−1|k−1] · [Zi
k−1 −

^
Z

0j

k−1|k−1]

T
+

µ
jj
k−1|k−1

Pj
k−1 + [Zj

k−1 −
^
Z

0j

k−1|k−1] · [Z
j
k−1 −

^
Z

0j

k−1|k−1]

T


(20)

where
^
Z

0j

k−1|k−1 and
^
P

0j

k−1|k−1 represent the mixed state variables and mixed covariance to

evaluate the positioning accuracy of the sub-model. Zi
k−1 and Zj

k−1 represent the measure-
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ment information of sub-models mi and mj at time k, respectively. Pi
k−1 and Pj

k−1 represent
the covariance. The mixed parameters are used to calculate the model update probability
relevant to the weights of sub-models during the global optimization process.

3.1.2. Smoothing and Fusion of Models

The factor graph optimization method is employed as the sub-systems information
fusion filters, and according to Equation (15), the general function of the IMMFGO in the
IMU/GNSS/LiDAR integrated navigation system can be defined as follows:

X̂∗
k = argmin

X

{
∥rp − hp(Xk)∥2

∑p
+ ∑

m∈[k−N,k]
∥rimu(Z

Bm
Bm+1

, Xm)∥
2

∑imu,m
+

∑
m∈[k−N,k]

∥µi
m−1ri(Zi

m, Xm)∥
2
∑i,m

+ ∑
m∈[k−N,k]

∥µ
j
m−1rj(Z

j
m, Xm)∥

2

∑j,m

} (21)

where µi
m−1 and µ

j
m−1 represent the model update probability of model mi and mj at time

m − 1, respectively, which are the same as the sensor weights in the navigation system to
solve the global optimization at time k. Based on the initial transition probability, the sensor
initialization covariance also needs to be optimized to maintain the system initialization
accuracy consistent with traditional FGO algorithms; the optimized prior factor can be
defined as follows:

f prior
n (Xk−N) =

1√
2πµn

k−NΣ
prior
n

exp

− (Xk−N − µx)
2

2µn
k−NΣ

prior
n

 (22)

where Xk−N and µx represents the system state and mean value at time k − N, respectively.
Σ

prior
n represents the covariance of the sub-model n. µn

k−N represents the transition proba-
bility. When the system framework or sliding window changes, the prior factor will also be
optimized accordingly.

3.1.3. Probability Update of Models

The probability update process of the model adopts a likelihood function Λj
k to

calculate the update probability µ
j
k of models. The likelihood function is constructed

through a multidimensional Gaussian distribution, which can be defined as follows:

Λj
k =

1√
2π

∣∣∣Sj
k

∣∣∣ exp
{
−1

2
[vj

k][S
j
k]
−1

[vj
k]

T
}

(23)

where vj
k and Sj

k represent the residual of model measurements and the covariance of the
model measurements’ residuals, respectively, which can be defined as follows:

vj
k = HIMMX̂∗

k −
^
Z

0j

k−1|k−1

Sj
k = HIMMP0j

k−1|k−1[H
IMM]

T
+ Σj

(24)

where ∑
j
k represents the covariance of sub-model mj, which is the same as the sensor factor

node model. Then, the update probability of model mj can be defined as follows:

ck =
n
∑

j=1
Λj

k · cj
k

µ
j
k = Λj

k · cj
k/ck

(25)
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When the number of sub-models is one, the update probability is optimized as follows:

µ
j
k = Λj

k (26)

Compared to AFGO, the proposed IMMFGO algorithm constructs the sub-models
based on the precision of sensors and is adaptive to different environments.

