
Citation: Fang, S.; Li, X.; Tian, S.;

Chen, W.; Zhang, E. Multi-Level

Feature Extraction Networks for

Hyperspectral Image Classification.

Remote Sens. 2024, 16, 590. https://

doi.org/10.3390/rs16030590

Academic Editor: Paul Scheunders

Received: 4 November 2023

Revised: 24 January 2024

Accepted: 29 January 2024

Published: 4 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Level Feature Extraction Networks for Hyperspectral
Image Classification
Shaoyi Fang , Xinyu Li , Shimao Tian, Weihao Chen and Erlei Zhang *

School of Information Engineering, Northwest A&F University, Xi’an 712100, China;
shaoyi.fang@nwafu.edu.cn (S.F.); xinyuli@nwafu.edu.cn (X.L.); tsm2023056178@nwafu.edu.cn (S.T.);
weihao.chen@nwafu.edu.cn (W.C.)
* Correspondence: erlei.zhang@nwafu.edu.cn

Abstract: Hyperspectral image (HSI) classification plays a key role in the field of earth observation
missions. Recently, transformer-based approaches have been widely used for HSI classification due
to their ability to model long-range sequences. However, these methods face two main challenges.
First, they treat HSI as linear vectors, disregarding their 3D attributes and spatial structure. Second,
the repeated concatenation of encoders leads to information loss and gradient vanishing. To over-
come these challenges, we propose a new solution called the multi-level feature extraction network
(MLFEN). MLFEN consists of two sub-networks: the hybrid convolutional attention module (HCAM)
and the enhanced dense vision transformer (EDVT). HCAM incorporates a band shift strategy to
eliminate the edge effect of convolution and utilizes hybrid convolutional blocks to capture the 3D
properties and spatial structure of HSI. Additionally, an attention module is introduced to identify
strongly discriminative features. EDVT reconfigures the organization of original encoders by incorpo-
rating dense connections and adaptive feature fusion components, enabling faster propagation of
information and mitigating the problem of gradient vanishing. Furthermore, we propose a novel
sparse loss function to better fit the data distribution. Extensive experiments conducted on three
public datasets demonstrate the significant advancements achieved by MLFEN.

Keywords: hyperspectral image classification; convolutional neural networks; vision transformer

1. Introduction

Hyperspectral image (HSI) is composed of abundant spatial and spectral data, enabling
effective differentiation between various types of land cover. This technology finds extensive
applications in urban planning [1,2], geological exploration [3,4], precision agriculture [5,6],
and other domains. HSI classification plays a fundamental role in remote sensing as it offers a
robust means of analyzing and interpreting information embedded within HSI.

Conventional machine learning approaches typically prioritize the analysis of spectral
information in tasks such as k-nearest neighbor [7], support vector machine [8], random
forest [9], and sparse representation [10]. While these methods are straightforward and
easily scalable, they struggle when working with high-dimensional data and small sam-
ple sizes, which is known as the Hughes phenomenon [11]. To overcome the challenge,
band selection is often adopted to select the most useful bands and thus reduce redun-
dant information, such as the local feature descriptor network [12] and similarity-based
ranking method [13]. In addition, dimensionality reduction techniques like principal com-
ponent analysis (PCA) [14] and linear discriminant analysis [15] are commonly employed
to map high-dimensional HSI data into lower-dimensional spaces. However, recent studies
demonstrated that relying solely on spectral information and disregarding spatial infor-
mation makes it difficult for classification algorithms to accurately capture surface object
characteristics, such as spatial distribution and morphological features. This ultimately
impacts classification accuracy [16]. To address this, various models that extract both spatial
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and spectral features were proposed, including the Markov random field [17], extended
multi-attribute profile [18], Gabor filters [19], and hypergraph structure [20]. Nevertheless,
these conventional machine learning methods are limited in their ability to leverage deep
nonlinear features, which can result in suboptimal performance.

The advancement of deep learning techniques has greatly contributed to the progress
of HSI processing [21]. Numerous models based on deep learning were proposed for HSI
classification tasks. Some of the well-known baseline networks include recurrent neural
networks [22], graph convolutional neural networks [23], autoencoders [24], generative
adversarial networks [25], capsule networks [26], long short-term memory networks [27],
and convolutional neural networks (CNNs) [28]. Among these methods, CNNs are the
most widely used and can be categorized into 1D convolutional neural network (1D-
CNN) [29], 2D convolutional neural network (2D-CNN) [30], and 3D convolutional neural
network (3D-CNN) [31] based on their dimensions. Hu et al., introduced 1D-CNN to
capture features from the spectral dimension and achieved better accuracy compared
to traditional machine learning approaches. The 2D-CNN method is commonly used
to extract spatial features, while the 3D-CNN is employed to capture spatial–spectral
features. The hybrid spectral CNN (HybridSN) [32] combines the benefits of both 2D-CNN
and 3D-CNN, leading to superior classification performance. Furthermore, Paoletti et al.,
utilized pyramidal bottleneck residual cells [33] to enhance performance by increasing the
dimension of spectral and spatial attributes layer by layer. On the other hand, Ma et al.,
proposed a deconvolution network with skip connections to address issues such as the
loss of important information during down-sampling and the lack of training samples [34].
While these methods are more efficient than conventional machine learning approaches,
they often fail to fully leverage features at different levels. In recent years, many deep
learning methods using representation learning applied to tasks such as HSI classification,
segmentation and image super-resolution have also emerged, including [35–38]. For
improving the performance of HSI classification tasks, researchers proposed methods
based on the joint extraction of spectral–spatial features for representation learning. A
central vector-oriented self-similarity network (CVSSN) [39] enhances characterization of
the model by considering the association between internal pixels and their neighbors.

To emphasize regions of interest in an image while suppressing irrelevant background
regions, researchers have suggested attention mechanisms, taking inspiration from the
visual mechanisms of humans. Noteworthy examples of such works include the squeeze-
and-excitation network (SENet) [40] and the dual attention network (DANet) [41]. SENet
adjusts the scale of channel features and enables the model to focus more on important
channel information, while DANet improves the model’s perception of contextual infor-
mation by introducing a dual-attention mechanism. Additionally, the spectral–spatial
attention network (SSAN) [42] combines the capabilities of CNN for modeling spatial
interior dependence and recurrent neural network for characterizing spectral sequences.
The multi-attention fusion network (MAFN) [43] incorporates attention modules that cater
to spatial and spectral perspectives, mitigating issues like band redundancy and pixel
interference. Furthermore, the multimodal transfer feature fusion network [44] utilizes the
local attention mechanism and a multi-task learning strategy to facilitate the learning of
HSIs across different domains. However, it is important to note that these attention-based
methods often necessitate a substantial amount of annotated data for effective training,
posing a challenge when dealing with HSIs that have limited annotated samples.

Transformer models are gaining popularity in the realm of natural language processing [45].
Researchers apply the transformer architecture, originally developed for language processing,
to the image domain with the introduction of vision transformer (ViT) [46]. ViT achieves im-
pressive results in image classification by dividing images into smaller patches and treating
them as sequential data. In addition to the basic ViT model, there have been advancements
in this area with the development of variants such as pyramid vision transformer [47], swin
transformer [48], and data-efficient image transformers [49]. Another approach called tokens-
to-token ViT [50] improves tokenization in ViT by utilizing a soft-split operation. Researchers
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also explored the application of ViT in HSI classification. The novel backbone network rethink-
ing HSI classification from a sequential perspective with transformers [51] introduces ViT to
the field of HSI classification, but it largely focuses on mining spectral information and lacks
the utilization of spatial information. To address this limitation, various methods were pro-
posed to combine CNNs with ViT to extract both spatial and spectral features, including the
convolutional transformer network [52], spatial–spectral transformer [53], and neighborhood
enhancement hybrid transformer network [54]. Other approaches such as spectral–spatial feature
tokenization transformer [55] and hyperspectral image transformer (HiT) [56] were developed to
extract spectral–spatial features and semantic features. However, these ViT-based methods often
overlook the importance of feature reuse and information transfer.

In summary, the above-mentioned methods have faced two issues: (1) Treating HSI as
linear vectors, compromising 3D attributes and spatial structure. (2) Repeatedly concate-
nating encoders, leading to information loss and gradient vanishing.

To overcome these challenges, on the one hand, hybrid convolution operations are
utilized in order to capture the 3D characteristics and spatial structure of HSI. Specifically,
to address any potential edge effects caused by the convolution operation, a novel band
shift strategy is developed. Furthermore, an attention module is employed to explore the
relationship between the spatial and spectral aspects of the data, thereby emphasizing the
features with high discriminative capability. On the other hand, a modification is made to
the arrangement of encoders in order to enhance the adaptability to the HSI classification
task’s small-scale dataset. This adjustment involves eliminating the simple concatenation
method to ensure that excessive information loss is avoided. To enable feature reuse, an
adaptive feature fusion component is incorporated.

The major contributions in this study can be outlined as follows.

(1) A multi-level feature extraction network (MLFEN) for HSI classification is proposed.
By combining the capability of CNN’s local spatial–spectral feature capture and
ViT’s global sequence modeling, MLFEN achieves effective fusion of shallow to deep
features of HSIs.

