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Abstract: There have been considerable efforts in generating tree crown maps from satellite images.
However, tree localization in urban environments using satellite imagery remains a challenging
task. One of the difficulties in complex urban tree detection tasks lies in the segmentation of dense
tree crowns. Currently, methods based on semantic segmentation algorithms have made significant
progress. We propose to split the tree localization problem into two parts, dense clusters and single
trees, and combine the target detection method with a procedural generation method based on
planting rules for the complex urban tree detection task, which improves the accuracy of single
tree detection. Specifically, we propose a two-stage urban tree localization pipeline that leverages
deep learning and planting strategy algorithms along with region discrimination methods. This
approach ensures the precise localization of individual trees while also facilitating distribution
inference within dense tree canopies. Additionally, our method estimates the radius and height of
trees, which provides significant advantages for three-dimensional reconstruction tasks from remote
sensing images. We compare our results with other existing methods, achieving an 82.3% accuracy in
individual tree localization. This method can be seamlessly integrated with the three-dimensional
reconstruction of urban trees. We visualized the three-dimensional reconstruction of urban trees
generated by this method, which demonstrates the diversity of tree heights and provides a more
realistic solution for tree distribution generation.

Keywords: tree location; shape analysis; procedural generation; object detection

1. Introduction

As urban greenery, forest cities, and urban ecological civilization have gained increas-
ing attention, the number of trees in cities has been rising year by year. According to
statistics, globally, 186 million hectares of forests are designated for social services, and
since 2010, the area of forests designated for this purpose has been growing at a rate of
186,000 hectares per year [1]. This represents a continuous increase in the coverage and
diversity of urban trees, resulting in an increase in the complexity of urban tree manage-
ment. The detailed information on tree quantity and distribution will provide valuable
references for urban infrastructure safety, city planning, sustainable development, and
natural resource management [2–4]. Therefore, how to accurately count and manage these
trees will be the focus of future urban green development. For the recent development
of three-dimensional urban modeling and smart city management, the localization and
estimation of tree positions and radii are indispensable pieces of information. Consequently,
more and more efforts are being dedicated to the statistical analysis of urban trees.

Traditional methods still require on-site surveys, such as the U.S. Department of Agri-
culture’s i-Tree 6.1 software package. These methods have long update cycles and consume
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significant resources, exceeding the accuracy requirements and resource investment of three-
dimensional reconstruction tasks. Satellite images can achieve the rapid monitoring of forests
on a large scale and at low cost, but currently they are mainly used for large-scale low-precision
forest monitoring [5,6]. This method is inefficient for trees outside the forest and ignores the
diversity of individual trees, which often have variable heights and crown sizes [7,8].

With the increasing quality of remote sensing images, high-resolution optical images
have become more suitable for research. These high-resolution images have enabled the
use of deep learning methods. Martin Brandt et al. [9] have used semantic segmentation
methods to segment billions of trees and shrubs in the Sahelian savannah and Sub-Saharan
desert landscapes, indicating the feasibility of deep learning methods for the large-scale
detection of isolated trees. However, in urban environments, there are not only a large
number of isolated trees, but also a large number of enclosed forests and complex combina-
tions of tree planting. This has made past methods still focus on the segmentation of tree
crowns in remote sensing images. These methods can be roughly divided into two categories.
The first category of methods [10] uses semantic segmentation networks to obtain edge maps
of tree crowns and combines them with heat maps to distinguish different tree crowns. These
methods have high requirements on the gaps between tree crowns in remote sensing images
when generating edge maps, and they perform poorly when dealing with dense tree crowns.
The second category of methods [11,12] first obtains a tree crown coverage map of the input
image and then uses a generative algorithm to generate the distribution of trees for the covered
areas. These methods treat all tree crowns as a whole and generate the distribution of trees,
which can result in some isolated tree crowns being generated as multiple trees.

Through observation, we found that isolated trees account for a significant proportion
of urban tree distribution, especially in residential areas, where they account for up to 38%.
Therefore, to improve the detection accuracy of isolated trees, we used target detection
methods to detect them. We also divided urban trees into three units: clusters of trees,
individual trees, and low shrubs to adapt to the complexity of urban tree distribution.
To make the results closer to the real distribution, we also considered the impact of two
attributes on tree distribution. First is the urban area attribute. In previous methods [12],
this step required manual determination, and there were differences in the division of
different urban areas. We propose an automatic urban area division algorithm that divides
urban areas based on the species and area characteristics of ground objects. Second is the
crown size attribute. Previous methods [12] used a Poisson distribution for all forested
areas, resulting in a single crown size, which does not match the complex distribution
of tree combinations in urban environments. We referenced the design concept of [13],
and proposed an urban tree generation algorithm based on planting rules to make the
generated results closer to the real distribution. Like the method of Till et al. [11], we
used tree location to describe the distribution of trees. This method is not affected by the
fuzzy boundaries of tree crowns and provides seamless integration for subsequent 3D
reconstruction visualization due to its sparse representation.

The main contributions of this paper are as follows:

1. Incorporating object detection methods firstly and combining them with semantic
segmentation for tree localization tasks, dividing the detection targets into easily
detectable individual trees, shrub units, and challenging tree clusters, achieving the
highest accuracy in individual tree detection;

2. Developing a planting rule algorithm based on forest characteristics to more realisti-
cally represent the distribution of tree clusters;

3. Designing a city region partition algorithm that automatically divides the urban space
into four categories;

4. Estimating the positions, radii, heights, and other information of trees from satellite
images and utilizing this information in three-dimensional reconstruction to create
more realistic models of urban trees compared to previous methods.
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2. Materials

Related work includes traditional methods for obtaining tree information, the applica-
tion of deep learning in tree information retrieval, and the use of procedural generation for
tree distribution.

2.1. Traditional Methods for Obtaining Tree Information

In the past, field surveys were the primary means of obtaining tree information.
Crowther [14] used plot-based methods to estimate tree quantity globally, while Nowak [15]
employed field surveys to create urban tree canopy maps. However, these methods often
required a significant amount of manpower and were challenging to dynamically monitor
tree changes.

