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Abstract: Oriented object detection for remote sensing images poses formidable challenges due to
arbitrary orientation, diverse scales, and densely distributed targets (e.g., across terrain). Current
investigations in remote sensing object detection have primarily focused on improving the repre-
sentation of oriented bounding boxes yet have neglected the significant orientation information of
targets in remote sensing contexts. Recent investigations point out that the inclusion and fusion of
orientation information yields substantial benefits in training an accurate oriented object system.
In this paper, we propose a simple but effective orientation information integrating (OII) network
comprising two main parts: the orientation information highlighting (OIH) module and orientation
feature fusion (OFF) module. The OIH module extracts orientation features from those produced by
the backbone by modeling the frequency information of spatial features. Given that low-frequency
components in an image capture its primary content, and high-frequency components contribute to its
intricate details and edges, the transformation from the spatial domain to the frequency domain can
effectively emphasize the orientation information of images. Subsequently, our OFF module employs
a combination of a CNN attention mechanism and self-attention to derive weights for orientation
features and original features. These derived weights are adopted to adaptively enhance the original
features, resulting in integrated features that contain enriched orientation information. Given the
inherent limitation of the original spatial attention weights in explicitly capturing orientation nuances,
the incorporation of the introduced orientation weights serves as a pivotal tool to accentuate and
delineate orientation information related to targets. Without unnecessary embellishments, our OII
network achieves competitive detection accuracy on two prevalent remote sensing-oriented object
detection datasets: DOTA (80.82 mAP) and HRSC2016 (98.32 mAP).

Keywords: frequency transformation; orientation weight; remote sensing object detection; attention
mechanism; self-attention

1. Introduction

The significance of remote sensing object detection is underscored across diverse
domains, encompassing aerial reconnaissance, disaster relief, and resource exploration.
Objects in aerial images pose a formidable challenge for oriented object detection due to
their arbitrary orientation and dense distribution, which is in contrast to natural images.
Driven by the accelerated evolution of neural networks, various methodologies have
shifted towards employing convolution neural networks (CNNs) to address the intricacies
associated with object detection in the realm of remote sensing.

However, conventional CNNs encounter significant challenges in representing in-
stances with arbitrary orientation due to their inability to model orientation variation
explicitly. In recent years, a common trend in the mainstream is to generate bounding
boxes that accurately align with the orientation of detected objects instead of simply creat-
ing horizontal bounding boxes around them. As a result, considerable research has been
dedicated to enhancing the representation of oriented bounding boxes for remote sensing
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detection. Parametric regression is a prevalent approach for oriented object detection,
prominently involving five-parameter regression techniques [1–4] and eight-parameter
regression methodologies [5,6]. The widely employed five-parameter regression methods
achieve the detection of rotated bounding boxes with arbitrary orientation by defining
a rectangle with parameters (x, y, w, h, θ), introducing an additional angle parameter θ
within the range of [−90, 0) or [−90, 90). In order to address the boundary discontinuity
issues arising from angular periodicity, Yang et al. [7] proposed adopting circular smooth
labels (CSLs) to minimize training errors between adjacent angles. Furthermore, to better
capture orientation variations, certain two-stage detectors [1,6,8–10] dynamically gener-
ate candidate proposals with diverse scales, aspect ratios, and angles. By embracing a
densely anchor-based generation strategy, these methods enable the detection of objects
with varying aspect ratios and angles while minimizing background noise. Nevertheless,
it is essential to acknowledge that while these approaches effectively model orientation
variations through dense anchors, they come with a notable increase in computational cost.

In conjunction with the aforementioned methodologies, several studies [11–15] have
focused on generating enhanced features to augment the performance of oriented object de-
tection. The efficacy of features is significantly influenced by the mechanism used for feature
selection. Among the predominant techniques in feature selection, attention mechanisms
are widely used to accentuate crucial spatial features while suppressing redundant ones.
Zhang et al. [11] introduced a spatial- and scale-aware attention module that dynamically
attends to salient regions within feature maps at relevant scales. The spatial-aware features
assist the network in addressing objects and backgrounds characterized by sparse texture
and low contrast, while the scale-aware features contribute to handling scale variations.
The synergistic integration of these two aspects is instrumental in accurately localizing
targets in remote sensing images. However, these attention modules tend to emphasize
the localization information of targets in images, often neglecting orientation details. This
oversight results in diminished accuracy in encapsulating oriented bounding boxes.

As depicted in Figure 1, contemporary two-stage rotated object detectors [1,10] have
departed from the preceding dense anchor generation strategy, which incurs decreased
computational demands for acquiring oriented features. After defining the anchors with
different aspect ratios, such as with YOLO [16], these two-stage detectors ultimately derive
rotated proposals through a sequence of transformations. Despite reducing a substantial
computational burden compared to previous dense anchor strategies, these two-stage de-
tectors still require manual prior information for network optimization. For targets densely
distributed within images and exhibiting arbitrary orientations, the manual prior informa-
tion is inadequate to encompass all scenarios. This limitation may result in difficulties for
the detector to accurately fit certain ground truth (GT) instances, consequently leading to a
degradation in detector performance. This suggests a potential need for auxiliary utilization
of certain intrinsic information within images. Figure 2 illustrates the coarse architecture of
feature enhancement using attention mechanisms. The attention modules and other feature
enhancement components are designed to emphasize the location of targets in remote
sensing images. Subsequently, classification and bounding box regression are performed
on the enhanced features to obtain the final detection results. However, these enhanced
features predominantly focus on the spatial positional information of the targets, neglecting
orientation information and making it challenging for the network to model orientation.
In order to address this challenge, Zheng et al. [17] employed a transformation from the
spatial domain to the frequency domain to extract orientation information. Subsequently,
self-attention was applied to amplify the feature output from the backbone block. However,
incorporating self-attention operations after each backbone block resulted in a notable
escalation of computational overhead and memory consumption.
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Figure 1. Extracting orientation information through predefined anchors and transformation.
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Figure 2. Enhancing CNN features through the attention mechanism.