(2) A sophisticated hybrid convolutional attention module (HCAM) is suggested, which
incorporates band shift, hybrid convolution, and attention mechanisms to efficiently
capture and enhance multidimensional features. By seamlessly combining these
essential techniques, HCAM can empower the model to gain a comprehensive under-
standing of the intricate details present within the image.

(3) A novel variation of the ViT called enhanced dense vision transformer (EDVT) is
introduced. EDVT is specifically designed for characterizing HSI data. To address
the issue of information loss due to deep networks, EDVT incorporates a modified
architecture for its encoders. Additionally, EDVT includes an adaptive feature fusion
(AFF) component that enables effective information transfer and feature reuse.

(4) A new sparse loss function for HSI classification is developed, combining the benefits
of both the cross-entropy loss function and a sparsity regularization operator. This loss
function contributes to sparse representation, thus effectively solving the overfitting
problem and improving the robustness and accuracy of classification.

The remainder of the article is organized as follows. In Section 2, the methodology
of the proposed network is presented. Section 3 details the datasets, provides specific
implementation steps and parameter settings, and analyzes the experimental findings.
Section 4 compares the computational cost and performance of MLFEN with other methods.
Finally, Section 5 provides a summary of this work and outlines future directions.

2. Method

Figure 1 presents a visual representation of the MLFEN architecture. To begin with, the
original HSIs undergo preprocessing using PCA. This process converts the HSIs into patch
cubes which are then fed into two distinct modules: the hybrid convolutional attention
module (HCAM) and the enhanced dense vision transformer (EDVT). For the classification
task, a multi-layer perception network (MLP) is implemented as the classifier.
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Figure 1. The overall framework of the proposed MLFEN. MLFEN is composed of two primary
sub-networks, including HCAM and EDVT. HCAM consists of three key components, which are band
shift, convolutional operations (e.g., 3D Block and 2D Block), and AM. While EDVT incorporates two
design elements, namely dense connection and AFF.

2.1. Hybrid Convolutional Attention Module (HCAM)

The main role of the HCAM module is to acquire the shallow joint spatial–spectral
information of HSI. In order to achieve superior performance, the structure of the HCAM is
both complete and compact, containing a band shift component, four convolutional blocks
and an attention module (AM).

2.1.1. Band Shift

The PCA algorithm ranks the principal components according to the magnitude
of the variance. The larger the variance, the more information it contains. Therefore,
after PCA processing, the feature information of each band of the HSI image is arranged
in descending order, which results in the most informative features being at the edge.
However, the pixel points at the edges during the convolution operation are often not
fully covered by the convolution kernel. This edge effect can make the mining of spectral
information insufficient and further affect the convolution effect.

Based on the above analysis, a band shift strategy is proposed for mitigating the
undesirable consequences of edge effects. Band shift aims to move key spectral channels to
the central position across all data, while relocating less critical spectral channels towards
the edges of the data. The benefits of doing so include increasing the likelihood of effective
extraction of spectral features through convolutional operations, and maintaining critical
spectral channels at the core position of the receptive field. With the shift strategy, the
negative impact due to the edge effect of the convolution operation is mitigated, and the
separability of the bands is improved thus enhancing the feature representation of the
model. The mapping function g(·) of the band shift strategy can be expressed as:

g(v) = 2(⌊ p
2
⌋ − v)− 1, v ∈ [0,

p
2
)

g(v) = 2(v − ⌊ p
2
⌋), v ∈ [

p
2

, p − 1]
(1)

where p represents the number of principal components after PCA, g(v) and v denote the
band index before and after shift. Applying this strategy can enhance the discrimination of
target features, alleviate the band correlation problem, and help improve the accuracy and
reliability of classification.
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2.1.2. Multidimensional Feature Extraction

As illustrated in Figure 1, HCAM contains two 3D convolution blocks and two 2D
convolution blocks with a convolution kernel size of 3 × 3 × 3 and 3 × 3, respectively. This
design first extracts the joint spatial–spectral features by 3D convolution and adaptively
learns more abstract and advanced feature representations using 2D convolution. Batch
normalization layers and rectified linear unit (ReLU) activation functions are added after
each convolutional layer to avoid the gradient disappearance phenomenon and improve
generalization ability. Compared to the single 3D-CNN method, this hybrid approach
not only enables multi-level features to be obtained, but also dramatically reduces the
computational cost.

To further enhance the interaction and fusion of features between different layers and
save time and computational resources, the skip connection mechanism [57] is employed
in HCAM. By doing so, it allows the model to more effectively learn and capture relevant
features, ultimately leading to improved performance. Additionally, the implementation of
skip connection in the HCAM module helps to improve computational efficiency while
still maintaining robust performance.

Let X0 ∈ Rk×k×d (k and d are the patch size and number of bands of the 3D cubes)
denote 3D cubes after the band shift, and Xi is the output of ith block. Then Xi can be
expressed by:{

Xi = δ(BN(Conv(Xi−1))), i = 2m − 1, m = [1, . . . , m]

Xi = δ(BN(Conv(Cat(Xi−2, Xi−1)))), i = 2m, m = [1, . . . , m]
(2)

where Cat denotes the concatenation function, Conv means the convolutional operation
and BN is the batch normalization layer. The symbol δ is the ReLU activation. When
i = 4, Xi is X⃗, the input to the AM component. Through hybrid convolutional operations
described above, the model comprehensively extracts shallow multidimensional spatial
and spectral features.

2.1.3. Attention Module (AM)

The attention component is designed to incorporate broader contextual informa-
tion into local contextual features. Inspired by the attention module proposed in the
DANet [41], the local spatial–spectral features X⃗ is processed through convolution to obtain
three feature mappings, namely X⃗1, X⃗2, and X⃗3. These mappings can be represented as:

X⃗1 = Conv(X⃗, w1) + b1

X⃗2 = Conv(X⃗, w2) + b2

X⃗3 = Conv(X⃗, w3) + b3

(3)

where the symbol w1, w2, and w3 are weights of convolution layers while b1, b2, and b3
denote biases. Then the pixel correlation is calculated by a matrix multiplication of the
deformed X⃗1 with X⃗2 and the attention map S is obtained by using a softmax layer, which
is defined as:

S =
exp(X⃗1X⃗2)

∑n
j=1 exp(X⃗1X⃗2)

(4)

where n is the number of features. We perform a matrix multiplication between X⃗3 and S
and then multiply it by a scale parameter α. Finally, the spatial attention feature is added to
the input X⃗ to obtain the final result X∗:

X∗ = α
n

∑
j=1

SX⃗3 + X⃗ (5)

where α is initialized to 0 and continuously updated during the training process. We can
deduce that the final feature X∗ is obtained by taking a weighted sum of the features at all
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positions including the original features. As a result, X∗ incorporates a global contextual
view and selectively integrates contextual information based on the attention map.

2.2. Enhanced Dense Vision Transformer (EDVT)

Despite the benefits of CNNs in extracting nearby spatial contextual information, they
face difficulties in capturing delicate variations in spectral data over extended distances. As
a result, ViT is frequently utilized to augment the feature maps produced by CNNs, enrich-
ing the global spectral correlation and disparity information. ViT employs a conventional
transformer encoder methodology, which includes MSA and MLP modules. To normalize
each encoder block, layer normalization (LN) [58] is employed. The standard transformer
encoder block can be represented by the following equation:{

E
′
l = MSA(LN(El−1)) + El−1

El = MLP(LN(E
′
l)) + E

′
l

(6)

where El denotes the output features of lth encoder.
It is important to note that the original ViT consists of six encoders that are connected in

a straightforward manner. However, there are various issues that still need to be addressed.
Firstly, the connection between encoders is too simplistic for efficient feature reuse, which
hinders the capturing of multi-level spectral information. Secondly, the training datasets
used for HSI classification tasks are typically small and considered as limited samples in
many research studies. Consequently, the network of six encoders can be seen as overly
deep, resulting in a substantial loss of information.

In order to address the aforementioned issues, EDVT is proposed to minimize infor-
mation loss and facilitate the reuse of multi-level features. As shown in Figure 2, EDVT
comprises three encoder blocks, each consisting of an encoder and an AFF component.
Taking inspiration from dense convolutional network [59], the two encoder blocks are inter-
connected with dense connections. These dense connections enable every encoder in the
network to directly access the feature maps from all preceding encoders, thereby enhancing
the extent of feature sharing and reuse. Additionally, the AFF component adaptively
fuses varying numbers of features through a two-step process involving concatenation and
convolution. The AFFl operation can be defined as:

Êl = ẅ(Cat(Ein, El−1, El)) (7)

where Êl is the fused feature after the lth AFF, ẅ denotes a network weight parameter that
can be learned, and Cat represents the concatenation operation.

Encoder AFFl-1 Encoder Encoder

ElEl-1Ein El+1

AFFl AFFl+1

  { Ein，El-1， El ，El+1 }
1×4 Conv Êl+1

Concatenate

Êl-1 Êl Êl+1

  { Ein，El-1， El } 1×3 Conv Êl
Concatenate

  { Ein，El-1}
1×2 Conv Êl-1

Concatenate

Figure 2. The illustration of the EDVT.
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2.3. Sparse Loss Function

Supervised learning focuses on reducing the error by regularizing the parameters.
Reducing the error ensures that the model fits the training data well, while parameter
regularization prevents the model from overfitting the training data. Based on these
principles, a new loss function for HSI classification tasks is proposed. This loss function
utilizes the cross-entropy loss function Lce [60] to minimize the error, and incorporates a
sparsity regularization operator Lsro [61] as the regularization term.