Edson [16], using Lidar technology, effectively obtained tree height, positioning, and
other information. Still, this approach’s high cost limited its widespread application. With
the improvement in optical image resolution, the focus of methods has gradually shifted.
Wang [17] used watershed segmentation algorithms to detect the edges of isolated trees for
obtaining tree crown information. Martins [18] proposed a superpixel-based method for
forest detection, while Culvenor [19] used spectral-based approaches to distinguish tree
crown centers and boundaries.

While traditional methods maintain accuracy in small-scale forest areas, they face
challenges in large-scale tree information retrieval. These challenges include the need
for generalization across diverse tree types, adaptability to complex environments, and
heavy reliance on manual efforts. As a result, there is an increasing interest in exploring
new approaches, particularly those based on deep learning techniques, to overcome these
limitations and improve the efficiency and effectiveness of tree information retrieval.

2.2. Application of Deep Learning in Tree Information Retrieval

Since the introduction of machine learning and deep learning, there has been a sig-
nificant amount of work applying these techniques to tree detection-related fields. Some
studies have utilized unmanned aerial vehicle (UAV) images for this purpose. For ex-
ample, Ghasemi et al. [20] used Support Vector Machines (SVMs) to detect and delineate
the canopies of declining trees, while Han et al. [21] proposed a framework algorithm
embedded in UAVs for tree counting from continuous aerial images. Onishi et al. [22]
applied CNN-based methods to classify trees in drone images and achieved good results.
Firoze et al. [23] proposed a novel forest instance segmentation scheme using continuous
image sequences from UAVs. However, UAV images are only suitable for small-scale
vegetation detection, and compared to aerial images, they require higher investment costs,
making them less applicable for large-scale urban vegetation detection.

In the field of aerial imagery, due to the presence of dense forest canopies, it is challeng-
ing to easily distinguish the boundaries of individual trees. Therefore, semantic segmenta-
tion is the most commonly used method for tree detection tasks. Martin Brandt et al. [9]
used a method based on Unet to perform tree detection over large-scale regions in West
Africa’s Sahel and Sahara areas, estimating the number of trees in that region. Guo et al. [24]
used the Deeplabv3 network and incorporated semi-supervised learning for generating
urban tree canopy maps across Brazil on a national scale. However, these methods can only
generate rough tree canopy coverage maps and cannot differentiate between different tree
crowns. Maximilian [10] proposed a new Unet-based method, where the network generates
tree crown edges and heatmaps, which are then combined to output different tree crown
regions, allowing for better distinction between trees. On the other hand, Liu et al. [25]
treated tree counting as a density regression task and introduced TreeCountNet, which
generates tree crown density maps from remote sensing images and uses them to obtain
the total number of trees within a specified region. Li et al. [26] used aerial images and
Lidar data to perform tree segmentation, counting, and height prediction at the national
scale, which differs from the task we are considering in this article, which focuses on single
optical remote sensing images.
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However, it is essential to note that object detection has rarely been applied in this
research direction. Using object detection to distinguish trees in remote sensing images
has often been considered impossible. Yang et al. [27] managed to achieve tree crown
delineation in small-scale areas within New York’s Central Park using a Mask-RCNN-
based method. Indeed, after the introduction of transformers in image processing, object
detection algorithms have made significant advancements in recent times. Subsequent
methods such as Swin Transformer [28] and DETR [29] have further developed excellent
object detection algorithms. Our TreeDetector is based on the DETR [29] method, and the
results show that current object detection algorithms can effectively distinguish the three
vegetation units defined in our study—individual trees, tree clusters, and shrubs.

2.3. Application of Procedural Generation in Tree Distribution

The deep learning methods mentioned earlier [9,24] mostly focused on tree crown
segmentation, without paying much attention to specific tree localization and more detailed
information, such as tree radius. These detailed pieces of information are crucial for
tree management and 3D reconstruction. Procedural generation has been used in urban
modeling for a long time [30–32], saving many tedious manual steps. However, very few
works [33] have addressed its application to tree distribution within urban environments.
Niese et al. [11] proposed a Procedural Planting Model (PPM) for urban vegetation layout.
With this model, users can generate vegetation distribution by defining various parameters.
They also made some simple attempts with deep learning methods. Building on this work,
Firoze [12] made several improvements and introduced a solution that combines deep
learning with procedural generation. They used a segmentation network to generate tree
crown coverage maps and trained a GAN network with procedurally generated synthetic
data to generate tree positions. This approach proved to be effective, but it requires
additional supporting information, and the general rules may not generate reasonable
tree distributions for each specific area. Moreover, it may lead to misclassifying larger
individual trees as multiple trees.

In urban modeling, land is often divided into different functional zones, such as urban
areas, suburbs, industrial zones, etc. Benes et al. [34] proposed “urban brush”, which defines
different urban styles to distinguish these regions. Similarly, when applying procedural
generation to tree distribution, the task of automatic region classification becomes crucial.
Firoze [12] addressed this issue by performing semantic segmentation and then using
clustering methods to separate different urban regions. However, this process still required
manual annotation for different areas. In practice, when information about buildings,
roads, and vegetation in an image is available, it is indeed possible to define region
classification for vegetation distribution. This is also one of the contributions of this paper—
achieving automatic region classification based on the vegetation distribution, leveraging
the information about buildings, roads, and vegetation in the image.

3. Methods

Our method consists of two stages (as shown in Figure 1). In the first stage, we use
two trained neural networks to extract vegetation information from the input images. In the
second stage, we employ procedural planting rules to obtain tree information, resulting in the
final output of tree localization, radius, height, and other relevant details from the image.
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Figure 1. The workflow diagram from input images to 3D modeling. In the first stage, the input
remote sensing images go through an object detection neural network to identify three types of
tree units. The tree clusters and low shrubs are then passed to the segmentation network to obtain
their respective segmentation images. In the second stage, we start by extracting features from the
segmentation images. Next, we apply region partitioning and planting rule algorithms to determine
the positions of the trees. Finally, after estimating the tree heights, the 3D modeling is performed.