Motivated by the principles of frequency-domain orientation learning (FDOL) [17]
and insights from attention mechanisms [18–20], we propose a novel network, termed
orientation information integrating (OII), for the detection of rotated objects in remote
sensing images. Initially, the orientation information highlighting (OIH) module is designed
to extract orientation features with diverse angles by transitioning from the spatial domain
to the frequency domain. The frequency domain analysis proves effective in accentuating
details and edges between foreground objects and the background. Subsequently, an
orientation feature fusion (OFF) module was developed to compute the orientation weights
and original spatial weights to enhance the CNN features generated by the backbone stage
layers. The combination of orientation weights and spatial weights serves as the control gate
to enhance the backbone features. In contrast to prior efforts [17], our approach captures
more nuanced relationships between the orientation information and the spatial location
information, effectively enhancing the representation ability of the backbone features.
Ultimately, the enriched features are input into the neck and box head to facilitate the
efficient detection of oriented objects in remote sensing images. The primary contributions
of this study encompass three key aspects:

1. We introduce an innovative OIH module designed for extracting orientation features
across different scales and angles. By diverging from the predefined anchors and
traditional feature extraction by CNN, our OIH utilizes a straightforward yet highly
efficient frequency analysis approach for capturing orientation information.

2. Within the OFF module, we use a combination of a CNN attention mechanism and self-
attention to generate orientation weights and original spatial weights. We integrate
these two weights to reinforce our features, imbuing them with both rich orientation
information and spatial positional information simultaneously.
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3. Upon integrating the OIH and OFF modules within the intermediary layers connecting
the backbone and neck, our proposed OII network surpasses numerous state-of-the-
art methods when evaluated on the DOTA and HRSC2016 datasets. This substantiates
the efficacy of incorporating orientation information into CNN features for detecting
rotated objects in remote sensing scenarios.

The remainder of this paper is structured as follows: Section 2 provides a comprehen-
sive review of the recent methodologies related to oriented object detection and attention
mechanisms. The specifics of our proposed method are elucidated in Section 3. Section 4
presents the results obtained from our model and shows a comparative analysis against
several state-of-the-art methods. Finally, Section 5 summarizes the article and delineates
the potential directions for future research.

2. Related Works
2.1. Oriented Object Detection in Remote Sensing

In contrast to object detection in natural images, oriented object detection in remote
sensing images poses heightened challenges due to arbitrary orientations and diverse
object scales. Conventional object detection methods [16,21,22], such as YOLO and Faster
R-CNN, rely on horizontal bounding boxes and face limitations in accurately localizing
oriented objects. This is attributed to the potential inclusion of excessive background noise
or multiple objects within the horizontal bounding boxes, resulting in a disparity between
classification confidence and localization accuracy. To address this issue, researchers have
explored various avenues. The present works in oriented object detection can be categorized
into anchor-based and anchor-free detectors.

For anchor-based detectors, a common strategy involves the use of rotated anchors, as
demonstrated by the rotated region proposal network (rotated RPN) [9], wherein anchors
are predefined with varying angles, scales, and aspect ratios. However, the adoption of a
dense anchor strategy imposes a considerable computational demand and increases the
overall memory footprint. In order to address this computational challenge, Ding et al. [1]
introduced the RoI transformer, using fully connected layers to generate rotated regions
of interest (RoIs) from candidate horizontal RoIs generated by the RPN. While this ap-
proach notably enhances the accuracy of detecting oriented objects, it introduces additional
parameters and complexity to the network due to the inclusion of fully connected layers
and RoI alignment operations during the learning process of rotated RoIs. In an effort
to alleviate this issue, oriented RCNN [10] employs 1 × 1 convolutions instead of fully
connected layers to generate rotated RoIs. Some methodologies [23–25] treat oriented object
detection as a point detection task [26], providing an innovative perspective on remote
sensing object detection.

Moreover, certain methodologies [7,27–35] directly undertake the classification and
regression of oriented bounding boxes without using region proposal generation and
RoI alignment operations. These approaches are commonly referred to as one-stage or
anchor-free methods. For instance, Han et al. [27] introduced a single-shot alignment
network (S2ANet), which aims to mitigate the mismatch between classification scores and
location accuracy through orientation-invariant feature extraction and oriented feature
alignment. Ming et al. [30] devised a novel sparse label assignment (SLA) strategy, leverag-
ing the RetinaNet [36] framework for one-stage oriented object detection. Pan et al. [31]
proposed a dynamic refinement network (DRN) based on CenterNet [25], which uses
an attention mechanism to dynamically refine features extracted from the backbone for
more precise predictions. AOPG [37] and R3Det [32] use a progressive regression method,
iteratively enhancing the precision of bounding boxes from coarse to finer granularity.
Beyond CNN-based detectors, AO2-DETR [38] expands the research landscape by intro-
ducing the transformer framework, thereby fostering diversity in remote sensing object
detection research.

In addition to the aforementioned methodologies, a considerable body of work [5–7,39–42]
has explored the definition of various forms of oriented bounding boxes to represent ori-
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ented objects effectively. Xu et al. [6] introduced a novel box encoding system known as
Gliding Vertex, specifically addressing the training loss challenges arising from rotation
angle periodicity. Apart from CSL [7], Yang et al. [39] further proposed Gaussian Wasser-
stein distance (GWD) loss to mitigate inconsistencies between the localization accuracy and
training loss arising from the angle boundary problem. Qian et al. [5] devised a modulated
loss function to enhance the supervision of bounding box regression optimization, thereby
achieving a more uniform boundary condition.

2.2. Attention Mechanism and Self-Attention

Starting with SENet [43], attention mechanisms have progressively gained attention
from researchers and evolved into a straightforward yet effective feature enhancement
method. In convolution networks, channel attention and spatial attention stand out as the
two most commonly used attention mechanisms. Channel attention mechanisms, exem-
plified by SENet and ECANet [20], leverage global information to dynamically reweight
feature channels, directing the network’s focus toward channels with higher weight values.
Networks such as GCNet [44] and GENet [45] utilize spatial attention to capture spatial
positional relationships, enabling the network to emphasize crucial regions in the image
while disregarding less relevant areas. CBAM [18] implements a sequential attention struc-
ture from channels to spatial dimensions, simultaneously allocating attention across both
dimensions. This dual-dimensional attention distribution enhances the effectiveness of the
attention mechanism in improving model performance.

In addition to channel attention and spatial attention, many methods [46–50] employ
different combinations of convolution kernels to achieve functionality similar to attention
mechanisms. CondConv [48] utilizes parallel convolution kernels to process the same
input features, subsequently employing learnable parameters to adaptively weight the
features outputted by different convolution kernels, thereby achieving feature enhancement.
SKNet [47] uses softmax attention to fuse features from convolution kernels of different
sizes, allowing the network to adjust the receptive field size adaptively. Building upon
the SKNet, SCNet [49] uses small convolution kernels in one branch to capture richer
information while concurrently applying spatial attention in another branch to emphasize
the location information of the targets. This further enhances the representation capabilities
of the features.

