
Citation: Wienhold, K.J.; Li, D.; Fang,

Z.N. Precision Irrigation Soil Moisture

Mapper: A Thermal Inertia Approach

to Estimating Volumetric Soil Water

Content Using Unmanned Aerial

Vehicles and Multispectral Imagery.

Remote Sens. 2024, 16, 1660. https://

doi.org/10.3390/rs16101660

Academic Editors: Francesca

Ardizzone, Gabriella Caroti and

Yuankun Xu

Received: 26 February 2024

Revised: 3 May 2024

Accepted: 6 May 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Precision Irrigation Soil Moisture Mapper: A Thermal Inertia
Approach to Estimating Volumetric Soil Water Content Using
Unmanned Aerial Vehicles and Multispectral Imagery
Kevin J. Wienhold, Dongfeng Li and Zheng N. Fang *

Department of Civil Engineering, The University of Texas at Arlington, Arlington, TX 76010, USA;
kevin.wienhold@mavs.uta.edu (K.J.W.); daniel.li@uta.edu (D.L.)
* Correspondence: nickfang@uta.edu

Abstract: To address the issue of estimating soil moisture at a hyper-resolution scale, a method-
ology referred to as Precision Irrigation Soil Moisture Mapper (PrISMM), that includes three key
components, is developed: high-resolution remotely sensed optical and thermal data, surface energy
balance modeling, and site-specific soil analysis. An Unmanned Aerial Vehicle/System (UAV or
UAS) collects high-resolution multispectral imagery in the Dallas–Fort Worth metropolitan study
area. Orthomosaics are converted to thermal inertia estimates in a spatially distributed format using
the remotely sensed data combined with a set of surface energy balance modeling equations. Using
thermal and physical properties of soil gained from site-specific soil analysis, thermal inertia estimates
were further converted from thermal inertia to daily volumetric soil water content (VSWC) with a
horizonal resolution of 8.6 cm. A ground truthing dataset of measured VSWC values taken from
a Time Domain Reflectometer was compared with model results, producing a reasonable correla-
tion with an average coefficient of determination of (R2) = 0.79, an average root mean square error
(RMSE) = 0.0408, and mean absolute error (MAE) = 0.0308. This study highlights a practical approach
of estimating VSWC for irrigation purposes while providing superior spatio-temporal coverage over
in situ methods. The authors envision that PrISMM can be implemented in water usage manage-
ment by relating VSWC with weather forecasts and evapotranspiration rates to develop time-based
spatially distributed irrigation management plans.

Keywords: soil moisture; UAV; UAS; hyper-solution remote sensing; thermal inertia; energy balance;
soil analysis; spatially distributed estimation; irrigation management

1. Introduction

Currently, half of the world’s population resides in urban areas, and by 2050, that
number is expected to rise to two-thirds [1]. The strain on water supplies has increased due
to rapid urbanization and population expansion [2,3]. In dry and semi-arid areas like north
central Texas, where water is scarce and in high demand, these pressures are increased.
Strategies for managing water conservation are crucial in these areas since irrigation is the
primary usage of freshwater for both urban and rural consumers. The water use survey
report by Texas Water Development Board (TWDB) showed that in 2015, industrial water
systems and public irrigation contributed to almost 51% of water use in the state, that
accounts to around 5.22 million megaliters (ML) [4]. Irrigated agriculture is the most
dominant categorical user of water in Texas which is then followed by urban–municipal
uses with landscape irrigation as its largest sub-user. Urban–municipal landscaping areas,
particularly in golf courses, parks, athletic fields, residential, institutional, and commercial
lawns, are covered with turfgrass. In 2010, it was approximated that golf courses covered
465 sq·km in Texas using 0.449 ML water annually. Low-end estimates for landscapes,
incorporating these golf courses, add up to 46.6% of the total urban–municipal water use,
reaching 12.6% of the total annual demand for all activities in Texas [5].

Remote Sens. 2024, 16, 1660. https://doi.org/10.3390/rs16101660 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16101660
https://doi.org/10.3390/rs16101660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6032-1805
https://orcid.org/0000-0001-9871-8405
https://doi.org/10.3390/rs16101660
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16101660?type=check_update&version=1


Remote Sens. 2024, 16, 1660 2 of 26

More efficient irrigation delivery systems can be the key to considerable water and
cost savings considering the massive use of freshwater in urban landscaping. Methods
like potential evapotranspiration-based irrigation scheduling and in situ soil moisture (SM)
sensing for time-based irrigation control have been proposed to improve efficiency [6,7].
With traditional methods, the spatial variability of SM cannot be represented, since in situ
sensors are fixed and limited in location. To tackle this obstacle, many remote sensing
approaches to SM estimation have been proposed and applied in many studies [8–12].
Among them, thermal sensing offers a special edge because longwave radiation that is
reflected as heat is made up of thermal energy that extends to different depths and several
layers below the surface. Through the processes of solar radiation and heat transport,
temperature disparities naturally occur in accordance with the physical characteristics of
the soil strata. Knowing soil composition, vegetation type, and temporal meteorological
circumstances, it is possible to derive reliable estimations of soil moisture (SM) content.
This is because soil and water have significant variations in thermal characteristics.

Current limitations on the primary methods for estimating SM fall into three main
categories: microwave, optical, and thermal. Microwave estimation challenges are char-
acterized by low spatial resolutions and are often impaired by vegetation and surface
roughness [12–16]. Optical SM estimation can be reflectance-based, which is disadvantaged
by a lack of surface penetration, poor SM correlation with dense vegetation, an inability to
penetrate clouds, and inapplicability at night; vegetation indices have the same challenges
in addition to significant lag times between water stress and vegetation response [17,18].
Traditional thermal methods fall into the sub-categories of temperature index and thermal
inertia methods. Temperature index methods may have poor SM correlation with dense
vegetation, an inability to penetrate cloud cover, and are empirically based [19–22]. Thermal
inertia methods, while physically based, have similar limitations in addition to a sensitivity
to atmospheric conditions [11,23–29].

Using a thermal inertial approach to estimate SM has been applied in many theoretical
research studies [26,27,30–32]. The approach solves the SM value from physical relation-
ships linking surface soil water content to soil thermal properties [33]; however, there is
little direct applicability to field studies. Coppola et al. [34] used visible (VIS), near infrared
(NIR), and thermal infrared (TIR) sensors mounted on a SkyArrow 650 light aircraft to
retrieve high-resolution soil moisture data. Minacapilli et al. [28] used an 11-band passive
remote sensor attached to a low-flying airplane to derive thermal inertia estimates of 4 m
resolution. Using similar sensors as Minacapilli et al. [28], Maltese et al. [29] achieved a
standard error of ∼0.01 by using a three-temperature approach phase correction to thermal
inertia (3 m resolution) for the top soil layer. The authors also showed that, for landscapes
with light vegetation, SM can be directly related to surface temperature and ground heat
flux. Using an airborne thermal camera to study relationships between SM, mechanical
resistance, and thermal inertia (0.6 m resolution) for a vineyard with grass-covered soil
and a standing grape canopy, Soliman et al. [35] showed significant correlations between
SM, the mechanical resistance of the vegetation, and thermal inertia, despite its complex
heating and cooling patterns.