3.1. Definition of Tree Units

Unlike other tree detection methods [10,12], our proposed approach does not directly
employ semantic segmentation for image processing. Instead, we initiate the process by
using an object detection network to identify target objects. Furthermore, in contrast to
some methods that directly detect individual trees [27], we adopt a novel approach for
object detection. Historically, the approach of using object detection methods for tree
detection mainly focused on isolated trees with regular distribution patterns, often in
simpler surrounding scenes, such as plantations or arid regions [35,36]. In such cases,
object detection networks can perform well in completing the task. However, in urban
areas, tree distribution is often complex, characterized by various combinations of tree
types. Additionally, remote sensing images captured during different seasons can exhibit
significant variations. In Figure 2C, even the human eye struggles to distinguish boundaries
between trees within dense clusters. This complexity makes annotating datasets using
object detection methods extremely challenging—even with accurate datasets, current
object detection algorithms struggle to differentiate trees within such highly complex
and low-contrast clusters. This is why most urban vegetation analysis methods [10,12]
avoid using object detection approaches. Our focus is on how to address complex tree
distribution in urban environments using smaller datasets, reducing the annotation burden
while effectively handling the challenges posed by intricate urban settings.

J. Blum proposed that humans shape tree communities based on preferences at various
spatial scales, whether in urban or residential areas. Each cluster of trees is often driven
by specific factors [37]. Therefore, our method differentiates between continuous tree
distribution clusters. We propose breaking down complex urban tree distributions into
three distinguishable tree units, individual trees, tree clusters, and low shrubs as shown
in the illustration below. With this approach, the object detection network can effectively
distinguish between different types of tree units in input images, significantly reducing
the required manual annotation effort. One major issue with using semantic segmenta-
tion networks in the past [10] was that, during the process of large-scale tree detection,
although accuracy in tree coverage was ensured, it often resulted in reduced accuracy
in identifying individual trees. This led to subsequent tree statistics having errors, such
as mistakenly identifying single trees as regions composed of multiple trees or missing
detections altogether. On the other hand, employing an object detection network that
targets tree units can significantly enhance the accuracy of locating individual trees. This
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aspect holds significant importance for tasks like three-dimensional reconstruction, which
aims to faithfully represent the urban vegetation landscape.

During our annotation process, we adhere to three key guidelines: (1) Aim to annotate
all tree regions, disregarding excessively small trees. The minimum crown radius consid-
ered for trees in our study is 1.5 m. That means any trees larger than this scale will be
included in our detection requirements. (2) Label complex tree clusters and densely spaced
trees that are difficult to differentiate with the naked eye as “tree clusters”. (3) Label low
and shrubby vegetation regions as “bushes”.

Our dataset is derived from the publicly available WHU Building Dataset by Wuhan
University. This dataset covers an area of 450 km2 in Christchurch, New Zealand, and
comprises over 9000 aerial images with a ground resolution of 0.3 m. These images are
segmented into 512 × 512-sized segments and also include manually annotated building
regions. In addition to tree annotations as mentioned earlier, we also annotated road areas.
The annotation of roads and building regions aids in segmenting the image areas. It is
important to note that current deep learning algorithms for image recognition of buildings
and roads are quite mature. Therefore, this paper does not extensively focus on these
aspects. In addition, when annotating, we choose not to count shadows, focusing instead
on the bright crown part to avoid larger errors caused by the calculation of shadows. We
annotated a total of 183 remote sensing images using Labelme and expanded them to
732 images using data augmentation. In Figure 2, we illustrate different annotation data.

Figure 2. Different annotation data. In (A), we show the annotation of residential areas. This image
contains three types of tree units and includes roads and buildings. Part (B) primarily features
densely arranged tree clusters and does not include roads or buildings. In (C), there are large clusters
of dense forests, and we consider them as a whole.

3.2. Deep Learning Network Treedetector

In Figure 3, we demonstrate how we employ neural networks to detect features in remote
sensing images. Our approach involves utilizing an object detection network to approximate
the general locations of all trees. Subsequently, a semantic segmentation network is applied to
obtain detailed areas. This section will delve into the specifics of these networks.
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Figure 3. Obtaining tree units using neural networks. In this diagram, the input remote sensing image
first passes through an object detection neural network. After obtaining the objects and classifying
them, we extract these objects and feed them into a semantic segmentation network. Finally, we
obtain a canopy coverage map for the tree clusters.

3.2.1. Detection Network

Our approach differs from most of the previous works in the field. We use an object
detection network as the first step in our experiments, which is a less common approach.
Yang, for instance, employed Mask R-CNN to detect trees in a small area of New York
Park [27]. Object detection has consistently been a focal point in computer vision, with a
myriad of CNN-based algorithms emerging [38], especially in recent years, as the main-
stream approach for object detection in remote sensing images. However, in the context
of remote sensing image object detection, grasping the global context becomes more cru-
cial. Establishing correlations among features within massive information aids in target
detection. In our task, the goal is to detect all trees and classify them into three vegetation
units. Distinguishing between individual trees and tree clusters, in particular, presents a
challenge. Tree crown shapes vary from a vertical perspective, colors lack distinctiveness,
and various interferences are present. These complexities pose challenges in tree recogni-
tion. Additionally, compared to other tasks, the boundary between individual trees and
tree clusters can be quite blurry. In such cases, leveraging global information is vital. The
surroundings, including buildings, roads, and connections between different vegetation
units, play a significant role in distinguishing the two.

The introduction of Detection Transformer (DETR) [29] has provided a compelling
solution to this problem. Transformers [39] were initially applied in the NLP field but have
gradually revealed their potential in computer vision over recent years. DETR [29] treats
the detection task as a process of transforming an image sequence into a set sequence.

However, DETR [29] has certain drawbacks, such as slow convergence speed and poor
performance in detecting small objects. To address these issues, we adopted an approach
based on the improved deformable DETR [40]. Compared to the original DETR [29], the
major modification in this approach involves replacing the self-attention and cross-attention
modules with multi-scale deformable attention. Additionally, the introduction of reference
points allows the model to capture smaller trees and focus on tree clusters in the same region.

