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Abstract: The lack of observational data in Taklamakan Desert makes it very difficult to study its
unique boundary layer structure. As a common means of supplementing observational data, the
mesoscale boundary layer parameterization scheme in the numerical model method is difficult to
capture small-scale turbulent processes, which may lead to large deviations in simulation. In order to
obtain more accurate simulation data of desert atmospheric boundary layer, nested LES into WRF
(WRF-LES) was configured to simulate the seasonal variations in Taklamakan Desert. By comparing
LES with the conventional boundary layer parameterization scheme, the error characteristics between
the two schemes are analyzed. The results show that LES exhibits superior performance in solving key
atmospheric features such as small-scale processes and low-level jet streams. The simulation results
in winter and summer have great uncertainty due to the boundary condition errors, respectively. LES
also shows the maximum and minimum optimization degree in summer and winter, respectively,
while the simulation results in spring and autumn are relatively stable. In the analysis of turbulence
parameters, there are clear seasonal differences in turbulence characteristics, and the intensity of
turbulence in summer is significantly higher than that in other seasons. When turbulent activity is
strong, the difference in potential temperature and horizontal wind speed simulated between the
two schemes is closely related to intense turbulent kinetic energy in LES. More accurate turbulence
reproduced in LES leads to the better potential temperature and horizontal wind speed simulations
in summer. In addition, large-scale cloud systems can lead to considerable simulation bias. Neither
scheme can accurately simulate the cloud emergence process, and large differences between the
two schemes occur at this point.

Keywords: large eddy simulation; Taklamakan Desert; planetary boundary layer; seasonal variations

1. Introduction

The Taklamakan Desert, one of the world’s largest shifting-sand deserts and an impor-
tant source of dust, is a pivotal component of the global climate system. Extremely high
near-surface temperatures and solar radiation, as well as unique geomorphologic features,
result in an extremely deep convective planetary boundary layer (PBL), one of the deepest
on Earth [1,2]. The effects of dynamic and thermal processes on the desert are transmitted
through the PBL to the free atmosphere, which leads to significant impacts on the regional
climate [1,3,4]. The evolution of PBL shows special patterns here and highly influenced the
development of dust and sand events in East Asia [5,6]. Thus, it is critical to understand
the PBL processes well in Taklamakan Desert.

Obtaining reliable meteorological data in deserts has always proven challenging due
to the extreme ambient conditions. PBL measurements typically rely on sparse radiosonde
observations or aircraft campaigns [7]. Researchers used data from meteorological sta-
tions around the desert or from short-term surveys to study climatic variability in the
desert [8–10]. However, these observations do not allow for long-term, continuous tracking
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of diurnal variations in the PBL, making a complete understanding of the evolution of the
desert PBL difficult.

As another means of studying the atmospheric processes, the developed numerical
weather prediction model is well suited to fill in the observation gaps, thus gradually
making it possible to obtain data on the PBL continuously, especially over the desert region.
In the numerical weather prediction model, a general PBL scheme, like YSU [11], and the
MYJ scheme [12], usually generally parameterize the sub-grid scale turbulence contribution
on the grid point. Simulation is able to accurately reflect mesoscale processes with a
kilometer-scale grid spacing. However, since the numerical prediction model with PBL
scheme is unable to directly compute turbulent processes of sub-grid scale, there can be bias
in its simulation of small-scale processes [2,13,14]. The parameterized approach may also
be subject to erroneous estimation in such geographic areas where detection information
is extremely scarce, due to its high dependence on empirical formulas. A more accurate
model-based parametric method is needed to complement and improve the simulation.

The inability of mesoscale models to resolve turbulent eddies makes large eddy simu-
lations (LESs) a popular tool for studying PBL turbulence [15,16]. LES explicitly resolves
energy-containing motions responsible for turbulent transport, while approximately down-
scaling to 10 m scales [17,18]. However, traditional LES utilizes idealized profiles or
periodic boundary conditions such as the study by Bryan et al. [19], which used LES to
study the effect of resolution on the evolution of deep convective systems. Additionally,
Kim and Park [20] studied the coherent structure of the near-surface layer in the strong
shear convective boundary layer through LES, which limits real-world applicability.

Nesting LES within mesoscale simulations, i.e., WRF-LES, alleviates some limita-
tions [21], delivering skillful PBL turbulence simulation [21,22]. Nevertheless, computa-
tional constraints have restricted LES studies to short timescales of hours to days. Applica-
tions have focused on specialized scenarios like wind energy prediction [23], convection
simulation [17], and boundary layer of hurricane [24]. Considering the lack of long-
term, continuous tracking of diurnal variations in the desert PBL, nesting LES within the
mesoscale numerical weather prediction model provides a possible way to capture the PBL
seasonal structure over the desert region.