The existing literature suggests a need for a practical and affordable method with a
clear physical meaning for remotely estimating SM on a daily basis, despite cloud cover.
Therefore, the authors aim to develop and evaluate a remote sensing platform that can
be used for safe and rapid deployment for the collection of high-resolution SM estimates
that non-experts can adopt for improving water management strategies at a local scale.
Unmanned Aerial Vehicles (UAVs) can operate in most visual meteorological situations and
obtain great data density and continuity when compared to low-flying aircraft. Over the
past decade, Unmanned Aerial Vehicles (UAVs) have enabled the collection of extremely
high-resolution remote sensing data, that would have been prohibitively expensive and
time-consuming to obtain through conventional means. In addition to providing centimeter-
level positioning and accuracy, technological advancements have led to equipment size and
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cost reductions in equipment like Global Positioning Systems (GPSs), Inertial Measurement
Units (IMUs), Inertial Navigation Systems (INSs), and Real-Time Kinematics (RTK) [36].

Limited studies using UAVs for the estimation of SM have been conducted until now
and many of them derive SM using the machine learning approach [37,38], while a soil
physics-based thermal inertia approach for the estimation of SM has never been attempted
with UAVs. In order to reduce overwatering and prevent underwatering by precision
irrigation, the authors are therefore inspired to create a fresh approach to estimate high-
resolution, contiguous VSWC which is validated with in situ measurements using remote
sensing techniques. In Data and Methodology, the study area is introduced, followed by
a description of the UAS platform and its sensors with the detailed procedure for data
collection. The daily volumetric soil water content (VSWC) maps are assessed with the
ground truthing data in Results and Discussion. The paper concludes with the key findings,
limitations and weaknesses, and suggestions for future studies and practical usage.

2. Data and Methodology
2.1. Study Area

The study area is selected as a city (City of Arlington)-owned golf course (Meadow-
brook Park), in north central Texas, United States of America. The golf course is bounded in
the northwest at East Abram Street and Willis Avenue (32.735271◦, −97.092930◦), the north-
east at the intersection of East Abram Street and Overhill Drive (32.735452◦, −97.089384◦),
the southeast at the intersection of Meadowbrook Drive and Coke Drive (32.727548◦,
−97.090065◦), and the southwest at the intersection of McKay Street and Coke Drive
(32.729162◦, −97.092533◦). The project area is approximately 0.1 km2 and elongated green
spaces and narrow fairways are dotted with low trees as land features (Figure 1). The
geography of Meadowbrook is moderately sloping, and it borders Johnson Creek on its
western side. The City of Arlington (City) owns and runs the golf course. The location
was chosen because of the City’s ongoing dedication to water-conservation measures and
because there has not been much land modification for several decades, leaving the soil
profile mostly intact. Meadowbrook consumes approximately 45,000 to 57,000 cubic meters
of water annually. In 2013, the city began the installation of a water well that taps the
Paluxy aquifer to eliminate the reliance on Arlington municipal water for irrigation. A
pumping station draws water from the earth and stores it in a holding pond, which is then
used to irrigate the course with the help of 162 sprinkler heads.
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Figure 2 shows the soil analysis from SSURGO, followed by the soil classifications
determined by field surveys. The study site was delineated into four soil groups, including
(a) loamy sand, (b) sand, (c) sandy loam, and (d) silty clay loam. The majority soil type,
loamy sand, is found all throughout the site. Sandy loam is located close to the golf course’s
perimeter and is far less common. Throughout the course, elevated spots contained silty
clay loam, which may hint that it was locally excavated and re-spread to match the course’s
topography. Sand with a high porosity and infiltration rate is used to build putting greens
and tee boxes. The model calibration based on spatial distribution was adjusted using these
soil classifications.
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Figure 2. Study area, delineation by soil analysis, soil class, and golf course topography.

2.2. UAV Platform

MavAir One, the custom-built UAV platform based on the DJI Matrice 600 Pro model
(DJI, Shenzhen, China) that was used in this research, has eight rotors providing a maximum
takeoff weight of eleven kilograms and can fit several multispectral sensors onboard
(Figure 3). A Micasense RedEdgeTM camera (RedEdgeTM) (Micasense, Seattle, WA, USA)
with an image array of 1280 × 960 pixels provides spectral data on five different narrow
bands: blue (ρ1), green (ρ2), red (ρ3), red edge (ρ4), and NIR (ρ5) (Micasense 2015). For the
development of vegetation indices like the NDVI, derived multi-band orthomosaics are
employed. RedEdgeTM reflectance measurements are radiometrically calibrated utilizing
two instruments, a down-welling light sensor (DLS) and a calibrated reflectance panel
(CRP), with Version 1 manufactured by Micasense, to account for variations in ambient
light that occur both during flight and on a daily basis. An image of the CRP is taken
on each of the five RedEdgeTM bands, where the target’s albedo is known, both before
and after each flight. Located at the top of the octocopter, the DLS is oriented upwards.
Solar irradiance (W·m−2) is immediately captured for every camera-triggering event and
is contained in each band’s metadata. Subsequently, in post-processing, both the CRP
and DLS are employed to correct for variations in illuminations during flight (Micasense
2015), taking into account solar irradiance and sensor characteristics (gain/bias settings for
every band).
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A FLIR Vue Pro R (FLIR) (Teledyne FLIR LLC, Wilsonville, OR, USA) derives the
temperature for each pixel from the non-contact, calibrated, radiometric measurements.
The thermal imager is an uncooled vanadium oxide microbolometer that detects long-
wave infrared energy in the 7.5–13.0 µm thermal spectral range with an image array of
640 × 512 pixels (FLIR 2016). A fixed emissivity is used to automatically calculate surface
temperatures. Grayscale bands are used to record raw sensor data, which are then saved in
an uncompressed 14-bit TIFF format.

There is a major research gap in procedures for validating and calibrating very-high-
resolution (VHF) remotely sensed thermal imagery in the literature. The authors were thus
motivated to devise a ground truthing procedure for use in this study. For both morning
and afternoon flights, assuming a linear relationship between thermal brightness and land
surface temperature, a thermal infrared gun was utilized to calibrate and confirm the aerial
TIR images. A handheld Fluke ST2 IR gun (Fluke Cor., Everett, WA, USA) measured the
surface temperature, with an accuracy of ±1%. At a one-meter distance, the gun was
aimed at a 45◦ angle to the surface, leaving about a 0.25 m2 ground footprint. The surface
temperatures of various objects were recorded with the IR gun for each flying day. These
objects were selected from previously collected aerial TIR images from earlier flights not
included in subsequent analyses. The authors identified large and conspicuous objects of
various temperatures that were resolved by the thermal image array at mission altitude.
Objects such as standing bodies of water, motor vehicles, boulders, pavement, gravel,
concrete, and several patches of grass throughout the golf course were included in the daily
collection for use in calibration and validation. With an average of twenty IR gun point
measurements per dataset, an R2 of 0.94 was achieved with the aerial TIR imagery.