3.2. Multi-Stage Fault Detection, Isolation and Recovery Strategy

The IMMFGO algorithm can adaptively adjust sensor weights and has specific fault
detection capabilities. However, weight adjustment based on factor graph global optimiza-
tion results makes it difficult to detect the impact of fault information on IMU compensation
quickly. Therefore, this part proposes a multi-stage fault detection and isolation method,
applying IMMFGO and the Chi-square FDI algorithm [41], which can effectively detect
and reflect the impact of faulty sensors on the whole system. The Chi-square FDI algorithm
detects faults for auxiliary sensors on the basis of IMU measurements. The overall process
of MSFDIR is shown in Figure 4.
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Figure 4 shows that the system includes two stages: fault detection based on IMMFGO
weight values and Chi-square fault detection based on IMU measurements. For Stage 1,
the system detects faults based on the average and minimum weight values. When the
average value is less than the threshold Taverage or the extreme minimum value is less than
the threshold Tmin, it is considered that the sensor accuracy is low in a period or there is a
sudden interference. The fault detection function is defined as follows:

µn
k =

1
N

∗
k

∑
k−N

µn
k (27)

When there is no fault, the system is under the no-fault hypothesis H0. When the
system detects faults, the system is under the fault hypothesis H1. Then, the detection
function can be expressed as follows:{

H0 : ∀n ∈ {1, 2, 3, . . .}, µn
k < Taverage & ∀m ∈ {k − N, k}, µn

m < Tmin
H1 : ∃n ∈ {1, 2, 3, . . .}, µn

k ≥ Taverage ∥ ∃m ∈ {k − N, k}, µn
m ≥ Tmin

(28)
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When the first stage fault detection function works and the system is under hypothesis
H1, the accuracy of IMMFGO will decrease and the faulty sensor needs to be isolated.
Typically, the FDI algorithm based on IMU measurements is applied to evaluate the per-
formance of assistant sensors [42], and the test statistic function of the residual chi-square
value λn

k at time k can be defined as follows:

λn
k = rnT

k (Sn
k )

−1rn
k (29)

where rn
k represents the residual between IMU measurements and assistant sensors. Sn

k
represents the covariance matrix of the residuals. When the function detects no fault, the
system is under the no-fault hypothesis H0; otherwise, the system is under hypothesis H1.
Then, the detection function can be expressed as follows:{

H0 : ∀n ∈ {1, 2, 3, . . .}, λn
k < Tn

D
H1 : ∃n ∈ {1, 2, 3, . . .}, λn

k ≥ Tn
D

(30)

where Tn
D is the second stage detection threshold related to the false alarm probability Pf a

and standard deviation of sensors. When the system is under hypothesis H1, the fault
sensors will be isolated and the framework will be reconstructed. When the isolated sensors
perform well and the system is under hypothesis H1, the isolated sensor will be restored
and the framework will be changed. The switching process of the integrated navigation
system framework is shown in Figure 5.
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Figure 5 shows that the potential fault sensors will be isolated only when both stages
are under hypothesis H1, and the isolated sensors will be restored only when both stages are
under hypothesis H0. During the isolation process of the sensors, the IMMFGO algorithm
can automatically switch the number of sub-models, while the isolated sensors still work
for evaluation and restoration but do not provide navigation information. The recovery
judgment of the isolated sensors is dependent on the calculated weights and the system
framework and prior information function will also be optimized accordingly. The second
stage detection function continuously works in the system. We judge whether the sensor
errors have a significant impact on absolute location or IMU results.

4. Experimental Analysis
4.1. Experimental Setup

In order to verify the feasibility of the proposed method, actual experiments on ve-
hicle platforms in urban environments were carried out. We use the open-source vehicle
city dataset captured by the vehicle platform of the Hong Kong Polytechnic University,
China [43]. The vehicle navigation system dataset is suitable for studying the characteristics
of sensors and verifying the performance of vehicle navigation systems in urban environ-
ments. As shown in Table 1 and Figure 6a, the platform consists of IMU, GNSS, and LiDAR.
Furthermore, the ground truth is collected by a high-precision SPAN-CPT system, and the



Remote Sens. 2024, 16, 1651 13 of 21

positioning error is up to 2 cm. The extrinsic parameters among sensors were calibrated in
advance. The data processing part is under MATLAB platform.

Table 1. Vehicle navigation platforms and sensors information.