In order to determine whether the LES can capture the structural characteristics of
the atmospheric boundary layer in the Taklamakan Desert during the four seasons of the
year, this study conducted 6 days of WRF-LES and WRF simulation experiments in each
season to compare the output results of the WES-LES and WRF models with sounding
observation data and the ECWMF reanalysis data (ERA5). The next section provides
information on the observations and the meteorological overview of selected simulation
periods and provides details of the model configuration. Section 3 provides a comparative
analysis of the simulation of the two schemes (PBL and LES) and analyzes the effect of
turbulence effects on the error between the two schemes in terms of the mechanism of
the LES. Section 4 provides a discussion of the issues identified in the study, and finally,
conclusions are provided in Section 5.

2. Materials and Methods
2.1. In-Site Observation and Reanalysis Data

To comprehensively evaluate the large eddy simulations of the desert boundary layer
during different seasons, we analyzed meteorological observations from August 2021
to August 2022 at the Minfeng County Station (WMO ID 51839, 37.07 ◦N, 82.69 ◦E) in
China’s Xinjiang Hotan region, and administered a string of counties based on the oases
along the southern edge of the Taklamakan Desert. Measurements included air pressure,
wind speed (WS), wind direction (WD), air temperature, dew point temperature (DPT),
relative humidity (RH), and cloud cover, which are collected hourly. Six days in each
season with clear sky, dry conditions, and moderate winds were selected to conduct
simulation experiments: autumn (20–26 October 2021), winter (4–10 January 2022), spring
(5–11 April 2022), and summer (2–8 July 2022). The in-site observation during the specific
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simulation periods is shown in Figure 1. The region is characterized by prevailing southerly
winds, with almost no northerly winds throughout the year, mostly from the south-west
and south-east. As can be seen from the figure, 10 m wind speeds are highest in the
summer (maximum wind speed of 5.89 ms−1) and lowest in the winter (mean wind speed
of 1.63 ms−1), while the spring and autumn seasons have similar wind speed characteristics
with mean wind speed of 2.13 ms−1. The distribution of 2 m air temperatures is similar
to that of 10 m wind speeds, with daily maximum mean temperatures approaching 40 ◦C
in summer, and daily minimum mean temperatures as low as −20 ◦C in winter. The two
humidity components of the region, relative humidity and water vapor pressure, are low
almost all year round (mean relative humidity of 34.78% and mean water vapor pressure of
5.69 hPa), with only a slight increase in the summer months, and the region receives almost
no precipitation throughout the year, due to the extreme dry conditions in desert region.
At 00:00 and 12:00 UTC, soundings are conducted to observe wind speed and direction, air
temperature, pressure, and relative humidity profiles every day. All observation data were
converted to the coordinated universal time (UTC) for consistency with the model output.
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Figure 1. Annual daily average ground observation data of (a) 10 m wind speed, (b) 10 m wind
direction, (c) 2 m air temperature, (d) 2 m dew point temperature, (e) 2 m relative humidity, (f) 2 m
water vapor pressure, and (g) cloud cover at the Minfeng Meteorological Station from August 2021
to August 2022. The dashed line separates the season: autumn (August–November 2021), winter
(November 2021–February 2022), spring (February–May 2022), and summer (May–August 2022), and
the red shaded area denotes the date periods of simulation at each season.

With high spatio-temporal resolution and global data assimilation, ERA5 meets the
analysis requirements and is widely used for model verification [25–27]. ERA5 reanalysis
data were used to evaluate model performance over continuous time periods [28].