During pre-processing, the effects of vignetting, which is characteristic of thermal
images, were eliminated. The program Pix4D Mapper Pro version 4.0 was used to import
images and convert the raw thermal information to absolute temperature. Table 1 displays
the specifications of the MavAir One sensor suite.
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Table 1. UAS sensor specifications.

Brand Model Sensor Resolution Name Symbol Bandwidth Wavelength (µm)

FLIR Vue Pro R Thermal 640 × 512 Thermal ρ6 Broad 7.5–13.5
Micasense RedEdgeTM Multi-spectral 1280 × 960 Near Infrared ρ5 Narrow 0.820–0.860

Red Edge ρ4 0.712–0.722
Red ρ3 0.663–0.673

Green ρ2 0.550–0.570
Blue ρ1 0.465–0.485

Sony α6000 Optical 6000 × 4000 Red - Broad 0.63–0.69
Green - 0.52–0.60
Blue - 0.45–0.52

2.3. Data Collection

Twice a day over six days (events) during the fall of 2017 (between 12 October and
30 October), remote sensing data were collected. Each dataset consists of data pairs from a
morning flight and afternoon flight. Morning flights were initiated shortly before sunrise
when surface heat fluxes were minimal. This acts as a starting point for optical and thermal
imagery collected in the afternoon flight later the same day (within 1 h of solar noon). The
meteorological data that guided the UAV flight and used to further solve the energy balance
model were provided by the National Weather Service (NWS), collected at a local field office
(Fort Worth). Table 2 summarizes the UAV flights and atmospheric conditions with the
incoming shortwave radiation for each day provided in the Supplementary Materials. To
eliminate variations in coverage and altitude, all flights had the same flight plan for every
mission utilizing automated waypoint navigation. At 70 m above ground level (AGL), the
mission’s forward speed was seven meters per second. There was an 80% vertical and
horizontal photo overlap. The RedEdgeTM and FLIR’s ground sampling resolutions were
4.6 cm and 8.6 cm, respectively.

Table 2. Meteorological conditions recorded at solar noon per collection date.

Date Solar Noon
CDT

Air Temperature
◦C

Dew Pt.
◦C Humidity φ

rad

Wind
Speed

kts

Sky and Visibility
km

12 October 2017 13:14 28.1 12.5 40% 0.866 5

Clear and >10

17 October 2017 13:13 23.9 12.2 38% 0.833 8
18 October 2017 13:13 25.6 6.7 37% 0.827 11
25 October 2017 13:12 22.8 7.2 18% 0.784 8
29 October 2017 13:12 23.0 3.3 14% 0.723 12
30 October 2017 13:12 22.2 33.8 28% 0.760 3

A detailed soil characterization of the study area is required by the thermal inertia
approach used in this study. To determine the physical soil properties of the site like soil
type, texture, mineral composition, bulk density, and thermal properties, a series of in
situ and laboratory experiments was therefore conducted. The sand-cone method was
used to determine the volume and bulk density of the soil samples (ASTM 2007 [39]).
Textural analysis was also performed using the sieve and hydrometer method [40]. The
texture of the surface soil horizon, as per USDA classification, is composed of loamy sand
with a mass fraction of sand, silt, and clay of 0.85, 0.05, and 0.10 g·g−1, respectively. A
KD2 Pro thermal (Water Sensor, Inc., Montreal, QC, Canada) conductivity probe equipped
with a TR-1 thermal sensor determined the mean values for saturated and dry thermal
conductivity for sandy loam and silty clay loam. An SH-1 dual-needle thermal diffusivity
and specific heat sensor measured the mean value of specific heat for the corresponding
soils. The soil parameters were then used to conduct the calculations in Step 3 of the
PrISMM methodology as shown in Figure 4.
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The site-specific calibration was performed on the ground truthing instrument used in
this study, a Time Domain Reflectometer (TDR). Calibration was then performed to develop
a relation between the TDR sensor’s period measurements (Γ) and true VSWC (θ) using a
soil moisture meter (FieldScout model TDR 300, Spectrum Technologies, Inc., Plainfield,
IL, USA) in gravimetric sampling as shown in the Figure 4. It should be noted that only
ten core samples were extracted for analysis at the request of the property owner. The
sample locations were systematically wetted to provide a full range of soil water contents.
A soil column was extracted using a 25 cm long core sampler and inner sleeve diameter of
15 cm. The Create Random Points command was used in ArcMap version 10.7 to select core
extraction locations within the study area boundaries. The calibrated results are further
used for the validation of the UAS-remote sensing VSWC data by comparing the TDR-
derived VSWC point measurements with the UAS-derived VSWC rasters as discussed in
greater detail in Section 4.

Within 1 h of completing each afternoon flight, the TDR soil moisture meter carried
out extensive ground truthing over the coverage area. The TDR contains a data logger and
GPS which records geo-referenced period measurements in the logger’s storage file system.
The authors used the shortest stainless steel guide rods of 7.6 cm with 3.3 cm spacing,
fully inserted into the soil to best correspond with the rooting depth of the turfgrass. The
difference in sample volumes should be noted between the TDR (6.5 × 10−5 m3) and core
extraction (4.4 × 10−3 m3). This should be treated as a potential source of error due to the
difference in volume and assumed differences in wetting depths. This depth most closely
corresponds with the topmost layer reflected in the visible and near infrared spectrums
(penetration depth ≈ 1 mm [41]) when compared to the longer rods. Implications regarding
the accuracy with respect to the two different sampling depths between techniques are
considered in Section 4. The ground truthing data were imported into ArcGIS as point
features in six sets for PrISMM model validation.

The following section discusses the detailed steps in generating the spatially dis-
tributed VSWC using the thermal inertia approach with the UAV-collected data.

2.4. Model Description

Similar to the method proposed by Minacapilli et al. [28], thermal inertia is solved for
twice using two distinct methods and datasets and then using a VSWC (θ) retrieval process.
Detailed equations are presented in Table 3 below.
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Table 3. Computational steps in PrISMM methodology.

Step Symbol Name Unit Equation EQs No.