The aim of the Lce function is to reduce the difference between the predicted output
and the ground truth, thereby bringing the predicted value closer to the actual label. Lce
is highly responsive to any inconsistency between the model output and the true label,
enabling efficient gradient propagation and expediting model convergence. The calculation
of Lce is as follows:

Lce = − 1
C

C

∑
i=1

yilog(pi) (8)

where the symbol yi is the probability value of the ith category in the true label while pi
denotes that in the predicted result. C is the number of categories.

However, when there is an imbalance in the number of samples across different cate-
gories in a dataset, the use of Lce may result in the model being biased towards predicting
the more frequent categories and disregarding the less frequent ones. Additionally, Lce up-
dates the model parameters by minimizing the prediction error rate during training, which
can lead to overfitting if the training data are insufficient or the model is too complex. To
address these issues, sparse regularization loss (Lsro) can be employed, which encourages
the model to learn a more sparse feature representation. Lsro can be expressed as:

Lsro =
C

∑
i=1

yi − pi (9)

On one side, because of the scarcity of Lsro, it diminishes the preference for a larger
number of categories and thus enhances the model’s performance when handling datasets
with imbalances. On the other side, by minimizing the impact of noisy or irrelevant input
features, Lsro as a regularization term can effectively decrease the risk of overfitting and
improve the model’s ability to make generalizations. Therefore, we propose a new sparse
loss function L that combines Lsro with Lce, resulting in a more robust and easier to interpret
model, as demonstrated below:

L = Lce + λLsro (10)

where λ represents the coefficient of Lsro. The combination of Lce and Lsro can control the
parameters while characterizing the probability distribution of the sample classification.

3. Results
3.1. Dataset Description

In order to evaluate the efficacy of MLFEN, five publicly available datasets are em-
ployed: Pavia University (PU), Kennedy Space Center (KSC), Salinas (SA), Indian Pines
(IP), and Houston University (HU). Illustrations in Figure 3 depict the false color maps,
ground truth maps, and color bars corresponding to the PU, KSC, SA, IP and HU datasets,
respectively. Table 1 shows the basic information of the five datasets, which include image
size, the number of categories and bands, band range, resolution, sensor and location. The
land cover categories for the five datasets, along with the number of training and test set
samples, are shown in Table 2. To ensure an unbiased evaluation, we randomly choose 1%
of the data from each category of the datasets as the training set, while the remaining data
are kept for testing purposes.
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Figure 3. Visualization of five datasets. (a) PU dataset (false color image (RGB-R: 56, G: 33, B: 13)),
(b) SA dataset (false color image (RGB-R: 38, G: 5, B: 20)), (c) KSC dataset(false color image (RGB-R:
59, G: 40, B: 23)), (d) IP dataset (false color image (RGB-R: 50, G: 30, B: 20)), and (e) HU dataset (false
color image (RGB-R: 50, G: 30, B: 20)).

Table 1. Descriptions of the five HSI datasets.

Dataset Image Size Categories Bands Band Range Resolution Sensor Location

PU 610 × 340 9 103 430~860 nm 1.3 m ROSIS Pavia, Italy
KSC 512 × 614 13 176 400~2500 nm 18 m AVIRIS Florida, USA

SA 512 × 217 16 204 360~2500 nm 3.7 m AVIRIS Salinas
Valley, USA

IP 145 × 145 16 200 400~2500 nm 20 m AVIRIS
North-

Western
Indiana, USA

HU 349 × 1905 15 144 364~1046 nm 2.5 m ITRES
CASI-1500 Texas, USA
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Table 2. Different categories and corresponding numbers of samples for training and testing on the
PU, KSC, HU, IP and SA dataset.

No.
Pavia University (PU) (1%) Kennedy Space Center (KSC) (1%) Houston University (HU) (1%)

Class Train Test Class Train Test Class Train Test

1 Asphalt 66 6565 Scrub 7 747 Healthy grass 13 1238
2 Meadows 186 18,463 Willow swamp 2 239 Stressed grass 13 1241
3 Gravel 20 2079 Cabbage palm hammock 2 252 Synthetic grass 7 690
4 Trees 30 3034 Cabbage palm/oak hammock 2 248 Tree 12 1232

5
Painted
metal
sheets

13 1332 Slash pine 2 157 Soil 12 1230

6 Bare Soil 50 4979 Oak/broadleaf hammock 2 225 Water 3 322
7 Bitumen 13 1317 Hardwood swamp 2 101 Residential 13 1255

8
Self-

Blocking
Bricks

36 3646 Graminoid marsh 4 423 Commercial 12 1232

9 Shadows 9 938 Spartina marsh 5 510 Road 13 1239
10 Cattail marsh 4 396 Highway 12 1215
11 Salt marsh 4 411 Railway 12 1223
12 Mudd flats 5 493 Parking lot1 12 1221
13 Water 9 909 Parking lot2 5 464
14 Tennis court 4 424
15 Running track 7 653

Total 423 42353 Total 50 5111 Total 150 14,879

No.
Indian Pines (IP) (1%) Salinas (SA) (1%)

Class Train Test Class Train Test

1 Alfalfa 1 45 Broccoli_green_weeds_1 20 1889

2 Corn
notill 14 1414 Broccoli_green_weeds_2 37 3689

3 Corn
mintill 8 822 Fallow 19 1957

4 Corn 2 235 Fallow_rough_plow 13 1381

5 Grass
pasture 48 435 Fallow_smooth 26 2652

6 Grass
trees 73 657 Stubble 39 3920

7
Grass

pasture
mowed

1 27 Celery 35 3544

8 Hay
windrowed 5 473 Grapes_untrained 112 11,159

9 Oats 1 19 Soil_vineyard_develop 62 6141

10 Soybean
notill 10 962 Corn_senesced_green_weeds 32 3246

11 Soybean
mintill 25 2430 Lettuce_remaine_4wk 10 1058

12 Soybean
clean 6 587 Lettuce_remaine_5wk 19 1908

13 Wheat 2 203 Lettuce_remaine_6wk 9 907
14 Woods 13 1252 Lettuce_remaine_7wk 10 1060

15
Buildings
grass trees

drives
39 347 Vineyard_untrained 72 7196

16 Stone steel
towers 9 84 Vineyard_vertical_trellis 18 1789

Total 257 9992 Total 533 53,496

3.2. Experimental Setup
3.2.1. Implementation Details

All experiments are conducted in the pytorch framework using a server equipped with
Ubuntu 20.04, Intel(R) Xeon(R) Platinum 8375C CPU, 250 GB RAM and NVIDIA GeForce
RTX 3090 GPU.
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After performing PCA, 100 principal components are retained. During the training
phase, 200 iterations are undertaken with a learning rate of 0.001 and a batch size of 64.
The sparse loss function consists of Lce and Lsro with a coefficient of λ set to 0.01. The adam
optimizer is employed with β1 and β2 parameters set to 0.1 and 0.99, respectively.

3.2.2. Evaluation Indicators

The performance of the proposed method is assessed using three commonly employed
metrics: overall accuracy (OA), average accuracy (AA), and kappa coefficient (Kappa).
Each of these evaluation indicators positively reflects the classification accuracy. To ensure
reliability, the reported values for these three metrics are averaged over ten independent
runs in all experiments.

3.3. Parameter Analysis
3.3.1. The Influence of the Selection of Dimensionality Reduction Method

HSI contains an abundance of redundant and noisy information in the spectral chan-
nel, which can create interference. Therefore, it is very challenging to adequately extract
discriminative spectral information from the images. In this paper, comparative experi-
ments between PCA and LDA are conducted on the PU dataset and the results are shown
in Table 3. It can be concluded from the comparison that PCA is slightly better for catego-
rization than LDA, so PCA is chosen to extract the principal spectral bands.

Table 3. Classification results using PCA and LDA on the PU dataset.

OA (%) AA (%) Kappa (%)

PCA 97.37 ± 0.35 95.58 ± 0.66 96.41 ± 0.41
LDA 97.25 ± 0.65 95.43 ± 1.32 96.34 ± 0.86

To explore the effect of the number of principal components on performance, paramet-
ric experiments are conducted on the PU dataset. As shown in Table 4, it can be found that
both the network parameters and the running time increase with the increase in number of
principal components, and the best classification results are obtained when the number is
100. Therefore, the number of principal components is set to 100.

Table 4. Experimental results with different PCA components on the PU dataset.

PCA OA (%) AA (%) Kappa (%) Train(s) Params (M)

30 96.51 94.61 95.36 180.93 20.12
50 96.59 93.78 95.48 183.18 22.13
80 97.20 94.54 96.28 209.68 25.13

100 97.37 95.58 96.41 253.96 27.14

3.3.2. The Influence of Patch Size

Patch size plays a crucial role in determining how well a classification model performs.
In order to find the optimal patch size, we conducted a series of experiments within the
range of {7, 9, 11, 13, 15}. Figure 4 displays the effect of parameter k on the classification
performance across all three datasets.