2.2. Model Configurations

A large eddy simulation (LES) embedded in a nested WRF v4.5.1 model system was
implemented in this study with five nested domains. The outer three mesoscale domains
employed a conventional 1D PBL scheme to parameterize sub-grid turbulence, while the
inner two domains configured with LES, in which the turbulence contribution is computed
directly at high resolution. A key advantage of one-way nesting is avoiding LES interference
with the mesoscale solution. Based on tests over the Gurbantunggut Desert, the non-local
ACM2 PBL scheme [29] had the highest universality and was most suitable for the study of
meteorological elements in the PBL of deserts [10,30,31]; therefore, it was selected in our
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simulation experiment. The outermost horizontal grid spacing is 9 km, and the nesting
domain has a nesting ratio of 3:1. The first three domains are PBL domain and the inner
two domains are LES domain. In LES domain, the PBL scheme is turned off and SGS model
is used for parametric grid turbulence mixing, which means the outermost LES domain
(horizontal grid spacing of 333 m) is located in the “gray area” [32]. A recently developed
scale-aware 3D turbulence kinetic energy scheme was applied here for seamless gray zone
scaling [33]. The new scheme combines the horizontal and vertical sub-grid turbulent
mixing into a single energetically consistent framework, in contrast to the conventionally
separate treatment of the vertical and horizontal mixing. The new scheme is self-adaptive
to the grid-size change between the large eddy simulation (LES) and mesoscale limits
of WRF-LES can explicitly resolve the most energetic turbulent eddies, while WRF-PBL
with relatively coarse resolution and fully parameterized turbulence effects cannot capture
microscale variabilities driven by atmospheric dynamics. The sub-grid scale (SGS) stress
model of LES can provide a correct description of the energy-producing isotropic eddies
within the inertial subrange of 3D turbulence. Other physics options including the Dudhia
shortwave radiation [34], the rapid radiative transfer model (RRTM) longwave radiation
scheme [35], single-moment 6-Class (WSM6) microphysics scheme [36], Noah MP land
surface model [37], and revised MM5 surface scheme [38] are used in this study. Initial and
boundary conditions were prescribed from 3-hourly 0.25◦× 0.25◦ NCEP FNL analyses. The
16-category MODIS land cover data at 500 m resolution were implemented [39]. A total of
81 vertical levels were configured with 34 levels resolving the PBL. Further configuration
details are provided in Table 1. The simulated domain is situated in northwest China’s
Xinjiang region, and the nested grid configurations were shown in Figure 2. Notably,
extreme elevation changes occur near the southern Tian Shan Mountains. Care was taken
to position the third PBL domain boundary along this complex topography, preventing
the inner two high-resolution LES domains from spanning the mountains. The Minfeng
County station was centrally located within the innermost D05 domain to avoid lateral
boundary effects. Each season’s simulation is divided into three segments of 60 h each,
with the first 12 h of the simulation serving as the spin-up. For instance, for the autumn
simulation, the simulation period for each segment will be: 19 October 2021 at 12:00 UTC
to 22 October 2021 at 00:00 UTC, and 21 October 2021 at 12:00 UTC to 24 October 2021 at
00:00 UTC, 23 October 2021 at 12:00 UTC to 26 October 2021 at 00:00 UTC.

Table 1. All of the configuration information used in the WRF-LES model.

D01 D02 D03 D04 D05

Grids 119 × 119 120 × 120 138 × 138 150 × 150 213 × 213
∆x(m) 9000 3000 1000 333 111
Z_vert 81 81 81 81 81

Time_step 9 3 1 1/3 1/9
Bl_pbl ACM2 ACM2 ACM2 None None

SGS None None None SMS-3D-TKE SMS-3D-TKE
Microphysics WSM6 WSM6 WSM6 WSM6 WSM6

Ra_lw RRTM RRTM RRTM RRTM RRTM
Ra_sw Duhia Duhia Duhia Duhia Duhia

Cu_physics Kain-Fritsch None None None None
Surface layer Revised_MM5 Revised_MM5 Revised_MM5 Revised_MM5 Revised_MM5
Land surface Noah Noah Noah Noah Noah
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2.3. Turbulence Extracting Method

For the LES domain, there is no specific scheme to output the turbulent flow field.
Traditional filtering methods use spatial averaging to filter out turbulent fields, which may
cause information loss.

As an alternative, Li and Pu [40] implemented Gaussian filtering to treat the LES
instantaneous field instead of the ordinary domain averaging method and controlled the
filtering result by changing the standard deviation. Therefore, we use the 2D Gaussian
filter to smooth the simulation results and subtract the filtered results from the original
field to obtain turbulent fields. The equation for the Gaussian filter is defined as:

G(x, y) =
1

2πσ2 exp(− x2 + y2

2πσ2 ), (1)

where x and y are the grids in the x and y directions. To better compare with the results in
domain 3, the bandwidth, which indicates the filter region, was set at 10 × 10 for domain
5, with a Gaussian function standard deviation of 10. Only grids with a distance of less
than 1 km were considered to smooth the grid data. For variables such as u, v, w, t, and q,
the two-dimensional Gaussian filter was used for smoothing, and then the turbulence field
was produced by subtracting the smoothed field.

3. Results
3.1. Surface Meteorological Elements

Surface conditions profoundly influence PBL characteristics [41]. Inaccuracies in
simulated surface fields can propagate into PBL processes aloft. The in-site surface meteo-
rological observation was compared with the results of the WRF-LES output in this section.

To evaluate model performance, we compared 2 m air temperatures in innermost
mesoscale D03 (WRF with PBL scheme, refer to PBL domain thereafter) and innermost D05
(LES, refer to LES domain thereafter) against station observations (Figure 3). In simulations
across four seasons (autumn to summer), the determination coefficients (R2) for PBL and
LES schemes were 0.52, 0.82, 0.92, and 0.79, and 0.80, 0.84, 0.93, and 0.83, respectively. The
highest R2 value was observed in spring, while the lowest was in autumn. The largest
discrepancy between PBL and LES schemes occurred in autumn, with a difference of
up to 0.28. In contrast, the smallest difference was in spring, at only 0.01. These fitting
coefficients indicate that both the PBL and LES schemes are able to simulate the temperature
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variables accurately, while the larger R2 exhibited in the LES simulation indicates that the
LES scheme provides more accurate simulation results compared to the PBL scheme.
According to the distribution of the scatter, except for spring, simulations in all seasons
showed significant negative biases in the low-temperature range (bounded by the median
temperature), particularly in autumn.
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dashed line in the figure represents the standard straight line y = x, while the red and blue lines
represent the fitted lines in the LES and PBL domains, respectively.