1. P thermal inertia J m−2 K−1 s−1/2 P = (2 ∆G)/(∆Ts ω−1/2) 1
1. G ground heat flux W m−2 G = Rn{A cos [2π(t + 10 800)/B)]} 2
1. A maximum G/Rn - A = 0.0074 ∆Ts + 0.088 3
1. B phase correction s B = 1729 ∆Ts + 65,013 4
1. Rn net radiation W m−2 Rn = RS↓ − ∝ RS↓ + RL↓ − RL↑ − (1 − εs) RL↓ 5
1. ∝ albedo - α ≃

n
∑

i=1
wiri i = 1, 2, . . . , n 6

1. wi weighting factors - wi =
E0

i
n
∑

i=1
E0

i

i = 1, 2, . . . , n 7

2. RL↑ outgoing longwave radiation W m−2 RL↑ = εs σ Ts4 8
2. RL↓ incoming longwave radiation W m−2 RL↓ = εa σ Ta4 9
2. εa atmospheric emissivity - εa = 1.24(ea/Ta)0.14286 10
2. εs surface emissivity - εs = 1.009 + 0.047 ln(NDVI) 11
2. ea actual vapor pressure mb ea = 6.11exp[17.27Td/(237.3 + Td) 12
2. NDVI normalized difference vegetation index - NDVI = (NIR − red)/(NIR + red) 13
3. P thermal inertia J m−2 K−1 s−1/2 P = (λ ρbC)−1/2 14
3. ρbC soil heat capacity J m−3 K−1 ρbC = ρbd Cs + θ ρw Cw 15
3. λ soil thermal conductivity W m−1 K−1 λ = Ke(λsat − λdry) + λdry 16
3. Ke Kersten number - Ke = exp{γ[1 − (θ/θs)γ − δ]} 17

3. γ texture parameter - γ = 0.96 (f s > 0.40)
γ = 0.27 (f s ≤ 0.40) 18

where Value/Source

δ shape parameter - 1.33
ρw density of water kg m−3 ~998
Cw liquid phase heat capacity J kg−1 K−1 4184
Cs solid phase heat capacity J kg−1 K−1 KD2 Pro/SH-1
γ texture parameter - Klute et al. 1986 [40]
f s sand fraction - Soil analysis based on (ASTM D2419-14) [42]
λsat saturated thermal conductivity W m−1 K−1 KD2 Pro/TR-1
λdry air-dry thermal conductivity W m−1 K−1 KD2 Pro/TR-1
θs volumetric saturated SWC m3 m−3 Soil analysis based on (ASTM D2216-19) [43]
θ actual volumetric SWC m3 m−3 TDR
ρdb dry bulk density of soil kg m−3 Soil analysis based on (ASTM D1556/D1556M) [39]
r1 blue absolute reflectance - RedEdgeTM

r2 green absolute reflectance - RedEdgeTM

r3 red absolute reflectance - RedEdgeTM

r4 red edge absolute reflectance - RedEdgeTM

r5 near infrared absolute reflectance - RedEdgeTM

TIR thermal infrared radiation ◦C FLIR Vue Pro R
∆Ts LST difference ◦C FLIR Vue Pro R
Ta air temperature ◦C NOAA
d Earth–Sun distance AU NASA
ω radial frequency (24-h) rad s−1 2π/86 400 s
σ Stefan–Boltzmann constant W m−2 K−4 5.67 × 10−8

Gsc solar constant W m−2 1370
φ solar zenith angle ◦ NOAA
z elevation (msl) m GPS

Using remotely sensed imagery and surface energy balance modeling (Equations (1)–(13)
detailed in Section 2.4.1), the first set of thermal inertia values are stored in GIS (Geographic
Information System) raster format in ArcGIS. We refer to the remotely sensed (thus spatially
distributed) estimation of thermal inertia as Prs.

For the second solution, thermal inertia is provided by solving Equations (14)–(18)
(detailed in Section 2.4.2) for incremental values of θ using real soil physical parameters
obtained from soil samples. We refer to this thermal inertia parameter as P. The incremental
values of θ—as the independent variables in the solution of P—are stored in matrix format
by soil group.

Finally, the spatially distributed map of θ is gained by matching thermal inertia
between the raster and matrix (Prs and P, respectively). The corresponding θ values are
retrieved from the matrix for every raster pixel of Prs. It should be noted that this process
is often referred to as thermal inertia retrieval. We herein refer to the remotely sensed
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estimations of VSWC as θrs to distinguish from VSWC measured with a TDR soil moisture
sensor (θTDR). Figure 5 describes the general workflow of the PrISMM methodology. The
following sections explain the details of each parameter.
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2.4.1. Remote Sensing Method and Surface Energy Balance Modeling

As proposed by Idso et al. [44] and Menenti [45], remote sensing methods can be used
to derive thermal inertia estimates from surface heat flux and surface temperature variation
using the following relationship:

Prs =
2∆G

∆T
√

ω
(1)

where ∆T (K) is the difference between the minimum and maximum daily surface tempera-
ture, ω (rad s−1) is the angular velocity of the Earth’s rotation assuming a 24 h period (i.e.,
2π/86,400 s), and ∆G (W·m−2) is the amplitude of the sinusoidally varying ground heat
flux during this period.

The early morning values of G are approximately 0 W·m−2 and can be neglected, so
∆G is equivalent to the magnitude of G at solar noon. There are many empirical equations
available for the estimation of G. Several equations were tried in this study [46–49] with
the best results obtained from Santanello and Friedl [50], based on diurnal patterns from
SHAW simulations:

G
Rn

= A cos
(

2π
t + 10, 800

B

)
(2)

where t (s) is the time of data capture relative to solar noon. A (-) represents the maximum
value of G/Rn while B (s) is used to adjust the diurnal phase amplitude of G/Rn, defined as
by Hoffmann et al., respectively [51]:

A = 0.0074 ∆Ts + 0.088 (3)
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B = 1729 ∆Ts + 65, 013 (4)

For simplicity, the calculation of net radiation was based on the methods used by
Minacapilli et al. [28] which proved to yield good results. Summing both incoming and
outgoing short (solar)- and long (thermal)-wave radiation at the surface gives the full
equation for Rn [52]:

Rn = RS↓ − αRS↓ + RL↓ − RL↑ − (1 − εs)RL↓ (5)

where incoming shortwave radiation is denoted by RS↓ (W·m−2), combined soil and
vegetation albedo is denoted by α, the surface emissivity is εs, absorbed incoming longwave
radiation is denoted by RL↓ (W·m−2), and outgoing longwave radiation is denoted by RL↑.
Albedo can be approximated as follows [53]:

α ≃
n

∑
i=1

wiri i = 1, 2, . . . , n (6)

where absolute reflectance for narrow bands in the visible spectrum is denoted by ri and
the weighting factors are denoted by wi determined from the following equation [45]:

wi =
E0

i

∑n
i=1 E0

i
i = 1, 2, . . . , n (7)

where solar irradiance for each narrow band, determined at the time of flight, is indi-
cated by E0

i . In both Equations (6) and (7), n refers to the number of narrow bands
included in the analysis and correspond with sensors of the Micasense RedEdgeTM camera,
1 = blue, 2 = green, 3 = red, 4 = red edge, and 5 = near infrared. Even though the calculated
albedo does not represent the entire shortwave spectrum, for the turfgrass, calculated
albedo values were found to be reasonable (0.26–0.28), which closely approximates the
grass albedo values (0.24–0.26) reported by Campbell and Norman [54].