The analysis illustrated in Figure 4 demonstrates that a patch size of 13 is the most
effective. All evaluation metrics reach their peak values for three datasets when k is set
to 13. When the patch size k is small, the image blocks contain less spatial neighborhood
information and are vulnerable to noise interference. Conversely, if k is large, there may be
an excessive amount of spatial neighborhood information, which disrupts the central pixel
features. In order to achieve a balance between performance and efficiency, the value of the
patch size k was established as 13.
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Figure 4. Impact of patch size k on the performance of MLFEN.

3.3.3. The Influence of the Number of Training Samples

The performance of the model is greatly influenced by the number of training samples.
Therefore, an analysis of the classification results is conducted using different sizes of
training sets. To ensure the stability and robustness of the MLFEN method, we randomly
selected 0.5%, 1%, 3%, 5%, and 10% labeled samples as the training data for the PU and SA
datasets. For the KSC, IP and HU datasets, we selected 1%, 3%, 5%, 7%, and 10% labeled
samples as the training data.

In Figure 5, we observe the impact of varying the number of training samples on
the performance of the MLFEN approach. Through the experimental findings, it becomes
evident that by using a mere 0.5% of training data from the PU dataset, the model can
achieve an OA surpassing 92%. Remarkably, this advantage extends further to over 96%
on the SA dataset. Similarly, on the KSC dataset, the model reaches an OA metric of more
than 96% with the utilization of only 1% of the training samples. These results highlight
the robustness of the model in handling inter-class imbalances.
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Figure 5. Impact of the number of training samples on the performance of MLFEN.
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3.3.4. The Influence of Coefficient λ

To examine the impact of the coefficient λ in the proposed sparse loss function on
the classification performance, a series of experiments are conducted on the PU dataset.
Initially, the performance of the standard Lce is confirmed. Following this, several sets
of experiments are designed with varying values of λ. The outcomes are summarized in
Table 5. To ensure fairness and scientific rigor in the experimental findings, all parameters
except λ remained consistent with those described in Section 3.2.1.

Table 5. Impact of the coefficient λ on the performance of MLFEN.

Indicators Lce
Loss (λ Value)

0.001 0.005 0.01 0.02 0.05 0.1 0.2

OA (%) 95.15 96.46 96.85 97.37 96.96 96.81 96.44 95.93
AA (%) 92.35 94.36 94.66 95.58 94.70 94.68 93.84 91.97
Kappa

(%) 93.56 95.31 95.82 96.41 95.97 95.77 95.94 94.59

As shown in Table 5, the lowest classification performance is achieved in the proposed
MLFEN using the commonly used Lce. The addition of the Lsro regularization term to the
loss function results in a higher classification accuracy than Lce alone. This can be explained
by the fact that the regularization term prevents overfitting to some extent and is resistant
to noise and interference. With the gradual increase of the λ hyperparameter, all three
evaluation indicators show an upward trend and reach the maximum value at the value
of 0.01 for the λ hyperparameter. When the value of λ is greater than 0.01, OA, AA and
Kappa decrease. In view of the above experimental results, the value of λ is set to 0.01.

3.3.5. The Influence of the Depth of EDVT

To investigate the impact of the network depth of the EDVT module on the perfor-
mance of the model, we conduct quantitative experiments on the PU dataset using networks
of varying depths and the results are presented in Table 6.

Table 6. Impact of the number of the depth of EDVT on the performance of MLFEN.

Module Depth
Indicators

OA (%) AA (%) Kappa (%) Train (s) Test (s)

EDVT

1 89.28 81.40 85.16 146.07 5.87
2 93.23 87.86 90.92 154.19 6.34
3 97.37 95.58 96.41 253.96 8.04
4 96.68 94.67 95.60 261.12 8.52
5 95.97 92.77 94.64 310.23 9.41
6 95.69 92.22 94.27 320.74 9.92

From the table, it is evident that the performance of the short-range EDVT is relatively
poor, particularly at a depth of 1 where the OA value reaches only 89.28%. This can be
attributed to the difficulty in fully capturing and integrating deep global features with
only one or two encoders. In contrast, the mid-range EDVT (three or four encoders) tends
to yield better results, with the optimal depth parameter being three. However, as the
number of network layers increases further, the classification performance experiences
some regression. For instance, when there are six layers, the OA decreases to 95.69%.

In addition, we evaluate the impact of EDVT depth on computational complexity by
counting the training time and testing time. The results show that the training time and
testing time are the shortest when the depth is 1, which are 146.07 s and 5.87 s, respectively.
The computational complexity increases gradually as the network depth increases. It can
be seen that shortening the depth as much as possible can help reduce the computational
complexity while ensuring high classification accuracy.
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It is important to highlight that the classical ViT utilizes six encoders. However,
our experiments have shown that the model can achieve good accuracy with only three
encoders. This relatively shallow network design helps prevent excessive information loss
and showcases the effectiveness of the EDVT module in facilitating deep feature learning.

3.4. Ablation Study

To validate the effectiveness of the band shift module, we performed ablation experi-
ments on the PU dataset. Table 7 shows the mean values of the results of ten experiments.
From these findings, we can observe that OA, AA, Kappa are improved by 1.41%, 2.76%
and 1.78%, respectively, which proves that the band shift module has a positive effect on
the classification results.

Table 7. Ablation study of Band Shift on the PU dataset. Optimal results are shown in bold.

Cases OA AA Kappa

without Band Shift 95.96 92.82 94.63
with Band Shift 97.37 95.58 96.41

This paper introduces the MLFEN method and its main technical contributions. These
include the HCAM module, which models and enhances the 3D spatial–spectral joint
features, the EDVT module for mining deep spectral features, and the sparse loss function
for reducing the fitting variance. In this section, our research goal is to analyze the impact
of these structures on the PU dataset both qualitatively and quantitatively. To achieve this,
we conduct several ablation experiments to test the applicability and effectiveness of these
structures in MLFEN for HSI classification. The specific classification results for different
components are presented in Table 8.

Table 8. Ablation study of the proposed MLFEN with a combination of different components on the
PU dataset. Optimal results are shown in bold.

Cases
Components Indicators

HCAM EDVT Loss OA (%) AA (%) Kappa (%)

1 × × × 90.25 80.66 86.93
2 × ✓ ✓ 91.29 84.38 88.36
3 ✓ × ✓ 95.70 91.66 94.28
4 ✓ ✓ × 95.15 92.35 93.56
5 ✓ ✓ ✓ 97.37 95.58 96.41

Table 8 demonstrate the influence of different components on the performance of
MLFEN. When all three components are utilized (Case 5), the best classification results are
obtained on the PU dataset. Conversely, when none of these components are employed
(case 1), the worst performance is observed. Removing HCAM (Case 2) leads to a significant
decrease in accuracy, with OA, AA, and Kappa decreasing by 6.08%, 11.2%, and 8.05%,
respectively. This highlights the importance of extracting local joint spatial–spectral features.
Similarly, removing EDVT (Case 3) results in a decrease in all three evaluation indicators,
indicating that the improved EDVT model is more advantageous for HSI classification
tasks compared to the original ViT model. Furthermore, it is worth noting that neither
EDVT without HCAM assistance nor HCAM without EDVT support can achieve excellent
performance. This suggests that HCAM and EDVT mutually enhance each other, enabling
the fusion of shallow and deep features. Lastly, the inclusion of the loss function (Case 4)
leads to improvements in the classification metrics OA, AA, and Kappa by 2.22%, 3.23%,
and 2.85%, respectively. Despite its simplicity, the design of the sparse loss function helps
mitigate overfitting and enhances the accuracy of the classification results.
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3.5. Comparative Experiments

Extensive experiments were conducted on the PU, KSC, SA, IP and HU datasets to
analyze and evaluate the performance of various methods. The comparison experiments
include refining the evaluation of representative methods such as 2D-CNN [30], 3D-CNN [31],
HybridSN [32], SSAN [42], MAFN [43], ViT [46], HiT [56], CVSSN [39], and SSFTT [53].

Regarding 2D-CNN, the network structure comprises four 2D convolutional blocks
and an average pooling layer. The initial two 2D convolutional blocks consist of a 2D
convolutional layer, a batch normalization layer, and a ReLU activation function layer.
Meanwhile, the last two 2D convolutional blocks incorporate a dropout layer in addition to
the aforementioned three layers. Each of the four convolutional kernels has a size of 3 × 3,
with corresponding quantities of 30, 32, 64, and 128, respectively.

Concerning 3D-CNN, the model consists of three 3D convolutional blocks and an
average pooling layer. Similar to the 2D-CNN, the first 3D convolutional block includes a
3D convolutional layer, a batch normalization layer, and a ReLU activation function layer,
whereas the last two 3D convolutional blocks encompass a dropout layer in addition to the
aforementioned three layers. The number of 3D convolutional kernels are 32, 64, and 128,
and their size is 3 × 3 × 3.

For the other seven methods, including HybridSN, SSAN, MAFN, ViT, HiT, CVSSN
and SSFTT, the networks follow the setup described in respective references.