In summer, besides the negative bias in the lower temperature range, there were
notable positive biases observed in other temperature ranges. The fitted straight line
is mostly below the standard line. At the same time, except for summer, the slope of
all fitted straight lines is less than 1, which suggests that the simulation results for the
other three seasons are dominated by negative bias. Of note, the R2 values for the LES
scheme vary in line with the value of the PBL scheme. Although the LES shows better
performance than the PBL scheme, the trend of the LES and PBL results indicates that the
LES performance remains strongly dependent on the mesoscale parent domain results.

We also assessed the simulated values of the 10 m wind speed for both schemes across
the four seasons. The simulation results and the mean bias of both schemes across the
four seasons are presented in Figure 4 and Table 2. The average 10 m wind speed from
observations for the four seasons was 1.90, 1.43, 2.10, and 2.13 ms−1, respectively. As can
be seen in Figure 4, the wind speed in winter is significantly lower than in other seasons.
The average wind speed is highest in summer, while the actual wind speed has a sudden
increase in spring and autumn during the simulation period, which causes the average
wind speed in these two seasons to be higher. Compared to the mesoscale simulation, the
LES domain demonstrated reduced biases in all seasons, with lowering errors by 14.2%,
30.8%, 17%, and 27.3% for autumn, winter, spring, and summer, respectively. The reason
for the lower optimization of the error in autumn is the larger error that occurs on the
last three days of the simulation in autumn. Excluding the effect of the last three days,
the reduction in error would be 18.1% (mean errors of 1.82 and 1.49 ms−1 for PBL and
LES, respectively). The causes of large errors in the last three days will be discussed in
Section 3.4.2. The performance of PBL and LES domains was comparable in spring and
autumn, while both of them exhibited the best and worst matches in winter and summer,
respectively. Talbot et al. [22] demonstrated the feasibility of LES nested within mesoscale
models, finding the LES domain sensitive to initial surface conditions and mesoscale forcing.
Accurate mesoscale simulations are therefore critical in WRF-LES simulation. Therefore,
the relatively high and low winds in PBL domain in summer and winter likely cause larger
mesoscale background errors and propagate into the LES domain. Additionally, the LES
scheme analyzes smaller scale turbulence, and the improved energy cascade delivered
more realistic surface wind estimates. In both PBL and LES schemes, simulated and
observed wind speeds showed good agreement over the first three seasons, accurately
capturing wind evolution with low bias. As shown in Figure 4c, the LES scheme initially
and ultimately performed well but significantly overestimated wind speed values in the
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middle of the simulation period in summer. It is noted that during the period of significant
overestimation in the LES scheme, the simulated values for the PBL scheme are also high,
though the LES scheme gives more reasonable estimates. The concomitant manifestations of
both suggest that errors from the mesoscale have a great influence on the simulation results
of LES. Compared to the mesoscale, the LES wind speed simulation consistently improved
but not enough to compensate for larger forcing biases in the summer mesoscale winds.
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Table 2. Mean bias (m/s) of simulated surface wind speed at 10 m in four seasons.

Autumn Winter Spring Summer

LES −1.69 −0.36 −1.46 −1.97
PBL −1.97 −0.52 −1.76 −2.71

3.2. Sounding Profiles

To explore the simulation error at each season, we compared the 6-day average profile
between observations and simulations, as shown in Figure 5. Since the ERA5 grid point is
close to the experimental point, the ERA5 profile data were also included in the comparison
(Figure 5). For potential temperature, significant discrepancies of the simulation of PBL
and LES domains only occurred in the evening in spring and summer, with maximum
mean biases between the two schemes being about 1.1 K and 1.8 K in these two seasons,
respectively. Profiles showed a super-adiabatic surface layer characteristic of convective
conditions only in the evening of these two seasons, as well. In contrast, the minimal
difference was between the simulation of LES and PBL domains in early morning in all
seasons and all day in autumn and winter. During this time, the vertical diffusion effect
mainly comes from the mesoscale and the turbulence is weak, while the gradient diffusion
scheme (i.e., ACM2) in PBL domain can capture the temperature variation well. Further
mechanism details will be discussed in Section 3.4. Above the PBL, the simulation of
PBL and LES domains performed similarly. For wind speed, the PBL domain consistently
overestimated jet stream height and intensity in all seasons. The jet stream occurred
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below 1 km in spring, summer, and autumn, and at around 1–2.5 km in winter. The
LES resolves the jet structure better in nearly all cases with an error of less than 3 ms−1.
Although the strong mesoscale influence causing LES overestimated the jet in spring and
summer evenings, the LES domain simulation remained closer to sounding data than that
in PBL simulation. Although missing fine-scale wind fluctuations, ERA5 profiles were
comparable or even superior to the LES simulation in some instances with an error of up to
2.54 ms−1 which is smaller than that in the LES simulation, demonstrating their suitability
for verifying wind speed and potential temperature simulations. Accordingly, ERA5 was
used in the following discussion to comprehensively evaluate the simulation of PBL and
LES domains.