The above section solves the Prs by the remote sensing methods from Equations (1)–(7)
as Step 1, and Step 2 is used to solve the surface energy balance modeling for Equation (5).
The National Weather Service (NWS) of Fort Worth provided the RS↓ values, with the
weather station located approximately 22 km from the golf course. RL↓ and RL↑ are
estimated as follows:

RL↓ = εaσ T4
a (8)

RL↑ = εsσ T4
s (9)

where atmospheric emissivity ε assumes an exponential atmospheric profile for tempera-
ture, pressure, and humidity; σ (5.67 × 10−8 W·m−2·K−4) is the Stefan–Boltzmann constant;
and the near-surface air temperature is Ta (K). εa and εs can be calculated by Brutsaert [55]
and Bastiaanssen et al. [46], respectively:

εa = 1.24
(

ea

Ta

)0.14286
(10)

εs = 1.009 + 0.047ln(NDVI) εs = 1.009 (11)

where Td (◦C) is the temperature at dew point and the actual vapor pressure ea (mb) is
given by Chow et al. [56]:

ea = 6.11 exp
(

17.27 Td
237.3 + Td

)
(12)
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The Normalized Difference Vegetation Index (NDVI) is given as the difference of
reflectance values between the NIR and red bands, divided by the summation of NIR
and red:

NDVI =
NIR − red
NIR + red

(13)

where a digital number (DN) between 0 and 255 represents reflectance.
Finally, by solving equations from (1) through (13), the remotely sensed (thus spatially

distributed) estimation of thermal inertia as Prs is generated.

2.4.2. Soil Parameters Analysis

Thermal inertia can be defined for the physical properties of soil by Carslaw and
Jaeger [57]:

P =
√

λρbC (14)

where the thermal inertia is denoted by P (J·m−2·K−1·s−1/2), λ (W·m−1·K−1) denotes the
soil thermal conductivity, the actual soil bulk density (including water) is ρb (kg·m−3), and
C (J·kg−1·K−1) is the soil heat capacity expressed as by de Vries [58]:

ρbC = ρbdCs + θρwCw (15)

where the dry bulk density of soil is ρbd (kg·m−3), ρw (~998 kg·m−3) represents the density
of water at room temperature, and the heat capacities of the solid and liquid phases are Cs
(975 J·kg−1·K−1) and Cw (4184 J·kg−1·K−1), respectively. And θ (m3·m−3) is the volumetric
soil water content.

Accurate predictions of λ for a wide range of soils are provided by Johansen [59]
introducing the concept of a normalized thermal conductivity, referred to as the Kersten
number (Ke). The empirical model is given by the following:

λ = Ke

(
λsat − λdry

)
+ λdry (16)

where the thermal conductivities of saturated and air-dry soils are represented by λsat and
λdry (W·m−1·K−1), respectively. The Kersten number is an empirical parameter which is a
function of saturation, Sr. Lu et al. [60] found very good agreement between measured and
estimated λ values using the following expression for Ke:

Ke = exp
[
γ
(

1 − Sγ−δ
r

)]
(17)

where shape parameter δ = 1.33 and Sr denotes the ratio between the actual volumetric soil
water content, θ, and the saturated soil water content, θs.

γ = 0.96 is soil-texture dependent parameter, and it is determined by the sand fraction
( fs) as given by Lu et al. [60]:

γ = 0.96 ( fs > 0.40) γ = 0.27 ( fs ≤ 0.40) (18)

A summary of the VSWC computation sets and equations is given in Table 3.

3. Results
Soil Moisture Results

Spatially distributed raster datasets of land surface temperature change (∆Ts), nor-
malized difference vegetation index (NDVI), albedo (grass and soil combined) (α), surface
emissivity (εs), net radiation (Rn), ground heat flux (G), thermal inertia (Prs), and volumetric
soil water content (θrs) are processed and attained for each flying day with resolutions of
8.6 cm (Figure 6) in ArcGIS. With the essential application potential to provide guidance in
irrigation requirements, all non-soil/grass features such as vegetation over 10 cm in height,
asphalt, concrete, water bodies, and drainage structures are removed by the user in GIS.
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This can be accomplished by tracing the unwanted features to create a shapefile polygon
for raster clipping. This procedure, while labor-intensive, only needs to be performed
once and not all raster files require clipping. Because the study was performed in mid-
fall, even during solar noon, the solar elevation angle was just under 50 degrees, leading
to persistent shadows throughout the modeling domain. The regions of turfgrass that
were covered in these persistent shadows were displayed in the model as false wet zones,
which were further removed in pre-processing to prevent systematic bias. In this way,
averages for spatially distributed calculated parameters exclusively represent the intended
feature—turfgrass, as shown in Table 4. For this study, approximately 20% of the total area
was removed.
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Figure 6. Raster layers generated using PrISMM methodology for 25 October 2017: Ts, NDVI, α, εs,
G, Prs, and θrs (from left to right).

Table 4. Average spatially distributed calculated parameters for six events.

Date * Ts
(◦C)

NDVI
(-)

α

(-)
εs
(-)

G
(W m−2)

Prs
(J m−2 K−1 s−1/2)

θrs
(m3 m−3)

12 October 2017 27.58 0.61 0.26 0.99 48.16 1332.72 28.47
17 October 2017 26.49 0.61 0.26 0.98 39.05 1354.03 29.59
18 October 2017 28.96 0.60 0.27 0.99 38.75 1383.56 31.17
25 October 2017 27.34 0.59 0.27 0.98 40.07 1332.91 28.48
29 October 2017 24.84 0.59 0.28 0.98 47.51 1319.83 27.80
30 October 2017 24.69 0.59 0.28 0.98 62.02 1308.76 27.23

* Temperature recorded during midday flight (approximately solar noon).

As mentioned before, a calibrated TDR soil moisture meter was used for ground
truthing. Immediately following every afternoon flight, georeferenced period measure-
ments were taken; each dataset contained between 55 and 518 measurements, for a total of
1300 measurements. TDR measurements were evenly distributed during the initial survey
on 12 October, with measurements collected with an average spacing of approximately
ten meters. For the remaining five surveys, the authors collected TDR measurements in
clusters of three to twelve over 3 × 3 m plots, as shown in Figure 7. The authors changed
the sampling method so that stronger patterns of VSWC variability might emerge so that
anomalies or outliers within these groupings could be easily identified. Uncertainties
associated with the sampling method are discussed in Section 4. Summary statistics for the
TDR readings by date are provided in Table 5. Due to irrigation sprinkler system flaws,
there were over- and under-watered areas in each dataset. During the calibration of the
PrISMM model, these areas were used as boundary conditions, representing saturated and
dry conditions, respectively.
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 Figure 7. PrISMM volumetric soil water content (VSWC) map results for six events (from top to right:
1st to 6th).

By using a radio-transfer model integrated into the FLIR, atmospheric corrections
to the TIR imagery were completed before calculating ∆Ts. The significant uniformity of
surface temperatures across the golf course prevented the image processing software from
mosaicking the early morning TIR images, as noted by Hoffman et al. [51]. Pix4D attempts
to stitch overlapping photos together in the photogrammetry workflow by first finding
prominent shared pixels (or key points) within an image batch. During triangulation, a
line from the camera is projected by the software to key points using the camera’s location,
orientation, and attributes like resolution and focal length. This process is repeated for
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each overlapping photo in the batch. The relative uniformity of the temperature field in
the early morning makes it impractical to produce a sufficient key point density for TIR
mosaicking, since key points are made up of temperature estimations as pixels.