Self-attention, originating from the field of natural language processing (NLP), was
initially introduced to the computer vision domain in Vision Transformer (ViT [51]). Unlike
the attention mechanisms mentioned earlier, self-attention requires fewer parameters for
computation but effectively models long-range relationships in images. DETR [22] is
the first method to apply self-attention to object detection tasks, and building upon this
foundation, AO2-DETR [38] successfully extended its application to the domain of oriented
object detection. Built upon stacked ViT blocks, STD [52] utilizes separate network branches
to predict the position, size, and angle of bounding boxes, effectively harnessing the spatial
transform potential of ViTs in a divide-and-conquer fashion.

2.3. Application of Frequency Analysis

Frequency analysis serves as a foundational and powerful technique in the realm
of signal processing. Recent advancements underscore the significance of integrating
frequency analysis into deep learning frameworks. In the research by Ehrlich et al. [53],
frequency analysis is synergistically employed with CNNs for JPEG encoding. The ORSlm
detector [54] adopts a novel spatial frequency channel feature (SFCF) that jointly considers
rotation-invariant features, facilitating the modeling of arbitrary object angles and resulting
in significant improvements in detection performance. Rao et al. [55] used a combination
of 2D discrete Fourier transform (DFT) and 2D inverse discrete Fourier transform (IDFT) to
replace the self-attention operation in GFNet, aiming to capture long-term dependencies in
the frequency domain. The wavelet CNN [56] was introduced to reduce the computational
cost of spectral features in hyper-spectral image (HSI) classification.
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In addition to convolution networks, frequency analysis has proven to be effective in
the transformer architecture. For wave-ViT [57], the researchers applied wavelet transform
to the keys and values of the self-attention to achieve lossless down-sampling and reduce
the computational cost. Fourier former [58] replaced the matrix dot-product with the
generalized Fourier integral, which can efficiently fit any key and query distributions.
In contrast to the traditional transformer with a matrix dot-product, this change brings
better performance and lower redundancy. The researcher of SpectFormer [59] posits that
the frequency layer and the multi-head attention layer play equally pivotal roles in the
transformer architecture. Thus, they introduce the amalgamation of these two components
to capture appropriate feature representation.

3. Methodology

The main objective of our proposed OII method is to utilize frequency analysis to em-
phasize orientation information in images and integrate the orientation feature to enhance
the representation of original features. We first obtain the CNN features from the back-
bone, such as ResNet or VGG. Then, we employ the OIH module following the backbone
to highlight the orientation information through the wavelet transformation algorithm,
exposing the orientation details in images. Once the orientation features are obtained,
the OFF module is adopted to fuse the features from the backbone and the orientation
features. This operation makes the features contain richer information and improves the
representation ability of the features. Finally, the enhanced features are fed into the neck
and head to predict the result. The OII model can be inserted between any backbone and
neck to improve the network’s performance in oriented object detection.

3.1. Overall Architecture

As illustrated in Figure 3, given a remote sensing image X ∈ R1024×1024, the backbone
(such as ResNet) generates features with different scales: fc,0 ∈ R256×256, fc,1 ∈ R128×128,
fc,2 ∈ R64×64, and fc,3 ∈ R32×32. Then, the OIH module is implemented in each CNN
feature to produce the orientation feature :

fo,i = OIH( fc,i), i ∈ {0, 1, 2, 3} (1)

where fo,i represents the orientation feature corresponding to the ith backbone feature, and
fc,i denotes the feature generated by the backbone. Before feeding the backbone features
into the neck, we employ the OFF module to fuse them with the corresponding orientation
features. This enhances the orientation awareness of the features. The process of our
proposed OFF module can be described as follows:

fe,i = OFF( fc,i, fo,i), i ∈ {0, 1, 2, 3} (2)

where the fe,i represents the enhanced CNN feature that will be fed into the neck and head
for prediction.

3.2. Orientation Information Highlighting Module

Before introducing the orientation information highlighting (OIH) module, we provide
a succinct overview of wavelet transform (WT), a significant component in signal processing
and an integral part of our OIH module. WT is a mathematical technique that is particularly
effective at representing and analyzing signals or data exhibiting variations in both the
frequency and time domains. By extending 1D discrete wavelet transform (DWT), 2D DWT
serves as a potent tool for representing and analyzing images, capturing both local and
global features.

In the computational process, a pair of high-pass and low-pass filters are alternately
applied to the image, extracting information related to changes in intensity and texture in
both the horizontal and vertical directions. Subsequently, each resulting feature undergoes
down-sampling to mitigate redundancy and computational complexity. This division
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results in four quadrants: FLL (low-low), FLH (low-high), FHL (high-low), and FHH (high-
high), representing the different scales and orientation information within the image. This
process is iterated for the FLL quadrant (representing a lower scale) to further decompose
the image or feature into a smaller scale, allowing for the recursive extraction of details at
various levels of granularity.
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Figure 3. Illustration of our OII network. Ci denotes the feature extracted by the backbone, Oi denotes
the orientation feature extracted by OIH, and Ei represents the enhanced feature, which is fed into
the neck.

The ultimate output of 2D DWT is a set of coefficients representing the image at
multiple scales and orientations. These coefficients encode information about the image’s
content, with higher-frequency coefficients typically reflecting finer details and lower-
frequency coefficients depicting coarser features. When taking the Haar wavelet as an
example, the filters used for 2D-DWT are set as follows:

fLL =

[
1 1
1 1

]
fLH =

[
−1 −1
1 1

]
fHL =

[
−1 1
−1 1

]
fHH =

[
1 −1
−1 1

] (3)

where fLL represents a pair of low-pass filters, fLH denotes a low-pass filter with a following
high-pass filter, fHL indicates a high-pass filter with a following low-pass filter, and fHH
denotes a pair of high-pass filters. Assuming that our input is f , after applying 2D-DWT
with the level set to 1, we can obtain four sub-bands: fh with horizontal information, fv
with vertical information, fd with diagonal information, and fll with coarse information.

Despite the simplicity and clear structure of 2D-DWT, the obtained sub-bands only
highlight orientation information in certain directions, thereby weakening the information
from other directions. As illustrated in Figure 4, the diagonal sub-band cannot distinguish
between the angles of 45◦ and −45◦, which is not conducive to the complete extraction of
image information. In order to alleviate this problem, we turn to dual-tree complex wavelet
transform (DTCWT) [60]. The design of DTCWT can achieve complete reconstruction
and also has the advantages of approximate shift invariance and oscillatory suppression.
The traditional DWT generates one low-frequency sub-band and three high-frequency
sub-bands in one decomposition, while DTCWT utilizes the redundant representation of
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data (for 2D-DTCWT, four times the redundancy) to obtain 12 high-frequency sub-bands,
corresponding to the real and imaginary parts of the directions in {±15◦,±45◦,±75◦}, as
presented in Figure 4.