The formula for deformable attention is as follows. In the formula, zq represents the
query, x represents the input features, M indicates the number of heads, k is the index
of the key, and W

′
m is the transformation matrix used to convert the input features into

values. Therefore, W
′
mxk represents the value corresponding to the key. Amqk denotes the

attention weight between the query and key in the m-th head, pq represents the reference
point, and ∆pmqk represents the offset relative to the current reference point. The latter
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part of the formula represents the weighted result under the current head. Wm is a linear
transformation that combines the results from different heads. In this setup, the query no
longer needs to be calculated with all the keys; instead, it is computed with K sampled
points relative to the reference point. It is important to note that the positions of these
sampled points are also learnable. As a result, this approach significantly reduces the
computational load while focusing on local information:

De f ormAttn
(
zq, pq, x

)
=

M

∑
m=1

Wm

[
K

∑
k=1

Amqk · W
′
mx

(
pq + ∆pmqk

)]
(1)

In this study, the backbone utilizes a pre-trained ResNet50 [41] to extract features. The
loss function consists of two components: classification loss and bounding box loss.

L = Lclass + Lbbox (2)

In the classification loss, we employ the focal loss [42], formulated as follows. Here,
λclass is a loss hyperparameter, pt represents the similarity to the ground truth, and γ
is a modulation factor. The inclusion of the term (1 − pt )

γ focuses the model more
on challenging samples, which tends to work better on imbalanced datasets. In our
experiments, since the dataset for low shrubs is limited, using focal loss aids in learning
this category of data:

Lclass = − λclass(1 − pt )
γlog(pt) (3)

The bounding box loss consists of two components: L1 loss and GIoU loss. Here, λiou
and λL1 are loss hyperparameters, where bi represents the ground truth bounding box, and
b̂σ(i) represents the predicted result matched to the i-th element of the ground truth using
the Hungarian algorithm:

Lbbox = λiouLiou

(
bi, b̂σ(i)

)
+ λL1

∣∣∣∣∣∣bi − b̂σ(i)

∣∣∣∣∣∣
1

(4)

In our experiments, we set λclass to 2, λiou to 2, and λL1 to 5. To the best of our knowl-
edge, we are the first to apply the DETR model [29] to tree detection. In our subsequent
experiments, we compared our method with commonly used algorithms from previous
works, and our method consistently achieved promising results.

In addition, we propose to add Non-Maximum Suppression (NMS) to the deformable
DETR. Transformer-based methods generally do not use NMS, but for the complex in-
teractions between trees and clusters in our task, the detection network may produce
duplicate predictions for the same target. Using NMS can mitigate this type of error. To
our knowledge, we are the first to apply DETR to urban tree detection. We compare our
method with other common object detection algorithms in subsequent experiments, and
our method achieves good results in all cases.

3.2.2. Segmentation Network

Before entering the segmentation network, we apply Non-Maximum Suppression
(NMS) [43] to the detection results. Since there can be overlaps between individual trees
and tree clusters, using the raw output from DETR might lead to significant errors. The
specific details of how we set up NMS will be provided in the experimental section.

For the tree clusters and low shrub vegetation units, we employ a binary classification
network based on Unet3+ [44]. Unet3+ [44] is an enhanced version of the commonly
used segmentation network Unet [45] in remote sensing image processing. Its full-scale
skip connections and deep supervision allow it to achieve better performance. Since the
input image patches vary in size and can contain interferences, such as shadows, obstacles,
and lighting variations, we need to preprocess the segmentation images to enhance the
robustness of model training. Firstly, we normalize the input patches to a uniform size
of 128 × 128. Then, we apply data augmentation, including adjustments to brightness,
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noise addition, saturation changes, and more. The impact of various parameters in data
augmentation is detailed in the experimental section. For the loss function, we use the
common cross-entropy loss.

3.3. Procedural Tree Distribution Localization

Through the object detection network, we obtain three categories of vegetation units:
solitary trees, tree clusters, and low shrubs. While the localization information for solitary
trees is relatively straightforward to acquire, low shrubs consist of dense shrubbery and
herbaceous plants. In this context, the focus of our method’s second phase is on how to
programmatically locate the distribution of trees within forested areas that are challenging
to delineate clearly.

3.3.1. Feature Extraction

In urban environments, forested areas may not exhibit the regular patterns seen in
planted forests, yet they are not as chaotic as completely natural forests. Most forested
areas have some underlying planting patterns. Previous works often generated only the
position information of trees and assumed uniform attributes for each tree [12]. However,
the attributes of trees in an area, such as crown size and height, vary significantly. Therefore,
considering only the position information of trees can lead to biased predictions of tree
distribution within an area. For instance, rows of street trees planted alongside roads or
the scattered arrangement of trees in residential areas possess distinctive characteristics.
Our method captures and summarizes these features, which will aid us in the subsequent
phase of generating planting rules for accurately locating these trees.

For individual trees, we calculate their crown radius using their bounding box. The
longer side of the bounding box is defined as the width, and the shorter side as the height.
We also use an identifier m to indicate whether the longer side is oriented downwards (by
default, the longer side is assumed to be at the bottom). The attributes of an individual
tree can be defined using the following tuple, where it is the tree’s identification ID, and o
represents the center point:

t = < it, o, w, h, m > (5)

For tree clusters, in order to extract features, we first expand the regions in the image.
Then, we perform morphological opening to remove small noisy areas. Subsequently, Gaus-
sian blur is applied for denoising, followed by edge smoothing and binary thresholding.
From the processed binary image, we extract edge contours and calculate the areas of the
polygons formed by these contours, removing polygons with very small areas.

When describing the polygons of tree clusters, we introduce two novel feature metrics.
The first one is the perimeter–area ratio, where a larger value indicates a more elongated
polygon, while a smaller value represents a fuller shape. The second metric is the aspect
ratio of the minimum bounding rectangle, which indicates the overall length-to-width
ratio. Combining these two metrics provides a better description of the characteristics of
tree cluster polygons. As shown in the Figure 4, when the perimeter–area ratio is large
and the bounding rectangle aspect ratio is also large, the tree cluster polygons tend to be
elongated. On the other hand, when the perimeter–area ratio is large but the bounding
rectangle aspect ratio is small, the polygons might have many twists and voids.
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Figure 4. Tree cluster diagrams with different features. The tree clusters (blue areas) in the left and
right images have a similar perimeter-to-area ratio, but their different aspect ratios result in distinct
shapes and sizes. Therefore, it is necessary to use two different feature metrics to evaluate them.