For the proposed MLFEN method, the number of components after PCA dimensional-
ity reduction is set to 100. The patch size after the data-processing stage is set to 13 × 13.
Within the EDVT module, a 2D convolution is performed using a convolution kernel size
of 3 × 3, while a 3D convolution is performed using a convolution kernel size of 3 × 3 × 3.
The HCVT module utilizes three encoders.

3.5.1. Quantitative Evaluation

Tables 9–13 provide the comparative results of MLFEN and other state-of-the-art
methods on the PU, KSC, SA, IP and HU datasets, respectively. Based on the evaluation
metrics of OA, AA, and Kappa, the MLFEN approach proposed in this study displays
superior performance compared to other models for all five datasets.

Table 9. The mean and standard deviation of the ten results obtained by different methods on the PU
dataset. Optimal results are shown in bold.

No. 2D-CNN 3D-CNN HybridSN SSAN MAFN ViT HiT CVSSN SSFTT MLFEN

1 94.66 ± 2.06 93.62 ± 0.77 93.80 ± 1.92 94.14 ± 3.01 98.06 ± 3.20 85.92 ± 0.90 89.14 ± 3.22 94.89 ± 1.80 93.68 ± 1.97 97.10 ± 0.80
2 99.11 ± 0.49 98.30 ± 0.39 98.80 ± 0.45 99.24 ± 0.25 99.07 ± 0.93 98.30 ± 2.22 97.43 ± 1.50 98.16 ± 0.76 99.86 ± 0.08 99.88 ± 0.11
3 69.86 ± 6.04 58.56 ± 2.82 65.48 ± 9.85 75.84 ± 8.78 78.10 ± 6.96 78.58 ± 0.10 74.18 ± 8.47 87.97 ± 7.48 85.62 ± 4.17 88.21 ± 3.16
4 86.12 ± 6.08 92.67 ± 1.70 91.53 ± 1.27 88.79 ± 4.42 95.79 ± 3.53 77.84 ± 1.49 86.82 ± 2.29 96.86 ± 2.26 89.70 ± 1.31 91.96 ± 1.89
5 99.92 ± 0.16 99.71 ± 0.28 99.79 ± 0.23 97.16 ± 5.07 98.63 ± 0.51 98.27 ± 0.48 99.14 ± 0.68 97.97 ± 2.61 99.76 ± 0.22 99.74 ± 0.32
6 88.86 ± 2.55 74.23 ± 2.76 84.94 ± 5.79 93.14 ± 4.73 97.39 ± 1.34 97.79 ± 1.13 79.78 ± 2.99 95.93 ± 2.28 98.56 ± 0.91 99.77 ± 0.22
7 70.50 ± 9.33 74.07 ± 4.17 80.84 ± 5.41 91.52 ± 4.50 94.05 ± 5.89 85.94 ± 0.88 78.76 ± 7.20 91.98 ± 6.74 97.43 ± 1.77 98.02 ± 2.43
8 88.96 ± 4.76 88.52 ± 4.20 89.46 ± 5.57 93.44 ± 0.91 91.28 ± 3.44 71.48 ± 9.21 85.97 ± 4.73 90.11 ± 4.06 88.25 ± 2.42 89.04 ± 2.33
9 99.48 ± 0.49 99.93 ± 0.09 99.46 ± 0.50 98.30 ± 1.97 99.93 ± 0.52 65.27 ± 0.71 98.69 ± 1.15 97.84 ± 1.90 87.98 ± 3.42 95.88 ± 3.30

OA (%) 92.68 ± 1.35 90.30 ± 0.68 92.93 ± 1.11 95.25 ± 0.69 96.33 ± 1.54 89.26 ± 0.32 90.59 ± 0.47 95.86 ± 0.83 95.98 ± 0.51 97.37 ± 0.35
AA (%) 87.61 ± 3.33 85.33 ± 1.81 89.34 ± 2.00 92.62 ± 0.76 94.84 ± 0.64 85.13 ± 1.45 87.48 ± 1.03 94.63 ± 1.29 93.43 ± 0.96 95.58 ± 0.66

Kappa (%) 90.21 ± 1.82 86.98 ± 0.92 90.54 ± 1.51 93.68 ± 0.93 95.73 ± 0.98 87.45 ± 0.93 87.88 ± 0.53 94.51 ± 1.09 94.66 ± 0.68 96.41 ± 0.41
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Table 10. The mean and standard deviation of the ten results obtained by different methods on the KSC dataset. Optimal results are shown in bold.

No. 2D-CNN 3D-CNN HybridSN SSAN MAFN ViT HiT CVSSN SSFTT MLFEN

1 95.85 ± 2.59 95.84 ± 0.70 97.92 ± 0.73 90.75 ± 4.86 96.56 ± 2.97 96.94 ± 4.67 95.04 ± 3.86 93.37 ± 4.08 99.80 ± 0.22 97.42 ± 2.51
2 71.31 ± 7.57 56.12 ± 4.90 64.52 ± 9.92 59.62 ± 7.69 61.44 ± 9.53 90.30 ± 5.57 92.25 ± 7.32 62.89 ± 16.14 66.27 ± 4.19 66.92 ± 3.86
3 92.91 ± 5.10 58.40 ± 9.72 89.16 ± 9.77 89.60 ± 6.92 77.91 ± 9.24 62.38 ± 5.77 83.27 ± 9.92 78.36 ± 13.58 100.00 ± 0.00 99.16 ± 1.28
4 19.57 ± 6.56 21.95 ± 0.60 25.89 ± 6.09 28.26 ± 9.91 39.53 ± 7.90 37.92 ± 9.37 41.06 ± 7.89 54.51 ± 9.01 86.23 ± 8.45 91.35 ± 7.55
5 14.62 ± 4.89 16.37 ± 2.57 15.80 ± 8.25 47.02 ± 9.42 38.50 ± 5.90 44.06 ± 7.43 41.76 ± 2.67 52.04 ± 21.45 81.76 ± 0.00 79.87 ± 4.62
6 67.62 ± 9.02 52.47 ± 1.86 71.97 ± 7.64 50.31 ± 9.89 33.19 ± 3.13 38.36 ± 6.56 51.86 ± 7.31 79.53 ± 15.25 60.00 ± 11.51 95.83 ± 5.20
7 85.74 ± 7.93 94.06 ± 8.77 88.82 ± 8.73 85.80 ± 6.72 78.60 ± 8.03 55.90 ± 3.60 56.00 ± 5.70 79.52 ± 19.96 100.00 ± 0.00 100.00 ± 0.00
8 84.23 ± 8.79 47.27 ± 4.03 80.41 ± 9.11 78.47 ± 5.87 81.79 ± 7.97 80.79 ± 9.33 84.40 ± 8.07 59.45 ± 8.98 97.92 ± 1.61 99.66 ± 0.51
9 86.73 ± 2.14 86.22 ± 1.37 87.54 ± 1.19 73.92 ± 8.96 90.87 ± 8.55 76.62 ± 9.21 87.92 ± 5.63 86.78 ± 8.84 86.54 ± 3.45 94.67 ± 4.65
10 91.35 ± 2.86 84.30 ± 2.35 85.19 ± 5.22 70.54 ± 9.30 96.50 ± 4.15 96.76 ± 4.12 92.75 ± 8.28 71.17 ± 17.22 99.85 ± 0.32 99.92 ± 0.16
11 99.86 ± 0.26 99.27 ± 1.18 100.00 ± 0.00 98.09 ± 2.56 90.30 ± 6.45 92.74 ± 7.05 95.31 ± 4.97 95.21 ± 5.83 100.00 ± 0.00 100.00 ± 0.00
12 96.98 ± 1.07 93.50 ± 1.02 93.23 ± 4.30 80.62 ± 9.72 91.50 ± 7.58 78.47 ± 8.26 83.90 ± 7.95 89.64 ± 7.51 98.43 ± 1.44 99.98 ± 0.06
13 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.49 ± 1.02 99.53 ± 1.47 99.98 ± 0.07 99.92 ± 0.25 99.07 ± 1.90 100.00 ± 0.00 100.00 ± 0.00

OA (%) 85.29 ± 2.24 78.81 ± 0.60 84.31 ± 2.42 77.82 ± 2.66 82.65 ± 5.22 79.29 ± 4.87 81.63 ± 4.66 81.39 ± 2.82 93.73 ± 0.80 96.13 ± 0.75
AA (%) 77.65 ± 3.11 68.90 ± 0.55 75.60 ± 3.35 69.88 ± 3.38 72.66 ± 6.53 68.17 ± 7.89 72.26 ± 8.38 77.04 ± 3.54 90.52 ± 1.13 93.98 ± 1.03

Kappa (%) 83.65 ± 2.47 76.36 ± 0.67 82.52 ± 2.70 75.30 ± 2.98 80.48 ± 5.98 76.58 ± 5.67 79.28 ± 5.39 79.26 ± 3.15 93.01 ± 0.89 95.69 ± 0.84

Table 11. The mean and standard deviation of the ten results obtained by different methods on the SA dataset. Optimal results are shown in bold.