DWT DTCWT

DWT DTCWT

Figure 4. Orientation information extracted by DWT and DTCWT.

The real and imaginary components obtained from DTCWT can be organized into
two distinct trees. The filters associated with tree A’s low-pass and high-pass functions are
denoted as a0(n) and a1(n), while tree B’s low-pass and high-pass filters are represented
by b0(n) and b1(n). For a real-valued image M, the complex transform can be formulated
as follows:

w1 =
1
2

[
I −I
I I

][
faa
fbb

]
M

w2 =
1
2

[
I I
I −I

][
fba
fab

]
M

(4)

where w1 denotes the real part, w2 denotes the imaginary part, I represents the identity
matrix, and the square matrix fba denotes the 2D separable wavelet transform implemented
using bi(n) along the rows and ai(n) along the columns (the others are in the same vein).
The real part and imaginary part are stored separately; then, the final complex wavelet
coefficients, w, are computed as follows:

w = w1 + jw2 (5)

The architecture of our OIH is illustrated in Figure 5. The design of the OIH com-
prises one main branch and one short branch. Specifically, the input backbone feature X
is first split into Xshort and Xmain along the channel dimension. Subsequently, Xmain and
Xshort are separably passed through a ConvModule, which includes a convolution layer,
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a normalization layer, and an activation layer. Additionally, n DTCWT Blocks are imple-
mented for Xmain to emphasize the orientation information. Each DTCWT Block contains
a DTCWT operation, an inverse DTCWT operation, and a depth-wise ConvModule. The
complex wavelet coefficients obtained by DTCWT are multiplied by a learnable complex
weight and then restored to the input feature through inverse DTCWT. Then, Xmain and
Xshort are concatenated along the channel dimension. The concatenated feature receives a
ConvModule to produce the final orientation feature, Xo, which has the same dimension as
the input feature. The computation process can be formulated as follows:

Xshort, Xmain = Split(X)

Xshort = ConvModule(Xmain)

Xmain = DTCWTBlcoks(ConvModule(Xmain))

Xo = ConvModule(Concat([Xmain, Xshort]))

(6)

After the OIH module, we obtain the orientation features with the same scales of
corresponding backbone features. These orientation features are then sent to OFF module
together with the backbone features for information fusion.

ConvModule

ConvModuleSplit DTCWT
Block Concat ConvModule

Orientation Information
Highlighting Module

DTCWT

weight

Inverse
DTCWT

Depth‐wise
ConvModule

n

Conv2d

Norm Layer

Act Layer

ConvModule

Figure 5. Illustration of our OIH module.

3.3. Orientation Feature Fusion Module

Upon acquiring the backbone features and orientation features, we need an effec-
tive approach to integrate the orientation information into the backbone features, thereby
enhancing its sensitivity to orientation details. By drawing inspiration from FDOL [5],
we propose a novel OFF module that utilizes the attention mechanism to aggregate the
orientation information. The OFF module, illustrated in Figure 6, consists of two compo-
nents: the multi-dimensional aggregation attention (MAA) module and the cross-domain
attention (CA) module. The former is designed to capture contextual interactions within
the input feature itself, while the latter seamlessly incorporates orientation information
into the backbone features. This fusion strategy enhances the network’s ability to discern
and leverage orientation features effectively.
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MAA MAA
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Linear 𝑾𝒌Linear 𝑾𝒒
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𝑾
Cross‐domain 
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Figure 6. Overview of the OFF module. ⊗ denotes the matrix multiplication operation, and ⊕
indicates the element-wise addition operation.

3.3.1. Multi-Dimensional Aggregation Attention

As shown in Figure 7, the MAA module contains three branches, each of which cap-
tures interaction information in one specific dimension. When taking the height dimension
as an example, we first employ a permutation operation on the input feature f to exchange
the height dimension and the channel dimension:

f ′ ∈ RH×C×W = Permute( f ∈ RC×H×W) (7)

where f ′ denotes the feature with a dimension order of H ×C ×W. In order to compute the
height attention effectively, we employ max pooling and average pooling to compress the
other dimensions of the permuted feature. The combination of the max-pooled feature and
the average-pooled feature can greatly improve the representation ability of networks, as
opposed to using each feature independently. When taking f ′ as the input, we can generate
two different context descriptors through avg-pooling and max-pooling:

favg = AvgPool( f ′)

fmax = MaxPool( f ′)
(8)

where favg ∈ RH×1×1 denotes the avg-pooled descriptor, and fmax ∈ RH×1×1 denotes the
max-pooled descriptor. After the acquisition of the two descriptors, we need to combine
them into a unified one.

fdes =
1
2
( fmax + favg) + W0 · fmax + W1 · favg (9)

where fdes ∈ RH×1×1 indicates the final context descriptor, and W0 and W1 denote the learn-
able weighting parameters. Then, we use a feed-forward layer to enhance the representation
of the context descriptor and apply a sigmoid function to obtain the final attention:

WH = Sigmoid(FFN( fdes)) (10)
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where WH denotes the final height attention. Subsequently, we perform element-wise
multiplication between the height attention and the permutated features f ′, followed by a
permutation operation to revert to the original dimension order. This process yields the
feature XH ∈ RC×H×W , which is enhanced along the height dimension:

XH = Permute(WH ⊙ f ′) (11)

Similarly, we can obtain the features XW and XC enhanced along the width dimension
and channel dimension, respectively. Then, we simply use an average operation to obtain
the final enhanced feature X:

X = Avg([XH , XW , XC]) (12)

Input

Permute Permute

AvgPool
MaxPool

FFN

Permute

⨀

AvgPool
MaxPool

FFN

Permute

⨀

AvgPool
MaxPool
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⨀

𝑪 𝑯 𝑾
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𝑺𝒊𝒈𝑺𝒊𝒈𝑺𝒊𝒈

Figure 7. Overview of the MAA module. ⊙ denotes element-wise multiplication operation, and ⊕
indicates the element-wise addition operation.

3.3.2. Cross-Domain Attention

Subsequent to the enhancement achieved through the MAA, it is imperative to in-
tegrate orientation information into the backbone feature. Consequently, we introduce
the cross-domain attention (CA) mechanism to amalgamate information across diverse
domains. As is commonly acknowledged, self-attention employs inner products to generate
the attention weight between two matrices. In the design of CA, we extend the attention
weight into two parts: the original weight and the orientation weight. This extension allows
the model to capture the relationships between different domains and generate a more
comprehensive feature representation.