A cluster of trees is defined using the following tuple: i f represents the cluster’s
identification ID, d indicates the offset of the cluster slice relative to the original image, a
represents the area of the cluster polygon, p represents the perimeter–area ratio, r represents
the bounding rectangle’s aspect ratio, and v denotes the set of polygon boundary points:

f = < i f , d, a, p, r, v > (6)

For the low shrubs, our main focus is on their boundary point set and the size of the
region. The tuple representing them is defined as shown in the following formula:

b = < ib, d, a, c > (7)

Once the feature information is obtained, we store it in a JSON file. This serves both to
facilitate subsequent computations and to aid in the export and application of the final results.
The feature parameters are shown in Table 1.

Table 1. Table of feature representation parameters.

Tree Forest/Bush

Symbol Meaning Symbol Meaning

i identifier d canopy offset
o center point a canopy area
w canopy width p perimeter-area ratio
h canopy height r aspect ratio
m translocation identifier v canopy contour

3.3.2. Region Partition

Bourne proposed that tree diversity, abundance, and species characteristics may
vary according to land use types [46]. Therefore, before determining the strategy for
locating vegetation, we first partition the land areas within the input images. We identify
four different urban environments: agricultural areas, grasslands, industrial areas, and
residential areas. As shown in the figure, distinct discriminative features characterize
different regions. We establish four reference indicators: building area proportion, road area
proportion, vegetation area proportion, and the number of isolated trees for characterization.
When conducting the region partitioning, we employ an optimal matching strategy to
assign each input image to the region that best fits its features. Specifically, we initially set
thresholds for the four feature indicators to define typical criteria for each region. Under
these criteria, we can effectively evaluate the most likely region for the current area. Table 2
presents our threshold settings, which were determined through sampling and active
observation methods. It is important to note that these thresholds can be adjusted as urban
environments change. Our algorithm is as follows:
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area = argmax[ S(L, L<F,G,I,R>) ] (8)

Here, L represents the feature list of the input image, and L<F,G,I,R> represents the
typical standard feature list for the four regions. S denotes the scoring function that
measures the similarity between the two sets of features. We choose the region with the
highest similarity score as the final partitioned urban area.

Table 2. Table of feature thresholds for different regions.

Hyperparameter Pbuilding Proad Pf orest Ntree

L<F> <20 <30 >20 <15
L<G> <20 <30 <15 <15
L<I> >50 >40 <10 <10
L<R> >50 >30 >15 >20

Here, L<F> represents the features for Farmland, L<G> represents the features for
Grassland, L<I> represents the features for Industrial area, and L<R> represents the fea-
tures for Residential area. The units for Pbuilding, Proad, and Pf orest are ‰ (per mille).

3.3.3. Planting Rules

In previous studies, the distribution of trees in difficult-to-recognize tree clusters has
often been determined using Poisson distributions and density regression [12]. While
this approach has shown some success in tree localization, it comes with two drawbacks.
Firstly, each tree is abstracted into a point, only considering its positional information,
while neglecting crucial tree crown information. In reality, the size of tree crowns varies
significantly between different trees and can heavily influence the spatial relationships
between trees. Moreover, the canopy closure of a forest is also influenced by tree crown
sizes. Solely considering positional information might result in gaps in the canopy. On the
other hand, the tree distribution is not entirely random, especially in urban environments.
It often follows certain general rules in terms of overall arrangement. For example, tree
clusters in residential areas are rarely uniformly distributed; they tend to be a mix of larger
and smaller trees. In contrast, roadside trees are often planted in rows. Location-based
methods struggle to capture these nuanced tree arrangements, leading to unrealistic tree
distributions. In our work, we incorporate the tree radius as a reference and establish
common tree planting rules based on it. By doing so, we generate more realistic urban tree
distributions that account for these variations in tree sizes and arrangements.

Our tree-planting-rule algorithm consists of three steps: calculating the tree crown radius
baseline, matching planting rules, and determining tree distribution. The algorithm is as follows,

where
−
t represents the average tree crown radius, α denotes the current area, P represents the

planting rules, f is the tree cluster to be computed, and f ′ is the output set of trees:

f
′
= P

(
−
tα∩<F,G,I,R> , f

)
(9)

We start by establishing the baseline for the tree crown radius. We observe distinct
differences in tree crown radii across various regions. Additionally, we obtain the crown radii
of all individual trees through the previous feature extraction process. Therefore, in different

regions, we compute the average tree crown radius
−
T using these values as a reference.

Our planting rules were inspired by the book Planting Design [13], encompassing a total
of eight distinct planting arrangements. These arrangements cover both naturalistic and
structured configurations. The eight planting arrangements are clump planting, row planting,
open forest, scattered forest, belt planting, closed forest, nature planting 2layers, and mass
planting. The distribution patterns can be referred to in Figure 5. Clump planting and row
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planting are common tree distribution patterns, so we consider them to be present in all
regions. The other distribution patterns are specific to different regions.

Clump planting refers to a combination of one to ten trees with varying sizes, including
both large trees and shrubs. It forms a highly naturalistic plant landscape. We apply the clump
planting rule to those smaller clusters of trees with an area less than 2000 square units.

Row planting, belt planting, and nature planting 2layers are three types of strip
planting rules, each with its own distinct characteristics. Row planting involves arranging
trees of similar sizes in a single row to create a neat and uniform landscape. Belt planting,
on the other hand, consists of 2 to 3 layers of trees, including main species, secondary
species, or shrubs, with closely spaced trees. This type of planting can serve functions like
windbreak and soil conservation, commonly seen in agricultural fields. Nature planting
2layers is a more complex tree landscaping method, involving a diverse selection of trees
of varying sizes and heights, arranged in two layers to create a natural-looking planting
arrangement. This type of planting is often used in well-landscaped residential areas.
We differentiate these planting rules based on hyperparameters. Forests with values of
p > 0.05 and r > 4 are identified as row planting. For forests that do not meet these criteria,
those with p > 0.04 and r > 2.5 are assigned the remaining two rules in agricultural and
residential areas, respectively.

Open forest, closed forest, and scattered forest are three planting rules based on
tree density. In our approach, we assign these rules to grassland, agricultural areas, and
industrial areas, respectively.

Mass planting is a larger-scale tree arrangement compared to the clump planting.
Unlike clump planting, mass planting emphasizes overall aesthetics and can involve the
use of the same or multiple tree species for combination. We apply this diverse planting
rule to residential areas.