No. 2D-CNN 3D-CNN HybridSN SSAN MAFN ViT HiT CVSSN SSFTT MLFEN

1 98.59 ± 2.45 97.31 ± 2.68 97.41 ± 3.13 99.97 ± 0.02 99.56 ± 0.91 99.27 ± 1.59 97.53 ± 2.94 99.19 ± 1.14 99.82 ± 0.30 99.96 ± 0.05
2 99.91 ± 0.18 99.65 ± 0.64 99.91 ± 0.08 99.40 ± 1.04 100.00 ± 0.00 99.89 ± 0.24 99.74 ± 0.54 99.98 ± 0.04 99.99 ± 0.04 99.99 ± 0.02
3 99.49 ± 0.17 97.82 ± 0.99 97.43 ± 3.51 96.17 ± 1.98 99.97 ± 0.08 99.24 ± 1.66 97.04 ± 4.85 96.86 ± 1.58 100.00 ± 0.00 99.98 ± 0.03
4 99.60 ± 0.27 99.59 ± 0.12 97.31 ± 4.48 96.50 ± 3.46 99.78 ± 0.33 85.76 ± 8.91 88.04 ± 8.04 95.87 ± 2.66 99.88 ± 0.12 99.11 ± 1.44
5 97.58 ± 0.45 90.58 ± 2.81 94.22 ± 3.96 92.66 ± 2.58 95.94 ± 5.93 97.92 ± 2.19 94.52 ± 3.43 98.12 ± 1.63 98.65 ± 0.31 99.38 ± 0.40
6 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.96 ± 0.07 99.98 ± 0.03 99.86 ± 0.40 98.37 ± 2.84 99.97 ± 0.07 99.74 ± 0.73 99.90 ± 0.17
7 98.85 ± 0.80 99.58 ± 0.19 99.24 ± 0.98 99.30 ± 0.42 99.86 ± 0.07 99.73 ± 0.35 98.96 ± 1.75 99.29 ± 0.86 99.96 ± 0.09 99.96 ± 0.04
8 85.21 ± 2.42 79.57 ± 1.99 84.01 ± 3.04 84.23 ± 2.20 96.38 ± 1.96 92.58 ± 3.87 88.93 ± 7.55 92.92 ± 1.76 98.93 ± 0.74 99.19 ± 0.66
9 99.94 ± 0.05 99.91 ± 0.10 99.97 ± 0.03 98.64 ± 2.36 99.99 ± 0.02 99.88 ± 0.30 99.77 ± 0.47 99.67 ± 0.34 100.00 ± 0.00 100.00 ± 0.00
10 95.78 ± 0.75 90.96 ± 1.87 92.10 ± 1.99 87.90 ± 3.00 98.82 ± 0.51 97.79 ± 2.17 91.94 ± 7.53 95.76 ± 2.13 98.63 ± 0.55 99.45 ± 0.35
11 84.23 ± 2.38 84.42 ± 0.64 86.56 ± 2.52 89.77 ± 4.19 98.87 ± 0.83 99.11 ± 1.13 96.83 ± 3.39 94.54 ± 5.67 99.90 ± 0.09 98.81 ± 1.95
12 99.81 ± 0.11 99.96 ± 0.04 99.84 ± 0.12 98.64 ± 0.97 99.83 ± 0.47 95.97 ± 4.06 94.34 ± 7.19 99.66 ± 0.50 99.92 ± 0.08 99.94 ± 0.10
13 98.44 ± 0.60 97.28 ± 0.54 93.44 ± 5.94 94.95 ± 3.63 93.25 ± 4.61 92.13 ± 8.78 95.95 ± 3.79 99.18 ± 1.27 92.18 ± 3.22 93.08 ± 4.22
14 98.13 ± 0.75 97.80 ± 0.50 98.85 ± 0.51 97.35 ± 0.58 98.44 ± 0.70 90.09 ± 8.79 75.74 ± 8.17 98.20 ± 1.45 99.32 ± 0.29 99.23 ± 0.65
15 70.37 ± 3.86 71.29 ± 3.52 79.70 ± 2.71 82.12 ± 3.13 89.12 ± 4.18 66.40 ± 6.77 78.49 ± 5.58 89.59 ± 2.68 94.42 ± 1.50 96.15 ± 2.21
16 96.92 ± 0.74 96.67 ± 1.32 96.70 ± 1.21 95.22 ± 4.05 99.42 ± 0.23 98.69 ± 0.58 94.38 ± 2.47 98.68 ± 1.44 99.76 ± 0.35 99.88 ± 0.16

OA (%) 91.91 ± 0.20 90.11 ± 0.36 92.34 ± 0.41 92.20 ± 0.72 97.28 ± 0.67 89.80 ± 2.11 88.94 ± 3.11 96.17 ± 0.19 98.69 ± 0.26 99.05 ± 0.45
AA (%) 95.18 ± 0.23 93.90 ± 0.35 94.79 ± 0.53 94.55 ± 1.01 98.08 ± 0.42 91.78 ± 1.84 89.44 ± 3.94 97.34 ± 0.45 98.82 ± 0.29 99.00 ± 0.39

Kappa (%) 90.99 ± 0.22 88.99 ± 0.40 91.48 ± 0.46 91.31 ± 0.80 96.97 ± 0.75 88.60 ± 2.39 88.23 ± 3.33 95.73 ± 0.21 98.54 ± 0.29 98.95 ± 0.50
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Table 12. The mean and standard deviation of the ten results obtained by different methods on the IP dataset. Optimal results are shown in bold.

No. 2D-CNN 3D-CNN HybridSN SSAN MAFN ViT HiT CVSSN SSFTT MLFEN

1 1.34 ± 1.17 0.91 ± 2.20 0.23 ± 0.72 0.46 ± 1.44 15.00 ± 19.47 2.91 ± 1.12 1.70 ± 1.26 47.41 ± 5.55 44.67 ± 29.72 6.67 ± 1.93
2 71.80 ± 1.73 40.48 ± 8.31 49.56 ± 6.43 41.36 ± 4.75 81.21 ± 4.66 51.50 ± 2.73 66.00 ± 11.17 59.64 ± 0.97 68.80 ± 3.50 86.59 ± 4.96
3 29.88 ± 7.38 23.22 ± 2.20 44.42 ± 3.33 13.69 ± 7.03 74.56 ± 1.82 34.71 ± 4.15 5.67 ± 4.34 53.49 ± 9.51 94.96 ± 1.73 90.74 ± 5.10
4 4.32 ± 8.77 6.08 ± 8.84 16.87 ± 5.86 26.43 ± 1.78 34.74 ± 5.65 20.33 ± 12.19 40.18 ± 14.34 62.68 ± 5.64 46.00 ± 6.41 85.58 ± 2.62
5 18.12 ± 3.73 25.21 ± 3.04 49.46 ± 5.87 36.37 ± 3.96 87.82 ± 1.69 30.66 ± 6.16 81.73 ± 3.02 62.11 ± 7.84 75.44 ± 1.29 96.82 ± 3.82
6 97.74 ± 1.52 92.59 ± 3.65 92.29 ± 3.9 90.16 ± 8.63 95.14 ± 2.44 85.20 ± 1.38 91.25 ± 2.71 80.68 ± 6.39 95.64 ± 1.44 98.45 ± 1.40
7 0.00 ± 0.00 0.00 ± 0.00 0.77 ± 2.43 1.83 ± 5.37 1.72 ± 2.43 17.95 ± 5.39 3.82 ± 3.23 25.89 ± 2.46 0.00 ± 0.00 0.00 ± 0.00
8 98.38 ± 0.81 95.07 ± 3.00 93.97 ± 8.28 87.45 ± 7.38 97.53 ± 1.82 80.95 ± 14.93 93.16 ± 4.37 97.90 ± 3.88 99.49 ± 0.42 97.49 ± 0.42
9 0.00 ± 0.00 1.67 ± 5.27 2.94 ± 1.73 3.05 ± 1.95 1.30 ± 1.84 7.41 ± 6.93 1.85 ± 0.62 19.20 ± 9.80 0.00 ± 0.00 21.52 ± 1.08
10 40.28 ± 8.46 22.78 ± 7.21 61.99 ± 2.90 36.83 ± 6.75 65.30 ± 16.17 61.20 ± 3.57 49.94 ± 14.19 64.58 ± 0.13 75.17 ± 1.93 87.85 ± 3.69
11 69.16 ± 6.36 83.38 ± 8.53 72.62 ± 5.00 85.34 ± 3.06 81.70 ± 9.51 74.16 ± 6.79 71.38 ± 8.02 75.06 ± 5.27 92.67 ± 1.83 95.21 ± 1.22
12 23.34 ± 1.53 25.12 ± 7.36 40.51 ± 3.13 16.92 ± 2.16 68.35 ± 9.51 21.67 ± 12.01 10.18 ± 6.70 41.28 ± 5.23 63.05 ± 9.53 75.88 ± 4.21
13 73.62 ± 7.6 59.59 ± 2.65 79.59 ± 9.82 80.20 ± 8.36 98.19 ± 0.68 63.78 ± 5.24 98.28 ± 1.28 76.18 ± 3.86 86.75 ± 6.32 98.90 ± 1.05
14 96.78 ± 4.84 96.05 ± 4.10 94.41 ± 6.90 93.75 ± 3.87 90.66 ± 7.59 90.53 ± 9.53 81.17 ± 7.81 86.10 ± 5.52 99.32 ± 0.61 99.17 ± 0.68
15 23.73 ± 7.94 40.94 ± 3.14 30.48 ± 2.33 28.60 ± 4.78 65.13 ± 5.94 31.22 ± 9.68 43.53 ± 9.47 63.29 ± 9.04 90.10 ± 2.59 92.39 ± 4.01
16 36.07 ± 4.50 53.37 ± 9.22 57.55 ± 4.65 20.45 ± 4.88 87.95 ± 7.81 76.76 ± 3.45 77.65 ± 7.72 80.44 ± 0.65 46.20 ± 6.96 86.81 ± 6.80