Given enhanced orientation features, fo, and backbone features, fc, we first apply a
self-attention operation to the backbone feature to obtain the original weight wc:

wc =
Dot(Wq fc, Wk fc)√

dk
(13)

where Wq and Wk are linear functions, Dot denotes the matrix multiplication, and dk
indicates the scale factor, which defaults to the channel length of the key matrix.
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As illustrated in Figure 6, the computational process for orientation weight can be
formulated as follows:

wo =
Dot(Wo

q fo, Wk fc)√
dk

(14)

where Wo
q transforms the orientation feature into a query matrix. Then, we combine the

original weight, wc, and the orientation weight, wo, to generate the final attention weight w:

w = αwo + βwc (15)

where α and β represent the weighting parameters, which default to 1.0 in our experiments.
With the guidance of w, we can obtain the final enhanced feature fe integrated with the
orientation information:

fco = σ(w)⊙ (Wv fc) (16)

where σ denotes the softmax function, ⊙ denotes element-wise multiplication, and Wv
indicates the linear function that transforms fc into a value matrix.

4. Experimental Results

In order to evaluate the effectiveness of our proposed approach, we conducted com-
prehensive experiments on two prominent datasets in the field of remote sensing object
detection, specifically DOTA [61] and HRSC2016 [62]. The experiments were conducted
using an NVIDIA RTX 3090 GPU with 24 GB of memory, and the entire implementation
was carried out using the PyTorch 1.12 framework. This experimental setup ensured both
computational efficiency and consistency in our evaluation process.

4.1. Datasets Description
4.1.1. DOTA

DOTA-v.10 serves as an extensive dataset curated for advancing remote sensing object
detection. The dataset, comprising a total of 2806 images, contains 188,282 instances, each
meticulously annotated with oriented bounding boxes. These instances collectively span
15 diverse object categories, encompassing Plane (PL), Baseball diamond (BD), Bridge (BR),
Ground track field (GTF), Small vehicle (SV), Large vehicle (LV), Ship (SH), Tennis court
(TC), Basketball court (BC), Storage tank (ST), Soccer-ball field (SBF), Roundabout (RA),
Harbor (HA), Swimming pool (SP), and Helicopter (HC). The images within the DOTA
dataset exhibit resolutions ranging from 800 × 800 to 4000 × 4000 pixels, providing a
varied and comprehensive set of visual data. Following the previous methods, both the
training and validation sets were employed for training purposes, with the remaining
portion reserved exclusively for testing. The final result of detection accuracy involves
submitting the test results to the official DOTA evaluation server, ensuring a standardized
and objective evaluation of model performance.

DOTA-v1.5, an extension of DOTA-v1.0, preserves identical images while introducing
annotations for extremely small instances (less than 10 pixels), resulting in an additional
215,000 instances. Notably, DOTA-v1.5 introduces a new category, “container crane”,
augmenting the dataset with a more diverse range of objects.

4.1.2. HRSC2016

HRSC2016 stands out as a pivotal dataset that is specifically tailored for detecting
arbitrarily oriented ships in the realm of remote sensing applications. With a total of
1061 images, the dataset comprises 2976 instances of ships, each annotated with oriented
bounding boxes to facilitate precise detection. The images within the dataset exhibit
resolutions ranging from 300 × 300 to 1500 × 900 pixels, crossing a diversity of scales.
For training and validation, a combined set of 617 images (436 for training and 181 for
validation) is employed, while the remaining images are dedicated to the testing phase.
Notably, during training and testing, all images are uniformly resized to 800 × 800 pixels,
ensuring consistent evaluation metrics.
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4.2. Implementation Details and Evaluation Metrics

Unless explicitly stated, the OII network is inherently embedded in the architecture of
oriented R-CNN, which demonstrates powerful performance and efficiency. In order to
maintain experimental consistency, we strictly adhere to the configurations outlined in a
previous study [10] and execute all experiments on the mmrotate platform [63]. We employ
the SGD optimizer with momentum and weight decay set at 0.9 and 0.0001, respectively.
In the inference stage, 2000 proposals are retained for each feature pyramid network
(FPN) level in the region proposal network (RPN), followed by non-maximum suppression
(NMS) using an IoU threshold of 0.8. Subsequently, the top 1K proposals, based on their
classification scores, serve as inputs for the region-based convolutional neural network
(RCNN) head. Within the RCNN head, we implement the rotated NMS on the predicted
rotated bounding boxes to reduce the redundancy, with the confidence score exceeding
0.05 and the IoU threshold set to 0.1. All training and testing experiments were conducted
on a single RTX 3090, with the batch size set to 2.

On the DOTA dataset, we cropped the original images into image patches with a
resolution of 1024 × 1024 pixels. The overlap of adjacent image patches is 200 pixels,
resulting in a cropping stride of 824 pixels. In addition to the basic single-scale strategy, we
also employed a multi-scale augmentation strategy during training and testing. Specifically,
we performed a sequential cropping at three ratios (0.5, 1.0, and 1.5) on the base of a
1024 × 1024 patch size and a 500-pixel overlap. In addition to cropping the images, we
also applied random flips (probability set to 0.75) and random rotations (probability set to
0.75) to achieve data augmentation. For the optimization of the learning rate, we adopted
the MultiStepLR strategy, with the initial learning rate set to 0.05. The training process
spans a total of 12 epochs, and the learning rate automatically decreased to 1/10 of its
original value at epochs 8 and 11. For the HRSC2016 dataset, we uniformly resized the
image resolution to 800 × 800 and set the training epochs to 36. The initial learning rate
was set to 0.005 and was reduced to 1/10 of its original value at epochs 24 and 33. The
other settings remained consistent with those applied to the DOTA dataset. For clarity and
readability, we list the initial training parameters in Table 1.

Table 1. The initial training parameters.

Dataset Input Size Batch Size Learning
Rate Momentum Weight

Decay NMS Thres Epoch

DOTA 1024 × 1024 2 0.05 0.9 0.0001 0.1 12
HRSC2016 800 × 800 2 0.005 0.9 0.0001 0.1 36

The evaluation of object detection models commonly relies on the well-established
average precision (AP) metric proposed by Everingham et al. [64]. By following previous
methods, we utilized the mean average precision (mAP) to evaluate the performance of
our OII model and other comparative models on the DOTA dataset. In order to obtain
mAP, we first need to calculate the precision and recall. The process can be formulated as
the following:

P =
TP

TP + FP

R =
TP

TP + FN

(17)

where P represents the precision, R denotes the recall, the true positive (TP) and the
true negative (TN) represent the correct predictions, and the false positive (FP) and false
negative (FN) denote the incorrectly predicted samples. In order to avoid the imbalance
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between precision and recall, average precision is defined as the surrounding area under
the precision-recall (P-R) curve. Then, we can obtain mAP as follows:

mAP =
1
K

K

∑
0

∫ 1

0
P(R)dR (18)

where K is the total number of classes, and P(R) represents the precision under a specific
recall. For the HRSC2016 dataset, we report the results under the metrics mAP(07) and
mAP(12), which indicate the mAP calculated according to the criteria of Pascal VOC 2007
and 2012, respectively.