Figure 5. Illustrations of different planting rules. We utilized a total of eight different planting rules.
Under each rule, tree crown sizes vary. In the lower right corner of each planting rule, we show the
corresponding real-world tree distribution for different rules. In this representation, we use green for
larger crowns, red for medium-sized crowns, and yellow for smaller crowns. For further details, refer to
Section 3.3.3. Our approach under these rules exhibits a more realistic representation of tree clusters.

In the process of determining the planting rules for shrubs, we first confirm two
common tree arrangements: clump planting and row planting. If the arrangement does
not fall under these two categories, we proceed to determine whether it belongs to the
other two types of strip planting arrangements. After excluding these four options, we
then allocate the remaining planting rules based on different regions.

Finally, we determine the tree distribution within each vegetation cluster based on
the chosen planting rules. We start by defining the lattice side length based on the tree
crown radius baseline for the specific region where the vegetation cluster is located. This
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lattice side length is also influenced by the tree density coefficient associated with different
planting rules. We use this lattice to partition the vegetation cluster polygon and randomly
select points within the lattice cells’ central regions as the positions for the trees. If a selected
center point falls outside the vegetation cluster polygon or is too close to the polygon’s
edges, it is repositioned. Once the positions for each tree are determined, we calculate their
tree crown radii based on the region’s tree crown radius baseline. The radius calculation is
influenced by three main factors: a random fluctuation factor ξ for the tree crown radius, a
planting rule factor xp, and a boundary distance balance factor xd.

t = ξ ∗ xp ∗ xd ∗
−
t
α∩<F,G,I,R> (10)

The factor xp represents the radius coefficient for different planting rules. For instance,
under the mass planting rule, it could be chosen to represent a larger tree crown radius
coefficient for the dominant tree species, or in the case of clump planting, a smaller tree crown
radius coefficient for the complementary tree species. The factor xd is a radius coefficient
that penalizes tree crown radii based on the proximity of the tree center to the edges of the
vegetation cluster polygon. When the tree center is too close to the polygon’s edges, it leads
to a reduction in the tree crown radius. This adjustment aims to decrease the potential error
between the estimated tree distribution and the actual vegetation cluster configuration.

3.3.4. Height Estimation

Reconstructing tree height from a single optical image is a challenging task, which
is why few attempts have been made to estimate tree height in previous work [10,27].
However, since we obtained the crown radius of each tree in the previous step, we can
use this information as a basis for roughly estimating the tree height. We base our tree
height estimation on the equation proposed by Hiernaux in their work [47]. The formula
for height estimation is as follows:

H = α · CAβ + ξ (11)

where H represents the estimated tree height, α and β are equation parameters, CA stands
for the crown area, and ξ is an estimation error fluctuation value. We ultimately deter-
mined α to be 1.8317 and β to be 0.3936. After completing the height estimation for the
trees, we acquired all the necessary information for reconstructing the three-dimensional
urban tree landscape. This enables us to easily accomplish the task of tree modeling. Our
height estimation evaluates the plausibility of tree heights under different planting strate-
gies. Additionally, the 3D reconstruction visualization results demonstrate the diversity of
tree heights.

4. Results
4.1. Experimental Setup

Our object detection neural network is built upon the MMDetection framework, while
the semantic segmentation network is implemented using the Paddle framework. All
methods are implemented in Python 3.8, and the results are saved in JSON files. The
experiments were conducted on a machine equipped with a GeForce RTX 2070 SUPER GPU
manufactured by NVIDIA Corporation (Santa Clara, CA, USA). For the object detection
network, we employed the AdamW optimizer with a learning rate of 0.0002 and a weight
decay of 0.0001. The maximum number of epochs was set to 100.

The training of the object detection network and semantic segmentation network is
performed independently. The input for the object detection network is the annotated dataset,
while the input for the semantic segmentation network is the cropped dense forest and shrub
image patches from the annotated dataset. These image patches are resized to the same size
and subjected to data augmentation to enhance the robustness of the network. We adjusted
the brightness, saturation, flipping, contrast, clarity, noise, and occlusion, and refer to Figure 6
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for the impact on accuracy. We ultimately chose not to use cutout; the ranges of clarity and
contrast were set to 0.1, and the ranges of brightness and saturation were set to 0.2. The flipping
probability was set to 0.4, and the Gaussian noise value was set to 20.

Figure 6. Influence of different data augmentation methods on final loss. In this figure, we illustrate
the impact of different data augmentation methods on the final loss. Too little data augmentation can
result in insignificant effects, while excessive augmentation can deviate from real remote sensing images.
Hence, most of the floating values are set closer to the median value to achieve optimal results.

4.2. Comparison of Detection Results

As we introduced the separation of single trees and complex tree clusters as two distinct
objectives in the detection task, we chose to evaluate our method using popular object detection
algorithms like Faster R-CNN [38] and DETR [29]. Despite the strong performance of these
methods in common object detection tasks, they performed inadequately in our task due to
their unique nature. Hence, this comparison was necessary, and we proceeded to analyze the
reasons behind the poor performance. The aforementioned methods were all experimented
on our dataset, and the quantitative comparison results are presented in Table 3. We compared
the Average Precision and overall score for each category, as well as the time required for each
method to detect trees. The scores before using NMS are shown in parentheses.

In comparisons with different methods, our approach achieved the best results in all
the metrics. For the detection of low shrubs, where the training dataset was limited, the
results were comparable among the four methods. However, for trees and tree clusters,
using NMS led to a significant improvement in the results. In terms of detection time, our
method is second best, slower by 1 s compared to the best method. All methods completed
result generation within 20 to 30 s. This indicates that we can achieve optimal detection
results while quickly completing the detection task. Visual comparisons of the detection
results are shown in Figure 7.
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Table 3. Quantitative comparison of detection results. This table provides a quantitative com-
parison of detection results using different object detection neural networks. Bold indicates the
best-performing results. The values in parentheses indicate the results after applying Non-Maximum
Suppression (NMS). We compare the Average Precision (AP) for three different tree categories to
assess performance in different classes. Additionally, we compare the overall Average Precision (AP)
and Average Recall (AR). The last column is a comparison of the detection time.