OA (%) 61.32 ± 2.52 58.56 ± 2.36 64.68 ± 3.38 59.07 ± 2.98 80.19 ± 1.64 60.98 ± 2.19 62.05 ± 3.74 67.26 ± 2.59 84.33 ± 1.20 89.29 ± 2.48
AA (%) 42.70 ± 4.44 41.65 ± 4.32 48.69 ± 6.09 41.13 ± 4.03 65.38 ± 2.44 46.75 ± 5.33 50.75 ± 2.75 62.25 ± 2.70 67.39 ± 2.35 72.64 ± 6.31

Kappa (%) 55.41 ± 2.69 51.34 ± 3.07 59.50 ± 3.96 52.04 ± 3.73 77.31 ± 1.85 55.06 ± 2.54 56.10 ± 4.50 62.70 ± 2.90 82.06 ± 1.37 87.70 ± 2.88

Table 13. The mean and standard deviation of the ten results obtained by different methods on the HU dataset. Optimal results are shown in bold.

No. 2D-CNN 3D-CNN HybridSN SSAN MAFN ViT HiT CVSSN SSFTT MLFEN

1 94.50 ± 4.70 98.96 ± 1.17 98.80 ± 1.55 92.75 ± 5.32 91.93 ± 1.17 89.86 ± 5.51 91.67 ± 6.30 89.15 ± 6.94 95.70 ± 1.49 93.34 ± 1.52
2 83.20 ± 3.86 84.66 ± 2.89 86.21 ± 3.64 83.79 ± 4.58 90.99 ± 5.65 79.72 ± 1.15 93.83 ± 6.41 92.33 ± 5.06 91.39 ± 3.64 92.52 ± 2.98
3 71.40 ± 21.16 91.34 ± 1.84 91.49 ± 5.20 95.12 ± 5.35 97.16 ± 1.37 94.06 ± 7.61 98.80 ± 1.78 94.22 ± 5.86 96.02 ± 0.89 93.24 ± 2.36
4 92.50 ± 3.72 91.38 ± 2.84 87.36 ± 8.99 91.81 ± 1.58 78.56 ± 5.09 73.25 ± 1.49 90.70 ± 6.23 86.62 ± 12.28 86.57 ± 2.06 84.44 ± 6.53
5 100.00 ± 0.00 98.76 ± 1.22 99.60 ± 0.57 94.63 ± 5.51 99.72 ± 0.57 97.76 ± 5.89 98.19 ± 2.20 93.12 ± 2.27 100.00 ± 0.00 100.00 ± 0.00
6 67.07 ± 5.71 69.06 ± 6.05 70.12 ± 3.69 62.39 ± 14.03 80.92 ± 3.17 72.63 ± 6.92 72.26 ± 12.88 83.49 ± 17.15 81.76 ± 2.59 83.57 ± 3.44
7 65.33 ± 8.03 58.87 ± 3.06 67.84 ± 7.80 54.45 ± 3.01 69.08 ± 9.78 73.94 ± 4.28 84.37 ± 8.13 82.26 ± 4.26 75.28 ± 2.10 78.62 ± 3.86
8 59.71 ± 4.86 56.35 ± 3.31 71.61 ± 6.01 58.42 ± 9.90 74.15 ± 5.46 64.46 ± 2.31 61.49 ± 11.88 76.77 ± 7.58 79.70 ± 6.62 77.27 ± 1.52
9 73.75 ± 6.08 77.38 ± 4.04 58.80 ± 9.29 77.86 ± 5.09 67.99 ± 13.68 52.99 ± 8.57 76.88 ± 10.79 82.33 ± 6.56 79.64 ± 3.53 79.80 ± 14.88
10 43.30 ± 10.46 68.96 ± 6.93 78.29 ± 5.69 78.17 ± 13.18 88.37 ± 6.62 71.73 ± 4.15 68.60 ± 14.45 73.30 ± 7.66 88.72 ± 4.42 93.33 ± 4.96
11 70.04 ± 9.62 71.38 ± 8.66 77.17 ± 8.21 72.25 ± 5.07 75.56 ± 10.25 68.79 ± 1.18 75.19 ± 9.15 79.90 ± 8.38 76.67 ± 5.67 85.65 ± 7.11
12 69.34 ± 10.86 65.57 ± 8.99 80.37 ± 10.07 60.05 ± 11.81 80.91 ± 4.40 73.30 ± 1.94 71.46 ± 12.75 77.23 ± 8.31 83.38 ± 3.63 89.13 ± 5.87
13 67.56 ± 7.65 91.26 ± 1.55 63.09 ± 8.55 71.83 ± 8.06 74.58 ± 11.49 42.66 ± 5.33 58.15 ± 15.62 87.66 ± 7.88 90.22 ± 3.32 80.72 ± 7.77
14 62.93 ± 19.29 91.58 ± 3.06 86.07 ± 10.24 81.42 ± 13.39 99.63 ± 0.43 97.07 ± 2.23 91.34 ± 18.01 74.98 ± 5.29 100.00 ± 0.00 99.67 ± 0.49
15 98.91 ± 0.61 98.77 ± 0.73 98.39 ± 1.46 92.57 ± 2.82 99.91 ± 0.18 97.93 ± 3.45 98.95 ± 1.33 89.05 ± 7.43 100.00 ± 0.00 99.98 ± 0.05

OA (%) 74.89 ± 1.18 79.29 ± 1.50 80.81 ± 1.73 77.40 ± 1.86 83.25 ± 2.79 75.23 ± 3.45 81.93 ± 2.24 83.04 ± 2.20 87.09 ± 1.03 88.17 ± 1.81
AA (%) 74.64 ± 1.84 80.95 ± 1.40 81.01 ± 1.69 77.83 ± 2.06 84.63 ± 2.51 76.01 ± 2.99 82.13 ± 2.79 84.16 ± 2.09 88.34 ± 0.88 88.75 ± 1.80

Kappa (%) 72.82 ± 1.28 77.62 ± 1.62 79.25 ± 1.87 75.58 ± 2.01 81.90 ± 3.02 73.30 ± 3.65 80.45 ± 2.43 81.67 ± 2.39 86.05 ± 1.11 87.21 ± 1.96
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The PU dataset contains fewer categories and is mainly used to validate the model’s
classification performance in the presence of multi-scale coarse-graining. The OA of all
methods except ViT exceeds 90%, among which the OA of MAFN method reaches 96.33%,
indicating that this dataset is not too difficult to classify. However, MLFEN is the most
superior in all three classification metrics, with an OA improvement of 1.04% over MAFN.
This could potentially be attributed to the fact that although MAFN applies the attention
mechanism for spatial and spectral information, respectively, it ignores the link between
them. In contrast, MLFEN considers the correlation between spatial and spectral features
through its HCAM module, resulting in higher classification accuracy.

The number of samples used for training on the KSC dataset is only 50, making it suit-
able for evaluating the model’s classification performance with limited data. Unfortunately,
the classification performance of convolution-based 2D-CNN, 3D-CNN, HybridSN, CVSSN
methods, attention-mechanism-based SSAN, MAFN methods, and transformer-based ViT,
HiT, SSFTT methods need to be improved. However, the MLFEN method exhibited abso-
lute dominance, achieving the best accuracy in terms of OA, AA, Kappa, and 9 out of the
13 classes. The OA of MLFEN outperformed the other methods by margins ranging from
2.4% to 18.31%. These results indicate that MLFEN demonstrates excellent performance
even with limited sample data.

The SA dataset contains 16 classes with a large disparity in the number of samples
between classes. The primary purpose of using this dataset is to evaluate how well the
model can address these class imbalances. However, both the transformer-based ViT and
HiT methods performed poorly on the SA dataset, suggesting that they struggle to over-
come the effects of class imbalances. Another transformer-based network, SSFTT, performs
slightly worse for some of the classes even though it performs well on five classes. The
proposed MLFEN achieves remarkably high performance on various evaluation metrics.
Specifically, it achieved 99.05% OA, 99.00% AA, and 98.95% Kappa. These results clearly
demonstrate that the proposed method successfully addresses the differences between
classes and significantly improves classification performance.

The IP dataset contains up to 16 categories where there is a significant imbalance in the
distribution of samples between categories. The main objective of utilising this dataset is to
assess the ability of the models to handle these category imbalances. Strikingly, traditional
transformer-based models, such as ViT and HiT, perform poorly on the IP dataset, implying
that they struggle to overcome the challenges posed by category imbalances. In addition,
another transformer-based network, SSFTT, performs slightly weakly for some categories,
although it performs well in handling four categories. In contrast, the proposed MLFEN
demonstrates significant efficacy, achieving excellent results on various evaluation metrics.
Of particular note, it achieved an impressive 89.29% OA, 72.64% AA and 87.70% Kappa.
These results highlight that the method successfully copes with the differences between
categories, improving classification performance on the IP dataset.