Table 5. Summary statistics for TDR measurements for six events.

Date Event MIN (m3 m−3) MAX (m3 m−3) AVG (m3 m−3) STD DEV (m3 m−3)

12 October 2017 1st 0.1440 0.5984 0.2887 0.0730
17 October 2017 2nd 0.1265 0.5496 0.2918 0.1037
18 October 2017 3rd 0.1195 0.5836 0.3197 0.1354
25 October 2017 4th 0.1350 0.5677 0.3343 0.1007
29 October 2017 5th 0.1075 0.5270 0.2448 0.0770
30 October 2017 6th 0.1335 0.5520 0.2452 0.0700

Average 0.1277 0.5630 0.2874 0.0933

As with Hoffman et al. [51], the starting surface temperature was determined from
individual TIR photos taken at an elevation of 70 m using the mean temperature of the
turfgrass. The afternoon TIR imagery was mosaicked normally using a standard 2D
photogrammetry workflow. TIR orthomosaics were calibrated using temperature readings
from the Fluke in ArcGIS. The final ∆Ts orthomosaics were taken as the difference of
the calibrated afternoon TIR orthomosaics and the average morning temperature of the
turfgrass. During the period of study, ∆Ts varied from 5.1 to 21.6 ◦C. Ponded water was
linked to the smallest changes in temperature, while dry soils had the largest changes.

The golf course’s management regulations require mowing every three to six days,
depending on the stage of the growth season which keeps the grass between 3 and 10 mm
long. All turfgrass, such as the fairways, roughs, and tee boxes, was cut to the same
length. It was expected that the distribution and density of grass would be uniform for the
purposes of this investigation. Because of this supposition, mechanical resistance might
be modeled in relation to the soil’s surface temperature by using a constant attenuation
factor. The soil type was then assumed to be the primary driving factor for variations in
thermal inertia.

PrISMM soil moisture maps are displayed against measured VSWC (θTDR) in Figure 7
with wet zones in blue and dry zones in red. It can be concluded that the PrISMM keeps a
constant overall performance over the study area, considering the similar meteorological
conditions for each flying day. The system is also able to pick up the relative wet/dry spots
over the study area, such as the wet spots adjacent to the parking lot and the pond. This
is useful in identifying deficiencies in the irrigation system to prevent further under- and
over-watering.

The degree of the relationship between the observed and modeled values of VSWC
including the coefficient of correlation (r), coefficient of determination (R2), root mean
square error (RMSE), and mean absolute error (MAE) was assessed using goodness-of-fit
statistics, which are described in Table 6. In terms of R2 values, the best and the worst
performances occurred on 18 October (0.83) and 30 October (0.67), respectively. Across the
six events, the average R2 value was 0.79. On 29 October and 18 October, the minimum
(0.04) and maximum (0.06) RMSE values were determined, respectively. Across the six
dates, the average RMSE was 0.04. On 29 October and 18 October, the minimum (0.03) and
maximum (0.04) MAE values were found, respectively. For each of the six dates, the mean
MAE was 0.03. Figure 8 shows a scatter plot of the modeled versus observed VSWC values
for all six dates combined. All things considered, the findings show that the PrISMM model
can estimate VSWC fairly well. The performance of the model is covered in more detail
below, along with suggestions for practical use.
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Table 6. Statistical summary of PrISMM model performance for six events.

Date # of TDR Measurements r R2 RMSE MAE

12 October 2017 194 0.8281 0.6858 0.0414 0.0331
17 October 2017 100 0.8856 0.7843 0.0522 0.0427
18 October 2017 116 0.9088 0.8260 0.0557 0.0416
25 October 2017 55 0.8924 0.7963 0.0536 0.0449
29 October 2017 518 0.8691 0.7553 0.0351 0.0261
30 October 2017 317 0.8174 0.6681 0.0357 0.0267

Total 1300 0.8863 0.7855 0.0408 0.0308
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Figure 8. Modeled versus observed VSWC for combined events (Red line indicates the linear
regression line).

4. Discussion

First, the scatter plots of the modeled versus observed VSWC values for each flying
day are provided in Figure 9. By changing the sampling method for TDR measurements
after the first dataset, the coefficient of the results of modeled versus observed VSWC
increased in the subsequent datasets. The scatters are evenly distributed along the one-to-
one regression line. Table 7 shows the goodness-of-fit statistics separated by soil groups
for comparison. The highest R2 value was associated with sandy loam (0.86), followed by
silty clay loam (0.81), followed by loamy sand (0.77), and finally sand (0.57). An increased
variability in SM distribution as observed during TDR measurements could be the reason
behind the markedly reduced performance in predicting VSWC for sand. It should be noted
that site-specific soil analysis was not conducted on putting greens which accounts for
most of the sandy regions. The soil analysis is destructive in that it requires core extraction,
and out of respect for the golf course, the putting greens were not disturbed. The literature
was used instead to estimate the physical and thermal properties of the sand associated
with the putting greens. The authors, however, hypothesize that the accuracy of VSWC
estimation could be increased by performing this soil analysis for the sands.
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Figure 9. Observed versus modeled VSWC values for six events (Red line indicates the linear
regression line).
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Table 7. Statistics of observed versus modeled VSWC based on soil type.

Date # of TDR Measurements r R2 RMSE

Sand 122 0.7564 0.5721 0.0447
Loamy Sand 841 0.8782 0.7712 0.0415
Sandy Loam 15 0.8639 0.7463 0.0555

Silty Clay Loam 322 0.8973 0.8052 0.0361

An additional concern for the ground truthing dataset with implications on accuracy
stems from differences in sampling depths. For TDR measurements, the sampling depth
corresponds to 7.6 cm when fully inserted into the soil. It has been demonstrated that the
penetration depth for visible and near-infrared (VIS-NIR) light rarely exceeds 1 mm from
the surface as it relates to most soils [41]. Input parameters for the PrISMM model affected
by VIS-NIR include surface emissivity, ground heat flux, and NDVI. Future studies will
consider how these parameters are affected by various sampling depths. However, thermal
infrared radiation, detected using remote sensors similar to those used in this study, have
demonstrated a strong correlation between remotely sensed surface soil temperatures (SSTs)
and subsoil temperatures of 10 cm depth or more [61]. The authors are thus motivated
to relate the moisture content of soils at varying depths to evaluate the effectiveness of
PrISMM under various conditions.