4.3. Main Results
4.3.1. Results for the DOTA Dataset

In Table 2, we present a comprehensive overview of the performance results achieved
by our proposed OII method, comparing it with other methods on the DOTA-v1.0 dataset.
The results obtained through the online DOTA evaluation server follow a standardized
format. Under the single-scale training and testing strategy, our method achieves a notable
value of 76.98 mAP, surpassing the previous best detector ReDet by 0.73. In the multi-scale
training and testing scenario, our OII model achieves a competitive value of 80.82 mAP,
demonstrating parity with the other state-of-the-art methods. These outcomes indicate
the efficacy of our proposed approach for oriented object detection in remote sensing
images. The visual representation of the detection results on the DOTA dataset is depicted
in Figure 8, which illustrates the capability of our method to accurately generate rotated
bounding boxes for objects of various scales and orientations in remote sensing images.

PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Figure 8. Qualitative detection results of our OII model on the DOTA dataset.

As shown in Table 3, we also conducted comprehensive experiments comparing our
OII model against other detectors [61,67,68,70,71], utilziing the the DOTA-v1.5 dataset. Our
proposed OII model achieves 68.02 mAP, surpassing ReDet by 1.16 under the single-scale
strategy. Furthermore, our method attains a commendable 77.55 mAP in the multi-scale
training and testing strategy. However, it is noteworthy to highlight a decline of 0.57
in detection accuracy in comparison to the SOTA detector RTMDet-R-l. This decline is
primarily attributed to the category CC, for which the detection accuracy for OII is almost
10 lower than for RTMDet-R-l. We suspect that there are too few samples in the CC category,
leading to our model’s insufficient fitting for its features. This idea is confirmed in Figure 9,
which demonstrates that the DOTA v1.5 dataset has a long-tailed distribution, with the CC
category having the fewest samples. In-depth research into addressing this phenomenon
will be a focal point in our future work.
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Table 2. Comparison with state-of-the-art methods for the DOTA-v1.0 dataset with single-scale and
multi-scale training and testing strategies.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Single-scale

FR-O [61] R-101 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13

ICN [65] R-101 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

CADNet [11] R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

Rol Transformer [1] R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

DRN [31] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

CenterMap [23] R-50 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74

SCRDet [4] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

FAOD [66] R-101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

R3Det [32] R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

S2A-Net [27] R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12

Oriented R-CNN [10] R-50 88.79 82.18 52.64 72.14 78.75 82.35 87.68 90.76 85.35 84.68 61.44 64.99 67.40 69.19 57.01 75.00

Oriented R-CNN [10] R-101 89.08 81.38 54.06 72.71 78.62 82.28 87.72 90.80 85.68 83.86 62.63 69.00 74.81 70.32 54.08 75.80

ReDet [67] ReR-50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25

OII (ours) R-101 89.67 83.48 54.36 76.20 78.71 83.48 88.35 90.90 87.97 86.89 63.70 66.82 75.93 68.61 59.59 76.98

Multi-scale

FR-O [61] R-101 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05

Rol Transformer [1] R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

DRN [31] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

FAOD [66] R-101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

Gliding Vertex [6] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

CenterMap [23] R-101 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

OWSR [68] R-101 90.41 85.21 55.00 78.27 76.19 72.19 82.14 90.70 87.22 86.87 66.62 68.43 75.43 72.70 57.99 76.36

S2A-Net [27] R-50 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42

ReDet [67] ReR-50 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

GWD [39] R-152 89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.47 67.77 76.92 79.22 74.92 80.23

EDA [69] ReR-50 89.92 83.84 59.65 79.88 80.11 87.96 88.17 90.31 88.93 88.46 68.93 65.94 78.04 79.69 75.78 80.37

FDOL [17] ReR-50 88.90 84.57 60.73 80.83 78.42 85.82 88.33 90.90 88.28 86.93 71.44 67.13 79.00 80.35 74.59 80.41

Oriented R-CNN [10] R-101 90.26 84.74 62.01 80.42 79.04 85.07 88.52 90.85 87.24 87.96 72.26 70.03 82.93 78.46 68.05 80.52

OII (ours) R-101 89.52 84.97 61.71 81.11 79.63 85.59 88.67 90.88 86.82 87.94 72.27 70.06 82.58 78.14 72.42 80.82

“Single-scale” represents using the single-scale strategy during training and testing. “Multi-scale” denotes using
the multi-scale strategy during training and testing.

Table 3. Comparison with state-of-the-art methods on the DOTA v1.5 dataset. The results of the
method were partly obtained from their released code and were reconstructed when needed.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

Single-scale

RetainaNet-O [36] R-50 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16

FR-O [61] R-101 71.89 74.47 44.45 59.87 51.28 69.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00

Mask R-CNN [70] R-101 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67

ReDet [67] ReR-50 79.20 82.81 51.92 71.41 52.38 75.73 80.92 90.83 75.81 68.64 49.29 72.03 73.36 70.55 63.33 11.53 66.86

OII (ours) R-101 77.79 82.03 49.45 71.37 59.33 80.30 85.39 90.88 80.73 70.26 51.81 71.59 75.81 72.19 54.36 15.01 68.02

Multi-scale

FDOL [17] ReR-50 88.41 86.30 61.25 82.30 68.00 84.12 89.95 90.83 84.31 76.81 70.74 73.24 78.72 73.15 75.54 16.23 75.62

OWSR [68] R-101 88.19 86.41 59.35 80.23 68.10 75.62 87.21 90.12 85.32 84.04 73.82 77.45 76.43 73.71 69.48 49.66 76.57

RTMDet-R-m [71] CSPNeXt 89.07 86.71 52.57 82.47 66.13 82.55 89.77 90.88 84.39 83.34 69.51 73.03 77.82 75.98 80.21 42.00 76.65

ReDet [67] ReR-50 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80

RTMDet-R-l [71] CSPNeXt 89.31 86.38 55.09 83.17 66.11 82.44 89.85 90.84 86.95 83.76 68.35 74.36 77.60 77.39 77.87 60.37 78.12

OII (ours) R-101 87.52 86.22 61.09 81.19 67.31 81.47 88.87 90.48 85.93 84.65 69.53 73.26 75.93 76.98 79.73 50.48 77.55

“Single-scale” represents using the single-scale strategy during training and testing. “Muti-scale” denotes using
the multi-scale strategy during training and testing.
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Figure 9. The number of instances corresponding to each category.