Methods AP (Tree) AP (Forest) AP (Bush) AP (All) AR (All) Time (s)

FasterRCNN 0.485 0.506 0.271 0.540 0.622 23
MaskRCNN in [27] 0.481 0.520 0.245 0.532 0.620 29

DETR 0.481 0.544 0.219 0.539 0.631 24
Ours (deformable DETR) 0.509 (0.562) 0.565 (0.626) 0.272 0.569 0.689 24

Figure 7. Comparison of detection performance for different networks. In rows (A–C), you can see a
comparison of the detection results for different networks. The leftmost column shows the original
image, while the following columns display the detection results of various networks. Row (D) is an
enlarged view of the top left part of row (B), with highlighted bounding boxes to better visualize the
results. Our method reduces the issue of duplicate detections.

In the MaskRCNN and FasterRCNN methods, it is evident that when detecting large
continuous clusters of vegetation, they tend to identify the same cluster as multiple objects,
leading to errors. This phenomenon is challenging to reflect in the above score data. In
Figure 7D, the Faster-RCNN method detects three consecutive dense forests on the left side
(three yellow bounding boxes). This means that for one tree in that area, three trees will
be generated at adjacent positions, which is not the desired result. We hope to generate
only one tree for each tree. Our goal is to use a method that generates only one detection
result for continuous dense forests. As shown in Figure 7D, only our method detects
one result for continuous dense forests, while other methods detect overlapping multiple
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regions. Therefore, we believe that the Transformer-based method reduces the issue of
repeated detections. This issue primarily arises because both of these methods are based on
candidate regions (proposals). Before detecting the target, the model generates numerous
candidate regions in the image and then identifies objects within these regions. When
applied to vegetation cluster detection, it is understandable that regardless of whether a
candidate region contains the largest enclosing box of a vegetation cluster, it will still be
considered to be a region containing a cluster. This peculiarity arises due to the specific
nature of our task, where even a portion of a cluster can still be considered a cluster.
Figure 7D illustrates this point. We magnified the large vegetation cluster on the left
side of Figure 7B and highlighted the detection results for this cluster. It is evident that
MaskRCNN and FasterRCNN exhibit significant errors in this context. In contrast, the
transformer-based method does not rely on proposals, which greatly reduces the occurrence
of such repeated detections. DETR mainly encounters detection errors in localized regions
as seen in Figure 7A, where it mistakenly identifies the grassland as a low shrub cluster.
Our method performs well both globally and locally.

4.3. Single-Tree Detection

One of the significant features of our approach is that we distinguish individual trees
from indistinct tree clusters. In previous works [12], not making this distinction often
led to the misclassification of individual trees when using density-based methods. In our
approach, we emphasize the correctness of individual tree detection, which contributes
to a more realistic reconstruction of urban tree landscapes. Consequently, we introduce a
new metric termed “Individual Tree Detection Accuracy”. For each image, we count the
number of correctly predicted individual trees and compute both precision and recall, as
shown in Table 4.

Table 4. Table of accuracy in individual tree detection. Bold indicates the best-performing results.

Methods Acc [%] Recall [%]

FasterRCNN 80.7 89.7
MaskRCNN in [27] 75.2 82.8

DETR 49.4 85.0
Ours (deformable DETR) 82.3 90.5

Our method achieves an accuracy of 82.3% and a recall of 90.5% in individual tree
detection, outperforming all other methods. We observe that the lower precision compared
to recall is due to many trees within clusters being detected as individual trees. However,
this phenomenon does not significantly affect the overall tree reconstruction. We also notice
that DETR has particularly low precision, primarily because it often identifies the same tree
as multiple objects. The NMS step in our method helps alleviate this issue.

4.4. The Impact of Planting Rules

To quantify the impact of the planting rules we proposed on tree distribution and tree
height estimation, we introduced two metrics: a comparison between tree distributions
applying rules versus random distribution in different regions, and the mean and standard
deviation of tree heights under different rules.

In the first comparison, we set the control group’s tree distribution to use a random
distribution, which is also the method used in [12]. When determining the size of the tree
crown for the control group, we use the mean crown size of the region. We calculated the
area of each segmented tree polygon as a reference value and measured the ratio of the
sum of crown areas under the final tree distribution to the reference area. A ratio closer
to 1 indicates a better fit with the original image, less than 1 suggests gaps or missing tree
distribution, and greater than 1 suggests tree distribution with overflow or overlap. The
comparison results are shown in Table 5.
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Table 5. Comparison of planting rules vs. random distribution in different regions. Bold indicates the
best-performing results.

Methods Farmland Residential Grassland Industrial

Random 127.56% 116.78% 119.37% 82.36%
Ours 108.87% 91.70% 86.67% 77.24%

Our method achieved results closer to the ground truth in farmland, residential, and
grassland, while it performed slightly worse in industrial areas. We also observed that,
compared to random distribution, our method often generated smaller total canopy areas.
Apart from the two fixed planting rules (clump planting and row planting), the varying
planting rules we used in different regions contributed to these effects.

In farmland, we used belt planting and closed forest, which have higher tree density and
typically larger trees, leading to larger canopy areas. In residential areas, we applied nature
planting 2layers and clump planting since there are many small trees in residential areas.
Therefore, we used a more conservative canopy radius coefficient in our method, resulting in
smaller canopy areas. In grassland areas, we mainly used open forest, which has lower tree
density. In industrial areas, we primarily used scattered forest, which might be the reason for
the larger deviation between our distribution and the actual one. Furthermore, using ellipses
to approximate trees can also lead to gaps. In contrast to squares, which can be tightly packed
without leaving any spaces, ellipses are less compactly arranged, resulting in gaps between
them, especially when there is no overlap between the ellipses.

It should be noted that in [12], the number of trees is only related to the area and contour
of the region, which means that in the same region, regardless of the size of the tree crowns,
the number of trees is the same. However, in reality, if the size of the tree crowns in a region is
larger, there should be fewer trees compared to regions with smaller tree crowns. In this paper,
since we took into account urban areas and forest characteristics (see Sections 3.3.2 and 3.3.3
for details), and used planting rules, the distribution results are more diverse.