The wind speed simulation values of the PBL and LES domains in the spring and
summer evenings have large errors with the observed values, especially in the lower levels
below 1 km. On the one hand, the similar behavior of the PBL and LES domains suggests
that the boundary conditions provided by FNL data at this time have larger errors. On the
other hand, the stronger atmospheric exchange in the lower layers leads to a larger error
distribution [42]. Both domains perform better in winter. Of note, the LES, PBL domain,
and ERA5 have similar performance, where the boundary conditions do not show a drastic
change in wind speeds at this location, and the stronger non-local processes leading to this
jet stream have prevented the model from judging the drastic change in wind speeds at
this location.

Vertical profile comparisons for all times are shown in the Supplementary Material.
Figure S1 shows the comparison of profiles during the autumn simulation, where (a)–(f)
are comparisons at 12:00 UTC and (g)–(m) are at 00:00 UTC. Figures S2–S4 are similar to
Figure S1, but for profiles in winter, spring, and summer, respectively.
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Figure 5. Six day average profile comparison, each row from top to bottom represents autumn (a–d),
winter (e–h), spring (i–l), and summer (m–p), respectively, the left two columns (a,b,e,f,i,j,m,n) are
the horizontal wind speed, the right two columns (c,d,g,h,k,l,o,p) are the potential temperature, the
first column (a,c,e,g,i,k,m,o) of each variable is 12:00 UTC, and the second column (b,d,f,h,j,l,o,p) is
00:00 UTC.

3.3. Simulation Error

In Sections 3.1 and 3.2, we found significant differences in simulation error, espe-
cially for temperature variables between PBL and LES domains at different times, which
are mainly manifested as small errors in early morning and large errors in the evening.
Therefore, to avoid error bias caused by different times, we use the time 12:00 UTC as
the boundary separating nighttime and daytime. We interpolated the temperature and
horizontal wind speed data into the data at the pressure layers of ERA5, and compared the
ERA5 data with the PBL and LES results (Figure 6).

For simulations of horizontal wind speed, the LES consistently outperformed the
mesoscale PBL scheme, exhibiting smaller total error means around 1.03 ms−1 in daytime
and 1.64 ms−1 at night. Tighter total error distributions with standard deviation of 2.85 in
daytime and 2.30 at night are shown, as well. The PBL and LES domains show maximum
errors of −2.6 (−2.2) ms−1 in daytime and −5.82 (−4.44) ms−1 at night in summer, while
minimum errors of −0.14 (0.04) ms−1 and −1.48 (−0.34) ms−1 in winter, respectively. The
errors of LES compared to PBL were respectively reduced by 15.4% in daytime and 23.7%
at night in summer, while 71.4% in daytime and 77.0% at night in winter. The performance
of PBL and LES domains is similar in spring and autumn, which shows an error close to
−1 ms−1 in both daytime and nighttime. The lower and more concentrated winter winds
result in smaller errors, while higher and more discrete summer winds lead to larger errors.
The diurnal variation in wind speed error does not have a significant seasonal pattern. In
this experiment, the performance of PBL and LES domains during the day was better than
that at night.
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Compared to the daytime simulation, both of the schemes underestimate the horizontal
wind speed more at night, especially in spring and summer.

The performance of potential temperature simulation is quite different from that of
horizontal wind speed simulation. Both PBL and LES schemes generate the worst result
in winter and the best simulation results in spring. The PBL and LES simulations in
autumn and summer behave similarly with mean absolute error of −4.06 (−3.92) and
−3.62 (−3.47) K in daytime, and −4.65 (−3.60) and −2.82 (−1.25) K at night, respectively.
The two periods of greatest error reduction for LES compared to PBL were winter daytimes
and summer nights, which reached 31.5% and 55.7%, respectively. The error distribution
of both schemes in summer is more discrete with larger error standard deviation of 4.46
(PBL) and 4.23 (LES) in daytime, while 3.77 (PBL) and 3.51 (LES) at night. The simulations,
including PBL and LES domains, at almost all times show negative bias, especially in
winter. The simulated values of downward longwave radiation in northwestern China
are usually low, and the excessive non-local mixing in the ACM2 scheme will lead to
negative deviations in local temperatures [43]. The addition of LES can better alleviate
this phenomenon with good consistency and less error in spring and autumn. Critically,
although LES shows better results overall compared to the PBL domain with the average
error reduced by 20.14% in potential temperature and 36.06% in wind speed, the error
performance is still similar to that in the PBL domain with similar error magnitude between
the two domains (less than 3 K for potential temperature and 2 ms−1 for wind speed). Since
the PBL domain provides boundary and initial conditions for the LES domain, a more
reasonable physical process obtained in the LES cannot fully counteract the errors from the
inaccuracy of boundary condition provided by NCEP FNL data.