Sources Parameter Types Parameter Values

Xsens-Mti-10 IMU
Frequency 100 Hz

Gyroscope random drift error 18 ◦/h
Accelerometer random drift error 15 µg

U-blox M8T
GNSS receiver

Frequency 1 Hz
Positioning accuracy 2.5 m

HDL-32E Velodyne LiDAR
Frequency 10 Hz

Measurement Range 80 m
Range Accuracy 2 cm
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vehicle navigation platform and distribution of sensors; (b) the trajectory of the vehicle experiment
and division of different road sections based on environmental characteristics.

The duration of the experiment is 486 s, with a total length of 2.0 km. In the experiment,
there will be multipath interference of GNSS signals and dynamic feature interference from
LiDAR. The trajectory and the sections are shown in Figure 6b.

According to environmental characteristics, three typical road sections were selected to
validate the proposed algorithm. Road section (1) lasts from 110 s to 160 s, and the vehicle
passes through tall buildings while the interference gradually increases. Road section (2)
lasts from 250 s to 300 s and the vehicle passes through open areas while the error variation
is slight. Road section (3) lasts from 350 s to 450 s, and the vehicle passes through dense
areas with sudden interference. The root mean square error (RMSE) is implemented to
evaluate the positioning accuracy of different algorithms [44], and we evaluate IMMFGO
and MSFDIR based on the typical road sections.

4.2. Experimental Results of IMMFGO

To evaluate the performance of IMMFGO, we compare four algorithms, namely EKF,
FGO, AFGO [41], and IMMFGO, and all apply the IMU/GNSS/LiDAR loose-coupled
navigation system as the same sensors. During the experiment, the GNSS signal may
be interrupted in special road sections, and LiDAR may be affected by the outside envi-
ronments. Additionally, AFGO and IMMFGO have additional parameters for adaptive
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optimization. The GNSS threshold is set as 2 m and the LiDAR threshold as 1.5 m for
the AFGO algorithm, while the number of sub-models of the IMMFGO algorithm is 2,
namely the GNSS navigation sub-model and the LiDAR navigation sub-model. The initial
transition probability from GNSS to LiDAR is set as 0.9. The trajectory results of the four
algorithms are shown in Figure 7.
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As shown in Figure 7, the black solid line represents the reference trajectory. The
purple, blue, and green dashed lines represent the trajectory results of EKF, FGO, and
AFGO, respectively. The solid red line represents the proposed IMMFGO algorithm. In case
of gradually increasing interference in section (1), the positioning results of the proposed
IMMFGO algorithm and the traditional FGO algorithm are better. The AFGO algorithm
may produce specific errors in the positioning results due to the fixed threshold. In case of
stable errors during section (2), the AFGO and IMMFGO algorithms can adaptively adjust
sensor weights and achieve good global estimation performance, while the trajectory of
the traditional FGO algorithm will be smoothed through global optimization with lower
positioning accuracy. In case of sudden interference during section (3), the IMMFGO
algorithm can adjust the weights of sensors, thus obtaining better positioning results than
the AFGO algorithm, since the threshold set by the AFGO algorithm is unsuitable for
unknown sudden faults. Then, east, north, and vertical position errors of different road
sections are shown in Figure 8.

From the trajectory positioning results in Figure 7 and the position errors in Figure 8,
it can be seen that both EKF and FGO are strongly affected by external interference, leading
to decreased positioning accuracy. However, the trajectory of the FGO algorithm can be
optimized through historical information, thereby improving specific performance. Com-
pared to other algorithms, AFGO and IMMFGO have the ability to adaptively optimize the
weights in case of interference. While the AFGO algorithm is based on a fixed detection
threshold according to personal experience, and its performance is poor in dynamic or
sudden interference situations, the proposed IMMFGO algorithm changes sensor weights
based on sensor performance and environmental changes, of which the threshold is adap-
tively adjusted, resulting in good performance under different interference conditions. The
probability transition results of the IMMFGO algorithm are shown in Figure 9.