After quantitative analysis of the classification result of HU, our model achieved
88.17% accuracy across the entire dataset, demonstrating classification accuracy for multiple
categories. Specifically, for a specific category “Fallow_smooth”, we observe that the model
has a precision of 100.00%. Similarly, MLFEN achieves 88.75% for AA and 87.21% for
Kappa, the highest among the selected state-of-the-art methods.

3.5.2. Visual Analysis

The classification maps can vividly visualize the difference in effect between the proposed
method MLFEN and other comparative methods. Therefore, we show in Figures 6–10 the
classification effects of MLFEN and nine different methods on the five datasets, respectively.

In general, the classification maps obtained by the MLFEN model best fit the ground
truth maps and are the clearest. Specifically, as shown in Figure 6, the category that is
harder to distinguish is the blue region located in the middle of the image. The classification
results of most methods for this region are adulterated with many yellow pixels, and the
MAFN and the proposed MLFEN methods are the most accurate for this region. However,
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for the yellow region at the bottom of the image, the MAFN method incorrectly classifies
many pixels as blue, whereas the MLFEN method recognizes the yellow color to a greater
extent. These two regions on the image of the PU dataset confirm the superior performance
of our method. Moreover, MLFEN successfully mitigated the problem of the category “Self-
Blocking Bricks” being misclassified as other classes and other classes being misclassified
as “Self-Blocking Bricks” that occurs in SSFTT.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Asphalt

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

(l)

Figure 6. Classification maps on the PU dataset. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (d) SSAN.
(e) MAFN. (f) ViT. (g) HiT. (h) CVSSN. (i) SSFTT. (j) MLFEN (Ours). (k) Ground truth. (l) Color bar.

(l)

(a)(a) (b)(b) (c)(c) (d)(d) (e)(e) (f)(f)

(g)(g) (h)(h) (i)(i) (j)(j) (k)(k) (l)

Figure 7. Classification maps on the KSC dataset. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (d) SSAN.
(e) MAFN. (f) ViT. (g) HiT. (h) CVSSN. (i) SSFTT. (j) MLFEN (Ours). (k) Ground truth. (l) Color bar.

Furthermore, by observing and comparing the inter-class boundary regions presented
in Figure 7, it can be observed that the MLFEN classification map has the clearest bound-
aries. Meanwhile, we chose a zoomed-in region of interest (ROI) to further highlight the
classification performance of different models more visually. The ROI can be analysed to
intuitively see that the classification effect of our method is at its best.

In addition, on the SA dataset, for the category “Broccoli-green-weeds-2” in blue
and the category “Corn-senesced-green-weeds” in gray, the comparison methods contain
significantly more noise, indicating that these methods are unable to accurately identify
feature classes. The MLFEN method, on the other hand, has less noise on category “Broccoli-
green-weeds-2”, while the category in gray is clean. In the “Grapes_untrained” class
(light grey area in Figure 8), some misclassification pixels appears, which indicates that
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the MLFEN method is slightly less effective than SSFTT in this class. However, SSFTT
exhibits inadequacies in the blue area, which allows MLFEN to achieve superior results
in comparison.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Broccoli_green_weeds_1

Broccoli_green_weeds_2

Fallow

Fallow_rough_plow

Fallow_smooth

Stubble

Celery

Grapes_untrained

Soil_vineyard_develop

Corn_senesced_green_weeds

Lettuce_remaine_4wk

Lettuce_remaine_5wk

Lettuce_remaine_6wk

Lettuce_remaine_7wk

Vineyard_untrained

Vineyard_vertical_trellis

(l)

Figure 8. Classification maps on the SA dataset. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (d) SSAN.
(e) MAFN. (f) ViT. (g) HiT. (h) CVSSN. (i) SSFTT. (j) MLFEN (Ours). (k) Ground truth. (l) Color bar.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)
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 Corn mintill
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Figure 9. Classification maps on the IP dataset. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (d) SSAN.
(e) MAFN. (f) ViT. (g) HiT. (h) CVSSN. (i) SSFTT. (j) MLFEN (Ours). (k) Ground truth. (l) Color bar.

On the IP dataset, MLFEN achieved the best classification results for the upper middle
part “Corn notill” and the right middle part “Soybean notill”, which are easily misclassified
by other methods. Although MLFEN exhibits some noise, the classification outcomes for
various categorical areas are generally accurate. Unlike other methods, it does not suffer
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from the issue where the majority of pixels within categorical regions are misclassified into
incorrect categories.

(j)

(k)

(i)

(a)(a) (b)(b)

(c)(c) (d)(d)

(e)(e) (f)(f)

(g)(g)

(i)(i)

(h)(h)

(j)(j)

(k)(k) (l)

Figure 10. Classification maps on the HU dataset. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (d) SSAN.
(e) MAFN. (f) ViT. (g) HiT. (h) CVSSN. (i) SSFTT. (j) MLFEN (Ours). (k) Ground truth. (l) Color bar.

As for the HU dataset, by analysing the ROI in Figure 10, it can be found that the
MLFEN method achieves optimal classification in the red and blue clustered regions and
achieves efficient classification. Our method demonstrates superior boundary classifica-
tion capabilities, further corroborating the exceptional classification performance of the
MLFEN approach.

4. Discussion

Figure 11 shows the training and testing times of the different methods on the three
datasets. In order to facilitate a comprehensive and objective evaluation of the different
models with regard to both computational cost and performance, the three indicators
are presented in the figure in the form of broken lines. Owing to the properties of con-
volution such as parameter sharing and local connectivity, 2D-CNN has relatively less
computation time. However, due to the increase in dimensions and parameters, the
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running time of 3D-CNN is substantially longer. HybridSN extracts the joint spatial–
spectral features of the image by combining the above two convolutions, and the run-
ning time is shorter than pure 3D-CNN, but naturally longer than 2D-CNN. It is worth
noting that the CVSSN and SSFTT methods maintain high accuracy while also having
relatively short time costs. The computation times of ViT and HiT are relatively long
due to the introduction of the self-attention mechanism and the fully connected layers,
which require a large number of matrix multiplication and addition operations at each
layer of the model. These operations require more computational resources and time.
The method proposed in this paper requires significantly less time than the ViT and
HiT methods, while achieving the best classification performance on all three datasets.
The above analysis shows that, on the one hand, a certain extension of the computation
time is within a reasonable range, considering the significant increase in performance.
On the other hand, investigations toward further reducing computational costs while
maintaining superior classification performance represent a direction worth exploring in
the future.
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Figure 11. Running time and classification performance of different models.

5. Conclusions

In this paper, MLFEN network is proposed for mining multiple sources of information
from HSIs at multiple levels. On the one hand, in order to obtain 3D attributes of HSIs and
maintain the spatial structure of HSIs, the HCAM module employs hybrid convolution to
mine shallow features. HCAM integrates the band shift strategy, convolution operations
and attention mechanisms to achieve focusing, mining and enhancement of multidimen-
sional features. On the other hand, in order to avoid excessive information loss and increase
model adaptability to the HSI classification task, EDVT reorganizes the encoder connections
and adds the AFF module to achieve adaptive feature reuse and fusion. In addition, a
novel sparse loss function is proposed to enhance the sparse representation ability of the
model, providing prediction results that are closer to the real data distribution. Extensive
experiments conducted on five datasets fully validate the superior effectiveness of MLFEN.

In the future, we will introduce more advanced techniques to optimize the model
and make it more suitable for HSI classification tasks, such as transfer learning and
band selection. In addition, the fusion strategy of the two modules, EDVT and HCAM,
may be an important factor affecting performance thus warranting further attention
and research.
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Abbreviations
The following abbreviations are used in this manuscript:

HSI Hyperspectral image
MLFEN Multi-Level Feature Extraction Network
HCAM Hybrid Convolutional Attention Module
EDVT Enhanced Dense Vision Transformer
PCA Principal Component Analysis
CNN Convolutional Neural Network
1D-CNN 1D Convolutional Neural Network
2D-CNN 2D Convolutional Neural Network
3D-CNN 3D Convolutional Neural Network
HybridSN Hybrid Spectral Convolutional Neural Network
CVSSN Central Vector-oriented Self-Similarity Network
SSFTT Spectral–Spatial Feature Tokenization Transformer
SENet Squeeze-and-Excitation Network
DANet Dual Attention Network
SSAN Spectral-Spatial Attention Network
MAFN Multi Attention Fusion Network
ViT Vision Transformer
HiT Hyperspectral image Transformer
AFF Adaptive Feature Fusion
MSA Multi-head Self-Attention mechanism
MLP Multi-Layer Perception network
AM Attention Module
ReLU Rectified Linear Unit
LN Layer Normalization
PU Pavia University dataset
KSC Kennedy Space Center dataset
SA Salinas dataset
IP Indian Pines dataset
HU Houston University
ROSIS Reflective Optics System Imaging Spectrometer
AVIRIS Airborne Visible/InfraRed Imaging Spectrometer
OA Overall Accuracy
AA Average Accuracy
Kappa Kappa Coefficient
ROI Region Of Interest
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