Figure 10 displays the scatter plots of the modeled versus observed VSWC for all six
events (the residuals’ histograms are included in the Supplementary Materials). There are
no discernible systematic errors in the combined residuals, which are centered around the
origin. When the observed VSWC (m3 m−3) value is more than 0.17, the residuals for the
combined events follow a normal distribution; when the observed value is less than 0.17,
the PrISMM model tends to overstate the VSWC value.
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Computation of the ground heat flux (G) is a key component to the PrISMM method-
ology. Many empirical relations have been formulated for estimating G for vegetated
surfaces. A review of the literature suggests that user experience is critical for selecting
an equation. During this study, the authors compare the PrISMM results using various
equations including the SHAW equation based on diurnal patterns [62], those proposed
by Bastiaanssen [46], Allen et al. [47], Cuenca et al. [48], Singh et al. [49], and Santanello
and Friedl [50]. Reference daily G values were published by the Texas AgriLife Extension
Service for the study region. By comparing these, the authors found that the PrISMM
model produced the most reasonable estimates when using SHAW while the other methods
were found with discrepancies by an order of magnitude or greater without any calibration.
These differing results are not well understood and will be the subject of future study.
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Previous research has shown that calculating thermal inertia for low moisture concen-
trations can be challenging [28,37,38]. For example, Minacapilli et al. [28] showed more
scattered VSWC projections at or below 0.15 m3 m−3. This phenomenon is explained by
the link implied in Equations (6)–(9) between the volumetric soil water content (θ) and
soil thermal conductivity (λ). Lower moisture contents cause water molecules to bond to
soil particles more firmly; while θ rises in the dry domain, the water film on the particle
surface keeps growing, and λ rises much less rapidly [37]. The water creates a bridge
between soil particles as the film thickens, and λ starts to rise quickly. In this study, the
values of moisture content around 0.17–0.50 m3 m−3 are considered to have a linear λ(θ)
relationship. The λ(θ) relationship, however, tends to resemble an s-curve as the soil gets
closer to saturation because it depends more and more on the air that is replaced by water,
where θ increases along with a corresponding rise in thermal conductivity.

Table 8 presents a summary of residual statistics, including the total number of TDR
measurements for every collection event. Since both negative and non-negative values of
the mean residuals are around zero, there are no significant cases of model bias revealed
by the analysis. The lowest residual (m3 m−3) for all six events was −0.17, while the
largest residual (m3 m−3) was 0.17, both of which happened on October 18. The initial
theory suggested that the overall range of residuals would grow as the sample population
of TDR measurements rose, which would imply that on 29 October there should have
been a maximum spread of residuals from the 529 measurements. The dataset presented
here indicates, at least, no direct correlation between the number of TDR measurements
and model errors, implying that to validate the PrISMM model for the research region,
about 100 TDR measurements scattered or clustered (3 × 3 m) prove to be sufficient. This
is roughly equal to 1000 TDR measurements per square kilometer. It should be noted,
however, that the gridded sampling procedure on 12 October produced the second-lowest
R2 of 0.686. Future work will be devoted to optimizing sample patterns and systematic bias
to address this uncertainty.

Table 8. Summary statistics for model residuals.

Date Total TDR Samples Min Max Range Mean Median Std. Dev.

12 October 2017 194 −0.0891 0.1082 0.1973 −0.0019 0.2835 0.0415
17 October 2017 100 −0.0976 0.1225 0.2201 0.0239 0.0255 0.0467
18 October 2017 116 −0.166 0.1741 0.3401 0.0203 0.0188 0.0521
25 October 2017 55 0.1371 0.0847 0.2218 −0.0147 −0.0250 0.0520
29 October 2017 518 −0.0956 0.1391 0.2347 0.0101 0.0075 0.0337
30 October 2017 317 −0.0936 0.1042 0.1978 0.0117 0.0078 0.0338

Total 1300 −0.1660 0.1741 0.3401 0.0097 0.0075 0.0397

The average θrs (%) values for each irrigation management zone are depicted in bar
charts by date in Figure 11. For zones in which irrigation is conducted within the previous
12 h, the bars are marked as either irrigated by sprinkler head or watered by hand (hand
watering is usually performed during daylight hours by visually identifying dry areas).
Due to the high infiltration rates of the greens and tee boxes (sand + organics) and higher
standards for playability and vigor, the frequency of irrigation is significantly higher than
for other surfaces. One observable response includes the slight decrease in VWC (%) of the
greens from 29–30 October where VWC remains relatively constant for the other surfaces.
This is likely due to the lower intensity and precision (hence less water) of hand watering.
For all four playing surfaces, VWC increases from 17–18 October which is consistent with
the irrigation pattern. Tee boxes are slightly higher in moisture content than greens despite
the green’s more frequent irrigation. This is likely due to the smaller sand fraction in
the tee boxes which is by design. The roughs are also slightly higher in VWC than the
fairways of which both surfaces are irrigated simultaneously. This is likely due to the
tendency of ponded water to collect in the roughs. It is expected that as the number of
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consecutive data sets increase, and with more irrigation variability, stronger correlations
between the response of θrs to rainfall and irrigation patterns will emerge. The difficulty in
determining θ (m3 m−3) for extreme values is not thought to be relevant in terms of the
PrISMM model operability. The criteria for θrs ≤ 0.17 and θrs > 0.50 are properly detected by
the PrISMM model, which classifies these pixels as too dry or wet, respectively. Decisions
about precision irrigation management are made for the θrs domain within 20% of field
capacity, or between 0.17 and 0.54 (m3 m−3), as will be covered subsequently.
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The irrigation of turfgrass is designed to maintain the plant-available water level,
which is the difference between field capacity and permanent wilting point, at or above 50%
for the longest duration with minimal loss from runoff or drainage. Irrigation management
zones’ delineation by soil texture and rooting depth must be performed for the PrISMM
model to drive a time-based irrigation system. The percentage of plant-available water
(in/ft) at the time of the afternoon flight is determined from VSWC maps. The plant-
available water is related to daily evapotranspiration rates by introducing the carrying
capacity of the soil, defined as the time required by the turf to deplete 50% of the plant-
available water, using the following equation [63]:

carrying capacity (days) =
available water

(
in
f t

)
× rooting depth ( f t)

evapotranspiration
(

in
day

) (19)
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As previously stated, thresholds for θrs ≤ 0.17 are reliably detected by the PrISMM
model. After these pixels are marked, irrigation is planned for a complete time interval
every day until the values drop to within 20% of the field’s capacity. Similar to this, the
PrISMM model flags pixels for θrs ≥ 0.50, which are not scheduled for irrigation again until
the values return back within 20% of the field capacity. Values are converted to percent
plant-accessible water in accordance with the matching soil texture for values that are less
than 20% of the field capacity. The carrying capacity is calculated using the rooting depth
(6.6 cm) and the daily evapotranspiration rate (TexasET Network). The irrigation is then
scheduled so that it replenishes plant-accessible water to a level that will ensure that until
the next irrigation and/or rainfall event, it does not go below 50%.

The implications of PrISMM model results in relation to water usage management
suggest that the development of spatially distributed irrigation systems based on VSWC
will help guard against chronic under- and over-watering using threshold values as decision
variables. PrISMM, while shown to be reasonably accurate within the context of this study,
may lack the precision required by some water users. Because PrISMM is limited to, at
best, daily estimates of VWSC, the application of the system requires accurate weather
forecasting and evapotranspiration rates for planning purposes. In parts of the world
where high-quality weather products are limited, daily VWSC estimates may be insufficient
for precision irrigation.