Remote Sens. 2024, 16, 558 11 of 20

3.4. Mechanism of Improved Simulation in LES

The main difference in mechanism between the LES and PBL schemes is that LES can
explicitly resolve the most energetic turbulent eddies in the cascade transport of turbulent
energy through numerical calculations. Combined with the smaller error at night when
the turbulence is weak and the large error during the day when the turbulence is strong,
previous studies usually concluded that the possible reason for the simulation error is the
inaccurate intensity of turbulence in WRF model [44]. In order to quantify this property
more specifically, we subtracted the simulated value of the corresponding LES domain from
the simulated value of the PBL domain to represent the difference between the two schemes.

Figure 7 shows the difference between PBL and LES in the two variables: potential
temperature (Figure 7i) and horizontal wind speed (Figure 7ii). There is a very clear
difference between summer and the other three seasons. For potential temperature, the
difference between PBL and LES fluctuates at around 0 K in most times of spring, autumn,
and winter. While the simulated values of these three seasons differ greatly in a few other
times, such as the last two days of autumn and the first day of winter (Figure 7(ia–ic)). There
is also a consistent daytime negative difference near the surface in spring. For horizontal
wind speed, wind discrepancies aligned with temperature in autumn and winter, and there
is a clear difference in wind speed in daytime in spring, which is mainly concentrated near
the surface. In contrast to the potential temperature difference, the difference in wind speed
does not show a large isolated positive or negative deviation. The smaller positive and
negative deviation areas are adjacent to each other, associated with the performance of
wind shear (when a high value of wind shear occurs in a certain layer, the wind shear in the
adjacent layer will show the opposite low value). In contrast, summer showed substantial
differences for both variables across all times. In terms of temperature difference, there
is a relatively clear negative deviation area before 12:00 UTC per day during the summer
simulation period. This characteristic is not clear in the difference in wind speed during
the summer period, but the error distribution still presents a distinct region.

During most of the time in all seasons, the difference between the PBL domain and
the LES domain fluctuates at around 0 K (potential temperature) and 0 ms−1 (wind speed),
indicating that the LES domain and the PBL domain have high similarity in general.
However, the potential temperature in the PBL domain is lower than that in the LES domain
during most of the time, which is similar to the error performance in potential temperature
in Figure 6. The simulated potential temperature simulation from two domains often
underestimates the actual temperature, especially during the daytime. The LES scheme
corrects the negative bias of the PBL domain, as the simulated values in the LES domain are
higher than those in the PBL domain during most of the time. In contrast to the systematic
temperature discrepancies, wind differences showed greater complexity. To further assess
the effect of turbulence on error performance, we will next examine the distribution of
turbulence parameters.

3.4.1. TKE

Turbulent kinetic energy (TKE) is an important parameter in the PBL. The following
section discusses the TKE in LES to explore the impact of more accurate LES simulated
turbulence on the wind speed and air temperature simulation. The resolved TKE is
calculated according to the wind fluctuation of the average wind in the filter region:

TKE = 1
2 (u

′2 + v′2 + w′2), (2)

where u′, v′, and w′ are the fluctuations of the wind vector, which are obtained by filtering
the original velocity field with a 2D Gaussian filter, as described in Equation (1). The budget
equation of TKE describes the generation and extinction of turbulence. The revenue and
expenditure equation is as follows:

∂e
∂t + u·∇e = S + B + T + D, (3)
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where S and B are shear production and buoyancy production, respectively. They are
defined as:

S = −u′w′ du
dz − v′w′ dv

dz , (4)

and
B = g

θv
w′θv

′, (5)

where θv is the virtual potential temperature. In the following, we refer to the terms S and B
as shear terms and buoyancy terms. The T term (turbulent transport term) does not produce
turbulent kinetic energy, and the D term is the dissipation of turbulent kinetic energy by
molecular viscosity, which is associated with the previous kinetic energy generation term.
The two terms are not discussed here.

Figure 8 presents the TKE profile evolution in LES, showing distinct seasonal vari-
ability akin to the error analyses above. The TKE is weakest in winter while strongest in
summer, with intensity peaks of 1.84 and 4.03 m2 s−2, respectively. The TKE intensity is
similar in spring and autumn, only slightly higher in spring. Intense TKE is mainly con-
centrated near the surface during the daytime (02:00 UTC–12:00 UTC), which is consistent
with our previous inferences about the evolution of the PBL. That is, the development
of PBL leads to a dramatic increase in TKE near the surface. On the first day of winter
simulation, more intense TKE (maximum of 1.84 m2 s−2) was produced in the middle and
upper layers (2–4 km) rather than near the surface after 12:00 UTC. The TKE budget will be
further analyzed in the following content according to the budget Equation (3).