4.3.2. Results on the HRSC2016 Dataset

As illustrated in Table 4, we provide an evaluation of our OII model in comparison to
the other 14 SOTA approaches on the HRSC2016 dataset. The outcomes indicate that our
OII model achieves an outstanding mAP of 90.63 and 98.23 under the VOC 2007 and VOC
2012 metrics, respectively. These quantitative results prove the efficacy of incorporating
orientation information in oriented object detection in remote sensing images. For a
qualitative result, Figure 10 illustrates a comparison between the baseline method and
our OII model. It can be seen that our approach detects more objects and generates more
accurate rotated bounding boxes.

Table 4. Comparison with state-of-the-art models on the HRSC2016 dataset.

Method Backbone Pretrained mAP(07) mAP(12)

RetinaNet-O [36] R-50 IN 73.42 77.83
DRN [31] H-34 IN - 92.70
CenterMap [23] R-50 IN - 92.80
RoI Transformer [1] R-101 IN 86.20 -
Gliding Vertex [6] R-101 IN 88.20 -
PIoU [72] DLA-34 - 89.20 -
R3Det [32] R-101 IN 89.26 96.01
DAL [30] R-101 IN 89.77 -
GWD [39] R-50 IN 89.85 97.37
S2ANet [27] R-101 IN 90.17 95.01
AOPG [37] R-50 IN 90.34 96.22
Oriented R-CNN [10] R-50 IN 90.40 96.50
ReDet [67] ReR-50 IN 90.46 97.63
Oriented R-CNN [10] R-101 IN 90.50 97.60
RTMDet-R [71] CSPNeXt COCO 90.60 97.10
OII (ours) R-101 IN 90.63 98.23
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Figure 10. Illustration of the detection results of the baseline methods and our OII model. The yellow
box represents the target that was not detected by the baseline but was detected by OII.

5. Discussion

In this section, we perform a set of ablation experiments to validate the effectiveness
of each module in our proposed OII model. For simplicity, we adopt ResNet-50 as the
backbone for OII in these experiments.

5.1. Analysis of OIH

The methods of orientation extraction play a key role in our OIH model. We have
discussed the difference between DWT and DTCWT and provided a quantitative compari-
son of them on the DOTA-v1.0 and HRSC2016 datasets in single-scale training and testing.
Furthermore, we also compare the performance difference that arises from separately
extracting orientation information from the image approximation and stage features. The
results are listed in Tables 5 and 6. All results were produced by using the backbone of
ResNet-50. It is evident that the performance of DTCWT surpassed DWT when extracting
orientation information, whether from the image approximation or the stage features. The
results demonstrate that the utilization of DTCWT to extract orientation information from
stage features achieves 76.26 mAP on the DOTA-v1.0 dataset and 97.50 mAP(12) on the
HRSC2016 dataset, which are both the best performances. This proves the effectiveness of
DTCWT in extracting orientation information.

Table 5. Quantitative comparison of DWT and DTCWT using different positions to extract orientation
information from the DOTA-v1.0 dataset.

Method Image Approx Stage Features mAP

DWT ✓ 75.54

DWT ✓ 75.37

DTCWT ✓ 75.84

DTCWT ✓ 76.26

In addition to the method of orientation extraction, we also conducted experiments to
verify the effectiveness of the DTCWT Blocks, which play an important role in our OIH
module. As illustrated in Table 7, we investigated the impact of the number of DTCWT
Blocks on the performance of the network based on ResNet-50. It can be seen that the
performance of the model reaches the optimum when the number of DTCWT Blocks is
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three. The performance of the model will decrease when the number of DTCWT Blocks is
not three.

Table 6. Quantitative comparison of DWT and DTCWT using different positions to extract orientation
information from the HRSC2016 dataset.

Method Image Approx Stage Features mAP(07) mAP(12)

DWT ✓ 89.61 95.10

DWT ✓ 90.23 95.87

DTCWT ✓ 90.42 96.45

DTCWT ✓ 90.57 97.50

Table 7. Evaluation of the number of DTCWT Blocks on the network for the DOTA-v1.0 dataset.

Num Params (M) FLOPs (G) mAP

0 52.30 259.90 75.43

1 53.97 264.43 75.72

2 55.65 268.96 76.04

3 57.33 273.49 76.26

4 59.01 278.02 76.24

5 60.69 282.55 76.13

5.2. Analysis of OFF

As mentioned in the previous section, the OFF module consists of two units, CA and
MAA. We conducted extensive experiments to evaluate the effectiveness of each unit and
their individual contributions to the overall performance of the network.

In order to evaluate the effectiveness of MAA, we compared it to various attention
mechanisms, such as channel attention, spatial attention, and CBAM. As illustrated in
Table 8, the results indicate that our proposed MAA yields the best performance, surpassing
other combinations of attention mechanisms, with little increment in the parameters.

Table 8. Ablation for combining attention methods on the DOTA-v1.0 dataset.

Attention Method Params (M) FLOPs (G) mAP

None 57.32 273.44 75.79

Channel Attention 57.32 273.44 75.88

Spatial Attention 57.32 273.44 75.82

Channel Attention + Spatia Attention 57.32 273.46 75.94

Channel Attention & Spatial Attention 57.32 273.46 75.96

CBAM [18] 57.32 273.46 76.05

SRM [19] 57.32 273.44 76.18

ECA [20] 57.32 273.44 76.23

MAA (ours) 57.33 273.49 76.26

“+” represents the sequential combination of attention methods. “&” denotes the parallel combination of atten-
tion methods.

In order to evaluate the importance of the orientation weight in the CA module, we
conducted a series of experiments. Initially, we avoided any processing on the output of
the MAA and directly took the output as the input of the neck. Then, we incorporated the
original self-attention (SA) mechanism to capture global spatial information and enhance
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feature representation. Finally, we replaced SA with our proposed CA and evaluated
the model’s performance in each scenario. As outlined in Table 9, after integrating the
SA algorithm, the model achieves an mAP(07) of 90.44 and an mAP(12) of 96.53 on the
HRSC2016 dataset, obtaining improvements of 0.13 and 0.29 compared to the original model
without any processing. It is notable that our CA module attains the highest mAP(07) of
90.57 and the highest mAP(12) of 97.50, surpassing the model with SA by 0.13 and 0.47.
This indicates that our CA module can further leverage orientation information to boost
the performance of the network by using the base of the original SA.