In the second metric, we calculated the mean and standard deviation of tree heights
under different rules. This demonstrates that our method generates trees with varying
heights, making our results more realistic compared to some previous works. The results
are shown in Table 6. Additionally, we calculated the standard deviations for all isolated
trees and the entire tree canopy as a reference. The standard deviation for isolated trees
is 3.298 m, while for the entire tree canopy, it is 1.156 m. The reason for this difference is
that in isolated trees, the canopy radii often vary significantly, leading to large differences
in tree heights. In tree canopies, there are often large clusters of the same tree species;
hence, we use a relatively conservative height estimation, resulting in less variation in
tree heights. Specific differences in height estimation for each rule are provided in Table 6.
The closed forest has the highest mean height, primarily because closed forests typically
consist of tall and large deciduous trees. The closed forest also has the smallest standard
deviation, resulting in a dense and uniform appearance from the outside. Similarly, row
planting has a small standard deviation due to our method making them appear as the
same tree type from the outside. On the other hand, we observed that clump planting has
the largest standard deviation in height. This is because clump planting areas are smaller
and may contain multiple tree species, leading to significant height variations among them.
Additionally, we found that the trees in the scattered forest rule tend to be shorter on
average. This might be due to the fact that the scattered forest areas, mainly in industrial
zones, have shorter trees. Through this metric, our method demonstrates the diversity of
tree heights and maintains realism under different planting rules.
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Table 6. Mean and standard deviation of tree heights under different rules.

Planting Rules Mean Standard Deviation

Clump planting 8.144 2.117
Row planting 8.224 0.990
Belt planting 8.185 1.050

Nature planting 2layers 7.881 1.453
Closed forest 8.677 0.859
Mass planting 7.567 1.017

Open forest 7.234 1.531
Scattered forest 6.875 1.623

4.5. Visualization Results

After obtaining the urban tree information, we saved it in JSON files. These data can be
easily accessed and used for urban three-dimensional reconstruction. We conducted three-
dimensional visualization reconstruction of the obtained results using SketchUp 2023. Even
newcomers without any modeling experience can easily achieve the three-dimensional
reconstruction of urban vegetation.

Figure 8 shows the reconstruction results for four different images. Our method
accurately reproduces the positions and sizes of isolated trees. For large tree clusters, our
method provides a simulation of tree distribution that closely resembles the original image.

Figure 8. The 3D reconstruction results for different images. In this figure, you can observe the 3D
reconstruction results for various images. (A(1)) and (A(3)) represent residential areas, while (A(2))
and (A(4)) correspond to farmland. (B(1))–(B(4)) show the respective 3D reconstruction results.

In Figure 9, we showcase the effects of various planting rules applied to the recon-
structed images. Apart from isolated trees, we applied rules like clump planting, row
planting, and nature planting 2layers to complex forest environments in the images.

In Figure 10, we display the rendered reconstruction results and close-up images.
Compared to previous tree generation methods, our approach, which leverages information
about tree positions, crown sizes, heights, and more, creates a more realistic representation
of urban trees. Additionally, our method offers a wider variety of tree combinations,
resulting in more natural urban tree modeling.
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Figure 9. Effects of different planting rules applied in 3D reconstruction. In this figure, we illustrate
the effects of different planting rules applied in 3D reconstruction. We utilized clump planting, row
planting, and natural planting 2layers for this demonstration.

Figure 10. Original images and rendered 3D reconstruction results. In this figure, we showcase the
original images and the rendered results of our 3D reconstruction. After rendering, our reconstruction
results effectively capture the tree environment from the original images. In the close-up view below,
you can observe the realistic arrangement of our trees.

5. Discussion

Our current method combines neural networks and procedural generation to provide
a superior solution for 3D reconstruction of trees from real images. By incorporating an
object detection network instead of solely relying on semantic segmentation, we achieve an
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accuracy of 82.3% for single tree detection. Additionally, we propose treating continuous
dense forests as individual tree units and using them as one of the classification targets in
object detection. This helps eliminate the ambiguity issues faced by [10], who labeled dense
forests as a group and ended up segmenting multiple tree crowns, leading to decreased
evaluation accuracy. Our single-tree detection accuracy surpasses their method’s 70.9%
accuracy because our approach avoids interference from dense forests. Compared to the
method proposed by Firoze et al. [12], our method does not require additional synthetic
data and avoids misclassifying large, isolated trees as multiple trees. Furthermore, our
method automatically segments the input image into different regions, eliminating the
need for manual segmentation. Additionally, when generating the tree distribution, our
method uses various planting rules, making our tree distribution more realistic.

Our method still has some limitations and areas for improvement. Firstly, although
we used the latest object detection network, deformable DETR [40], we did not make
significant architectural changes to adapt it to the task of tree detection in remote sensing
images. Therefore, there is room for improvement in detection performance in future work.
Additionally, since we use two neural networks, errors in detection can propagate and
lead to errors in semantic segmentation. While we mitigated such errors through data
preprocessing, there may still be some unavoidable mistakes. In future work, optimizing
the networks can help reduce these types of errors. Furthermore, in simulating trees in the
forest using planting rules, our method, like some previous works, has a limitation. When
splitting a forest into multiple trees to maintain separation between them, it can lead to gaps
in the overall forest. This becomes more apparent when we perform three-dimensional
reconstruction on remote sensing images. In future work, adjustments to the planting rules
will be needed to reduce the occurrence of these gaps. Additionally, we will incorporate the
consideration of tree shadows to improve our ability to make more accurate estimations
of the heights of taller trees. As this paper uses a dataset of single optical images without
ortho-correction, we will consider the impact of ortho-correction on single optical remote
sensing images in future work.

6. Conclusions

We propose an urban tree distribution generation method that combines target detec-
tion methods with procedural generation based on planting rules for the reconstruction of
complex urban trees. We propose breaking down the problem of tree localization into two
parts—individual trees and dense forests—and taking into account the impact of urban
regional attributes and crown size on tree distribution. First, we improve the accuracy of
individual tree detection by introducing target detection algorithms to handle the dominant
individual trees and combining semantic segmentation to process dense forests. Then, we
optimize the tree distribution results by designing a tree distribution generation algorithm
based on planting rules, making the generated results more similar to the real distribution.
Additionally, this method is insensitive to whether the crown boundaries are blurry. Finally,
our results can be directly used for the 3D reconstruction visualization of urban trees.
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