It is noted that the evolution of TKE is similar to the difference pattern of PBL and
LES domains to a certain extent, especially in spring, summer, and winter simulation. This
implies that discrepancies between the LES and PBL domains are strongly associated with
TKE intensity. For instance, the intense TKE almost covers the same region with larger
potential temperature difference (whether positive or negative) between the PBL and LES
domains. Similarly, the region with larger wind speed difference in winter and spring
matched intense TKE areas. In autumn, the simulation difference in two models (potential
temperature difference and wind speed difference) does not seem to be affected by intense
TKE, with the potential temperature and wind speed difference basically maintaining a
low level. The difference distribution is very decentralized with no distinct distribution
features in autumn.

Figure 9 shows the contribution of the buoyancy term (Figure 9i) and shear term
(Figure 9ii) to TKE through the budget Equation (3). It can be seen that the distribution of
buoyancy terms is basically consistent with that of intense TKE (Figure 8), and almost all of
them make positive contributions to TKE. The strength of the buoyancy term in winter is
much smaller than that in the other three seasons with maximum of around 1.84 m2 s−2.
The distribution of intense TKE (>0.3 m2 s−2) is also the smallest in winter simulation, and
can only reach a height of about 300–400 m. It is worth noting that the TKE anomaly on the
first day of winter is also reflected in the buoyancy term. For the high-intensity TKE (up
to 1.84 m2 s2) generated during 15:00 UTC-18:00 UTC at a height of 2–3 km (Figure 8(ib))
on the first day of winter, the buoyancy term here has a large negative region with weak
positive values scattered around it. For the TKE generated there, the negative buoyancy
term mainly inhibits the development of turbulence. The large negative buoyancy region
also leads to the weak positive buoyancy compensation in the adjacent region. Compared
with the distribution of TKE, the distribution of buoyancy term is closer to the distribution
of temperature difference, especially in summer simulation, which means that a more
accurate buoyancy force in LES leads to larger potential temperature difference between
the PBL and LES domains.
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For the shear term, its intensity and distribution range are relatively small compared
with that of the buoyancy term. Most of the time, the shear term floats around the value of
0.003~0.006 m2 s−3, which is more common in autumn, winter, and spring. When shear
and buoyancy terms show a positive contribution, there is a significant increase in TKE
in the region, such as the high TKE region on the first day of summer in Figure 8(id). For
weaker turbulence, the shear term’s contribution is also weak and usually at around 0.
The anomaly on the first day of winter is well explained by the shear term: the shear term
has a high positive contribution to the TKE in this area, while the buoyancy term appears
negative, cancelling out part of the positive contribution of the shear term.

Combining the two terms of the TKE budget equation, the high-value region of turbu-
lent kinetic energy is very similar to the region of large difference between the two domains,
especially the difference in potential temperature simulation. The weak turbulent kinetic
energy causes the wrong simulation of the PBL domain to a great extent, which is mainly
manifested in the underestimation of temperature and the poor estimation of the range of
horizontal wind speed in this experiment. When strong turbulent kinetic energy should be
presented but is not, the PBL domain tends to underestimate the temperature of the desert
PBL and misestimate the detailed characteristics of the horizontal wind field. However,
neither TKE nor the distribution of its budget terms can explain the difference in the latter
three days of the autumn simulation period above 2 km.

3.4.2. Cloud

The previous results show that the large errors occurring at heights above 2 km on the
last three days of autumn are not related to thermal and dynamical turbulence processes. To
further explore the possible causes, we analyzed the cloud processes at that time (Figure 10)
since the cloud/fog process may also be different in PBL and LES domains [45].

The spatio-temporal distribution of relative humidity (RH) shows that a large range
of high RH value area appears in the last three days of autumn (Figure 10c). This process
is captured by both the LES and PBL domains (Figure 10a,b). Meanwhile, the cloud
liquid water content (CLWC) data provided by ERA5 showed (Figure 10d) that a large
range of cloud (CLWC > 0.01 g·kg−1) appeared at this time. The cover range of the cloud
bodies is very consistent with the simulation difference performance (potential temperature
and wind speed) in autumn. According to the RH in ERA5, during the last three days,
oversaturated areas appeared at the height of around 2 km on the first and third days, and
a high value of liquid water content appeared in the corresponding position from CLWC
chart, with a maximum value of 0.087 g·kg−1.