Figure 9 shows the transition probability of the IMMFGO sub-models. IMMFGO can
reduce the impact of environmental interference on positioning accuracy by switching
model probabilities, which has good results in global positioning. According to the changes
in transition probability for different road sections, it is clear that when sensor accuracy
decreases, the corresponding model probabilities also decrease, reducing the impact of
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interference on positioning results and improving positioning accuracy. To quantitatively
evaluate the performance of our algorithm, we calculated the RMSE of each method. Table 2
shows the quantitative results of four algorithms.
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Table 2. RMSE of the four algorithms and the improvement of IMMFGO to AGO (unit: meters).

Types of Error EKF FGO AFGO IMMFGO Improvement

East 8.07 8.16 3.66 2.85 22.1%
North 10.05 3.96 3.95 2.90 26.5%

Vertical 5.87 4.62 3.46 2.72 21.3%
3D 14.14 10.18 6.4 4.88 23.7%

Table 2 shows that the 3D RMSE of EKF in global accuracy is 14.14 m. At the same
time, FGO, optimized by combining historical measurement information, has a 3D RMSE
of 10.18 m, which improved by 28% compared to EKF. AFGO and IMMFGO, with a weight
adjustment trajectory based on FGO, have achieved certain improvements in positioning
accuracy. The 3D RMSE of AFGO is 6.4 m, which improved by 37.1% compared to FGO.
The 3D RMSE of IMMFGO is 4.88 m, which improved by 23.7% compared to AFGO, and the
positioning results in the east, north and vertical directions have better performances. The
experiment shows that compared to the AFGO algorithm, which can adjust weights through
preset thresholds, IMMFGO has better performance in complex urban environments. On
the basis of the traditional FGO algorithm, IMMFGO can better achieve precise positioning
results for vehicles. The proposed system is based on the sensor with the lowest frequency
for information fusion. In this experiment, the signal output frequency is 1 Hz, which can
meet the positioning and robustness requirements of actual vehicle navigation systems.
The comparison results with existing algorithms are shown in Table 3.

Table 3. 3D RMSE of proposed algorithm and previous works.

Methods 3D RMSE (m)

Alone GNSS 42.02
LIO-SAM 19.89

Adaptive Integrated GNSS-RTK/LIO
(elth = 90◦, 35◦, 15◦) 25.33, 18.88, 4.12

IMMFGO 4.88

Table 3 shows the performance of proposed algorithm and the previous IMU/GNSS/
LiDAR integrated navigation algorithm [43]. In complex urban environments, GNSS or
LiDAR alone for navigation tends to have poor performance. IMMFGO achieves better
performance than traditional LIO-SAM algorithm because of poor GNSS performance and
similar performance of optimal adaptive Integrated GNSS-RTK/LIO algorithm in complex
urban canyons. Contrary to adaptive integrated GNSS-RTK/LIO which can only have good
performance by testing different thresholds, IMMFGO algorithm evaluates the models
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based on the output of sub-models which does not rely on auxiliary information and has
better environmental adaptability.

4.3. Experimental Results of MSFDIR

In Part 4.2, we analyzed and validated the performance of the IMMFGO algorithm
through vehicle experiments. Based on the work above, we will further analyze the impact
of fault detection, isolation, and recovery functions.

Based on the MSFDIR algorithm proposed in Part 3.2, the first stage average and
minimum fault detection threshold based on IMMFGO is set to 0.05 and 0.02, and the
stage 2 fault detection threshold is set as five times the standard deviation of sensors. The
recovery threshold is set as the same. Figure 10 shows the results of the fault detection
functions and the usage of sensors.
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detection function. (b,c) are the results of the stage 2 GNSS and LiDAR fault detection function based
on IMU, respectively. (d) is the usage result of GNSS and LiDAR.