Table 9. Effectiveness of our CA on the HRSC2016 dataset.

Methods Backbone mAP(07) mAP(12)

None R-50 90.31 96.24

SA R-50 90.44 96.53

CA R-50 90.57 97.50

5.3. Effectiveness of OII

We have mentioned that our OII model can be regarded as a plug-and-play module
that can be seamlessly integrated into existing mainstream networks. Extensive experi-
ments were constructed to verify the effectiveness of the OII model. We selected various
existing rotated object detectors to investigate the change in performance arising from
the combination of OII on the test set of the DOTA-v1.0 dataset. All experiments were
constructed on the mmrotate platform on a single RTX 3090 GPU. As illustrated in Table 10,
we compared the number of parameters and computational speeds of the different detectors
and the standard OII model. As an auxiliary module, OII inevitably brings a computational
and parametric boost, but at the same time, it also brings a notable gain in performance to
all models. The results listed in Table 11 demonstrate that our proposed OII model is able to
improve the detection performance based on the original model. Whether for single-stage
detectors or multi-scale detectors, the combination with our OII model always achieves a
better result, which strongly verifies its effectiveness.

Table 10. The parameters and computational speeds of the detectors and our standard OII model on
the DOTA-v1.0 dataset.

Method Param (M) FLOPs (G) FPS

One-Stage

Rotated-RepPoints [73] 36.82 184.18 46.62
R3Det [32] 42.12 335.32 32.32
OrientedRepPoints [74] 36.61 194.32 46.79

Two-Stage

Gliding Vertex [6] 41.47 225.22 26.35
Rotated Faster RCNN [21] 41.73 224.95 25.91
Oriented RCNN [10] 41.42 225.35 20.33

OII (ours) 57.33 273.49 20.48

Figure 11 demonstrates the visualization of feature maps over four stages, obtained
separately from the baseline and after our OII model. It highlights that the network presents
a better detection ability for densely distributed small objects with the help of our OII
model. This is highly beneficial for remote sensing object detection. It is worth noting
that although our method can effectively utilize orientation information, it needs more
parameters and computation, which leads to a decline in inference speed. At the same time,
most of the images in the datasets we used were taken under normal, natural conditions,
and the detection in the extreme natural scenes has not been explored in depth, which is
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an important research direction in the field of remote sensing. Our research focus may
gradually shift in this direction afterward.

Table 11. The performance of the detectors before and after their combination with the OII model on
the DOTA-v1.0 dataset.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

One-Stage

Rotated-RepPoints [73] 83.42 65.36 36.25 51.05 71.25 51.84 72.47 90.52 70.16 81.99 47.84 58.91 50.68 55.53 2.60 59.33
Rotated-RepPoints + OII 85.64 67.63 37.46 51.66 72.70 52.14 72.04 91.29 70.19 80.16 48.86 58.32 51.11 56.76 3.76 60.22

(+0.89)

R3Det [32] 89.02 75.65 47.33 72.03 74.58 73.71 82.76 90.82 80.12 81.32 59.45 62.87 60.79 65.21 32.59 69.82
R3Det + OII 89.30 76.00 44.00 69.03 77.68 74.48 85.49 90.84 79.69 84.28 55.71 63.31 63.52 66.21 36.61 70.41

(+0.59)

OrientedRepPoints [74] 87.75 77.92 49.59 66.72 78.47 73.13 86.58 90.87 83.85 84.34 53.06 65.54 63.73 68.70 45.91 71.74
OrientedRepPoints + OII 87.94 77.87 51.68 71.26 78.39 76.81 86.91 90.87 83.20 83.12 50.41 65.16 65.02 68.97 44.74 72.14

(+0.40)

Two-Stage

Gliding Vertex [6] 83.27 77.41 46.55 64.17 74.66 71.25 83.90 85.24 83.11 84.55 47.32 65.14 61.59 63.81 54.19 69.74
Gliding Vertex + OII 84.26 79.89 48.02 64.83 75.88 71.24 83.31 84.76 82.91 84.59 50.69 62.99 60.27 66.71 53.94 70.29

(+0.55)

Rotated Faster RCNN [21] 88.99 82.05 50.01 69.94 77.97 74.08 86.08 90.81 83.26 85.57 57.59 61.17 66.44 69.35 57.79 73.41
Rotated Faster RCNN + OII 89.43 80.97 51.56 68.78 78.46 74.43 86.40 90.86 86.29 85.26 57.58 63.73 66.58 67.25 58.21 73.85

(+0.44)

Oriented R-CNN [10] 88.79 82.18 52.64 72.14 78.75 82.35 87.68 90.76 85.35 84.68 61.44 64.99 67.40 69.19 57.01 75.00
Oriented R-CNN + OII 89.29 82.50 55.19 71.43 78.69 82.61 88.17 90.83 86.58 85.04 63.38 61.13 73.39 65.09 64.27 75.84

(+0.84)

Baseline
O
II

Stage1 Stage2 Stage3 Stage4

Figure 11. Visualization of feature map from the baseline and our OII model. The redder the region,
the more attention the network pays to.

6. Conclusions

In this study, we explore the viability of utilizing orientation information to enhance
oriented object detection and propose a novel OII model that is used to specifically detect
oriented targets in remote sensing images. The OII model comprises two components: the
OIH module and the OFF module. The OIH module efficiently extracts the orientation
details through DTCWT, generating coefficients across six distinct angles. Subsequently, the
coefficients are restored to the orientation feature through inverse DTCWT. The OFF module
is designed to fuse the orientation features and the backbone features, thus enhancing the
orientation sensitivity of features. Notably, the OII model maintains consistency between
the input dimension and the output dimension, making it a plug-and-play component that
is seamlessly integrated into various mainstream detectors.
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Experiments on two challenging remote sensing image datasets demonstrate the
superiority of our method. We achieved 80.82 mAP on the DOTA dataset and 98.32 mAP(12)
on the HRSC2016 dataset, surpassing the previous SOTA methods. In addition, the ablation
studies provide a detailed explanation of the working mechanism of our enhancements.
The experiments on the effectiveness of the OII model further demonstrate that it can be
used as a plug-and-play module and is an effective improvement of the original model in
terms of performance. In our future research, we will gradually improve our method to
enhance the detection performance in more complex remote sensing scenarios.
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