Compared with Figure 10a,b, the relative humidity simulated by LES and PBL domains
is different. It is noticed that the difference in region is very consistent with the region
of the difference in wind speed and temperature between the domains. During the latter
three days, the first day of LES showed two smaller independent oversaturated regions,
while the PBL domain showed a contiguous range of larger oversaturated regions. On the
second day, the two domains began to show a big difference, the RH in LES decreased
significantly. There was an 80% RH area at the height of 2.5 km and a dry area of 20~40%
RH appeared above. PBL still showed a wide range of near saturated air and did not
show the significant dry zone seen in LES. The dry zone that appeared in the LES on
the second day extended until 12:00 UTC on the third day, after which the high relative
humidity zone reappeared. On the fourth and fifth days, the PBL domain showed a large
area with high RH, and a large oversaturation air appeared at corresponding locations
of the dry air in LES domain. Compared with the RH in ERA5, PBL overestimated the
oversaturation of the first two days, especially on the second day, whereas ERA5 did not
show a clear large-scale oversaturated region. The RH distribution in the PBL domain was
very consistent with ERA5 on the third day simulation. The LES domain misestimated the
humidity conditions on the latter two days, incorrectly giving a large dry region, and did
not show the corresponding oversaturation region on the third day.
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The PBL and LES domains cannot give a reasonable simulation value when there
is a large cloud body in the simulation period. The influence of cloud on the simulation
is mainly reflected in the poor estimation of its evolution process, rather than the direct
influence brought by the high value of cloud water. It can be found that although the
difference in the area is distributed in the cloud, the high value area of the difference
generally does not coincide with the high value area of CLWC (Figure 10d). Incorrect
estimates of cloud evolution can lead to large deviations in the simulation of meteorological
elements, such as temperature, humidity, and wind speed.

4. Discussion

This paper studies the performance of WRF-LES in simulating desert boundary layers.
During the research process, we found that the boundary condition error of NCEP’s FNL
reanalysis data used in this experiment seems to cause deviations in the simulation results,
such as wind speed simulation in summer, which will severely limit the performance of
LES. We hope to use different initial and boundary conditions in future studies to quantify
their impact on LES performance.

At the same time, the limited sounding observation data limit our further research on
the boundary layer and its turbulence characteristics (only at 00:00 UTC and 12:00 UTC).
In future work, we hope to obtain more intensive sounding data to conduct this study
in depth.
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5. Conclusions

In this paper, in order to compare the seasonal differences in the simulation perfor-
mance of the WRF-LES and the WRF-PBL in the Xinjiang desert region, we conducted
one-way nested simulations for a total of 24 days out of 6 days of a representative month in
each season. Both the conventional PBL scheme (ACM2) and the LES scheme well simulate
the wind, temperature, and humidity characteristics at the surface and the pressure levels.
The LES simulates the wind fluctuations better than the PBL and gives more reasonable
temperature values with higher R2 of 0.80, 0.84, 0.93, 0.83 and lowering errors in wind
speed by 14.2% (18.1% after excluding the effect of cloud), 30.8%, 17%, and 27.3% for au-
tumn, winter, spring, and summer, respectively. However, some poor boundary conditions
provided to the LES by the PBL domain affect the simulation performance of the LES.

In the simulated spatio-temporal variations, both LES and PBL domains exhibit cold
deviations in temperature. The deviations in winter and summer are the largest of the four
seasons due to the influence of the boundary conditions, which offer the most opportunity
for the LES to improve the simulation compared to the PBL. For the horizontal wind
speed simulations, the simulation performance is also strongly influenced by the seasonal
atmospheric background. With the largest and smallest mean winds in summer and winter,
the worst and best simulation performance was conducted, with mean errors of 0.04 and
−4.44 ms−1, respectively. Compared to PBL, the optimized performance of LES is 20.14%
and 36.06% in potential temperature and wind speed, respectively. In spring and autumn,
both simulations of wind speed and temperature show a near stable performance for both
schemes, and the differences between the PBL and LES domains are smaller.

In order to measure the turbulence effect on the LES and PBL simulation, we introduce
the TKE and its budget equation to analyze its error performance. The results show that in
the desert region, the TKE generation and cancellation are generally between 02:00 UTC
and 12:00 UTC in a day, and the buoyancy term is the main contributor to the TKE. TKE
is strongest in the summer and weakest in the winter with intensity peaks of 1.84 and
4.03 m2s−2, respectively. For the TKE anomalies caused by winter nighttime jet streams, the
shear term is the main contributor. The simulation difference in wind speed and potential
temperature in PBL and LES is highly correlated with different TKE simulations in the
two domains. In the case of strong TKE in summer, the differences in variables between
the two domains were almost identical with the distribution of strong TKE. When a large
cloud body occurred in the simulation area, neither LES nor PBL domain can accurately
simulate the cloud evolution process and its impact on meteorological elements, resulting
in large errors.

Our study found a seasonal feature in the optimality of LES compared to PBL in
simulations in the desert region of Xinjiang, and this feature is highly correlated with
accurate turbulence simulation. Future work could aim to establish this correlation as a
statistical relationship and further model it to improve the PBL parameterization scheme.
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