The PrISMM model prevails over traditional methods for irrigation water management
decisions due to the following reasons:

• It gives timely, accurate, spatially distributed soil moisture estimates;
• It has a wide range of operating conditions with easy and flexible use;
• It is a model with a clear physics meaning;
• By detecting chronic wet and dry spots, it can identify deficiencies in the irrigation

system;
• It provides continuous, high-resolution estimates which are simply impossible to

obtain using in situ sensors;
• The density and continuity of data are superior, which covers around 0.1 km2 in

30 min compared to 1.5 h for 100 TDR measurements in the same area;
• It allows for the operation of independent sprinkler heads with specified durations

and frequencies.

Among numerous advantages, one of the advantages of PrISMM is that it exploits
empirical relationships with clear physical meanings as opposed to machine learning.
Ge et al. [64] utilized UAV-based hyperspectral imagery for farmland using an extreme
gradient boost algorithm which provided an R2 of 0.921. Bertalan et al. [65] applied four
machine learning regression algorithms to UAV-based thermal and multispectral imagery
to estimate soil water content (SWC). They found that a Random Forest algorithm provided
the best results (R2 = 0.97) and that multispectral imagery was a better predictor variable
than thermal imagery. Their models indicated that the relationship between SWC and
thermal data was best described by an exponential decay function which proved difficult to
ingest into the machine learning algorithms with linear variables. They point out that SWC
is dependent on physical soil properties such as thermal conductivity, diffusivity, and heat
capacity. Araya et al. [66] have demonstrated the utility of machine learning models for
soil moisture estimation using UAVs and high-resolution multispectral imagery that does
not require a detailed soil or subsoil survey and analysis. The authors utilized predictor
variables including rainfall, potential evapotranspiration, multispectral reflectance, and
terrain variables derived from a digital elevation model (DEM) to estimate volumetric water
content (VWC) for a small grassland catchment in Grassland Reserve, California. Using
five different machine learning algorithms, they determined that a boosted regression tree
algorithm provided the best accuracy with a MAE of 3.8% of VWC. They indicate that the
four most important variables are precipitation, reflectance in the red band, evapotranspi-
ration, and topographic position index (TPI). Here, the findings are similar to PrISMM in
that their negative TPI values correspond to topographic low points such as valleys, which
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tend to have higher VWC, and positive TPI values correspond to topographic high points
such as ridges, which have lower VWC.

One weakness of the model is that heterogeneity or thermographic anomalies in
subsoils cannot be accounted for using the current methodology. As others have shown,
thermal energy in the form of longwave radiation can extend to different depths and several
layers below the surface. Temperature disparities can occur in accordance with the physical
characteristics of the vertical strata. For instance, groundwater or underlying rock may
increase thermal inertia beyond what may be indicated through site-specific soil analysis of
the uppermost layer, introducing errors into thermal inertia retrieval. One of the potential
solutions is to couple it with the surface–subsurface interaction to properly address certain
levels of uncertainties [67]. The performance of PrISMM in cloudy or overcast conditions
is currently unknown. Since the surface energy balance model assumes a cloudless sky,
the model performance will be evaluated in a wider range of atmospheric conditions by
installing a four-component net radiometer on site. The performance of the PrISMM model
can also be affected during winter when days are shorter, and the effective root zone is
deeper. Though it is not critical to irrigation management, further investigation on the
impact of frost and the dormancy of grass in the system is required.

Another uncertainty on how PrISMM may perform in other urban environments
stems from the vegetation cover. In this study, frequent mowing schedules limited the
length of the grass to 3–10 mm. The authors theorized that the presence of grass creates
mechanical resistance in relation to the soil’s surface temperature and may be modeled
using a constant attenuation factor. For this study, the authors assumed that soil type
was the primary driving factor for variations in thermal inertia; however, as the height or
density of vegetation increases, the temperature of the vegetation will dominate and the
established relationship between thermal inertia and SM will collapse. Additionally, while a
good correlation (R2 < 0.90) is found between period measurements and VSWC, the authors
acknowledge the need of including more samples to achieve a better statistical significance.
A future study is needed to involve additional soil samples, different vegetation types, and
growing seasons.

The primary limitation of the PrISMM method is the need for high-resolution and
rigorously calibrated remote sensing data. In this study, a UAS platform was used to collect
the data which requires basic operator skills, special certifications, and an observance
of airspace restrictions. The remote sensing datasets are typically quite large and can
be computationally expensive. Pre-processing for initial calibration and validation is
intensive and may be a significant barrier for many urban water users. Additionally, soil
heterogeneity may render the PrISMM methodology impractical if there are many soil
classes present in the study area. The initial setup requires detailed site-specific analysis
in order to achieve high accuracy estimates for the entire modeling domain. PrISMM is
therefore better suited for irrigation applications with bare or sparsely vegetated soil and
homogenous layers, such as croplands.

Aside from the challenges encountered, there are a few ways to further improve
the capacities of PrISMM. First, ground heat flux, which is implicit in the solution of
thermal inertia, could be more directly measured by introducing a shortwave infrared
(SWIR) sensor to the UAV platform as opposed to methods introduced by Santanello and
Friedl [50]. Incorporating weather forecasts and evapotranspiration rates into PrISMM
could also enhance the applicability of the method by providing time-varied spatially
distributed irrigation maps. For the present, still, all findings indicate that the spatial and
temporal resolutions offered by PrISMM are better when compared to in situ methods and
may be implemented to precisely irrigate urban landscapes, thus providing the potential to
save millions of gallons of water annually if properly implemented.
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5. Conclusions

To determine how much watering an urban landscape needs, this study demonstrated
the use of the PrISMM method to assess soil moisture. In order to show the feasibility of
considering precision irrigation based on spatially distributed VSWC estimates as the main
decision variable, PrISMM was put into practice at the Arlington, Texas, golf course. The
primary elements of a thermal inertia approach to the calculation of VSWC are site-specific
soil analysis, surface energy balance modeling, and high-resolution, multispectral imaging
obtained with a UAV. The estimations of thermal inertia are obtained by relating ground
heat flux to the fluctuations in daily temperature that are recorded using a thermal camera.
Then, using estimations of thermal inertia that were remotely detected and based on actual
soil physical properties at an 8.6 cm resolution, VSWC retrieval was performed. TDR soil
moisture sensor ground truthing data were used to measure PrISMM’s accuracy. Good
model accuracy is indicated by the average best-of-fit statistics of the observed versus
modeled VSWC (r: 0.89, R2: 0.79, RMSE: 0.04, and MAE: 0.03). The PrISMM technique,
when coupled with weather forecasts and daily evapotranspiration rates, has been shown
to have a great deal of promise for supporting irrigation decision-making. It involves
predicting the frequency and length of irrigation requirements depending on the various
management zones of the vegetation species.
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