From Figure 10, we can see that in road section (1), when there is a slowly changing
error, the stage 1 detection function can respond to the error, and the stage 2 detection
function can detect errors that have a significant impact on the IMU and isolate the sensor.
In road section (2), when there is a stable error, the IMMFGO algorithm can automatically
optimize sensor weights, thus avoiding significant errors. In road section (3), when there are
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step faults, the stage 1 and stage 2 detection functions can identify errors that significantly
impact position accuracy and isolate the corresponding sensors. In other road sections,
gradual and step faults that have a significant impact on system performance can also be
detected and isolated to ensure the performance of the IMMFGO algorithm and improve
system accuracy. The position error results for the east, north, and vertical directions of the
proposed IMMFGO and MSFDIR algorithm are shown in Figure 11a. The box diagram of
position errors also shows the superiority of the proposed method in Figure 11b.
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Figure 11a shows that when a significant fault occurs, the factor graph optimization
algorithm has the characteristic of global optimization based on historical information,
which will generate cumulative errors. The MSFDIR algorithm can detect and reduce
the impact of significant or slowly changing faults, thus improving the performance of
system state estimation based on the IMMFGO algorithm. The RMSE of several factor
graph optimization algorithms for quantitative analysis is shown in Table 4.

Table 4. RMSE of five algorithms and the improvement from MSFDIR to IMMFGO (unit: meters).

Types of Error EKF FGO AFGO IMMFGO MSFDIR Improvement

East 9.07 8.16 3.66 2.85 2.64 7.4%
North 10.05 3.96 3.95 2.90 2.66 8.3%

Vertical 5.87 4.62 3.46 2.72 2.35 13.6%
3D 14.14 10.18 6.4 4.88 4.42 9.4%

Figure 11b and Table 4 show that after adopting the MSFDIR function, the positioning
accuracy is improved and the 3D position error is decreased to 4.42 m. Compared to the
IMMFGO algorithm, the accuracy has improved by 9.4%, and the positioning accuracy in
the east, north, and vertical directions has improved. The proposed MSFDIR function can
obtain the usage information of sensors to provide more information for vehicle navigation
systems to ensure system security. The MSFDIR function can compensate for the problem
of slowly increasing or significant faults leading to a decrease in the positioning accuracy of
the IMMFGO algorithm. Meanwhile, MSFDIR also provides a reference for fault warnings
in vehicle navigation systems. At the same time, the real-time performance of MSFDIR can
also meet the actual needs of vehicle navigation systems.
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5. Discussion

In this paper, a multi-source integrated navigation system based on factor graph
optimization is proposed. Aiming to reduce the impact of interfered sensors under a
challenging urban environment, the interactive multiple models algorithm based on factor
graph optimization is applied, and the multi-stage fault detection, isolation, and recovery
function provides flexible navigation frameworks for different conditions. The vehicle
experiment shows that the proposed approach has a good navigation performance in
urban environments, and the system can effectively identify and isolate faulty sensors. The
proposed IMMFGO and MSFDIR algorithms provide a new idea for multi-source informa-
tion fusion, but there still exists some shortcomings for further exploration, summarized
as follows:

• The IMMFGO algorithm can be applied to the navigation system in the case of multiple
sub-models. We only verify the performance of the algorithm for two sub-models, and
more situations need to be considered later;

• The MSFDIR algorithm provides a feasible solution for the detection, isolation, and
recovery of faulty sensors, and the performance of other solutions should be studied
on this basis;

• We select a representative urban environment experiment to validate the proposed
method. It is fascinating to explore more urban data and experiments to verify the
universality of the proposed scheme.

6. Conclusions

Aiming at the demand for high-precision vehicle positioning in complex urban en-
vironments, an IMU/GNSS/LiDAR loosely coupled navigation system is constructed
based on the studied factor graph optimization algorithm. Then, IMMFGO, an adaptive
optimization algorithm, is applied to evaluate the performance of multiple sensors and
to automatically adjust sensor weights for better global estimation. On this basis, the
proposed MSFDIR scheme provides a feasible solution for framework optimization, which
is capable of detecting, isolating, and restoring target sensors and automatically adjusting
the system framework. Furthermore, the superiority of the proposed method compared
with traditional methods has been verified through vehicle experiments in typical urban
canyons. The results indicate that the proposed IMMFGO outperforms AFGO in accu-
racy, and the MSFDIR scheme can optimize the navigation framework while improving
positioning accuracy to a certain extent.
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